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Abstract. We describe various combinatorial invariants of iterated quadratic poly-
nomials pc(z) = z2 + c and discuss their relations: external angles, itineraries, knead-
ing sequences, internal addresses, Hubbard trees and others. Among others, we cover
the following topics:
• Necessary and sufficient criteria for the existence of quadratic polynomials real-

izing given combinatorics, in particular a characterization of complex admissible
kneading sequences;

• A forcing order on the space of Hubbard trees; this leads to a combinatorial
model which describes the tree structure of the Mandelbrot set;

• The admissible kneading sequences in {0, 1}N∗
have positive mass with respect

to 1
2 - 12 product measure;

• Most points on Julia sets Jc, c 6= −2, resp. the Mandelbrot set M (in the sense
of harmonic measure ωc resp. ω, or in the sense of Hausdorff dimension) are not
biaccessible;

• For ω-almost every c ∈ ∂M, the critical point 0 ∈ Jc is typical in the sense of
the Birkhoff Ergodic Theorem applied to harmonic measure ωc.

We also collect old and new algorithms and show how to turn these combinatorial
invariants into each other.
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1. Introduction

Our understanding of the dynamics of polynomials in the complex plane, and of the
Mandelbrot set, builds largely on the seminal work of Douady and Hubbard, the Orsay
notes [DH1]. They showed that the topology, geometry and dynamics of polynomial
Julia sets can be understood in terms of combinatorics and symbolic dynamics. The
underlying reason is that complex differentiable families of maps p : C → C are very
rigid: while there is a huge set of continuous maps from C to itself, complex differ-
entiable maps are automatically rational maps of finite degree, which are described
by a finite number of complex coordinates. If in addition p−1(∞) = {∞}, then p is a
polynomial. In the same spirit, iteration of p yields a dynamical system which becomes
very rigid when p is known to be complex differentiable.{

topology
dynamics

}
←−−→

complex structure

{
combinatorics

symbolic dynamics

}
When investigating a family of holomorphic maps, such as pc : z 7→ z2 + c or Ec : z 7→
ez + c depending on a complex parameter c, great interest lies in distinguishing and
describing different types of dynamics; a plan of investigation could proceed as follows:

(1) distinguish different types of dynamics in combinatorial terms;
(2) subdivide the parameter plane (in our examples, the complex c-plane) into

sets with combinatorially equivalent dynamics (“combinatorial classes”);
(3) describe the combinatorial possibilities and their locations in parameter space;
(4) describe the set of maps within each combinatorial class: show that either the

class consists of a single map, or describe how the various maps differ;
(5) give a topological or geometric model for the dynamics on the Julia set in a

given combinatorial class, and discuss which properties of the Julia set are
preserved in the model.

There are at least three fundamental combinatorial concepts to describe polynomial
dynamics: external angles, Hubbard trees, and itineraries/kneading sequences, each
with their particular advantages. At least for quadratic polynomials, the first and third
problems have been investigated quite successfully in terms of these concepts, and they
help to deal with the second question (a combinatorial subdivision of parameter space).
There is also substantial progress on the fourth question: the fact that a combinatorial
class consists of a single map is known as combinatorial rigidity (or triviality of a fiber
of the Mandelbrot set). In cases of failing rigidity, one investigates the (topological
or quasiconformal) deformation space consisting of (topologically or quasiconformally)
conjugate maps; see e.g. [MS]. For all combinatorial classes, there are several ways
to build “nice” topological models of the Julia set which usually are homeomorphic to
the actual Julia set only if the latter is locally connected [D3].

In the list above, the first three questions are combinatorial ones, while the remain-
ing two transfer the combinatorial results back into the dynamical or parameter spaces
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of complex dynamics. This article focuses on the combinatorial side: we discuss the
three different concepts of symbolic dynamics named above and explore their proper-
ties and interrelations. We will exclusively restrict to the case of quadratic polynomials
because it is the simplest, and because we have now a rather complete picture in the
quadratic case; for the case of “unicritical polynomials” z 7→ zd + c with an integer
d ≥ 2, some generalizations have been obtained ([LS, Section 12] and recently [Kau2]).

We begin by describing three prototypical quadratic polynomials (Figure 1.1). Let
pc : z 7→ z2 + c be a (monic and centered) quadratic polynomial with filled-in Julia set
Kc and Julia set Jc = ∂Kc. The Mandelbrot set M is the quadratic connectedness locus,
that is the set of all c ∈ C for which Jc (or equivalently Kc) is connected.

•

•

•

•

Figure 1.1. (1): A totally disconnected quadratic Julia set, which is
a Cantor set (c = 0.1 + i); (2): a Julia set which is a topological circle
(c = −0.5 + 0.1i); (3): the Julia set of a quadratic polynomial in which
the critical orbit is strictly preperiodic (c = i); the postcritical points are
marked by heavy dots.

In the first picture, the Jc = Kc is totally disconnected, which happens if and only if
c /∈M; since Julia sets of polynomials are always compact and perfect (i.e. they contain
no isolated points), the Julia set is a Cantor set. The equipotential of the critical point
is the set

{z ∈ C : |p◦nc (z)/p◦nc (0)| → 1 as n→∞} .
This is a lemniscate homeomorphic to the figure 8, and Jc is contained in the two
bounded complementary components. If we call these two bounded components U0

and U1 such that c ∈ U1, then Jc ⊂ U0 ∪ U1 and every z ∈ Jc gets an itinerary in
Σ := {0, 1}N∗ describing which components the orbit of z visits in order. It is quite
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easy to see that this itinerary map is a homeomorphism from Jc onto Σ which conjugates
the dynamics on Jc to the shift map on Σ: this is one prototypical example of how a
simple symbolic dynamical system completely describes the topology and dynamics of
a polynomial Julia set completely, up to homeomorphism.

The second picture displays a Julia set Jc which is homeomorphic to a circle, so that
the dynamics of pc of topologically conjugate to angle doubling on the circle S1 = R/Z
(or to the squaring map on ∂D ⊂ C). Again, we have an easy model dynamical system
which completely describes topology and dynamics of the Julia set. The circle S1 will
be the space of external angles, on which the natural dynamics is the doubling map.

The third picture shows a dendrite Julia set: it is simply path connected, i.e. every
pair of points in Jc is connected by a unique path within Jc (up to reparametrization).
The critical orbit is finite (marked by heavy dots) and spans a finite subtree within the
Julia set (the Hubbard tree). It turns out that the topology and dynamics of the Julia
set are completely described by the Hubbard tree with its dynamics: if T ⊂ Jc is the
Hubbard tree, then Jc = ∪k≥0p−kc (T ).

As described, the three methods (itineraries, Hubbard trees, angle doubling on
the circle) are natural to different kinds of Julia sets. We will now discuss the three
methods in more detail, pointing out how they make sense for more general quadratic
Julia sets. Since all disconnected quadratic Julia sets have topologically (and even
quasiconformally) conjugate dynamics, most of the interest lies in the connected case,
hence in the case c ∈ M and thus in the Mandelbrot itself as the parameter space of
connected quadratic Julia sets. We will restrict most of the discussion to this case.

External Rays and External Angles: A rather general method to under-
stand the dynamics on the Julia set in terms of angle doubling on S1 ap-
plies whenever the Julia set is connected, i.e. c ∈ M (as in our second and
third examples): there is a unique conformal isomorphism (a Riemann map)
ϕc : C \Kc → C \ D with ϕc(z)/z → 1 as z →∞, where D is the unit disk in
C. It turns out that ϕc conjugates the dynamics outside of Kc to the complex
squaring map on C \ D: ϕc(pc(z)) = (ϕc(z))2. The external ray at external
angle ϑ ∈ S1 = R/Z is Rc(ϑ) := ϕ−1

c ({re2πiϑ : r > 1}). In the context of
Julia sets, we will speak of dynamic rays instead of external rays in order
to distinguish them from parameter rays of the Mandelbrot set (see below).
Every dynamic ray Rc(ϑ) is an analytic curve which connects Kc to ∞, and
pc(Rc(ϑ)) = Rc(2ϑ). The dynamics of pc outside of Kc is thus easy to under-
stand. The goal is to use dynamic rays to extend this information to the Julia
set, which is the locus of the interesting dynamics.

We say that the dynamic rayRc(ϑ) lands at z ∈ Kc if z = limr↘1 ϕ
−1
c (re2πiϑ).

Not every dynamic ray necessarily lands, but the set of external angles ϑ such
that Rc(ϑ) lands for given c has full measure. If Jc is locally connected, then
every ray lands at a unique point z(ϑ) ∈ Jc, the landing point z(ϑ) depends
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continuously on ϑ, and every z ∈ Jc is the landing point of at least one
Rc(ϑ). In this case, the inverse Riemann map extends continuously to a map
ϕ−1
c : C \ D → (C \ Kc) ∪ Jc, and restriction gives a continuous surjection

ϕ−1
c : S1 → Jc (the Carathéodory loop) which semiconjugates the dynamics:

ϕ−1
c (e2πi(2ϑ)) = pc(ϕ

−1
c (e2πiϑ)). This helps to understand the dynamics of pc on

the Julia set, and we get a topological model for the Julia set as a quotient of
S1 under the equivalence relation:

ϑ ∼ ϑ′ if and only if Rc(ϑ) and Rc(ϑ
′) land at the same point .

In fact, this dynamic quotient of S1 is locally connected, and it provides a
homeomorphic model for Jc if and only if Jc is also locally connected. In a
similar spirit, one can get a model for the filled-in Julia set Kc by an appropri-
ate quotient of D: this is the pinched disk model of Kc, see [D3]. It turns out
that topology and dynamics of these models can be constructed in terms of
only one external angle corresponding to a dynamic ray landing at the critical
value (with a slight modification if the critical value is in the interior of Kc,
so that no ray can land there). This point of view has been pioneered by
Thurston [Th] and expanded by Keller [Ke].

The main point for us is that the topology and dynamics on Jc (for c ∈M)
can be described in terms of one of the simplest cases of symbolic dynamics:
the doubling map on S1.

Itineraries, Kneading Sequence, and Internal Address: One
fundamental idea of symbolic dynamics is to subdivide phase space into a
number of disjoint components Ui and code the orbit of a point by the sequence
of components Ui which are visited in order by this orbit. Depending on
the chosen partition, similar symbolic spaces can encode the same dynamical
system in different ways. This works best if the Ui form a Markov partition: i.e.
if the image of every Ui is the union of some Uj (i.e. if the image contains every
Uj which it intersects), and p restricted to each Ui is injective. A prototypical
example was given in the example above of a Cantor quadratic Julia set: we
had Jc ⊂ U0∪U1 and pc(Jc∩U0) = pc(Jc∩U1) = Jc. Much of the complication
in generalizing itineraries to non-Cantor Julia sets arises from the fact that we
often do not have a Markov partition.

For quadratic polynomials, itineraries have interesting similarities to exter-
nal angles (or to their dyadic expansions, see below), sometimes confusingly
so. However, there are striking and important differences.

The dyadic expansion of an external angle ϑ ∈ S1 = R/Z is the sequence
of binary digits ϑ = 0.x1x2x3 . . . with ϑ =

∑
k≥1 xk2

−k, where xk ∈ {0, 1}.
This dyadic expansion can be read off from the following symbolic dynamic
system: set ϑk := 2k−1ϑ (the orbit of ϑ under angle doubling on S1) and set
U0 = [0, 1/2) and U1 = [1/2, 1). Then xk = 0 iff ϑk ∈ U0 and xk = 1 iff
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ϑk ∈ U1, so the dyadic expansion of the external angle is the itinerary with
respect to this Markov partition. Note that another partition with the same
property is U ′0 = (0, 1/2] and U ′1 = (1/2, 1]; the itineraries of ϑ with respect to
these two partitions differ if and only if some 2kϑ = 0 in S1, i.e. if and only if
ϑ is a dyadic rational number a/2k: this exactly reflects the ambiguity in the
binary representation of dyadic rational numbers.

In the context of real quadratic polynomials, the Julia set restricted to R
is an interval or a Cantor set. It is natural to subdivide this real Julia set at
the critical point (which is the point of symmetry) and write the itinerary of
an arbitrary orbit as a sequence of symbols L and R, coding whether an orbit
is to the left or to the right of the critical point. A natural generalization to
the complex case pc : z 7→ z2 + c if c /∈ M was described above. If c ∈ M, i.e.
Kc is connected, one can proceed as follows: supposing there is a dynamic ray
Rc(ϑ) which lands at the critical value c, then the two dynamic rays Rc(ϑ/2)
and Rc((ϑ + 1)/2) land at the critical point 0 and divide C into two open
complementary parts U0 and U1, i.e. C = U0∪U1∪Rc(ϑ)∪Rc((ϑ+1)/2)∪{0}.
Choose labels so that c = pc(0) ∈ U1. For any z ∈ C, the itinerary is the

sequence of labels in {0, 1, ?}N∗ describing whether the k−1-st image p
◦(k−1)
c (z)

is in U0, in U1, or on the common boundary.1

The same partition associates an itinerary also to every dynamic ray R(ϕ).
In fact, this itinerary can be read off purely from symbolic dynamics on S1:
given ϑ, cut S1 at the two preimages of ϑ into the two arcs A1 = (ϑ/2, (ϑ+1)/2)
and A0 = ((ϑ + 1)/2, ϑ/2) (in the positive orientation, so that ϑ ∈ A1 and
0 ∈ A0), and set A? := {ϑ/2, (ϑ + 1)/2}. Then the itinerary of R(ϕ) with
respect to the partition formed by dynamic rays can be read off from the
itinerary of ϕ under the angle doubling map in S1. This construction is quite
similar to the binary expansion of the external angle, but in this case the
Markov property fails.

Different dynamic rays have different external angles, so dynamic rays can
be distinguished by their external angles. To a point z ∈ Jc one can associate
the external angles of all dynamic rays (if any) which land at z, but there is
no preferred choice if several rays land at the same point. It is not obvious to
tell which rays land together.

Itineraries are intrinsically defined for every z ∈ Kc. A dynamic ray Rc(ϑ)
can land at z ∈ Jc only if ray and prospective landing point have identical
itineraries; in good cases, this is an “if and only if” condition2. In particular,

1If there is an attracting or parabolic orbit, the critical point is in the interior of the filled-in Julia
set, but one can adapt the construction.

2“Good cases” are those in which the Julia set is locally connected, and all periodic points are
repelling: in the presence of attracting and parabolic orbits, the construction can successfully be
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two dynamic rays land together if and only if they have the same itineraries.
However, it can no longer be possible to distinguish different dynamic rays by
their itineraries, and it is also not obvious which itineraries in {0, 1, ?}N∗ occur
for dynamic rays and points in Jc.

Note that there is a choice involved in the construction of itineraries in case
that several dynamic rays land at the critical value: one has to be consistent
for any given dynamical system, of course; it turns out that this choice does
not affect the itinerary of any point on the Hubbard tree, and in particular it
does not affect the kneading sequence defined below.

The most important itinerary is that of the critical value: this is called
the kneading sequence of pc. This name comes historically from symbolic
dynamics of interval maps, but it proves very useful in the complex case as
well. The kneading sequence alone determines the dynamics of a quadratic
polynomial essentially uniquely, at least in the “good cases” mentioned above
(up to certain symmetries that can be easily described). Here is the idea if
c ∈ Jc. Different points in Jc have different itineraries, so one can describe Jc
as the space of those itineraries which occur, appropriately topologized; the
dynamics on the itineraries is simply the shift map. To see which itineraries
can occur, recall that c ∈ Jc, so ν is not periodic. If some z ∈ Jc maps after
finitely many steps onto the critical point 0 with itinerary ?ν, then the itinerary
of z is a finite string over {0, 1}, followed by ?ν. Otherwise, the itinerary of
z is in Σ = {0, 1}N∗ . Since ?ν must be the only immediate preimage of ν
(which describes the critical value), the itineraries 0ν and 1ν are forbidden,
and so are the backwards orbits of those. (Penrose [Pen1] uses this as the
starting point for his construction of Julia sets as glueing spaces, starting from
the topological space Σ, glueing 0ν to 1ν, and continuing this glueing along
backwards orbits so as to obtain a topological dynamical system.)

The internal address is a strictly monotone integer sequence (finite or in-
finite) which recodes the kneading sequence in a compact and readable form,
displaying the most important data. For example, the more important peri-
odic points in Jc (including periodic branch points) have periods that occur
in the internal address. In the Mandelbrot set, the internal address gives the

modified; polynomial Julia sets with Cremer points are never locally connected, and if there are Siegel
disks, then all points on the boundary of the Siegel disk have the same periodic itinerary unless they
map onto the critical point after finitely many iterations. Local connectivity has been established for
Julia sets without indifferent periodic orbits as long as they are not infinitely renormalizable [HY],
and even for certain infinitely renormalizable ones [Ly2]. When local connectivity fails, there is still
a locally connected model dynamics (the dynamic quotient of the circle) which in the case of Cremer
points models a Siegel disk. In the other cases we still get a continuous map from the Julia set to the
locally connected model; this map is many-to-one, and all points in the Julia set which correspond to
the same model point have the same itinerary.
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periods of the hyperbolic components of lowest period on the path in M from
0 to c, which help to describe the location of parameters within M. Symme-
tries leading to different dynamical systems with identical kneading sequences
can conveniently be described by additional information called angled internal
addresses.

Hubbard Trees: These trees were introduced in [DH1] for polynomials for
which all critical orbits are finite; in this case, the filled-in Julia set K is con-
nected and locally connected. There is a finite topological tree T ⊂ K which
connects all points on the critical orbits, which is forward invariant under the
dynamics, and which is minimal in the sense that no subtree has the same
properties. (In the presence of a superattracting orbit, an additional condi-
tion is needed to make this tree unique.) Douady and Hubbard showed that
the topological type of this tree (that is, an equivalence class of homeomor-
phic trees with conjugate dynamics, with a cyclic order at the branch points
specified) suffices to encode the Julia set completely. Later, Hubbard trees
for postcritically finite polynomials have been classified by Poirier [Poi] using
another fundamental theorem of Thurston [DH2] and extending earlier work
[BFH].

Douady [D2] writes that he “finds it much more convenient to draw [the]
Hubbard tree than to give [the] coordinates” when he wants to talk about a
specific [postcritically finite] quadratic polynomial. Indeed, the Hubbard tree
is a sketch of the essential topological features of the Julia set from which most
other relevant data can be reconstructed quite easily; the converse, finding the
Hubbard tree associated e.g. to some external angle or to a kneading sequence,
is far more difficult and one of the main themes of this paper: turning the
different combinatorial descriptions of quadratic polynomials into the others.
Since Hubbard trees contain the dynamical information in the most accessible
way, most of our discussions are based on them.

For us, it turns out that the discussion becomes easier by considering a
slight generalization of Hubbard trees: we consider finite topological trees
as abstract topological spaces, without embeddings into the complex plane.
There are less data to deal with, and there is an easy criterion which trees
are realized by actual polynomials: those without “evil” orbits. (Readers
familiar with Thurston’s classification of rational maps may see similarities
with “obstructions” in that classification: in both cases, an obstruction makes
it impossible for a dynamical system resp. Hubbard tree to be realized by a
holomorphic map, such as a quadratic polynomial. Most of the work consists
in showing that this is the only possible obstruction.) Different polynomials
with the same kneading sequence have Hubbard trees which are topologically
conjugate, but differently embedded into the plane.
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Each of these three combinatorial concepts leads to a description of the Mandelbrot
set M in a different way. Douady and Hubbard showed that the Mandelbrot set is
compact, connected, and full (i.e. C\M is connected), and there is a unique conformal
isomorphism Φ: C \M→ C \D with limc→∞Φ(c)/c→ 1. Therefore, we have external
rays for the Mandelbrot set, too (to be called parameter rays). If we suppose that the
Mandelbrot set is locally connected, Φ−1 extends to the boundaries as a continuous
surjection, and we get a Carathéodory loop for M like for filled-in Julia sets above.
Identifying points on ∂D if and only if the corresponding parameter rays land together,
we get a pinched disk model for the Mandelbrot set which is locally connected and it
is a homeomorphic model for M if and only M is also locally connected. A particular
point c ∈ ∂M can be described by the external angle of any parameter ray R(ϑ) landing
at c (this might involve a choice again).

Different connected quadratic Julia sets can (up to certain symmetries as mentioned
above) be distinguished by their associated kneading sequences ν. The Mandelbrot set
can thus be modeled as the space of kneading sequences with an appropriate topol-
ogy. The internal address associated to a kneading sequence describes where in the
Mandelbrot set this particular kneading sequence may be realized.

However, some kneading sequences occur for several different maps, and others
do not occur at all. The first issue, originating from dynamical symmetries, can be
dealt with by adding extra combinatorial information (“angled internal addresses”).
The second issue is more involved; so far, it has been an open question to describe
which kneading sequences do or do not occur (which ones are “complex admissible”).
We give a complete answer in Section 5: we describe an “obstruction” which explains
the non-existence (“evil orbits”), we show how to extend the Mandelbrot set so as to
contain all kneading sequences (complex admissible or not), and we show where the
non-admissible subsets in the extension branch off from M (Section 6).

This extended Mandelbrot set is based on a tree structure which is a parameter
space analog of Hubbard trees. It is related to a space constructed by Penrose [Pen1]
as “abstract abstract Mandelbrot set”.

Our discussion in the initial Sections 3, 4, 5 and the first half of Section 6 focuses
on the case that the critical orbit is finite, i.e. periodic or preperiodic. These cases are
technically the simplest, and it turns out that the main things to look at are periodic
points for which Hubbard trees with periodic critical points are sufficient. The general
case can be treated by passing to a limit along a sequence of approximating kneading
sequences of high periods.

We have now assembled various ways to describe a polynomial pc ∈ M (see Fig-
ure 1.2): by its kneading sequence, by its internal address, by its Hubbard tree, by
its external (parameter) angle, or by the complex parameter c ∈ C. The first four
notions are purely combinatorial, while the complex parameter is a piece of analytic
information. (However, if c describes a postcritically finite polynomial in which 0 has
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preperiod l ≥ 0 and period k ≥ 1, then c is a solution of p
◦(l+k)
c (0) = p◦lc (0), which is a

polynomial in c with integer coefficients, hence with finitely many roots. The solutions
for fixed l and k are apparently algebraically indistinguishable.)

Figure 1.2 shows this in more detail. The left column gives three equivalent ways
of describing the combinatorial information of a quadratic Julia set; these make sense
whether or not the Hubbard tree can be embedded into the plane, or whether or not the
kneading sequence is complex admissible. The concepts in the middle column specify
the additional information needed to embed the dynamics into the complex plane, i.e.
to choose a complex analytic representative for the symbolic dynamics from the left
column. This is not always possible; if it is, it need not be unique (and might therefore
involve a choice). The right column specifies additional possibilities in case that the
dynamics is realized by a complex polynomial.

These combinatorial tools give a surprisingly large amount of information about the
dynamics. For example, an important analytic information is the “Collet-Eckmann-
condition” which says that the derivatives along the critical orbit grow exponentially; it
has significant geometric consequences (for example, all Fatou components are Hölder
[GSm], i.e. they are images of the unit disk under a Hölder diffeomorphism). The
Collet-Eckmann condition is in fact equivalent to several geometric or topological prop-
erties and can also can be formulated in combinatorial terms [PR, PRS] which are
determined by the kneading sequence alone. Another example is the prevalence of cer-
tain types of (often geometric, see below) behavior of fc among parameters in c ∈ ∂M.
To make this more precise, we equip Jc and ∂M with harmonic measure. Harmonic
measure can be defined for the boundary of an arbitrary domain in C in several equiva-
lent ways. In our context, we define the harmonic measure ωc on Jc as the push-forward
of Lebesgue measure on the circle of external angles under the extended Riemann map
[Pom], i.e.

ωc(A) = Leb{ϑ : the dynamic ray Rc(ϑ) lands in A}.

In the dynamical plane, ωc is fc-invariant and is the (unique) measure of maximal
entropy [Ly1]. In the parameter plane we define harmonic measure ω on ∂M by

ω(A) = Leb{ϑ : the parameter ray R(ϑ) lands in A}.

Let us list in more detail the goals and structure of this paper.

Algorithmic translations: between Hubbard tree, external angle, kneading
sequence and internal address, as indicated in Figure 1.2 and discussed above.

Fundamental algorithms, often in the form of algorithmic definitions, are
given in the text as needed, beginning with Section 2. In Sections 15 and 13,
we collect further algorithms which were not needed earlier, or which are more
complicated to describe.
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Kneading Sequence

Embedded Hubbard Tree

Angled Internal Address
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(1) (2)
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(5) (6)

(7) (8) (15) (16)

(ch)

(ch)

(ch)

(fg)

(fg)

(fg)

(9)

(10)

(12)

(11)

(13)

(14)

Figure 1.2. Schematic diagram of algorithms; heavy arrows indicate
more difficult combinatorial algorithms:

( 1): Def. 2.2;
( 2): Algorithm 2.3;
( 3): Algorithm 15.2; the composition (3) ◦ (1) is Theorem 3.10;
( 4): Cutting Times Algorithm 13.8; the composition (2) ◦ (4) is Def. 3.5;
( 5): [LS, Lemma 6.3/Prop. 6.5];
( 6): (13) ◦ (11) or (13) ◦ (9) ◦ (7);
( 7): Algorithm 15.2 (with embedding information as in Corollary 4.11);
( 8): Cutting Times Algorithm 13.8, together with the combinatorial ro-

tation number at the periodic branch points;
( 9): Algorithm 13.6;
(10): Algorithm 13.5;
(11): (9) ◦ (7) or “Growing of Trees” as in [LS, Theorem 9.3];
(12): (5) ◦ (13);
(13): Def. 2.1 (retaining information on cyclic order); the composition

(fg) ◦ (13) is Def. 2.1;
(14): Algorithm 13.9;
(15): Spider Algorithm [HS];
(16): Inverse Spider Algorithm 13.10;
(fg): forgetful maps;
(ch): arbitrary choice (possible only if the Hubbard tree has no evil orbits,

or if the kneading sequence is admissible; in this case, the allowed choices
for an embedding of the tree, or for the angles in the angled internal
address, are easy to specify, while the possible cyclic orders for kneading
sequences are not so obvious to single out).

The used terms are defined at the following places:

Hubbard Tree: Definition 3.2; with embedding: Proposition 4.10;
Internal Address: Definition 2.2; angled internal address: Defini-

tion 11.9;
Kneading Sequence: Definition 2.1; with cyclic order: for a periodic an-

gle ϑ ∈ S1 of period n, retain the cyclic order of 2kϑ for k = 0, 1, . . . , n−1,
as well as the preperiodic preimage of ϑ; compare Algorithm 13.9.

External Angle: Angle ϑ ∈ S1 = R/Z.

Include long internal addresses here?
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Existence and uniqueness of Hubbard trees: (Section 3). Viewed as a sub-
set of a filled-in Julia set, the existence of a Hubbard tree is immediate (pro-
vided Jc is arcwise connected). However, we take an arbitrary kneading se-
quence ν as starting point and prove that there exists a Hubbard tree (not
embedded into the plane) with kneading sequence ν. This tree and its dynam-
ics are unique up to a semi-conjugacy off certain “marked points”.

Branch points of the Hubbard tree: (Section 4). It turns out that branch
points (on Hubbard trees as well as in Julia sets) are always (pre)periodic or
precritical. We show that every periodic orbit (unless it is an endpoint of the
Julia set) contains a preferred characteristic point which is on the arc between
critical point and critical value. We show that branch points come in two
kinds, “tame” and “evil” as follows: a branch point z is
• tame if the first return map to z permutes the local arms of z in one

cycle;
• evil if the first return map to z fixes the local arm towards the critical

point and permutes the remaining local arms of z in one cycle.
We show that a Hubbard tree can be embedded into the plane so that its

dynamics respects the embedding if and only if it has no evil periodic orbit. A
kneading sequence is (complex) admissible if the associated Hubbard tree can
be so embedded. Estimates on the number of non-homotopic embeddings are
given as well (see Corollary 4.11 and Lemma 16.11).

Types of branch points: (Section 5). For any periodic orbit on the Hubbard
tree, we describe how to read off from its itinerary whether this orbit is tame
or evil and how many arms it has, in particular whether or not it is a branch
point (Propositions 5.19 and 5.13). The itinerary also tells the order of the
characteristic periodic points on the Hubbard tree.

(Complex) admissibility: (Sections 5 and 18). A kneading sequence is defined
to be complex admissible if the associated Hubbard tree has no evil orbits. We
show that evil orbits are the only obstruction to the existence of an external
angle which generates this kneading sequence in the sense of Definition 2.2
(Corollary 14.2). Furthermore, we give a purely combinatorial characteriza-
tion telling whether or not a given kneading sequence is complex admissible
(Definition 5.1). Analogous conditions for real admissibility were found in
the early 1970’s. We also answer the question whether the set of admissible
kneading sequences has positive measure in the affirmative (Theorem 18.4).

Internal addresses: (Section 6). Defined as a compact recoding of the knead-
ing sequence, it comprises a lot of geometric information: it describes the
position of a complex parameter c ∈M in terms of hyperbolic components of
lowest periods on the parameter path from 0 to c (Algorithm 11.3), it enumer-
ates periodic points of lowest periods in the Julia set between 0 and c (critical
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point and value), and it works similarly with precritical points. These proper-
ties come from [LS] and are collected in Proposition 6.8 and Algorithm 13.8.

Order structure in the Mandelbrot set: (Section 6). We define an order
relation for kneading sequences with the following property: if (T, f) and
(T ′, f ′) are two Hubbard trees with kneading sequences ν > ν ′, then all orbits
in (T ′, f ′), as described by their itineraries (periodic or not), also occur in
(T, f). In particular, ν > ν ′ implies that the topological entropy of (T, f) is
no less than that of (T ′, f ′). These ideas are related to work of Penrose [Pen1].

This order relation can be read off from the kneading sequence alone and
endows the space of kneading sequences with the structure of an ordered tree.
The admissible kneading sequences form a subtree on which this order gener-
ates the topology of the Mandelbrot set (again, up to symmetries encoded in
the angled internal address). We show how the various non-admissible subtrees
are attached to the admissible subtree.

Biaccessibility: (Sections 16 and 17). A point z ∈ Jc is called biaccessible if at
least two dynamical rays land at z (so that Jc \{z} has at least two connected
components). For example, understanding which points in Jc are biaccessible
is crucial in the mating construction of Julia sets, see Douady [D1], Rees [Re],
Shishikura [Shi] and Tan Lei [Ta2].

We show that the geometric notion of biaccessibility leads to a combinato-
rial characterization, both in the dynamical and parameter plane. Using this,
we show that the Hausdorff dimension of the set of external angles correspond-
ing to biaccessible points in a Julia set is strictly less than 1, except for the
polynomial z 7→ z2 − 2; in particular ωc-a.e. z ∈ Jc is not biaccessible (The-
orem 16.9). Furthermore, the parameter angles of biaccessible parameters in
M are a countable union of sets of Hausdorff dimension less than 1, and hence
for ω-a.e. c ∈ ∂M, c is not biaccessible (Theorem 16.13).

These results involve estimates of how much the map from external angles
to itineraries and to kneading sequences can distort Hausdorff dimensions.

Section 16 deals with the combinatorial aspects of biaccessibility and con-
tains the dimension estimates. In Section 17 we show that these combinatorial
predictions are (under local connectivity assumptions) realized in the actual
topological spaces given by Julia sets and Mandelbrot set.

Ergodic Theory and Collet-Eckmann Maps: (Section 19). Given a contin-
uous observable ϕ : C→ R, we show in Theorem 19.1 that for ω-a.e. c ∈ ∂M,
the critical values c satisfies Birkhoff’s Ergodic Theorem:

lim
n→∞

1

n

n−1∑
i=0

ϕ(f ◦ic (c)) =

∫
ϕdωc,
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This results extends to the L1(ωc)-observable ϕ(z) = log |f ′(z)|, which implies
that for ω-a.e. c ∈ ∂M, fc satisfies the Collet-Eckmann condition, and more
precisely (see Corollary 19.2)

lim
n→∞

1

n
log |Df ◦nc (c)| =

∫
log |f ′c| dωc > 0.
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2. Fundamental Concepts

In this section, we define some important concepts of symbolic dynamics for quadratic

polynomials; some of these definitions come with algorithms.

Let S1 := R/Z be the space of external angles and let N∗ = {1, 2, 3, . . . } be the set
of positive integers. We say that a sequence ν = ν1ν2 . . . has period n if νk+n = νk for
all k; this allows the case that ν is periodic with period n/k for some k dividing n. The
minimal n for which ν is periodic is called the exact period of ν (this is also known as
the prime period or minimal period).

2.1. Definition (Itinerary and Kneading Sequence of External Angle)
Given an external angle ϑ ∈ S1, we associate to any ϕ ∈ S1 its itinerary νϑ(ϕ) = ν1ν2 . . .
with νi ∈ {0, 1, ?} by setting:

νi :=

 0 if (ϑ+ 1)/2 < 2i−1ϕ < ϑ/2;
1 if ϑ/2 < 2i−1ϕ < (ϑ+ 1)/2;
? if 2i−1ϕ ∈ {ϑ/2, (ϑ+ 1)/2},

where the inequalities are interpreted with respect to cyclic order. The kneading se-
quence ν(ϑ) of ϑ is its itinerary with respect to itself: ν(ϑ) = νϑ(ϑ). See Figure 2.1.

Note that in the definition of the kneading sequence, a change of ϑ amounts to a
change of the orbit for which we take the itinerary, as well as of the partition itself.

A kneading sequence ν contains a ? at position n if and only if ϑ is periodic with
period n; the exact period of ϑ may divide n. (There are non-periodic angles that yield
periodic kneading sequences without ?; see Theorem 14.10.) We say that a sequence ν
is ?-periodic of period n if ν = ν1 . . . νn−1? with ν1 = 1 and νi ∈ {0, 1} for 1 < i < n;
?-periodic sequences are a special case of periodic sequences. Let

Σ := {0, 1}N∗ ,
Σ1 := {ν ∈ Σ: the first entry in ν is 1}
Σ? := Σ1 ∪ {all ?-periodic sequences} ,

Σ?? := {ν ∈ Σ1 : ν is non-periodic} ∪ {all ?-periodic sequences} .
In order to avoid silly counterexamples, ? is not considered to belong to Σ?. All
sequences in Σ? will be called kneading sequences, whether or not they occur as the
image of an angle ϑ ∈ S1. They all begin with 1.

2.2. Definition (ρ-Function and Internal Address)
For a sequence ν ∈ Σ?, define

ρν : N∗ → N∗ ∪ {∞}, ρν(n) = inf{k > n : νk 6= νk−n}.
We usually write ρ for ρν. For k ≥ 1, we call

orbρ(k) := k → ρ(k)→ ρ◦2(k)→ ρ◦3(k)→ . . .
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1

0

1

0

Figure 2.1. Left: the kneading sequence of an external angle ϑ (here
ϑ = 1/6) is defined as the itinerary of the orbit of ϑ under angle doubling,
where the itinerary is taken with respect to the partition formed by the
angles ϑ/2, and (ϑ + 1)/2. Right: in the dynamics of a polynomial for
which the ϑ-ray lands at the critical value, an analogous partition is
formed by the dynamic rays at angles ϑ/2 and (ϑ + 1)/2, which land
together at the critical point.

the ρ-orbit of k. The case k = 1 is the most important one; we call

orbρ(1) = 1→ ρ(1)→ ρ◦2(1)→ ρ◦3(1)→ . . .

the internal address of ν. If ρ◦k+1(1) = ∞, then we say that the internal address is
finite: 1 → ρ(1) → . . . → ρ◦k(1); as a result, the orbit orbρ is a finite or infinite
sequence that never contains ∞.

We have ρ(n) = ∞ if and only if the sequence ν is periodic and its period divides
n. If ν ∈ Σ1 is periodic of exact period n, the number n may or may not appear in the
internal address (with the first n − 1 entries in ν fixed, these two possibilities can be
realized by putting 0 or 1 at the n-th position). If it does, then the internal address
stops there; otherwise, it is infinite, as will become clear in Lemma 20.2.
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The ρ-function is of fundamental importance in the work of Penrose [Pen1] un-
der the name of non-periodicity function; the internal address is called principal non-
periodicity function.

The map from kneading sequences in Σ1 to internal addresses is injective. In fact,
the algorithm of this map (originally from [LS, Algorithm 6.2]) can easily be inverted:

2.3. Algorithm (From Internal Address to Kneading Sequence)
The following inductive algorithm turns internal addresses into kneading sequences in
Σ1: the internal address S0 = 1 has kneading sequence 1, and given the kneading
sequence νk associated to 1 → S1 → S2 → . . . → Sk, the kneading sequence associated
to 1 → S1 → S2 → . . . → Sk → Sk+1 consists of the first Sk+1 − 1 entries of νk, then
the opposite to the entry Sk+1 in ν (switching 0 and 1), and then repeating these Sk+1

entries periodically.

Proof. The kneading sequence 1 has internal address 1. If νk has internal address 1→
S1 → S2 → . . .→ Sk and ν is the internal address of period Sk+1 as constructed in the
algorithm, then the internal address of ν clearly starts with 1→ S1 → S2 → . . .→ Sk,
and ρν(Sk) = Sk+1, so the internal address of ν is 1 → S1 → S2 → . . . → Sk → Sk+1.

2

The space of internal addresses is the space of all strictly increasing sequences of
integers (finite or infinite) starting with 1; we have just shown that the internal address
map is a bijection from Σ1 to this space. Of course, every ?-periodic kneading sequence
of period n also yields a finite internal address ending in n, and there is a bijection
between ?-periodic kneading sequences and finite internal addresses.

Remarks about real quadratic dynamics. Kneading sequences describe the
position of the critical orbit on R with respect to the critical point; they seem to have
appeared for the first time in [MSS]. A description of those kneading sequences which
are realized by a real quadratic map (real admissibility) has been known for a long time.
We recommend Milnor and Thurston [MiT]; they also show that for real quadratic
polynomials the topological entropy depends monotonically on the parameter (see also
[CoE] for an exposition and more references, and the remark after Corollary 6.3 for
the complex case). In the real context, the internal address has been known as the
sequence of cutting times and was first used by Hofbauer; see e.g. [Ho] or [Bru1] for
an exposition, and Section 6 for further analogies. A complex version of cutting times
can be found in Algorithm 13.8.

The map from external angles to kneading sequences, as defined in Definition 2.1,
is neither injective nor surjective and difficult to understand. One reason to introduce
internal addresses in [LS] was to describe it geometrically in the general case. The
non-injectivity can be understood in terms of angled internal addresses (compare [LS,
Section 6] and ??). One major result of the present paper is to classify the range of
the kneading sequence map (Theorem 5.2 and Corollary 14.2).
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Remark. Our notation differs from that in [LS]: for us, all sequences in Σ? are called
kneading sequences, whether or not they are admissible, while in [LS], only admis-
sible sequences were called “kneading sequences”, using the term “abstract kneading
sequences” for arbitrary sequences in Σ?.
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3. Hubbard Trees

In this section, we define Hubbard trees as abstract trees with dynamics and show their

most fundamental properties. Our trees do not necessarily come with an embedding into the

complex plane. We show that for every ?-periodic or preperiodic kneading sequence, there

is a unique Hubbard tree (for trees which are embedded in the plane, both existence and

uniqueness are false in general; see Section 4).

3.1. Definition (Trees, Arms, Branch Points and Endpoints)
A tree T is a finite connected graph without loops. For a point x ∈ T , the (global) arms
of x are the connected components of T \ {x}. A local arm at x is an intersection of a
global arm with a sufficiently small neighborhood of x in T . The point x is an endpoint
of T if it has only one arm; it is a branch point if it has at least three arms.

To be more precise, a graph is the union of finitely many edges, each homeomorphic
to [0, 1], and disjoint except that different edges may have common endpoints. Such a
graph inherits its topology as the quotient of its set of edges with endpoints identified.
A loop is a subset homeomorphic to a circle.

Between any two points x, y in a tree, there exists a unique closed arc connecting
x and y; we denote it by [x, y] and its interior by (x, y).

3.2. Definition (The Hubbard Tree)
A Hubbard tree is a tree T equipped with a map f : T → T and a distinguished point,
the critical point, satisfying the following conditions:

(1) f : T → T is continuous and surjective;
(2) every point in T has at most two inverse images under f ;
(3) at every point other than the critical point, the map f is a local homeomorphism

onto its image;
(4) all endpoints of T are on the critical orbit;
(5) the critical point is periodic or preperiodic, but not fixed;
(6) (expansivity) if x and y with x 6= y are branch points or points on the critical

orbit, then there is an n ≥ 0 such that f ◦n([x, y]) contains the critical point.

We denote the critical point by c0 = 0 and its orbit by orbf (0) = {0, c1, c2, . . . }.
The critical value c1 is the image of the critical point. We use a standing assumption
that c1 6= c0 in order to avoid having to deal with counterexamples when the entire
tree is a single point. The branch points and the points on the critical orbit (starting
with c0) will be called marked points. Notice that the set of marked points is finite and
forward invariant, because the number of arms at any point can decrease under f only
at the critical point.

Two Hubbard trees (T, f) and (T ′, f ′) are equivalent if there is a bijection between
their marked points which is respected by the dynamics, and if the edges of the tree
connect the same marked points. This is weaker than a topological conjugation. In
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particular, we do not care about details of the dynamics between marked points; there
may be intervals of periodic points, attracting periodic points, and so on. (This is
related to an equivalence class of branched covers in the sense of Thurston as in [HS,
DH2].)

3.3. Lemma (Basic Properties of the Hubbard Tree)
The critical value c1 is an endpoint, and the critical point 0 divides the tree into at most
two parts. Each branch point is periodic or preperiodic, it never maps onto the critical
point, and the number of arms is constant along the periodic part of its orbit. Any arc
which does not contain the critical point in its interior maps homeomorphically onto
its image.

Proof. Suppose that c1 has at least two arms. The points c2, c3, . . . also have at
least two arms as long as f is a local homeomorphism near this orbit. If this is no
longer the case at some point, then the orbit has reached the critical point, and the
next image is c1 again. In any case, all points on the critical orbit have at least two
arms. This contradicts the assumption that all endpoints of a Hubbard tree are on the
critical orbit. Hence c1 has exactly one arm, and 0 has at most two arms (or its image
would not be an endpoint).

Since near every non-critical point, the dynamics is a local homeomorphism onto
the image, every branch point maps onto a branch point with at least as many arms.
Since the critical point has at most two arms, it can never be the image of a branch
point. The tree and thus the number of branch points is finite, so every branch point
is preperiodic or periodic and its entire orbit consists of branch points; the number of
arms is constant along the periodic part of the orbit.

Let γ be an arc within the tree. Since f cannot be constant on γ and there is no
loop in the tree, the subtree f(γ) has at least two endpoints. If an endpoint of f(γ) is
not the image of an endpoint of γ, then it must be the image of the critical point since
f is a local homeomorphism elsewhere, and the critical point 0 must be in the interior
of γ. 2

Hubbard trees were first defined by Douady and Hubbard in [DH1]. Their defini-
tion uses the filled-in Julia set K(p) of a polynomial p: this is the set of points z ∈ C
whose orbits under p are bounded. It is well known [Mi1] that if all critical points of
p are periodic or preperiodic, then K(p) is path-connected.

3.4. Definition (The Douady-Hubbard Tree)
Let p be a quadratic polynomial with periodic or preperiodic critical orbit and filled-in
Julia set K(p). The Hubbard tree of p is a minimal tree T ⊂ K(p) connecting the

critical orbit so that the intersection of T with any component U of K̊(p) is (part of)
a geodesic with respect to the hyperbolic metric of U .
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If p has preperiodic critical orbit, then K(p) is a dendrite and any two points are
connected by a unique arc; in this case, it suffices to define T as a minimal tree in
K(p) connecting the critical orbit. However, if the critical orbit is periodic, then every

component U of K̊(p) is conformally isomorphic to the unit disk D; if a conformal
isomorphism ϕU : U → D is chosen which sends the unique precritical point in U to 0,
then the geodesic condition means that ϕ−1(T ∩ U) is a radius or diameter of D.

The main difference in our definition is that we do not specify an embedding of T
into the plane. In Section 4, we will investigate which trees can be embedded into the
plane in a dynamically plausible way, and if so, in how many different ways. It is quite
easy to see that every Hubbard tree in the sense of Douady and Hubbard satisfies our
Definition 3.2.

We have seen that T \{0} consists of at most two components. Let us denote them
by T0 and T1 so that c1 ∈ T1 (with c1 6= 0 by definition); T0 may be empty.

3.5. Definition (Itinerary and Kneading Sequence)
The itinerary of a point z ∈ T on a Hubbard tree is the infinite sequence e(z) =
e1(z)e2(z)e3(z) . . . with

ei(z) =

 0 if f ◦(i−1)(z) ∈ T0,
? if f ◦(i−1)(z) = 0,
1 if f ◦(i−1)(z) ∈ T1.

The itinerary e(c1) =: ν = ν1ν2ν3 . . . of c1 is called the kneading sequence of the
Hubbard tree.

Obviously e ◦ f(z) = σ ◦ e(z) where σ denotes the left shift. The expansivity
condition of Definition 3.2 means that no two marked points have the same itinerary.

3.6. Lemma (Same Itinerary on Connected Subtree)
Suppose that z and z′ are two points on a Hubbard tree such that ei(z) = ei(z

′) for all
i < n (for some n ≤ ∞). Then all w ∈ [z, z′] have ei(w) = ei(z) = ei(z

′) for i < n.

Proof. We can assume that z 6= z′. Since 0 is the only point whose itinerary
starts with ?, z and z′ lie in the same component of T \ {0}. Therefore [z, z′] is
mapped homeomorphically onto f([z, z′]) by f . Since e2(z) = e2(z′), the arc f([z, z′])
is contained in a single component of T \ {0}. By induction, we obtain that f ◦i([z, z′])
is contained in a single component of T \ {0} for each i < n. The claim follows. 2

3.7. Lemma (α-Fixed Point on Hubbard Tree)
There is a unique fixed point in T1; it lies in (0, c1).

Proof. Since c1 is an endpoint, the intersection [0, c1]∩ f([0, c1]) is a non-degenerate
arc [c1, x], i.e., x 6= c1. If x = 0, then f maps [0, c1] over itself in an orientation
reversing way, so there is a fixed point on [0, c1].
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We may thus assume that x ∈ (0, c1). If f([0, c1]) ⊂ [0, c1], then as above we have a
fixed point in (c1, x). Otherwise f([0, c1]) branches off from [0, c1] at x. Let y = f(x).
Then y cannot be on (0, x) because the path f([0, c1]) starts at c1 and branches off at
x before reaching (0, x). If y ∈ [x, c1], then f maps [x, c1] over [y, c2], and f has a fixed
point in [x, y].

The last possibility is that y ∈ (x, c2], and we show this does not occur. Let T ′ be
the connected component of T \{x} containing y. The image f(T ′) 63 x, because one of
the two inverse images of x is on [0, x], and the other is separated from x by the critical
point. Since x maps into T ′ and no point in T ′ maps onto x, all of T ′ maps strictly
into itself under f . But this violates the expansivity condition: T ′ has an endpoint x′

other than x, and the forward orbits of x and the endpoint are never separated by 0.
Now we have a fixed point in T1; call it α. Suppose that it is not unique. Since f

maps T1 homeomorphically onto its image, f must fix a component G of T1 \{α}. This
is not the component with 0 as boundary point, because α separates 0 from c1 = f(0).
Let z be an endpoint of this fixed component G. Then α and z both are marked points
with the same itinerary 1, and this contradicts the expansivity condition. 2

Remark. The unique fixed point in T1 is usually called α . The component T0 can
contain more fixed points, but by Lemma 3.6, they are all contained in a connected
subtree of constant itinerary 0. If there is an endpoint with itinerary 0, it is called β ; it
exists on the Hubbard tree if and only if the kneading sequence terminates in an infinite
string of symbols 0. A generalization of Lemma 3.7 will be proved in Lemma 5.18.

A point z ∈ T is (pre)periodic if f ◦l(z) = f ◦(l+m)(z) for some l ≥ 0,m ≥ 1. We
take l and m minimal with this property. Then m is the (exact) period of z and l the
preperiod.

3.8. Lemma (Preperiod and Period)
The exact preperiod and period of any marked (pre)periodic point are equal to the exact
preperiod and period of its itinerary.

Proof. Suppose z is periodic with period m and let m′ be the period of e(z) (under
the shift). Obviously m′ divides m. If m′ 6= m, then z and f ◦m

′
(z) are different marked

points with the same itinerary. This contradicts expansivity. The same argument
works in the preperiodic case. 2

3.9. Lemma (Periodic Points and Itineraries)
If a Hubbard tree contains a point with periodic itinerary τ , then it contains a periodic
point p with itinerary τ such that the exact periods of p and τ coincide.

Proof. Let T ′ ⊂ T be the set of all points with itinerary τ . By Lemma 3.6, T ′ is
connected, so it is a connected subtree (possibly not closed).
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Let n be the period of τ . Then f ◦n maps T ′ homeomorphically onto its image in
T ′. Since marked points in T have different itineraries, T ′ can contain at most one
branch point of T . If it contains one, then it must be fixed by f ◦n, so its exact period
is n. Otherwise, T ′ is either a single point (and we are done), or T ′ is homeomorphic
to an interval. If f ◦n sends T ′ to itself reversing the orientation, we get a unique fixed
point in the interior of T ′, and we are done again.

Now suppose that f ◦n preserves the orientation of T ′. If f ◦n : T ′ → T ′ is not
surjective, then for at least one endpoint x, say, f ◦n(x) is in the interior of T ′. If x is
a branch point or an endpoint of T , then it is marked and we are done. Otherwise,
x has a neighborhood in T which is homeomorphic to an open interval, but only a
one-sided neighborhood has itinerary τ . This implies that x maps to the critical point
after finitely many iterations. Again T ′ contains a marked point, which must be fixed
by f ◦n.

The last case is that f ◦n maps T ′ homeomorphically onto itself, preserving the
orientation and fixing both endpoints. Then the claim is satisfied by any endpoint of
T ′ which does not hit the critical point on its forward orbit. If both endpoints do,
say after k and m iterations with k and m minimal and k < m, then f ◦(k+1)(T ′) and
f ◦(m+1)(T ′) are both intervals with c1 as endpoints and not containing branch points
of T , and m− k < n. Hence f ◦(m−k) must map T ′ onto itself reversing the orientation,
so it fixes some point in T ′ which must have an itinerary with period dividing n. This
is a contradiction. 2

The main results of this section are existence and uniqueness of Hubbard trees.

3.10. Theorem (Existence and Uniqueness of Hubbard Trees)
Every ?-periodic or preperiodic kneading sequence is realized by a Hubbard tree; this
tree is unique (up to equivalence).

Sometimes, it is useful to extend Hubbard trees by finitely many more marked
points with periodic or preperiodic itineraries. The basic properties of such extended
Hubbard trees remain the same as in Definition 3.2, except for the requirement that
all endpoints of the tree need to belong to the critical orbit and that the dynamics on
the tree is surjective.

3.11. Corollary (Extended Hubbard Tree)
For every ?-periodic or preperiodic kneading sequence and every finite collection S of
periodic or preperiodic sequences in {0, 1}N∗, there exists a tree (T, f), unique up to
equivalence, which satisfies all properties of a Hubbard tree (except the requirements
that all endpoints of the tree must be on the critical orbit and the dynamics on the tree
is surjective), and so that for every sequence in S, there is a periodic or preperiodic
point in T which has this itinerary.

We start with the uniqueness part of the proof; existence (together with Corol-
lary 3.11) requires a number of preparations and is postponed to Section 20. We start
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with the uniqueness part of the proof; existence (together with Corollary 3.11) requires
a number of preparations and is postponed to Section 20 (see also Section 15 for an
explicit construction of Hubbard trees). We describe the branch structure of a Hub-
bard tree in terms of triods, and then show that the symbolic dynamics of the kneading
sequence allows to reconstruct the branch structure of the tree.

3.12. Definition (Triod)
A triod is a connected compact set homeomorphic to a subset of the letter Y. It is
degenerate if it is homeomorphic to an arc or a point.

For a sequence ν ∈ Σ?, let ?ν be the symbol ? followed by ν and define S(ν) :=
{?ν, ν, σ(ν), σ◦2(ν), . . . } (the orbit of ?ν under the shift). Then σ(S(ν)) ⊂ S(ν). Note
that 0ν ∈ S(ν) or 1ν ∈ S(ν) would imply that ν was periodic but not ?-periodic; thus
S(ν) ∩ {0ν, 1ν} = ∅ for ?-periodic and preperiodic ν.

3.13. Definition (Formal Triod)
Any triple of pairwise different sequences s, t, u ∈ S(ν) ∪ {0, 1}N∗ is called a formal
triod [s, t, u].

3.14. Definition (The Formal Triod Map)
If {s, t, u} ∩ {0ν, 1ν} = ∅, then we define the formal triod map as follows:

ϕ[s, t, u] :=


[σ(s), σ(t), σ(u)] if s1 = t1 = u1 ∈ {0, 1};
stop if {s1, t1, u1} = {0, 1, ?};
[σ(s), σ(t), ν] if s1 = t1 6= u1 ;
[σ(s), ν, σ(u)] if s1 = u1 6= t1 ;
[ν, σ(t), σ(u)] if t1 = u1 6= s1 .

(1)

By construction, the only sequence which starts with ? is ?ν, so at most one of
s, t, u can start with ?. If one of them does, then the other two sequences either have
first entries which are different from each other (and we are in line 2), or the other two
first entries are equal and we are in lines 3–5. Therefore, the list covers all possible
cases.

In all cases other than the stop case, ϕ[s, t, u] returns three sequences in S(ν) ∪
{0, 1}N∗ . These form another formal triod, i.e. all three image sequences are different:
in line 1, this is clear; in the other lines, this follows because s, t, u are all different from
0ν and 1ν by assumption. In the last three cases, we say that u, t, s (respectively)
are chopped off from the triod (and replaced by ?ν). If s, t or u equals ?ν; then this
sequence is chopped off and replaced by itself, so formally the outcome is the same as
it would be in line 1, but we record the chopping.

3.15. Proposition (Uniqueness of Hubbard Trees)
Any two Hubbard trees with the same ?-periodic or preperiodic kneading sequence are
equivalent. The same is true for extended Hubbard trees (from Corollary 3.11) with the
same kneading sequence and the same set of additional sequences.
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Figure 3.1. Left: A Hubbard tree with a triod defined by three se-
quences s, t, u (the triod is indicated by heavy lines). Right: the same
tree with the image triod marked: since σ(u) is on the other side of the
critical point than σ(s) and σ(t), the image triod is chopped off at the
critical point ? and is defined by the three points σ(s), σ(t), and ?. Note
that the triod [σ(s), σ(t), σ(u)] is non-degenerate, so the branch point is
on the same side as the majority of its three endpoints, i.e., the side of
the two points σ(s) and σ(t) (and the same is true for the triod
[σ(s), σ(t), ?]).

Proof. Given three marked points x, y, z on a Hubbard tree, we denote the triod that
they form by [x, y, z]; so [x, y, z] = [x, y] ∪ [y, z] ∪ [z, x]. For any two Hubbard trees T
and T ′ with the same kneading sequence, we prove that any pair of triods [ck, cl, cm]
and [c′k, c

′
l, c
′
m] are both non-degenerate or both degenerate in the same way.

We decide whether a triod is degenerate by iterating it; assume that ck, cl and cm
are pairwise different.

(1) If the triod [ck, cl, cm] does not contain 0 in its interior, then it maps homeo-
morphically onto its image; we take the image.

(2) If 0 belongs to the interior of [ck, cl, cm] and 0 /∈ {ck, cl, cm}, then we take the
component of [ck, cl, cm] \ {0} containing two of the three points ck, cl, cm, and
take the closure of its image as new triod (we “chop off” the arc from 0 to the
isolated endpoint of the triod and map only the rest).

(3) If 0 belongs to the interior of [ck, cl, cm], and 0 is equal to one of the three
points, say 0 = ck, then the algorithm terminates. The triod is degenerate,
and ck is an interior point of [ck, cl, cm].

We iterate this procedure. Since the critical orbit is finite, the algorithm either termi-
nates or eventually reaches a loop. If the algorithm never terminates, then at least two
endpoints must be chopped off during the iteration of the triod: otherwise, at least
two endpoints must have identical itineraries (if ν is ?-periodic, then we must exclude
the case that the triod iteration involves a triod with endpoint 0ν or 1ν; but this is
clear). If each of the three points of the triod is chopped off at some step, the triod
must be non-degenerate. If exactly one endpoint of the triod is never chopped off, then
the triod is degenerate with the latter endpoint in the middle.

The key observation is that the type of the triod can be read off from the itineraries
of its endpoints in terms of the form triod map: the triod [ck, cl, cm] is represented
by the triple (σ◦(k−1)(ν), σ◦(l−1)(ν), σ◦(m−1)(ν)). Then the image triod has endpoints
ϕ(σ◦(k−1)(ν), σ◦(l−1)(ν), σ◦(m−1)(ν)):
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(1) If the first entries of σ◦(k−1)(ν), σ◦(l−1)(ν), σ◦(m−1)(ν) are the same, where ?
counts as 0 (resp. 1) if the other two first entries are 0 (resp. 1), then the
shifted triple represents the image triod [ck+1, cl+1, cm+1].

(2) If the first entries of σ◦(k−1)(ν), σ◦(l−1)(ν), σ◦(m−1)(ν) are 0 (say twice) and 1

(say once), then we take the shift of the sequences starting with 0 and replace
the remaining sequence by ν. This represents the chopping off one arm of the
triod.

(3) If the first entries of σ◦(k−1)(ν), σ◦(l−1)(ν), σ◦(m−1)(ν) are {0, ?, 1}, then we do
not define ϕ(σ◦(k−1)(ν), σ◦(l−1)(ν), σ◦(m−1)(ν)): the iteration terminates, the
triod is degenerate and the sequence starting with ? represents an interior
point of the triod.

The kneading sequence fully describes the behavior of ϕ and thus determines which
points on the critical orbit are between which others on the tree, and which are end-
points.

For any non-degenerate triod, the iteration of ϕ also encodes the itinerary of the
interior branch point: this itinerary is constructed by a “majority vote” from the first
entries of the sequences of the triple at every step. The branch points have itineraries
different from 0ν and 1ν because they are marked points, and their images are different
from the critical value. Therefore, the argument above can also be applied to triods
whose endpoints are arbitrary marked points (branch points or points on the critical
orbit), and this implies that any two Hubbard trees with the same kneading sequence
are equivalent. 2
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4. Periodic Orbits on Hubbard Trees

In this section, we discuss periodic points of Hubbard trees, in particular branch points,

and show that they come in two kinds: tame and evil. This determines whether or not

Hubbard trees and kneading sequences are admissible: they are if and only if there is no evil

orbit.

4.1. Lemma (Characteristic Point)
Let (T, f) be the Hubbard tree with kneading sequence ν. Let {z1, z2, . . . , zn = z0} be
a periodic orbit which contains no endpoint of T . If the critical orbit is preperiodic,
assume also that the itineraries of all points zk are different from the itineraries of all
endpoints of T .

Then there are a unique point z ∈ {zk}nk=1 and two different components of T \ {z}
such that the critical value is contained in one component and 0 and all other points
zk 6= z are in the other one.

4.2. Definition (Characteristic Point)
The point z in the previous lemma is called the characteristic point of the orbit {zk};
we will always relabel the orbit cyclically so that the characteristic point is z1.

Proof of Lemma 4.1. Note first that every zk 6= 0 (or zk+1 = c1 would be an
endpoint). For each zk, let Xk be the union of all components of T \ {zk} which do
not contain the critical point. Clearly Xk is non-empty and f |Xk is injective. If Xk

contains no immediate preimage of 0, then f maps Xk homeomorphically into Xk+1.
Obviously, if Xk and Xl intersect, then either Xk ⊂ Xl or Xl ⊂ Xk. At least one set Xk

must contain an immediate preimage of 0: if the critical orbit is periodic, then every
endpoint of T eventually iterates onto 0, and every Xk contains an endpoint. If the
critical orbit is preperiodic, we need the extra hypothesis on the itinerary of the orbit
(zk): if no Xk contains a point which ever iterates to 0, then all endpoints of Xk have
the same itinerary as zk in contradiction to our assumption.

If Xk contains an immediate preimage w of 0, then the corresponding zk separates
w from the critical point, i.e., zk ∈ [w, 0] and thus zk+1 ∈ [0, c1] (always taking indices
modulo n), hence c1 ∈ Xk+1.

Among the non-empty set of points zk+1 ∈ [0, c1], there is a unique one closest to
c1; relabel the orbit cyclically so that this point is z1. We will show that this is the
characteristic point of its orbit.

For every k, let nk be the number of points from {zi} in Xk. If Xk does not contain
an immediate preimage of 0, then nk+1 ≥ nk. Otherwise, nk+1 can be smaller than nk,
but zk+1 ∈ [0, c1]; since no zk ∈ (z1, c1], we have zk+1 ∈ [0, z1] and either zk+1 = z1 or
nk+1 ≥ 1.

Therefore, if n1 ≥ 1, then all nk ≥ 1; however, the nesting property of the Xk

implies that there is at least one ‘smallest’ Xk which contains no further Xk′ and thus
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no zk′ ; it has nk = 0. Therefore, n1 = 0; this means that all zk 6= z1 are in the same
component of T \ {z1} as 0. Since c1 ∈ X1, the point z1 is characteristic. 2

4.3. Proposition (Images of Global Arms)
Let z1 be a characteristic periodic point of exact period m and let G be a global arm at
z1. Then either 0 /∈ f ◦k(G) for 0 ≤ k < m (and in particular the first return map of
z1 maps G homeomorphically onto its image), or the first return map of z1 sends the
local arm in G to the local arm at z1 pointing to the critical point or the critical value.

Proof. Let zk := f ◦(k−1)(z1) for k ≥ 1. Consider the images f(G), f(f(G)), etc. of
the global arm G; if none of them contains 0 before z1 returns to itself, then G maps
homeomorphically onto its image under the first return map of z1 and the claim follows.
Otherwise, there is a first index k such that f ◦(k−1)(G) 3 0, so that the image arm at
zk points to 0; so far, the map is homeomorphic on G. If zk = z0, then the image point
is z1 and the local image arm at z1 points to c1. If zk 6= z0, then the local arm at zk
points to 0 and the image arm at zk+1 points to c1; since z1 is characteristic, the image
arm points also to z1. Continuing the iteration, the image arms at the image points
will always point to some zl. When the orbit finally reaches z0, the local arm points to
some zl′ . If it also points to 0, then the image at z1 will point to c1 as above; otherwise,
it maps homeomorphically and the image arm at z1 points to zl′+1. By Lemma 4.1,
the only such arm is the arm to the critical point. 2

4.4. Corollary (Two Kinds of Periodic Orbits)
Let z1 be the characteristic point of a periodic orbit of branch points. Then the first
return map either permutes all the local arms transitively, or it fixes the arm to 0 and
permutes all the other local arms transitively.

Proof. Let n be the exact period of z1. Since the periodic orbit does not contain the
critical point by Lemma 3.3, the map f ◦n permutes all the local arms of z1. Let G be
any global arm at z1. It must eventually map onto the critical point, or the marked
point z1 would have the same itinerary as all the marked points in G, contradicting the
expansivity condition. By Lemma 4.3, the orbit of any local arm at z1 must include
the arm at z1 to 0 or to c1 or both, and there can be at most two orbits of local arms.

Consider the local arm at z1 to 0. The corresponding global arm cannot map
homeomorphically, so f ◦n sends this local arm to the arm pointing to 0 or to c1. If the
image local arm points to c1, then all local arms at z1 are on the same orbit, so f ◦n

permutes these arms transitively. If f ◦n fixes the local arm at z1 pointing to 0, then
the orbit of every other local arm must include the arm to c1, so all the other local
arms are permuted transitively. 2
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4.5. Definition (Tame and Evil Orbits)
A periodic orbit of branch points is called tame if all its local arms are on the same
cycle, and it is called evil otherwise.

Remark. Obviously, evil orbits are characterized by the property that not all local
arms have equal periods; their first return dynamics is described in Corollary 4.4. For
periodic points (not containing a critical point) with two local arms, the situation is
analogous: the first return map can either interchange these arms or fix them both. It
will become clear below that periodic points with only two arms are less interesting than
branch points; however, Proposition 4.8 shows that they have similar combinatorial
properties. In Section 6, we will also call a periodic point with two arms tame if the
first return map permutes the two local arms (but we reserve the adjective evil for
branch points because only the latter destroy admissibility; see Proposition 4.10).

4.6. Lemma (Global Arms at Branch Points Map Homeomorphically)
Let z1 be the characteristic point of a periodic orbit of period n and let q ≥ 3 be the
number of arms at each point. Then the global arms at z1 can be labelled G0, G1, . . . ,
Gq−1 so that G0 contains the critical point, G1 contains the critical value, and the arms
map as follows:

• if the orbit of z1 is tame, then the local arm L0 ⊂ G0 is mapped to the local
arm L1 ⊂ G1 under f ◦n; the global arms G1, . . . , Gq−2 are mapped homeo-
morphically onto their images in G2, . . . , Gq−1, respectively, and the local arm
Lq−1 ⊂ Gq−1 is mapped to L0;
• if the orbit is evil, then the local arm L0 is fixed under f ◦n, the global arms
G1, . . . , Gq−2 are mapped homeomorphically onto their images in G2, . . . , Gq−1,
respectively, and the local arm Lq−1 ⊂ Gq−1 is sent to the local arm L1; how-
ever, the global arm Gq−1 maps onto the critical point before reaching G1.

In particular, if the critical orbit is periodic, then its period must strictly exceed the
period of any periodic branch point.

Proof. We will use Proposition 4.3 repeatedly, and we will always use the map f ◦n.
The global arms at z1 containing 0 and c1 are different because z1 ∈ (0, c1). If the
orbit is tame, then the local arm L0 cannot be mapped to itself; since G0 3 0, L0 must
map to L1. There is a unique local arm at z1 which maps to the local arm towards 0.
Let Gq−1 be the corresponding global arm; it may or may not map onto 0 under f ◦k

for k ≤ n. All the other global arms are mapped onto their images homeomorphically.
They can be labelled so that Gi maps to Gi+1 for i = 1, 2, . . . , q − 2. This settles the
tame case.

In the evil case, the local arm L0 is fixed, and the other local arms are permuted
transitively. Let Lq−1 be the arm for which f ◦n(Lq−1) points to the critical value. Then
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all other global arms map homeomorphically and can be labelled G1, G2, . . . , Gq−2 so
that Gi maps homeomorphically into Gi+1 for i = 1, 2, . . . , q − 2.

If f ◦k(Gq−1) 63 0 for all k ≤ n, then the entire cycle G1, . . . , Gq−1 of global arms
would map homeomorphically onto their images, and all their endpoints would have
identical itineraries with z1. This contradicts the expansivity condition for Hubbard
trees. 2

4.7. Corollary (Itinerary of Characteristic Point)
In the Hubbard tree for the ?-periodic kneading sequence ν, fix a periodic point z whose
orbit does not contain the critical point. Let m be the period of z; if z is not a branch
point, suppose that the itinerary of z also has period m. Then if the first m− 1 entries
in the itinerary of z are the same as those in ν, the point z is characteristic.

There is a converse if z is a branch point: if z is characteristic, then the first m
entries in its itinerary are the same as in ν.

Proof. If z is not characteristic, then by Lemma 4.1, the arc [z, c1] contains the
characteristic point of the orbit of z; call it z′. The itineraries of z and z′ differ at least
once within the period (or the period of the itinerary would divide the period of z; for
branch points, this would violate the expansivity condition, and otherwise this is part
of our assumption). If the itinerary of z coincides with ν for at least m − 1 entries,
then the same must be true for z′ ∈ [z, c1] by Lemma 3.6. Since the number of symbols
0 must be the same in the itineraries of z and z′, then z and z′ must have identical
itineraries, and this is a contradiction.

Conversely, if z is the characteristic point of a branch orbit, then by Lemma 4.6,
[z, c1] maps homeomorphically onto its image under f ◦m without hitting 0, and the
first m entries in the itineraries of z and c1 coincide. 2

The following result allows to distinguish tame and evil branch points just by their
itineraries.

4.8. Proposition (Type of Characteristic Point)
Let z1 be a characteristic periodic point. Let τ be the itinerary of z1 and let n be the
exact period of z1. Then:

• if n occurs in the internal address of τ , then the first return map of z1 sends
the local arm towards 0 to the local arm toward c1, and it permutes all local
arms at z1 transitively;
• if n does not occur in the internal address of τ , then the first return map

of z1 fixes the local arm towards 0 and permutes all other local arms at z1

transitively.

In particular, a characteristic periodic branch point of period n is evil if and only if the
internal address of its itinerary does not contain n.
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Proof. The idea of the proof is to construct certain precritical points ζ ′kj ∈ [z1, 0] so

that [z1, ζ
′
kj

] contains no precritical points ζ ′ with Step(ζ ′) ≤ Step(ζ ′kj). Using these
points, the mapping properties of the local arm at z1 towards 0 can be investigated.
We also need a sequence of auxiliary points wi which are among the two preimages of
z1.

Let ζ ′1 = 0 and k0 = 1 and let w1 be the preimage of z1 that is contained in T1 and
let k1 ≥ 2 be maximal such that f ◦(k1−1)|[z1,w1] is homeomorphic. If k1 <∞, then there
exists a unique point ζ ′k1 ∈ (z1, w1) such that f ◦k1−1(ζ ′k1) = 0. All points on [z1, ζ

′
k1

)
have itineraries which coincide for at least k1 − 1 entries. If k1 < n then the interval
[w2, f

◦(k1−1)(z1)] is non-degenerate and contained in f ◦(k1−1)((ζ ′k1 , z1]), where w2 denotes

the preimage of z1 that is not separated from f ◦(k1−1)(z1) by 0. Let yk1 ∈ (ζ ′k1 , z1) be

such that f ◦(k1−1)(yk1) = w2. Next, let k2 > k1 be maximal such that f ◦(k2−1)|[z1,yk1 ]

is homeomorphic. If k2 < ∞, then there exists a point ζ ′k2 ∈ (z1, ζ
′
k1

) such that

f ◦k2−1(ζ ′k2) = 0, and the points on [z1, ζ
′
k2

) have the same itineraries for at least k2 − 1

entries. If k2 < n then, as above, the interval [w3, f
◦(k2−1)(z1)] is non-degenerate

(where again w3 is an appropriate preimage of z1) and there is a yk2 ∈ (ζ ′k2 , z1) such

that f ◦(k2−1)(yk2) = w3. Continue this way while kj < n.
Note that the ζ ′kj are among the precritical points on [z1, w1] closest to z1 (in the

sense that for each ζ ′kj , there is no ζ ′ ∈ (z1, ζ
′
kj

) with Step(ζ ′) ≤ Step(ζ ′kj); compare

also Definition 5.5), but the ζ ′kj are not all precritical points closest to z1; in terms of
the cutting time algorithm, the difference can be described as follows: starting with
[z1, w1], we iterate this arc forward until the image contains 0; when it does after some
number kj of iterations, we cut at 0 and keep only the closure of the part containing
f ◦kj(z1) at the end. The usual cutting time algorithm would continue with the entire
image arc after cutting, but we cut additionally at the point wj+1 ∈ f−1(z1).

The point of this construction is the following: let ρτ be the ρ-function with respect
to τ , i.e., ρτ (j) := min{i > j : τi 6= τi−j}. Then k1 = ρτ (1) and kj+1 = ρτ (kj) (if
k 6= 1, then the exact number of iterations that the arc [z1, zk] can be iterated forward
homeomorphically is ρτ (k)−1 times). Therefore we have constructed a sequence ζ ′kj of

precritical points on [z1, 0] so that (for entries less than n) k0, k1, · · · = orbρτ (1), which
is the internal address associated to τ .

Recall that n is the exact period of z1. If n belongs to the internal address, then
there exists ζ ′n ∈ [z1, 0] and f ◦n maps [z1, ζ

′
n] homeomorphically onto [z1, c1]. Therefore

f ◦n sends the local arm towards 0 to the local arm towards c1. By Lemma 4.6, f ◦n

permutes all arms at z1 transitively.
On the other hand, assume that n does not belong to the internal address. Let

m be the last entry in the internal address before n. Then f ◦(m−1) maps [z1, ζ
′
m]

homeomorphically onto [zm, 0], and the restriction to [zm, wj] ⊂ [zm, 0] survives another
n −m iterations homeomorphically (maximality of m). There is a point ym ∈ [z1, 0]
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so that f ◦m−1([z1, ym])→ [zm, wj] is a homeomorphism, so f ◦n([z1, ym])→ [z1, zn−m+1]
is also a homeomorphism. The local arm at z1 to 0 maps under f ◦n to a local arm at
z1 to zn−m+1, and since z1 is characteristic, this means that the local arm at z1 to 0 is
fixed under the first return map. The other local arms at z1 are permuted transitively
by Lemma 4.6. 2

4.9. Definition (Admissible Kneading Sequence and Internal Address)
We call a ?-periodic kneading sequence and the corresponding internal address admis-
sible if the associated Hubbard tree contains no evil orbit.

This definition is motivated by the fact, shown in Proposition 14.1, that a kneading
sequence is admissible if and only if there is an external angle which generates this
kneading sequence in the sense of Definition 2.1. Another equivalent statement is the
following.

4.10. Proposition (Embedding of Hubbard Tree)
A Hubbard tree (T, f) can be embedded into the plane so that f respects the cyclic order
of the local arms at all branch points if and only if (T, f) has no evil orbits.

Proof. If (T, f) has an embedding into the plane so that f respects the cyclic order
of local arms at all branch points, then clearly there can be no evil orbit (this uses the
fact that no periodic orbit of branch points contains a critical point).

Conversely, suppose that (T, f) has no evil orbits, so all local arms at every periodic
branch point are permuted transitively. First we embed the arc [0, c1] into the plane, for
example on a straight line. Every cycle of branch points has at least its characteristic
point p1 on the arc [0, c1], and it does not contain the critical point. Suppose p1 has
q arms. Take s ∈ {1, . . . , q − 1} coprime to q and embed the local arms at p1 in such
a way that the return map f ◦n moves each arc over by s arms in counterclockwise
direction. This gives a single cycle for every s < q coprime to q. Furthermore, this can
be done for all characteristic branch points independently.

We say that two marked points x, y are adjacent if (x, y) contains no further marked
point. If a branch point x is already embedded together with all its local arms, and y
is an adjacent marked point on T which is not yet embedded but f(y) is, then draw a
line segment representing [x, y] into the plane, starting at x and disjoint from the tree
drawn so far. This is possible uniquely up to homotopy. Embed the local arms at y
so that f : y → f(y) respects the cyclic order of the local arms at y; this is possible
because y is not the critical point of f .

Applying the previous step finitely many times, the entire tree T can be embedded.
It remains to check that for every characteristic branch point p1 of period m, say, the
map f : p1 → f(p1) =: p2 respects the cyclic order of the local arms. By construction,
the forward orbit of p2 up to its characteristic point p1 is embedded before embedding
p2, and f ◦(m−1) : p2 → p1 respects the cyclic order of the embedding. If the orbit of p1
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is tame, the cyclic order induced by f : p1 → p2 (from the abstract tree) is the same
as the one induced by f ◦(m−1) : p2 → p1 used in the construction (already embedded in
the plane), and the embedding is indeed possible. 2

Remark. It is well known that once the embedding respects the cyclic order of the
local arms and their dynamics, then the map f extends continuously to a neighborhood
of T within the plane, and even to a branched cover of the entire plane with degree 2.
See for example [BFH]. This implies that the kneading sequence of T is generated by
an external angle (Corollary 13.7 or Proposition 14.1) and even that T occurs as the
Hubbard tree of a quadratic polynomial (see again [BFH] or ??).

The previous proposition can be sharpened: we consider two embeddings of a Hub-
bard tree into the plane as equal if the cyclic order of all the arms at each branch point
is the same: then Algorithm 13.6 associates the same external angles to them, and
the extensions of the map to the plane are equivalent in the sense of Thurston [DH2].
Different embeddings yield different external angles and different Thurston maps.

4.11. Corollary (Number of Embeddings of Hubbard Tree)
Let (T, f) be a Hubbard tree without evil branch points, and let q1, q2, . . . be the number
of arms of the different characteristic branch points. Then there are

∏
ϕ(qi) different

ways to embed T into the plane such that f extends to a two-fold branched covering.
Here ϕ(q) is the Euler function counting the integers 1 ≤ i < q that are coprime to q.

Proof. Follow the proof of Proposition 4.10: for each of the characteristic branch
points zi there are ϕ(qi) cyclic orders in which the qi arms can be embedded. The
choices can be made independently from all other characteristic branch points. This
gives the asserted number. 2

Remark. We show in Lemma 16.11 that a Hubbard tree with critical orbit of period
n has less than n different embeddings into the plane that are compatible with the
dynamics.

4.12. Lemma (Characteristic Points have Two Inverse Images)
For every Hubbard tree (T, f) with ?-periodic or preperiodic kneading sequence, every
characteristic periodic point p ∈ T \ {c1} with itinerary τ(p) 6= 1 has two different
preimages {p0,−p0} = f−1(p) ⊂ T ; these are separated by 0, i.e. 0 ∈ (−p0, p0).

Proof. Since f((α, 0)) = (α, c1) 3 p, there is always a preimage of p in (α, 0) ⊂ T1.
Since τ(p) 6= 1, there is a pi ∈ orb(p) such that pi ∈ T0. Then [pi, 0) ⊂ T0 is mapped

homeomorphically onto [pi+1, c1). Since p is characteristic, we have p ∈ [pi+1, c1), and
there is a point p0 ∈ [pi, 0) ⊂ T0 with f(p0) = p. 2
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5. The Admissibility Condition

In this section we derive the nature of periodic branch points of the Hubbard tree from

the kneading sequence (Propositions 5.13 and 5.19). We also prove a condition (admissibility

condition) on the kneading sequence which decides whether there are evil orbits: Proposi-

tion 5.12 shows that an evil orbit violates this condition, and Proposition 5.13 shows that

a violated condition leads to an evil orbit within the Hubbard tree. Since a Hubbard tree

can be embedded in the plane whenever there is no evil orbit (Proposition 4.10), we obtain

a complete classification of admissible kneading sequences (Theorem 5.2).

5.1. Definition (The Admissibility Condition)
A kneading sequence ν ∈ Σ? fails the admissibility condition for period m if the follow-
ing three conditions hold:

(1) the internal address of ν does not contain m;
(2) if k < m divides m, then ρ(k) ≤ m;
(3) ρ(m) <∞ and if r ∈ {1, . . . ,m} is congruent to ρ(m) modulo m, then orbρ(r)

contains m.

A kneading sequence fails the admissibility condition if it does so for some m ≥ 1.
An internal address fails the admissibility condition if its associated kneading sequence
does.

If a kneading sequence fails the admissibility condition for period m, then it follows
that ρ(m) is in the associated internal address (Lemma 20.1).

This definition applies to all sequences in Σ?, i.e., all sequences in {0, 1}N∗ and
all ?-periodic sequences, provided they start with 1. However, in this section and
the next we will only consider ?-periodic and preperiodic kneading sequences because
these are the ones for which we have Hubbard trees. The main result in this section
is that this condition precisely describes admissible kneading sequences in the sense of
Definition 4.9 (those for which the Hubbard tree has no evil orbits):

5.2. Theorem (Evil Orbits and Admissibility Condition)
A Hubbard tree contains an evil orbit of exact period m if and only if its kneading
sequence (from Definition 3.5) fails the Admissibility Condition 5.1 for period m.

Equivalently, a Hubbard tree can be embedded into the plane so that the dynamics
respects the embedding if and only if the associated kneading sequence does not fail the
Admissibility Condition 5.1 for any period.

The proof of the first claim will be given in Propositions 5.12 and 5.13, and the
second is equivalent by Proposition 4.10.

While this theorem only deals with the postcritically finite case, we will show in
Corollary 14.2 that a ?-periodic or non-periodic kneading sequence is admissible in
the sense of Definition 5.1 if and only if it is generated from an external angle by the
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algorithm in Definition 2.1. Note that the fact whether or not a sequence fails the
admissibility condition for period m is determined by its first ρ(m) entries.

5.3. Example (Non-Admissible Kneading Sequences)
The internal address 1 → 2 → 4 → 5 → 6 with kneading sequence 101 10? (or any
address that starts with 1 → 2 → 4 → 5 → 6 →) fails the admissibility condition for
m = 3, and the Hubbard tree indeed has a periodic branch point of period 3 that does
not permute its arms transitively, as can be verified in Figure 5.1. This is the simplest
and best known example of a non-admissible Hubbard tree; see [LS, Ke, Pen1].

More generally, let ν = ν1 . . . νm−1? be any ?-periodic kneading sequence of period
m so that there is no k dividing m with ρ(k) = m (for kneading sequences in the
Mandelbrot set, this means that ν is not a bifurcation from a sequence of period k;
see ??). This clearly implies ρ(k) < m for all k dividing m. Let νm ∈ {0, 1} be such
that m does not occur in the internal address of ν1 . . . νm. Then for any s ≥ 2, every
sequence starting with

ν1 . . . νm . . . ν1 . . . νm︸ ︷︷ ︸
s− 1 times

ν1 . . . νm−1ν ′m

(with ν ′m 6= νm) fails the admissibility condition for m. The example 1 → 2 → 4 →
5→ 6 above with kneading sequence 10110? has been constructed in this way, starting
from 10?. We show after Proposition 6.7 that every non-admissible kneading sequence
is related to such an example.

While 1 → 2 → 4 → 5 → 6 is not admissible, the internal address 1 → 2 →
4 → 5 → 11 is admissible; its Hubbard tree is shown in Figure 5.2. This shows
that the Translation Principle from [LS, Conjecture 8.7] does not hold: the address
1 → 2 → 4 → 5 → 11 is realized in the 1

3
and 2

3
-sublimbs of the real period 5

component 1 → 2 → 4 → 5 of the Mandelbrot set. The Translation Principle would
predict that 1 → 2 → 4 → 5 → 6 should exist within the 1

2
-sublimb, but no such

hyperbolic component exists (the same counterexample was found independently by
V. Kauko [Kau1]).

Remark. The three conditions in the admissibility condition are independent: here
are examples of kneading sequences where exactly two of the three conditions are
satisfied.

• ν = 101? (1→ 2→ 4), m = 2: condition 1 is violated; ν is admissible.
• ν = 111? (1→ 4), m = 2: condition 2 is violated; ν is admissible.
• ν = 101? (1→ 2→ 4), m = 3: condition 3 is violated; ν is admissible.

These conditions can be interpreted as follows: the first condition picks a candidate
period for an evil orbit, taking into account that a branch point is always tame when its
period occurs on the internal address (Proposition 5.12); the second condition assures
that the period m of the evil orbit is the exact period, and the third condition makes
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Figure 5.1. The Hubbard tree for 1 → 2 → 4 → 5 → 6 contains an
evil orbit of period 3.
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Figure 5.2. The Hubbard tree for 1→ 2→ 4→ 5→ 11 is admissible.
There is a tame periodic orbit of branch points of period 5 (indicated by
◦’s). The other branch points are preperiodic.

the periodic orbit evil by assuring that the first return map of the characteristic point
maps a different local arm than the one pointing to 0 onto the local arm to the critical
value.

5.4. Lemma (Bound on Failing the Admissibility Condition)
If a ?-periodic kneading sequence of period n fails the admissibility condition for period
m, then m < n.

Proof. Since n occurs in the internal address, we may suppose m 6= n. If m > n,
then ρ(m) < m + n (because one of the entries between m and m + n is a ?), hence
r < n and orbρ(r) terminates at n, so m /∈ orbρ(r). 2

A different way to interpret Lemma 5.4 is to say that a ?-periodic kneading sequence
fails the admissibility condition for period m if and only if the associated Hubbard tree
has an evil branch point of period m (Theorem 5.2), and the period of a branch point
is bounded by the period of the kneading sequence (Lemma 4.6).

One of the main tools are closest precritical points.

5.5. Definition (Precritical Points)
A point x ∈ T is called precritical if f ◦k(x) = c1 for some k ≥ 1; the least such index
k is called Step(x). The point x is called a closest precritical point and denoted ζk if
f ◦j([c1, x]) 63 c1 for all j ∈ {1, . . . , k − 1}.
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The critical point is always ζ1; if the critical point is periodic of period n, then
ζn = c1 and there is no closest precritical point x with Step(x) > n. Closest precritical
points are those which are “visible from c1” in the sense of [LS, Section 8]: the idea is
that a precritical point ζ blocks the view of all ζ ′ behind ζ with Step(ζ ′) ≥ Step(ζ)
(figuratively speaking, ζ is so big that the smaller point ζ ′ cannot be seen if it is behind
ζ). We say that ζ is the earliest precritical point on an arc (x, y) (or [x, y] etc.) if it is
the one with the lowest Step.

5.6. Lemma (Closest Precritical Points Unique)
A Hubbard tree contains at most one closest precritical point ζk for every index k.

Proof. If for some k, there are two closest precritical points ζk and ζ ′k, then f ◦(k−1)

maps [ζk, ζ
′
k] homeomorphically onto its image, but both endpoints map to the critical

point 0. This is a contradiction. 2

5.7. Lemma (Elementary Properties of ρ)
If ζk 6= c1, then the earliest precritical point on (ζk, c1] is ζρ(k). For k ≥ 1, the earliest
precritical point on [c1+k, c1) is ζρ(k)−k.

If ζk 6= c1, then [c1, ζk] contains those and only those closest precritical points ζm for
which m ∈ orbρ(k). In particular, ζm ∈ [0, c1] if and only if m belongs to the internal
address.

Proof. The first two statements follow immediately from the definition of ρ, using
the idea of cutting times (see Algorithm 13.8); note that the arc [c1, ζk) can be iterated
homeomorphically for at least k iterations, and f ◦k([c1, ζk)) = [c1+k, c1). The first time
that f ◦(m−1)([c1, ζk)) hits 0 is for m = ρ(k) by definition, and the earliest precritical
point on [c1, ζk) takes exactly ρ(k) steps to map to c1. The claim now follows by
induction. The statement about the internal address follows because ζ1 = 0. 2

5.8. Lemma (Images of Closest Precritical Points)
If k < k′ ≤ ρ(k), then f ◦k(ζk′) is the closest precritical point ζk′−k.

Proof. Let x := f ◦k(ζk′). Then the arc [c1, ζk′ ] maps under f ◦k homeomorphically
onto [ck+1, x], and there is no precritical point ζ ∈ (ck+1, x) with Step(ζ) ≤ k′ − k.
If ρ(k) > k′ then by Lemma 5.7 there is no such precritical point ζ ∈ [c1, ck+1] either,
and hence none on (x, c1]. Since Step(x) = k′ − k, the point x is indeed the closest
precritical point ζk′−k. Finally, if ρ(k) = k′, then ζρ(k)−k = ζk′−k is the earliest precritical
point on [c1, c1+k] (Lemma 5.7). But since x also has Step(x) = k′ − k and [x, ζk′−k]
contains no point of lower Step, we have x = ζk′−k. 2
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5.9. Lemma (Precritical Points Near Periodic Points)
Let z1 be a characteristic periodic point of period m such that f ◦m maps [z1, c1] home-
omorphically onto its image. Assume that ν is not ?-periodic of period less than m. If
z1 has exactly two local arms, assume also that the first return map of z1 interchanges
them. Then

(1) the closest precritical point ζm exists in the Hubbard tree, z1 ∈ [ζm, c1] and
ζρ(m) ∈ [c1, z1];

(2) if ζ is a precritical point closest to z1 with Step(ζ) < m in the same global
arm of z1 as ζm, then ζm ∈ [z1, ζ];

(3) if z1 is a tame branch point, then ζm ∈ [0, z1] and m occurs in the internal
address;

(4) if z1 is an evil branch point, then ζm ∈ Gq−1 (where global arms are labelled as
in Lemma 4.6) and m does not occur in the internal address.

Proof. (1) First we prove the existence of ζm in T . Let G0, G1, . . . , Gq−1 be the global
arms of z1 with 0 ∈ G0 and c1 ∈ G1. (Note that q = 2 is possible.) Let L0, . . . , Lq−1

be the corresponding local arms. Let j be such that f ◦m(Lj) = L1.
If j = 0, then 0 = ζ1 ∈ Gj. If j 6= 0, then q ≥ 3 by assumption, so j = q − 1 by

Lemma 4.6 and there is an i < m so that f ◦i(Gj) contains 0. Therefore, in both cases
there exists a unique ζk ∈ Gj with k ≤ m maximal, and it satisfies z1 ∈ (ζk, c1). We
want to show that k = m.

If k < m, then f ◦k maps (z1, ζk) homeomorphically onto (zk+1, c1) 3 z1. By
maximality of k, the restriction of f ◦m to (z1, ζk) is a homeomorphism with image
(z1, cm−k+1) ⊂ G1, and it must contain f ◦(m−k)(z1) = z1+m−k in contradiction to the
fact that z1 is characteristic. Hence k = m, ζm exists and z1 ∈ [c1, ζm].

Clearly f ◦m maps [z1, ζm] homeomorphically onto [z1, c1]. By Lemma 5.7, ζρ(m) ∈
[c1, ζm]. If ζρ(m) ∈ [z1, ζm], then f ◦m(ζρ(m)) ∈ [c1, z1] ⊂ [c1, ζρ(m)], but then ζρ(m) would
not be a closest precritical point. Hence ζρ(m) ∈ [z1, c1].

(2) For the second statement, let k := Step(ζ) < m. We may suppose that
(z1, ζ) contains no precritical point ζ ′′ with Step(ζ ′′) < m (otherwise replace ζ by ζ ′′).
Clearly ζ /∈ [z1, ζm]. Assume by contradiction that ζm /∈ [z1, ζ] so that [z1, ζ, ζm] is a
non-degenerate triod. Since both [z1, ζ] and [z1, ζm] map homeomorphically under f ◦m,
the same is true for the triod [z1, ζ, ζm].

Under f ◦k, the triod [z1, ζ, ζm] maps homeomorphically onto the triod [zk+1, c1, ζ
′]

with Step(ζ ′) = m − k, and zk+1 6= z1. Then z1 ∈ (zk+1, c1), so the arc (zk+1, ζ
′)

contains either z1 or a point at which the path to z1 branches off. Under f ◦(m−k), the
triod [zk+1, c1, ζ

′] 3 z1 maps homeomorphically onto [z1, cm−k+1, c1] 3 zm−k+1. There-
fore (z1, c1) contains either the point zm−k+1 or a branch point from which the path to
zm−k+1 branches off. Both are in contradiction to the characteristic property of z1.

(3) If z1 is tame, then j = 0, so ζm ∈ G0. By the previous statement, ζm ∈ [z1, 0],
and Lemma 5.7 implies that m belongs to the internal address.
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(4) Finally, if z1 is evil, then ζm ∈ Gq−1 and m does not occur in the internal address
by Lemma 5.7. 2

The following lemma is straightforward, but helpful to refer to in longer arguments.

5.10. Lemma (Translation Property of ρ)
If ρ(m) > km for k ≥ 2, then ρ(km) = ρ(m).

Proof. Let ν be a kneading sequence associated to ρ. Then ρ(m) > km says that the
first m entries in ν repeat at least k times, and ρ(m) finds the first position where this
pattern is broken. By definition, ρ(km) does the same, omitting the first k periods. 2

5.11. Lemma (Bound on Number of Arms)
Let z1 ∈ [c1, ζm] be a characteristic point of period m with q arms. Assume that ν is not
?-periodic of period less than m. If z1 has exactly two local arms, assume also that the
first return map of z1 interchanges them. If z1 is evil, then (q−2)m < ρ(m) ≤ (q−1)m;
if not, then (q − 2)m < ρ(m) ≤ qm.

Proof. Let G0 3 0, G1 3 c1, . . . , Gq−1 be the global arms at z1. By Lemma 5.9,
ζρ(m) ∈ [z1, c1]. The lower bound for ρ(m) follows from Lemma 4.6.

First assume that z1 is evil, so q ≥ 3. Lemma 5.10 implies ρ((q − 2)m) = ρ(m).
Assume by contradiction that ρ(m) > (q − 1)m. Then r := ρ(m) − (q − 2)m > m.
By Lemma 5.8, ζr = f ◦((q−2)m)(ζρ(m)) is a closest precritical point. It belongs to the
same arm Gq−1 as ζm, but ζm /∈ [z1, ζr]. As ζρ(m) is the earliest precritical point on
[c1, ζm), we cannot have ζr ∈ [z1, ζm] either. Therefore [z1, ζr, ζm] is a non-degenerate
triod within Gq−1; let y ∈ Gq−1 be the branch point, see Figure 5.3. Obviously

rc1 rζρ(m) rz1 r0G1 G0

T ′

r y������
r
ζm

PPPPPPry′ rζr rc1+(q−2)m

Figure 5.3. Subtree with an evil branch point z1 of a Hubbard tree.

f ◦m(y) ∈ [z1, c1] and since f ◦((q−2)m) maps G1 homeomorphically into Gq−1, we find
y′ := f ◦((q−1)m)(y) ∈ [z1, c1+(q−2)m], see Figure 5.3. If y′ ∈ [z1, y], then f ◦((q−1)m maps
[z1, y] homeomorphically into itself. This contradicts expansivity of the tree. Therefore
y′ ∈ (y, c1+(q−2)m]. Let T ′ be the component of T \ {y} containing c1+(q−2)m. Since

ζρ(m) ∈ [z1, c1] and f ◦(q−2)m(ζρ(m)) = ζr, T
′ contains ζr but not ζm. Now f ◦((q−1)m) maps

T ′ homeomorphically into itself (otherwise, there would be an earliest precritical point
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ζ ∈ T ′ with Step(ζ) < m, but then ζm ∈ [z1, ζ] by Lemma 5.9 (2)). Again, expansivity
of the tree is violated. Thus indeed ρ(m) ≤ (q − 1)m.

rc1 rζρ(m) rz1 ry rζm r0G1 G0

Gq−1

r������ rζk PPPPPPrc1+(q−2)m

ry′
rζr
rc1+(q−1)m

@
@
@
rc1+m−k

Figure 5.4. Subtree with a tame branch point z1 of a Hubbard tree.

Now assume that z1 is not evil (and maybe not even a branch point). Assume by
contradiction that ρ(m) > qm. We repeat the above argument with r := ρ(m)− (q −
1)m > m, conclude that ρ((q − 1)m) = ρ(m) and find the closest precritical point
ζr ∈ G0, so ζr is in the same global arm at z1 as ζm. As before, [z1, ζr, ζm] is a non-
degenerate triod with branch point y and y′ := f ◦qm(y) lies on [y, c1+(q−1)m]. Let T ′ be
the component of T \ {y} containing c1+(q−1)m. We claim that f ◦qm is homeomorphic
on T ′.

It follows as above, using Lemma 5.9, that f ◦m maps T ′ homeomorphically into
G1, and f ◦(q−2)m maps G1 homeomorphically into Gq−1. Let T ′′ = f ◦(q−1)m(T ′) and
assume by contradiction that f ◦m is not homeomorphic on T ′′. Then T ′′ contains
a closest precritical point ζk for some k < m. Take k < m maximal. Then f ◦m

is homeomorphic on [z1, ζk], and since f ◦k([z1, ζk]) = [zk+1, c1] 3 z1, it follows that
f ◦m([z1, ζk]) = [z1, c1+m−k] contains z1+m−k. But since ζk ∈ T ′′, hence f ◦(q−1)m(y) ∈
[z1, ζk], we also have y′ ∈ [z1, c1+m−k]. As a result, [z1, c1+m−k] ⊂ [z1, y] ∪ T ′.

If z1+m−k ∈ [z1, y], then f ◦m maps [z1, z1+m−k] homeomorphically onto its image.
This is a contradiction: both endpoints are fixed, but the image must be in G1. There-
fore, z1+m−k ∈ T ′. By Lemma 5.9 (2) again, there can be no precritical point with Step
less than m on [z1, z1+m−k], and we get the same contradiction.

We can conclude as above that f ◦qm maps T ′ homeomorphically into itself as
claimed. But this is a contradiction to expansivity of the tree. 2

5.12. Proposition (Evil Orbit Fails Admissibility Condition)
If a Hubbard tree has an evil orbit of exact period m and ν is not ?-periodic of period
less than m, then the kneading sequence fails the admissibility condition for period m.
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Proof. Let z1 be the characteristic point of the evil orbit of period m and let
G0, . . . , Gq−1 be the global arms labelled as in Lemma 4.6. The corresponding local
arms will be labelled L0, . . . , Lq−1.

We know from Lemma 5.9 that m is not in the internal address, so the first part of
the admissibility condition is already taken care of.

Since [z1, c1] maps homeomorphically form steps, the firstm entries in the itineraries
of z1 and c1 coincide, and e(z1) = ν1 . . . νm. Let k < m be a divisor of m. Suppose by
contradiction that ρ(k) > m. Then e(z1) has period k. By Lemma 3.8, the period of
z1 is then k as well, contradicting the assumption. This settles the second condition of
Definition 5.1

Let r := ρ(m) − (q − 2)m. By Lemma 5.11, 0 < r ≤ m. By Lemma 5.8,
f ◦(q−2)m(ζρ(m)) = ζρ(m)−(q−2)m = ζr ∈ Gq−1.

By Lemma 5.9 (4) and (2), we have ζm ∈ Gq−1 and then ζm ∈ [z1, ζr]. Now
Lemma 5.7 shows that m ∈ orbρ(r). Hence ν fails the admissibility condition for
period m. 2

In Propositions 5.13 and 5.19, we will determine the exact number of arms at all
branch points, and determine from the internal address which branch points a Hubbard
tree has.

5.13. Proposition (Number of Arms at Evil Branch Points)
Suppose a kneading sequence ν fails the Admissibility Condition 5.1 for period m, and
that ν is not ?-periodic of period less than m. Then the Hubbard tree for ν contains an
evil branch point of exact period m; the number of its arms is q := bρ(m)/mc+ 2 ≥ 3.

Proof. Write ρ(m) = (q − 2)m + r for r ∈ {1, 2, . . . ,m} and q ≥ 3. Then ρ((q −
2)m) = ρ(m) by Lemma 5.10 and the earliest precritical point on [c1+(q−2)m, c1) is ζr by
Lemma 5.7. Since ν fails the admissibility condition for m, this implies in particular
m ∈ orbρ(r), hence by Lemma 5.7 ζm ∈ [ζr, c1] ⊂ [c1+(q−2)m, c1].

Consider the connected hull

H := [c1, c1+m, c1+2m, . . . , c1+(q−3)m, ζm] .

Since ρ(km) = ρ(m) > (q − 2)m for k = 2, 3, . . . , q − 3 by Lemma 5.10, the map f ◦m

sends the arc [c1, c1+km] homeomorphically onto its image, and the same is obviously
true for [c1, ζm]. We thus get a homeomorphism f ◦m : H → H ′ with

H ′ = [c1+m, c1+2m, c1+3m, . . . , c1+(q−2)m, c1] .

Since ζm ∈ [c1+(q−2)m, c1], we have H ⊂ H ′ ⊂ H ∪ [ζm, c1+(q−2)m]. Moreover, ζr ∈
[c1+km, c1+(q−2)m] for k = 0, 1, . . . , q − 3: the first difference between the itineraries of
c1+(q−2)m and c1 occurs at position r, while c1 and c1+km have at least m identical
entries. Since ζm ∈ [ζr, c1], it follows similarly that ζm ∈ [ζr, c1+km] ⊂ [c1+(q−2)m, c1+km]
for k ≤ q − 3. Therefore, H ′ \H = (ζm, c1+(q−2)m].
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Among the endpoints defining H, only c1+(q−3)m maps outside H under f ◦m, so
c1+(q−3)m is an endpoint of H and thus also of H ′. It follows that c1+(q−4)m is an
endpoint of H and thus also of H ′ and so on, so c1, . . . , c1+(q−2)m are endpoints of H.
Finally, also ζm is an endpoint of H (or c1 would be an inner point of H ′). As a result,
H and H ′ have the same branch points.

If q = 3, then H is simply an arc which is mapped in an orientation reversing
manner over itself, and hence contains a fixed point of f ◦m. Otherwise H contains a
branch point. Since f ◦m maps H homeomorphically onto H ′ ⊃ H, it permutes the
branch points of H. By expansivity there can be at most one branch point, say z1,
which must be fixed under f ◦m. Since f ◦m : [z1, c1] → [z1, c1+m] is a homeomorphism
with [z1, c1] ∩ [z1, c1+m] = {z1}, the arc (z1, c1] cannot contain a point on the orbit of
z1, so z1 is characteristic.

If z1 is a tame branch point, then ζm ∈ [z1, 0] by Lemma 5.9, and m occurs in the
internal address in contradiction to the failing admissibility condition. If z1 has exactly
two arms, these are interchanged by f ◦m, and ζm ∈ G0, the global arm containing 0. By
Lemma 5.9 (2), ζm ∈ [0, z1] and m occurs in the internal address, again a contradiction.
Hence z1 is an evil branch point.

Now H has exactly q−1 endpoints, and these are contained in different global arms
of z1. The corresponding local arms are permuted transitively by f ◦m. Since z1 is evil,
it has exactly q arms. 2

This also concludes the proof of Theorem 5.2. 2

5.14. Definition (Upper and Lower Kneading Sequences)
If ν is a ?-periodic kneading sequence of exact period n, we obtain two periodic kneading
sequences ν0 and ν1 by consistently replacing every ? with 0 (respectively with 1); both
sequences are periodic with period n or dividing n, and exactly one of them contains
the entry n in its internal address. The one which does is called the upper knead-
ing sequence associated to ν and denoted A(ν), and the other one is called the lower
kneading sequence associated to ν and denoted A(ν).

5.15. Lemma (Itinerary Immediately Before c1)
When x → c1 in a Hubbard tree for the ?-periodic kneading sequence ν, the itinerary
of x converges (pointwise) to A(ν).

Proof. Let τ be the limiting itinerary of x as x → c1 and let n be the period of
ν. Then τ is clearly periodic with period (dividing) n and contains no ?, so τ ∈
{A(ν),A(ν)}. Let m be the largest entry in the internal address of ν which is less
than n. Then there is a closest precritical point ζm ∈ [0, c1) (Lemma 5.7) and f ◦n

maps [ζm, c1] homeomorphically onto its image. Since f ◦m sends (ζm, c1) 3 x onto
(c1, c1+m) 3 f ◦m(x), which is sent by f ◦(n−m) onto (c1+n−m, c1+n), we get τ1 . . . τn−m =
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ν1 . . . νn−m = τm+1 . . . τn. Hence ρτ (m) > n; since m occurs in the internal address of
τ , the number n does not. 2

5.16. Proposition (Exact Period of Kneading Sequence)
For every ?-periodic kneading sequence of period n, the associated upper kneading se-
quence A(ν) has exact period n.

Proof. Let τ := A(ν) be the upper kneading sequence associated to ν and suppose
by contradiction that the exact period of τ is m < n. Then ν fails the admissibility
condition for period m: since ρτ (m) = ∞ and n is in the internal address of τ by
assumption, m cannot occur on the internal address of τ and hence neither on the
internal address of ν. If ρτ (k) ≥ m for a proper divisor k of m, then the exact period
of τ would be less than m, a contradiction. Hence ρν(k) = ρτ (k) < m. The third part
of the admissibility condition is clear because r = m.

Thus by Theorem 5.2 the Hubbard tree for ν, say (T, f), has an evil orbit with
period m. Let z1 be its characteristic point; it has itinerary τ . Then f ◦n sends [z1, c1]
homeomorphically onto itself, so all points on [z1, c1) have itinerary τ . By Lemma 5.15,
it follows that τ is the lower kneading sequence associated to ν, a contradiction. 2

A different proof for this result, based entirely on the combinatorics of kneading
sequences, is given in Lemma 20.2.

Remark. The exact period of A(ν) can a proper divisor of n; see Lemma 6.12.

5.17. Lemma (Characteristic Points and Upper Sequences)
Let z be a characteristic point with itinerary τ and exact period n. Then exactly one
of the following two cases holds:

(1) • all local arms are permuted transitively, i.e. z is tame,
• the internal address of τ contains the entry n,
• the exact period of τ equals n,
• τ = A(ν) for some ?-periodic kneading sequence ν of exact period n.

(2) • the local arm towards 0 is fixed, all others are permuted transitively,
• the internal address of τ does not contain the entry n,
• if the exact period of z and τ coincide then τ = A(ν) for some ?-periodic

kneading sequence ν of exact period n.

For any ?-periodic sequence ν, there is at most one tame periodic point in T such that
τ(p) = A(ν).

Proof. By Corollary 4.4 either all local arms at z are permuted transitively or the local
arm pointing to 0 is fixed and all others are permuted transitively. By Proposition 4.8,
n is contained in the internal address of τ if and only of the local arm towards 0 is not
fixed.
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Let n′ be the exact period of τ . Then n = kn′ for some k ≥ 1 and ρτ (n) = ∞.
Therefore, if n is contained in the internal address of τ then k = 1 by Lemma 20.2.

The last remaining property of the first case follows immediately from n = n′, the
definition of upper and lower kneading sequences and Proposition 5.16. Similarly, the
third property in the second case follows from these results.

For the last statement, let us assume that there are two tame periodic points p, q
with itinerary A(ν). Then they have both exact period n′ and f ◦n

′
([p, q]) = [p, q].

Thus not all local arms of p, q are permuted transitively and neither p nor q is tame, a
contradiction. 2

An immediate corollary of the preceding lemma is that if the period of z and of τ
coincide, then the type of z (tame or not) is completely encoded in τ .

In the second case however, if the exact period of z and τ do not coincide, then τ
may equal the upper or the lower kneading sequence of some ?-periodic kneading ν of
exact period n′.

5.18. Lemma (Periodic Point behind Closest Precritical Point)
Let ζ ∈ [0, c1) be a precritical point with Step(ζ) = m so that f ◦m : [ζ, c1]→ [c1, c1+m]
is homeomorphic. Then the arc (ζ, c1) contains a characteristic periodic point z with
exact period m. The first return map of z fixes no local arm at z.

Proof. First we show that (c1, ζ) contains a periodic point of period m. Assume
by contradiction that this is not the case. By Theorem 20.12 we can extend the
construction of the Hubbard tree in Theorem 3.10 so as to include an m-periodic
point p with itinerary τ = ν1 . . . νm, where ν is the kneading sequence of the Hubbard
tree. (If c1 is periodic of period n < m, then we will use the itinerary ν̃ of a point
x very close to c1; so τ = ν̃1 . . . ν̃m.) By the choice of τ , ζ does not separate p from
c1. The triod H0 = [c1, p, ζ] maps under f ◦m homeomorphically onto [c1+m, p, c1], see

r p
rc1 rf ◦m(z) rz rζ r0
r f ◦2m(z)

r ζr
r c1+m

Y

Figure 5.5. Subtree H0 = [c1, p, ζ] (bold lines) with its image under
f ◦m.

Figure 5.5. If H0 is degenerate, then it must necessarily have c1 in the middle. But
then, f ◦m([c1, p, ζ]) = [c1+m, p, c1] is degenerate with c1+m in the middle: we have
ζ ∈ [0, c1], c1 ∈ [ζ, p] and c1+m ∈ [c1, p], hence c1 ∈ [0, c1+m] in contradiction to the fact
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that c1 is an endpoint of the Hubbard tree (we cannot have c1+m = c1 because then
ζ = c1).

Hence there is a branch point, say z, in the interior of H0. Since z ∈ (p, ζ), we have
f ◦m(z) ∈ (p, c1) ⊂ [z, p) ∪ [z, c1). The possibility f ◦m(z) = z contradicts our initial
assumption.

If f ◦m(z) ∈ (z, p), then f ◦m maps [z, p] homeomorphically into itself, so all points
on [z, p] have the same itinerary. This contradicts either expansivity or finiteness of
the orbit of the branch point z.

Therefore, f ◦m(z) ∈ (c1, z). In this case, f ◦m([c1, z]) branches off from [c1, ζ] at
f ◦m(z); it belongs to an arm Y at f ◦m(z), and f ◦2m(z) ∈ Y . By expansivity, f ◦m

cannot map Y homeomorphically into itself, so there exists a closest precritical point
ζk ∈ Y with k < m. By Lemma 5.7, m /∈ orbρ(k). There is a unique s ∈ orbρ(k)
with s < m < ρ(s). Then f ◦m maps the triod [c1, ζs, z] homeomorphically onto the
image triod [c1+m, c1+m−s, f

◦m(z)] with branch point in (f ◦m(z), c1+m) ⊂ Y . Therefore,
c1+m−s ∈ Y . Now let ζ ′ be the earliest precritical point on [c1, c1+m−s]. By Lemma 5.7,
Step(ζ ′) = ρ(m − s) − (m − s). The first assertion of Lemma 20.2 1 states that
m ∈ orbρ(ρ(m − s) − (m − s)), so ζm ∈ [c1, c1+m−s]. Therefore, ζm 6= ζ (the points ζ
and ζm are in different arms at f ◦m), and this is a contradiction.

We have now proved the existence of a periodic point z ∈ (c1, ζ) with itinerary τ
and period m. It is characteristic: if not, let z1 ∈ (z, c1) be the characteristic point;
then f ◦m(z1, ζ) = (z1, c1) and z ∈ (z1, ζ), which is a contradiction.

Let k|m be the exact period of z. By Lemma 4.6, f ◦k sends the local arm at z to
0 either to itself or to the local arm to c1. The first case is excluded by the fact that
f ◦m : [z, ζ]→ [z, c1] is a homeomorphism. In the second case, f ◦k : [z, ζ]→ [z, f ◦k(ζ)] ⊂
[z, c1] is a homeomorphism. If k < m, then f ◦k(ζ) ∈ (z, c1) and f ◦m could not be a
homeomorphism on [ζ, c1]. Hence k = m is the exact period of z, and no local arm at
z is fixed by f ◦m. 2

For any m ≥ 1, let r ∈ {1, 2, . . . ,m} be congruent to ρ(m) modulo m, and define

q(m) :=

{ ρ(m)−r
m

+ 1 if m ∈ orbρ(r) ,
ρ(m)−r
m

+ 2 if m /∈ orbρ(r) .
(2)

5.19. Proposition (Number of Arms at Tame Branch Points)
If z1 is a tame branch point of exact period m, then m occurs in the internal address,
and the number of arms is q(m). Conversely, for any entry m in the internal address
with q(m) ≥ 3, there is a tame branch point of exact period m with q(m) arms (unless
the critical orbit has period m).

1This lemma is part of an analysis of the structure of ρ-orbits for arbitrary 0-1-sequences; it is
independent of earlier results, so this forward reference does not introduce a circular reference.
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Proof. Let z1 be the characteristic point of an orbit of tame branch points with
exact period m, and let q′ ≥ 3 be the number of arms at z1. By Lemma 4.6, the
critical value cannot be periodic with period less than m. By Lemma 5.9 (3) and
(1), m occurs in the internal address, ζm ∈ (0, z1) ⊂ G0, and ζρ(m) ∈ [z1, c1]. Let
r′ := ρ(m) − (q′ − 2)m. By Lemma 5.11, 0 < r′ ≤ 2m. Therefore, by Lemma 5.10,
ρ((q′ − 2)m) = ρ(m), so by Lemma 5.8, f ◦(q

′−2)m(ζρ(m)) = ζr′ is a closest precritical

point and by Lemma 4.6, ζr′ = f ◦(q
′−2)m(ζρ(m)) ∈ Gq′−1. Since ζm ∈ G0, we have

ζm /∈ [c1, ζr′ ] and thus m /∈ orbρ(r
′) (Lemma 5.7).

If r′ ≤ m, then r = r′ and we are in the case q(m) = ρ(m)−r
m

+ 2 = ρ(m)−r′
m

+ 2 = q′.
If r′ > m, then r = r′ − m and f ◦m(ζr′) = ζr by Lemma 5.8. Then f ◦m maps

[z1, ζr′ ] homeomorphically onto [z1, ζr], hence ζr ∈ G0. By Lemma 5.9 (2) we find that
either r = m or r < m and ζm ∈ [z1, ζr], so in both cases m ∈ orbρ(r). Therefore,

q(m) = ρ(m)−r
m

+ 1 = q′. Again q(m) = q′.

For the converse, let m be an entry in the internal address. By Lemma 5.7, the
closest precritical point ζm exists on [0, c1]. By Lemma 5.18, ζm gives rise to a char-
acteristic point z1 ∈ [ζm, c1] of exact period m and the first return map of z1 fixes no
local arm. By Lemma 5.9 (1), ζρ(m) ∈ [z1, c1].

If z1 is a branch point, then no local arm of z1 is fixed by f ◦m, so z1 is tame. By
the first assertion of the lemma, the number of arms is q(m).

Finally, suppose that z1 has only two arms G0 3 0 and G1 3 c1. If the critical
orbit is periodic and m is an entry in the internal address, the period of the critical
orbit is at least m, and equality is excluded by hypothesis. By Lemma 5.11, we have
ρ(m) ≤ 2m and r′ := ρ(m)−m = r. Then f ◦m(ζρ(m)) = ζr′ ∈ G0. Lemma 5.9 (2) then

gives that ζm ∈ [ζr, z1] and hence m ∈ orbρ(r). It follows that q(m) = ρ(m)−r
m

+ 1 = 2.
2

Together, Propositions 5.13 and 5.19 describe all branch points in all Hubbard trees.

In [LS], a special sufficient condition for admissibility of kneading sequences was
derived and used to determine the Galois groups of periodic points: see Section 11. We
show that this condition follows easily from our general Admissibility Condition 5.1.

5.20. Corollary (Sufficient Condition for Admissibility)
If ν is a kneading sequence such that νρ(n) = 0 for all n ≥ 1, then ν is admissible.

Proof. Let S1 → . . .→ Sk → . . . be the internal address associated to ν. Comparing
νSk+1νSk+2 . . . with ν1ν2 . . . , the first difference occurs when comparing νSk+1

= νρ(Sk)

with νSk+1−Sk , so we have νSk+1
= 0 and thus νSk+1−Sk = 1 for all k.

Now we claim that

Sk < r < Sk+1 implies ρ(r) ≤ Sk+1 . (3)



54 Section 5, Version of July 27, 2011

To prove this, assume by contradiction that ρ(r) > Sk+1. Together with ρ(Sk) = Sk+1

this yields
ν1 . . . νSk+1−r = νr+1 . . . νSk+1

= νr−Sk+1 . . . ν
′
Sk+1−Sk ,

where ν ′ = 1 if ν = 0 and vice versa. This implies ρ(r − Sk) = Sk+1 − Sk and
νρ(r−Sk) = νSk+1−Sk = 1, contrary to the hypothesis of the lemma, so (3) holds.

Now assume that ν fails the admissibility condition for period m; then m is different
from all Sk. Write ρ(m) = am+ r with r ∈ {1, 2, . . . ,m} and a ≥ 1; then m ∈ orbρ(r).
Let k be maximal so that Sk < r. Since m is on the ρ-orbit of r but not on the internal
address, (3) implies m < Sk+1 and ρ(m) ≤ Sk+1.

Choose q so that (q− 1)Sk < m ≤ qSk. Part (2) of the Admissibility Condition 5.1
implies that Sk cannot divide m, hence m < qSk. We have Sk < r ≤ am + r −m =
ρ(m)−m, hence qSk = (q − 1)Sk + Sk < m+ ρ(m)−m = ρ(m) ≤ Sk+1. Therefore ν
starts with at least q repetitions of ν1 . . . νSk . Since 0 < m− (q − 1)Sk < Sk, we have

νm−(q−1)Sk+1 . . . νSk = νm+1 . . . νqSk .

Now ρ(m) > qSk implies ρ(m − (q − 1)Sk) > Sk. This contradicts (3) and completes
the proof. 2

Remark. The condition in Corollary 5.20 is equivalent to the condition that no
shift σk(ν) exceeds ν with respect to lexicographic ordering; see Lemma 12.5 or [LS,
Corollary 10.8].
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6. Orbit Forcing and Internal Addresses

In this section, we compare the Hubbard trees for different kneading sequences. We

define a partial order relation on the set of ?-periodic kneading sequences so that trees

for greater sequences contain all periodic orbits of trees for smaller sequences. Periodic

kneading sequences of fixed maximal periods form a finite connected tree which is related to

the Mandelbrot set. We identify where in this tree the non-admissible sequences sit.

Recall that a kneading sequence ν can contain a ? only if it is periodic of some
period n and contains a ? exactly at positions n, 2n, 3n, . . . ; such a kneading sequence
ν is called ?-periodic. In Definition 5.14 we associated upper and lower kneading
sequences A(ν) and A(ν) to it by consistently replacing every ? by 0 or by 1 so that
A(ν) contains n in its internal address. We will also need an inverse A−1

n (τ) which
turns an n-periodic kneading sequence τ without ? (upper or lower) into a ?-periodic
kneading sequence of period n (note that A−1

n , A−1
2n , etc. can be applied to τ , but the

results are different).

6.1. Definition (Order on ?-Periodic Kneading Sequences)
Let ν and ν ′ be two ?-periodic kneading sequences. We say that ν > ν ′ if the Hubbard
tree for ν contains a characteristic periodic point with itinerary A(ν ′).

Remark. Trivially, ν > ? for every ?-periodic ν 6= ? because the tree for ν has the
α-fixed point with itinerary 1 = A(?) (Lemma 3.7).

In the tree for ν, the characteristic periodic point with itinerary A(ν ′) is not on the
critical orbit. If it is a branch point, then it is tame by Proposition 4.8. If it is not a
branch point (and hence not marked), then its period might be a proper multiple of
the period of the itinerary. However, by Lemma 3.9, there is always a characteristic
periodic point with itinerary A(ν ′) which has the same period as A(ν ′).

Remark. As we will see below, this order is not linear, i.e. there are sequences ν
and ν ′ for which neither ν > ν ′ nor ν ′ > ν (for instance, the sequences 11 . . . 1? and
111 . . . 1? are not comparable as soon as their periods are different). It is easy to see
that ν 6> ν for every ν (i.e., the order is irreflexive): if the tree for ν has a characteristic
periodic point p with itinerary A(ν) and ν has period n, then by Lemma 5.15, the arc
(p, c1) must contain a precritical point ζ with Step(ζ) = n so that f ◦n sends [ζ, c1]
homeomorphically onto itself, but both endpoints map to c1; this is a contradiction.
In Corollary 6.3, we will show that the order is transitive (justifying the term order).
By irreflexivity, it follows that we never have ν > ν ′ and ν ′ > ν (i.e., the order is
asymmetric).

This order is naturally related to the tree structure of the Mandelbrot set: every
hyperbolic componentW of the Mandelbrot set of some period n has a unique center pa-
rameter in which the critical orbit is periodic and has an associated ?-periodic kneading
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sequence, also of period n; we associate this kneading sequence to W . Hyperbolic com-
ponents are partially ordered: we say that W is greater than W ′ (or: W is behind W ′) if
W ′ 6= W and the arc in the Mandelbrot set from the origin to W ′ contains W (or equiv-
alently if the wake of W ′ is contained in the wake of W ); see Figure 6.1 and Section 11.

Our goal in this section is to extend and simultaneously simplify the structure of the
Mandelbrot set so as to obtain a natural space that contains all kneading sequences and
Hubbard trees, admissible or not: this is a natural generalization of the combinatorial
data of the Mandelbrot set in a simpler setting. From a combinatorial point of view, the
admissibility condition adds difficulties; moreover, every kneading sequence occurs only
once in our space, while symmetries of the Mandelbrot set entail that many sequences
occur more than once (see the discussion of angled internal addresses in Section 11).
Our space is related to a construction of Penrose [Pen1]; see the discussion after
Definition 7.4.

Figure 6.1. Figure Needed!

If W is greater than W ′, then the associated kneading sequences satisfy ν > ν ′

(Proposition 11.21); this proposition has a converse as follows: if ν ′′ > ν for an ad-
missible ?-periodic kneading sequence ν ′′, then there exists a hyperbolic component
W ′′ with kneading sequence ν ′′ so that W ′′ is behind W . There may be several hyper-
bolic components with the same kneading sequence, and not all can be greater than
W (compare Figure 6.1); they are related by certain symmetries of the Mandelbrot
set which are distinguished by angled internal addresses: see Definition 11.9 and [LS,
Section 9].

6.2. Theorem (Orbit Forcing)
Let ν and ν̃ be two ?-periodic kneading sequences realized by Hubbard trees (T, f) and

(T̃ , f̃). Suppose that one of the following is true:

(1) there are characteristic periodic points p ∈ T and p̃ ∈ T̃ with identical itineraries;
(2) there is a characteristic periodic point p̃ ∈ T̃ with itinerary A(ν) or A(ν); set

p := c1;
(3) there is a characteristic periodic point p ∈ T with itinerary A(ν̃) or A(ν̃); set

p̃ := c̃1;

then for every characteristic periodic point p′ ∈ [0, p) of T such that (p′, p) contains a
precritical point,1 there is a characteristic periodic point p̃′ ∈ [0, p̃) in T̃ such that p′

and p̃′ have the same itinerary, the same number of arms and the same type (tame or
evil), and so that the exact period of p̃′ equals that of its itinerary.

Of course, in case (2) the condition that there is a point p̃ with itinerary A(ν) is
equivalent to ν̃ > ν (“forcing to a larger tree”), and similarly, in case (3) the condition

1and, in case (3), such that τ ′ 6= A(ν̃)
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that there is a point p with itinerary A(ν̃) is equivalent to ν̃ < ν (“forcing to a smaller
tree”).

Proof. Since the proofs of the three statements are essentially the same in slightly
different contexts, we treat the first case in detail and indicate the necessary changes
for the two other cases in 2.

Let n′ be the exact period of p′ and let τ and τ ′ be the itineraries of p and p′. Let p0

and −p0 be the periodic and preperiodic inverse images of p; they exist by Lemma 4.12.
Let Tp be the subtree spanned by the orbit of p minus the interval I := (−p0, p0). Let
±p0 be the element of {p0,−p0} in the component of T \ {0} containing c1.3

Then the map f : T → T restricts to a map f : Tp → (Tp∪I). Since p′ is characteris-
tic and p′ ∈ [0, p], no point on the forward orbit of p′ is in I, so the entire forward orbit
of p′ is contained within Tp. The arc I0 := [±p0, p] contains p′ and maps homeomor-
phically onto I1 := [p, f(p)] containing f(p′). If [p, f(p)] intersects I, then it contains

I; in this case, let instead I1 be the connected component of f(p′) in [p, f(p)] \ I̊. 4

This step can be repeated: map the interval Ik forward homeomorphically, re-
move I if necessary 5 and let Ik+1 be the part containing f ◦(k+1)(p′). Repeat this
step infinitely often (after n′ times the point p′ is mapped back to itself). Each for-
ward image f ◦k(p′) is thus contained in an arc Ik with endpoints in the finite set
{−p0, p, f(p), f(f(p)), . . . , p0}, and f(Ik) maps homeomorphically onto an arc contain-
ing Ik+1. Each arc Ik is contained in 6 a connected component of T \ I, so for every k
the first k entries in the itinerary of any point in the interior of I0 whose orbit visits the
interiors I1, I2, . . . , Ik are the same as in τ ′, and the set of such points is non-empty.

Now consider the Hubbard tree (T̃ , f̃) that contains a characteristic periodic point
p̃ with itinerary τ .7 Construct points p̃0 and −p̃0 and the interval Ĩ = (−p̃0, p̃0) as
before and let Ĩk ⊂ T̃ be the closed arcs bounded by the corresponding points in
{−p̃0, p̃, f̃(p̃), f̃(f̃(p̃)), . . . , p̃0} as above. None of their endpoints is in the interior of Ĩ.8

We still have that f̃ maps Ĩk homeomorphically onto its image, which contains
Ĩk+1: the itineraries of the endpoints of Ĩk encode whether or not f̃(Ĩk) contains 0 or

equivalently Ĩ; if it does not, then f̃(Ĩk) = Ĩk+1, and if it does, Ĩk+1 has one endpoint in

common with f̃(Ik) and the other one with Ĩ, so Ĩk+1 ⊂ f̃(Ĩk). Each arc Ĩk is contained

2footnotes
3In case (2), let τ be the itinerary of p̃, let p0 = −p0 = ±p0 be the critical point, I := {0} and

Tp := T \ {0}.
4In case (2), if 0 ∈ [p, f(p)], then cut at 0 and retain only [p, 0] or [0, f(p)] so as to keep f(p′).
5or cut at 0 in case (2)
6the closure of
7In case (3), the itinerary of p̃ = c̃1 is ν̃.
8In case (2), for any interval Ik which ends at p0 = −p0 in the tree for ν, we have an ambiguity in

the tree for ν̃: in the latter, we let the corresponding interval Ĩk end at p̃0 or −p̃0 in such a way that
it does not contain the critical point. In case (3), let p̃0 = −p̃0 := 0, Ĩ := {0} and Ĩk as in case (1).
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in 9 a connected component of T̃ \ Ĩ, and the itinerary of the sequence of arcs (Ĩk) is

the same as before, that is τ ′. Let J := {x ∈ Ĩ0 : f̃ ◦k(x) ∈ Ĩk for all k ≥ 0}. This
is a nested intersection of non-empty compact connected intervals, so J is non-empty,
connected and compact, and every point in the interior of J has itinerary τ ′.

If J has non-empty interior, then by Lemma 3.9 there is a p̃′ ∈ J which is fixed by
f̃ ◦n

′
and whose exact period equals that of τ ′. If J is a single point whose itinerary

contains no ?, then the itinerary equals τ ′ and the same argument works once more.
The last case is that J = {p̃′} is a singleton, and its itinerary contains a ?. This

can occur only in case (3): in the other cases, all points in J have itinerary τ ′.10

To justify the statement about the number of arms at p̃′ and its type, we use the
triod argument from the uniqueness proof of Hubbard trees (Proposition 3.15). Since
p′ ∈ [0, p], its arms towards critical point and critical value are in the subtree Tp; by
the mapping properties of arms as in Corollary 4.4, all its global arms contain points
on the orbit of p, so the number of arms and their type can be determined from the
itineraries of p and p′ alone using the triod argument, and the same holds for p̃ and p̃′.

The same argument shows that p̃′ is characteristic: this fact can be determined
from the triod argument applied to p̃ and the orbit of p̃′.11 2

6.3. Corollary (Order on Kneading Sequences Transitive)
The order on ?-periodic kneading sequences is transitive: if ν > ν ′ and ν ′ > ν ′′, then
ν > ν ′′.

Proof. By hypothesis ν ′ > ν ′′, the tree for ν ′ contains a characteristic periodic point
with itinerary A(ν ′′). Since ν > ν ′, such a characteristic periodic point exists also in
the tree for ν by Theorem 6.2 (2), and ν > ν ′′. 2

6.4. Corollary (Order and Admissibility)
If ν̃ > ν are two ?-periodic kneading sequences and ν̃ is admissible, then ν is also
admissible.

Proof. By Theorem 6.2 (2), an evil branch point in the tree for ν would imply the
existence of an evil branch point in the tree for ν̃. 2

Remark. The topological entropy of Hubbard trees is monotone with respect to the
order of kneading sequences: all periodic orbits of the smaller tree (identified by their

9the closure of
10If we are in case (3) and the itinerary contains a ?, then p̃′ is a precritical point and points

arbitrarily close to p̃′ have itineraries coinciding with τ ′ for arbitrarily long time; therefore, p̃′ must
actually be periodic and hence on the critical orbit.

11In case (3), if p̃′ is on the critical orbit, then this argument shows that p̃′ is characteristic, hence
equal to the critical value, and τ ′ ∈ {A(ν̃),A(ν̃)}. Now Lemma 5.15 implies that τ ′ = A(ν̃), and this
case was excluded in the hypothesis.
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itineraries) reappear in the larger tree; in fact, the proof of Theorem 6.2 (2) extends
to show that every itinerary (periodic or not) which is realized by an orbit of (T, f) is

also realized by an orbit of (T̃ , f̃).

6.5. Lemma (Linearly Ordered Subset)
For any ?-periodic kneading sequence ν, the set of ?-periodic kneading sequences less
than ν is linearly ordered: if ν ′ < ν and ν ′′ < ν with ν ′′ 6= ν ′, then either ν ′ < ν ′′ or
ν ′′ < ν ′.

Proof. Let T (ν) be the Hubbard tree for kneading sequence ν and let p be its critical
value. Since ν ′ < ν and ν ′′ < ν, the tree T (ν) contains characteristic periodic points
with itineraries A(ν ′) and A(ν ′′); denote these periodic points by p′ and p′′. Then
{p′, p′′} ⊂ [0, p] and we may suppose that p′′ ∈ [0, p′] (possibly by switching p′ and p′′).
By Theorem 6.2 (3), we get ν ′ > ν ′′. 2

The Parameter Tree for Finite Periods. For a positive integer n, take the ?-
periodic kneading sequences of periods up to n (including ?) as vertices. Connect
two vertices ν and ν ′ by an oriented edge ν ′ → ν if and only if ν ′ < ν and there is
no kneading sequence ν ′′ of period up to n with ν ′ < ν ′′ < ν. Then we get a finite
connected oriented tree called the parameter tree of period n, denoted Tn. To see
this, note that connectivity follows from ν > ? for all ?-periodic ν 6= ?, and the tree
structure follows from Lemma 6.5. These trees for different n are related: increasing
n requires extending the tree and refining its edges. In where? , we will construct a
single parameter tree T which contains all ?-periodic and all non-periodic sequences.

6.6. Lemma (Abstract Lavaurs’ Lemma)
If ν > ν ′ are two ?-periodic kneading sequences of the same period, then there is another
?-periodic kneading sequence ν ′′ of lower period with ν > ν ′′ > ν ′.

Proof. Let n be the period of ν. By definition, the tree T (ν) contains a characteristic
periodic point p′ with itineraryA(ν ′). Since ν 6= ν ′, these two sequences must differ first
at some position m < n, so there is a precritical point ζ ∈ (p′, c1) with Step(ζ) = m.
Now Lemma 5.15 implies that there is a characteristic periodic point p′′ ∈ (ζ, c1) with
exact period m and so that its first return map fixes no local arm. By Proposition 4.8
(and Definition 5.14), there is a ?-periodic kneading sequence ν ′′ of period m so that
the itinerary of p′′ is A(ν ′′), hence ν ′′ < ν. Since p′′ ∈ (p′, c1), Theorem 6.2 (2) implies
that we also have ν ′ < ν ′′. 2

Recall from Definition 4.9 that we call a ?-periodic kneading sequence admissible if
its Hubbard tree contains no evil orbit. An immediate consequence of Theorem 6.2 (2)
is that if a kneading sequence ν is non-admissible and ν ′ > ν, then ν ′ is also non-
admissible, so the set of admissible kneading sequences forms a connected subtree of
every parameter tree Tn; see also Lemma 7.3.



Section 6, Version of July 27, 2011 61

The following result answers the “vanishing point conjecture” of Kauko [Kau2,
§ 5.29] in the affirmative.

6.7. Proposition (Branch Points of Non-Admissible Subtrees)
For every ?-periodic non-admissible kneading sequence ν, there is a ?-periodic admissi-
ble kneading sequence ν∗ such that a ?-periodic kneading sequence ν ′ < ν is admissible
if and only if ν ′ < ν∗. Every kneading sequence ν ′ < ν∗ has ν ′ < ν, but ν∗ 6< ν (compare
Figure 6.2). The exact periods of ν∗ and A(ν∗) coincide.

The Hubbard tree for ν has an evil orbit with the same period as ν∗, and the itinerary
of its characteristic point is τ∗ = A(ν∗).

���
��
A(ν∗)
��
��
ν∗��
��
A(ν∗)
��
��
A(ν∗)

��
��

A−1
2m(A(ν∗))

��
��

A(A−1
2m(A(ν∗)))

� ��
��
ν ′ � ��
��
?

���
��
ν

Figure 6.2. A picture with a ?-periodic kneading sequence ν∗ where
a non-admissible sequence ν branches off, with the upper and lower se-
quences of ν∗ indicated (ν∗ fails the admissibility condition for period
m). Disks represent periodic sequences, arrows indicate increasing order.

Proof. The number of evil periodic orbits in the Hubbard tree of ν is finite. Their
characteristic points are on [0, c1], so there is a unique one closest to 0; call it p∗, let
τ∗ be its itinerary and n∗ be its exact period. Since evil periodic points are marked,
the exact period of p∗ equals the exact period of its itinerary τ∗ by Lemma 3.8. Let
ν∗ := A−1

n∗ (τ∗). Then ν∗ is ?-periodic with exact period n∗, and it is admissible: if there
was an evil orbit in the tree for ν∗, then by Theorem 6.2 (2), an evil characteristic
periodic point with the same itinerary would show up in the tree for ν on (0, p∗), in
contradiction to minimality of p∗. Hence every ?-periodic ν ′ < ν∗ is admissible.

Conversely, fix some admissible ?-periodic ν ′ < ν. Then in the Hubbard tree for ν
there is a characteristic periodic point p′ with itinerary A(ν ′). If p∗ ∈ [0, p′], then the
ν ′-tree has an evil orbit by Theorem 6.2 (3) in contradiction to admissibility of ν ′. Since
p′, p∗ ∈ [0, c1] and p′ 6= p∗, we get p′ ∈ [0, p∗] and ν ′ < ν∗, again by Theorem 6.2 (3).
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Pick any ?-periodic kneading sequence ν ′ < ν∗. By definition, there is a charac-
teristic periodic point with itinerary A(ν ′) in the Hubbard tree for ν∗, and by Theo-
rem 6.2 (2) also in the tree of ν, so ν ′ < ν.

Before showing ν∗ 6< ν, we observe that the last statement is clear now: the tree
for ν has the evil characteristic periodic point p∗ with the same exact period n∗ as ν∗,
and Proposition 4.8 (together with Definition 5.14) implies τ∗ = A(ν∗). In particular,
the exact period of τ∗ equals n∗.

Now suppose by contradiction that the tree T (ν) for ν has a characteristic periodic
point p with itinerary A(ν∗). From Lemma 4.1, we know {p, p∗} ⊂ [0, c1], so p ∈ [p∗, c1]
or p ∈ [0, p∗]. In the first case, Lemma 4.6 says that [p∗, c1] maps after n∗ iterations
homeomorphically onto an arc [p∗, cn∗+1] in a different global arm at p∗ than [p∗, c1],
so p 6= f ◦n∗(p); but since p has itinerary A(ν∗) with period n∗, the points p and
f ◦n∗(p) have identical itineraries, while p∗ ∈ [p, f ◦n∗(p)] has a different itinerary, in
contradiction to Lemma 3.6.

The second case is p ∈ [0, p∗]. From the itineraries of p∗ and p, it follows that the
arc [p∗, p] maps in n∗ − 1 iterations homeomorphically onto an interval containing 0.
It follows that f ◦n∗ sends the local arm at p∗ towards p and 0 to the local arm at p∗
towards c1, which is in contradiction to the fact that p∗ is evil (Lemma 4.6). Hence
there can be no characteristic periodic point p with itinerary A(ν∗) at all in T (ν), and
indeed ν∗ 6< ν. 2

Remark. Every admissible ?-periodic kneading sequence ν∗ of some period m for
which A(ν∗) has exact period m is the root point of a non-admissible subtree, i.e.
ν∗ is associated to some non-admissible ν as in Proposition 6.7: for every s ≥ 2,
the ?-periodic kneading sequence ν := A−1

sm(A(ν∗)) fails the admissibility condition
for period m, so it has an evil orbit of period m with itinerary A(ν∗). This is the
underlying geometry in parameter space of Example 5.3.

A hyperbolic component W of period n in the Mandelbrot set has an associated ?-
periodic kneading sequence ν∗ of period n. The lower sequenceA(ν∗) has exact period n
if and only ifW is a primitive component; otherwiseW bifurcates from some component
W ′ of exact period n′ properly dividing n, and the exact period of A(ν∗) is n′ (see ??).
In the words of the conjecture of Kauko [Kau2], this means that “vanishing points”
of non-admissible kneading sequences are exactly the roots of primitive hyperbolic
components; here the vanishing point ν∗ of a non-admissible sequence ν is the greatest
sequence ν∗ ∈ [0, ν] so that all sequences in [0, ν∗) are admissible.

Internal Addresses. There are various ways to associate an internal address to the
Hubbard tree for a ?-periodic kneading sequence ν of some period n. All of them yield
a finite strictly monotone sequence of positive integers starting with 1; we will show
below that they all coincide, which gives us useful information about Hubbard trees
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Insert Figure 3.5 of Alex’ thesis here.

Figure 6.3. Illustration of the locus of non-admissible sequences: the
base plane is the complex plane containing the Mandelbrot set and all
admissible kneading sequences; the non-admissible sequences (indicated
as grey “Mandelbrot sets”) are attached to the Mandelbrot set at roots
of primitive hyperbolic components.

and parameter space. The last two definitions refer to the Hubbard tree associated to
ν with critical point 0 and critical value c1.

In Definition 4.5, we called a branch point tame if the first return map permutes
all local arms transitively; in the last definition below, we will generalize this and
call any periodic point with at least two arms tame if all its local arms are permuted
transitively. By Lemma 4.1, every such orbit has a unique characteristic point, and by
Proposition 4.8, the characteristic periodic point is tame in this sense if and only if the
itinerary τ of p is an upper sequence (compare Definition 5.14).

(1) The internal address associated to the kneading sequence ν has already been
defined in Definition 2.2, using the ρν-map.

(2) The internal address in parameter space of ν starts with S0 = 1 corresponding
to the kneading sequence µ0 = ?. Given S0, . . . , Sk−1, let Sk be the lowest
period of any ?-periodic kneading sequence µk with µk−1 < µk ≤ ν; this
procedure stops when Sk is equal to the period of ν. (By Lemma 6.6, the
sequence µk is always well-defined.) In Proposition 6.8 below we will give
another characterization of the sequences µk.

(3) The internal address of closest precritical points is the sequence of indices k
of closest precritical points ζk ∈ [c1, 0]. (This generalizes cutting times as used
in the theory of unimodal interval maps; see Section 2 Mention this in Sec 2! )

(4) The internal address of closest tame characteristic periodic points is the se-
quence of exact periods Sk of tame characteristic periodic points pk such that
there is no tame periodic point of lower or equal period on [pk, c1] (including
tame periodic points with 2 arms). In this definition, the critical value counts
as the final closest tame characteristic periodic point. By Lemma ??, all these
tame characteristic periodic points have different itineraries.

Compare also Section 11 for internal addresses in the Mandelbrot set.

6.8. Proposition (Interpretations of Internal Address)
Let ν be a ?-periodic kneading sequence of period n with its associated Hubbard tree.

(1) The given definitions 1.–4. of internal addresses coincide.
(2) If ν ′ is a ?-periodic kneading sequence whose internal address is an extension

of ν, then ν ′ > ν.
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(2’) Let the internal address of ν be 1→ S1 → . . .→ Sk with Sk = n, and let νm be
the ?-periodic kneading sequences corresponding to 1 → . . . → Sm (for 0 ≤ m ≤ k, so
that ν0 = ? and νk = ν). Then ν0 < ν1 < ν2 < . . . < νk, and these equal the kneading
sequences µk defining the internal address in parameter space.

(3) For m ≥ 1, let ζSm be the closest precritical points which take Sm steps to map
to c1, and let pm be the closest tame characteristic periodic points of period Sm (with
S0 = 1). Then these points are on the arc [0, c1] in the order ζS0 = 0, p0 = α, ζS1, p1,
ζS2, p2, . . . , ζSk−1

, pk−1, ζSk = pk = c1 as in Figure 6.4.
(4) For m < k, the itinerary of pm differs from ν after position Sm. Conversely,

every tame characteristic periodic point p for which the itinerary differs from ν after
one period of p is one of the pm, and the period of p is less than n.

r
c1 = pk = ζSk

r
pk−1

r
ζSk−1

r r
. . .

r r
p1

r
ζS1

r
p0 = α

r
ζS0 = 0

Figure 6.4. The order of the points in Proposition 6.8 (3).

Proof. The equivalence between the internal address in parameter space and that
of closest tame characteristic periodic points is built into the definition of <: there
is a bijection between ?-periodic kneading sequences ν ′ < ν and tame characteristic
periodic points in the Hubbard tree of ν, and this bijection preserves periods and the
order (of kneading sequences respectively of points on [0, c1]).

The equivalence of the internal addresses associated to the kneading sequence and
to closest precritical points has been shown in Lemma 5.7.

Now we show the equivalence of internal addresses of closest precritical points and
of closest tame characteristic periodic points. Let p be a closest tame characteristic
periodic point of some period S < n. If the itineraries of p and c1 differed at position
S or before, there would be a closest precritical point ζ ′ ∈ [p, c1] with Step(ζ ′) ≤ S
and hence, by Lemma 5.18, a periodic point on (p, c1] with period at most S, so p was
not closest.

Let [p, ζ] ⊂ [p, 0] be the largest arc which can be iterated homeomorphically S times.
Then clearly ζ is a precritical point, and we claim that Step(ζ) = S. Suppose not, then
S ′ := Step(ζ) < S (maximality of ζ excludes S ′ > S), and f ◦S

′
([p, ζ]) = [f ◦S

′
(p), c1] 3

p, hence f ◦S([p, ζ]) 3 f ◦(S−S′)(p). But f ◦S restricted to [p, ζ] is a homeomorphism, and
by assumption f ◦S sends the local arm at p towards 0 to the local arm at p towards c1,
which contradicts the fact that p is characteristic. It follows in particular that ζ 6= 0 if
S > 1.

Since the first S entries in the itineraries of c1 and p coincide, there can be no earlier
precritical point than ζ on [c1, ζ], and ζ is the closest precritical point ζS.
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Conversely, for each closest precritical point ζSm ∈ [0, c1], there is a tame char-
acteristic periodic point pm ∈ [ζSm , c1] of exact period Sm by Lemma 5.18. If there
was a tame periodic point p′ ∈ [pm, c1] with period n′ < Sm, then by the previ-
ous paragraph there would be a precritical point ζ ′ ∈ [p′, 0] with Step(ζ ′) = n′. If
ζ ′ ∈ [p′, pm] ⊂ [c1, ζSm ], then ζSm is not closest precritical, while if ζ ′ ∈ [pm, 0], then
pm ∈ (p′, ζ ′), so the map f ◦n

′
sending [p′, ζ ′] homeomorphically onto [p′, c1] would map

pm to an image in [p′, c1] and pm could not be characteristic. Therefore pm is the tame
periodic point of lowest period on [pm, c1]. This finishes the proof of (1).

We already know the first half of statement (4). For the converse, pick a charac-
teristic periodic point p as in the claim. Its period is less than n because ν has a ?
at position n. If p is not the tame characteristic periodic point of minimal period on
[p, c1], then let q be this point and let ζ ∈ [0, q] be the corresponding precritical point
constructed above. Then p ∈ [ζ, q] (the alternative ζ ∈ [p, q] is excluded because the
itineraries of p and c1 coincide for more than a period of q), so the first return map of
q sends [q, ζ] 3 p onto [q, c1] and p is not characteristic, a contradiction.

For statement (3) of the proposition, we have pm ∈ [ζSm , c1], and it remains to
show that ζSm ∈ [pm−1, c1] for all m ≥ 2. We know {ζSm , pm−1} ⊂ [0, c1], and (3)
could only be false if pm−1 ∈ [ζSm , c1]. Now pm−1 ∈ [pm, c1] would contradict the
choice of pm, and pm−1 ∈ [ζSm , pm] implies that an appropriate iterate sends [pm, ζSm ]
to [pm, c1] containing a point on the orbit of pm−1, which is impossible because pm−1 is
characteristic.

For statement (2), let 1 → S1 → . . . → n and 1 → S1 → . . . → n → n′ be the
internal addresses of ν and ν ′. By statement (1), the tree T (ν ′) contains a closest tame
characteristic point p of period n, and by statement (4), the point p has itinerary τ(p) =
ν ′1 . . . ν

′
n. The first n− 1 entries of ν and ν ′ coincide, so we have τ(p) ∈ {A(ν),A(ν)}.

The internal address of ν ′ has an entry n, so τ(p) = A(ν) by Definition 5.14. This is
just the definition of ν < ν ′.

For statement (2’), we now know that ? = ν0 < ν1 < . . . < νk = ν. Let µm be
the kneading sequences from the definition of internal addresses in parameter space.
Clearly µ0 = ? = ν0. Suppose by induction that µm = νm. If the periods of ν and
µm+1 (and necessarily also of νm+1) coincide, then µm+1 = ν = νm+1. Otherwise, we
know µm < µm+1 < ν (definition) and νm < νm+1 < ν (statement (2)), so µm+1 and
νm+1 are comparable. If µm+1 6= νm+1, then µm+1 < νm+1 or νm+1 < µm+1, and by the
Abstract Lavaurs Lemma 6.6, there must be a sequence of lower period in between,
contradicting the definition of the µm. 2

Remark. The fact that the internal address records only tame periodic points (as
in definition (4) above) makes it so difficult to find evil orbits and hence to tell non-
admissible kneading sequences apart.
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6.9. Corollary (Order Near ?-Periodic Kneading Sequences)
Let ν be a ?-periodic kneading sequence of period n. If some ?-periodic kneading se-
quence ν ′ 6= ν coincides with ν for n − 1 entries, then ν ′ > ν if and only if the n-th
entry in ν ′ equals that of A(ν).

Remark. As written, this result requires that the period of ν ′ is greater than n. In
Corollary 7.6, we will generalize it to arbitrary sequences ν ′.

Proof. The internal address of A(ν) contains an entry n by definition. If the n-th
entry in ν ′ equals that of A(ν), then the internal address of ν ′ contains n as well, and
is then a continuation of the internal address of ν. By Proposition 6.8 (2), we have
ν ′ > ν.

For the converse, suppose that ν ′ > ν. We will work in the Hubbard tree for ν ′.
It contains a tame characteristic periodic point p with itinerary A(ν). By assumption
that A(ν) and ν ′ coincide for n − 1 entries, there is no precritical point ζ ∈ (c1, p)
with Step(ζ) < n. If there was a precritical point ζ ∈ (c1, p) with Step(ζ) = n, then
Lemma 5.18 would supply a periodic point p′ ∈ (ζ, c1) ⊂ (p, c1) with exact period n
for which the first return map fixes no local arm; its itinerary would then be A(ν)
by Proposition 4.8. But this is also the itinerary of p, which is a contradiction to the
existence of ζ ∈ (p, p′). Hence the first n entries in A(ν) coincide with the itinerary of
c1, which is ν ′. 2

Now we state one special case how to extend an admissible internal address so as to
yield another admissible internal address, modeling bifurcations in the Mandelbrot set;
see [LS, Proposition 5.4]: at every hyperbolic component W of some period S and every
q ≥ 2, there are bifurcating hyperbolic components Wq of period qS attached to W .
The number of such components is ϕ(q) (the number of positive integers in {1, 2, . . . , q}
coprime to q), but all have the same kneading sequence. In terms of internal addresses,
the internal address of Wq equals that of W with an appended entry qS.

6.10. Lemma (Bifurcating Kneading Sequence)
If the internal address 1 → S1 → S2 → . . . → Sk is admissible and Sk+1 is a proper
multiple of Sk, then 1→ S1 → S2 → . . .→ Sk → Sk+1 is also admissible.

Proof. Let ν be the ?-periodic kneading sequence associated to 1 → S1 → S2 →
. . . → Sk → Sk+1 and let νk be the same for 1 → S1 → S2 → . . . → Sk. Then
νk < ν by Proposition 6.8 (2). If T is the Hubbard tree associated to ν, then T
contains a characteristic periodic point p with itinerary A(νk). Comparing itineraries
of p and c1, it follows that the arc [p, c1] maps homeomorphically onto itself after Sk+1

iterations. If ν was not admissible, then it would have an evil orbit of branch points
with characteristic point p′, say, and the period of p′ would be less than Sk+1. Since νk

is admissible, it would follow that p′ ∈ (p, c1), but there is no periodic point of period
less than Sk+1 on (p, c1): the period of p′ must be a multiple of that of p (otherwise,
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we easily get a contradiction to the fact that p is characteristic, considering iterates of
the arc [p, p′]), and then it must be a multiple of Sk+1 (all other iterates are in wrong
global arms of p). 2

6.11. Lemma (Admissible Periodic and ?-Periodic Sequences)
A ?-periodic kneading sequence ν is admissible if and only if A(ν) is.

Proof. Let n be the period of ν, choose an integer s ≥ 2 and let ν ′ be the ?-periodic
sequence of period sn which coincides for sn−1 entries with A(ν), so that the internal
address of ν ′ is that of ν (or equivalently A(ν)) with sn added after the last n. We
have ν ′ > ν by Proposition 6.8 (2).

Suppose that ν is admissible. By Lemma 6.10, ν ′ is admissible, so the n-word
formed by the first n entries of A(ν) is admissible. By Lemma 14.9, A(ν) is admissible
as well.

Conversely, suppose that ν fails the admissibility condition for period m; then
clearly m < n. Let m′ := ρA(ν)(m): this is finite because n is the exact period of A(ν)
by Proposition 5.16. Choose ν ′ as above, with s large enough so that sn > ρA(ν)(m).
The sequence ν ′ fails the admissibility condition for the same period m because ν ′ > ν
(both are ?-periodic). But since ρA(ν)(m) = ρν′(m), this implies that A(ν) fails the
admissibility condition for the same m. 2

Remark. The analogous statement for A(ν) is false: the sequences ν = 101 10?
and A(ν) = 101 100 both have internal address 1 → 2 → 4 → 5 → 6 and are both
non-admissible (Example 5.3), while A(ν) = 101 101 = A(10?) has internal address
1→ 2→ 4→ 5→ 7→ 8 . . . and is admissible (compare Lemma 6.12).

We conclude this section with a discussion of periodic kneading sequences without
?.

6.12. Lemma (Periodic Kneading Sequences Without ?)
Let ν∗ be a ?-periodic kneading sequence of period n, and let n′ be the exact period of
ν := A(ν∗). Then exactly one of the following holds:

• n′ = n and the internal address of ν is infinite;
• n′ strictly divides n, and there is a ?-periodic kneading sequence ν ′∗ of period
n′ with ν = A(ν ′∗) and ν ′∗ < ν∗; admissibility of ν∗ and of ν ′∗ are equivalent;
• n′ strictly divides n, and there is a ?-periodic kneading sequence ν ′∗ of period
n′ with ν = A(ν ′∗); ν∗ is not admissible.

The exact periods of ν∗ and A(ν∗) coincide, and both have finite internal addresses
terminating with n.

We will see in ?? that for admissible sequences, the first case corresponds to a
primitive component of the Mandelbrot set, while the second corresponds to non-
primitive (satellite) components (compare [LS, Corollary 5.5]).
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Proof. The statements for the upper sequence A(ν∗) are already clear: both have fi-
nite internal addresses terminating with n (for A(ν∗) this is part of the Definition 5.14),
so their internal addresses must coincide. The exact period of ν is n by Proposition 5.16.

Now we turn attention to ν = A(ν∗). The three cases are clearly mutually exclusive
because ν ′∗ is uniquely determined by ν and n′.

To see that one of the three cases always holds, suppose first that n′ = n. If
the internal address of ν is finite, then the last entry must be the exact period n′ by
Lemma 20.2; but then ν is a upper sequence by Definition 5.14.

If n′ 6= n, then n′ < n must be a proper divisor of n, so n = sn′ for some s ≥ 2. Let
ν ′∗ be the ?-periodic kneading sequence of period n′ which coincides with ν for n′ − 1
entries. Then ν = A(ν ′∗) or ν = A(ν ′).

If ν = A(ν ′∗), then the internal address associated to ν∗ has an entry n′ (this is
clearly so for ν ′∗ and hence for ν, and thus also for ν∗); thus the internal address of
ν∗ equals that of ν ′∗ with an appended entry n, and ν ′∗ < ν∗ by Proposition 6.8 (2).
Admissibility of ν∗ thus implies admissibility of ν ′∗, and the converse is Lemma 6.10.

If ν = A(ν ′∗), then ν∗ has exactly the form of Example 5.3 of non-admissible se-
quences: take a ?-periodic sequence of some period n′ so that the lower sequence A(ν ′∗)
has exact period n′, repeat for some number s ≥ 2 of times, and replace the final entry
by a ?. 2
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7. The Parameter Tree for Non-Periodic Sequences
and Infinite Addresses

In this section, we endow the space of all kneading sequences with the topological structure

of an infinite tree. We discuss which sequences are branch points and which are endpoints.

In Section 6, we discussed only ?-periodic kneading sequences. Many properties
carry over to non-periodic sequences simply by continuity. Every non-periodic kneading
sequence ν has an associated infinite internal address 1→ S1 → . . .→ Sk → . . . defined
as orbρ(1), and each Sk comes with a ?-periodic kneading sequence νk of period Sk
(associated to 1 → S1 → . . . → Sk) which first differs from ν at position Sk (compare
Proposition 6.8 (2’)).

7.1. Definition (Order for Non-Periodic Kneading Sequences)
Let ν be a non-periodic kneading sequence with internal address 1 → S1 → . . . →
Sk → . . .. For k ≥ 0, let νk be the ?-periodic kneading sequence associated to the finite
truncation 1 → S2 → . . . → Sk. Then we define that ν > νk for all k. Conversely, if
a ?-periodic kneading sequence ν ′ has ν ′ > νk for all k, then we say that ν ′ > ν. This
order is then extended to its transitive hull on the set of ?-periodic and non-periodic
kneading sequences.

Remark. It is not difficult to check that the order defined here does not lead to any
new relations for ?-periodic sequences, so it gives a strict partial order on the set Σ??

of all ?-periodic and non-periodic kneading sequences.
The extension of the order to non-periodic sequences was defined as above in order

to yield a closed order relation.
One can extend the order to periodic sequences without ? in the following way:

if ν = A(ν?) for a ?-periodic sequence ν∗, then we define ν > ν?, and ν compares
to all sequences ν ′ 6= ν? just like ν? does. If ν = A(ν?), then ν < ν?, and ν > ν ′

iff ν∗ > ν ′. However, ν < ν ′ if either ν? < ν ′ or ν∗ = ν ′ or the kneading sequence
ν ′ is non-admissible and the associated tree has an evil branch point with itinerary
A(ν?): compare Figure 6.2. In terms of Proposition 6.7 and the remark thereafter, this
means that evil orbits are “created” at ?-periodic sequences ν∗ for which A(ν∗) has
the same period as ν∗, and the subtree of non-admissible sequences which have such
orbits branches off “just before” the sequence ν?; the sequence A(ν?) is the maximum
of those sequences “just before” ν?. We will usually work with the space Σ??, excluding
periodic sequences without ? (see Definition 7.4 of the parameter tree and the remarks
thereafter). An extension to periodic kneading sequences without ? is straightforward,
but it would not add any new types of dynamics.

We can now extend Lemma 6.5 to kneading sequences in Σ??: recall that these are
?-periodic or non-periodic sequences starting with 1.
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7.2. Lemma (Linearly Ordered Subset, General Case)
For every kneading sequence ν ∈ Σ??, the set of all kneading sequences ν ′ ∈ Σ?? with
ν ′ < ν is linearly ordered.

Moreover, if ν is non-periodic and ν ′ < ν for any ν ′, then ν ′ < νk for some k, where
νk are the approximating ?-periodic kneading sequences of ν as in Definition 7.1.

Proof. The only sequences that are defined to be less than ν are the νk; any other
relation ν ′ < ν must follow by transitivity, so we must have ν ′ < νk < ν for some k.
This shows the second claim.

It follows from Lemma 6.5 that the set of all ?-periodic kneading sequences less
than ν is linearly ordered because any two of them are less than some νk.

Now consider a non-periodic kneading sequence ν ′ < ν and let (ν ′)k < ν ′ be its
approximating kneading sequences. Every ?-periodic ν∗ < ν can be compared to all
(ν ′)k. If ν∗ > (ν ′)k for all k, then ν∗ > ν ′ by definition; otherwise, ν∗ < (ν ′)k for some k,
and ν∗ < ν ′. Hence every non-periodic ν ′ < ν can be compared to all periodic ν∗ < ν.

Finally, let ν ′′ < ν be non-periodic with ν ′′ 6= ν ′. We will show that there is a
?-periodic kneading sequence ν∗ such that ν ′′ < ν∗ < ν ′ (or conversely), so ν ′ and ν ′′

can be compared.
Let n∗ be the position of the first difference between ν ′ and ν ′′ and let ν∗ be the

?-periodic kneading sequence of period n∗ with coincides with ν ′ and ν ′′ for exactly
n∗ − 1 positions. Possibly by switching ν ′ and ν ′′, suppose that ν ′ is such that its first
n∗ entries coincide with A(ν∗); then the first n∗ entries of ν ′′ coincide with A(ν∗). For
k sufficiently large, the first n∗ entries of (ν ′)k must coincide with ν ′ and hence with
A(ν∗), so (ν ′)k > ν∗ by Corollary 6.9. Hence also ν ′ > ν∗. On the other hand, by
the same reasoning, we cannot have (ν ′′)k > ν∗ for large k. Since (ν ′′)k < ν ′′ < ν and
ν∗ < (ν ′)k < ν, it follows that (ν ′′)k and ν∗ are comparable, hence (ν ′′)k < ν∗ for all
large k and thus for all k. Therefore, ν ′′ < ν∗ < ν ′. 2

7.3. Lemma (Admissible Subtree Connected)
If ν is admissible, then every ν ′ < ν is also admissible (for arbitrary ν, ν ′ ∈ Σ??).

Proof. If ν is admissible and non-periodic, this means by definition that ν does
not fail the admissibility condition for any m, and then no νk can fail the admissibility
condition (with νk as in Definition 7.1) because the failing of the admissibility condition
for period m is determined by the first ρ(m) entries. Since ν ′ < ν implies ν ′ < νk for
some k by Lemma 7.2, we may as well suppose that ν is ?-periodic.

If ν ′ is ?-periodic, the result is Corollary 6.4. If ν ′ is non-periodic, then (ν ′)k < ν ′ <
ν, so every (ν ′)k is admissible, and the claim follows again. 2

7.4. Definition (The Parameter Tree T)
The set of all kneading sequences in Σ?? with the order from Definition 7.1 will be called
the parameter tree T.
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This space is closely related to the Mandelbrot set (compare the remark after Def-
inition 6.1, Section 11 and [LS], but now the non-periodic sequences have been filled
in by continuity). Closely related is work of Penrose [Pen1]: he constructs a “glueing
space” (called “the abstract abstract Mandelbrot set”) as the quotient of the set of all
sequences in Σ by the smallest closed equivalence relation generated by glueing A(ν)
and A(ν) for all ?-periodic ν. He obtains a connected infinite tree (a dendrite), and he
studies especially the dynamics for non-periodic kneading sequences. In contrast, we
focus on the ?-periodic sequences and fill in the non-periodic ones by continuity. His
and our spaces differ near periodic ones: we distinguish the ?-periodic sequences which
are bifurcations from each other (as in Lemma 6.10), and our space is disconnected
at such points. In order to obtain a path connected space, Penrose identifies such
bifurcating sequences.

The Mandelbrot set, which is modeled by both symbol spaces, is connected, but it
does not identify bifurcating sequences: instead, every ?-periodic sequence is realized
by an open subset of C (a hyperbolic component). Our main interest here is in the
combinatorics of the parameter tree and its order, not on its topology.

There are two fundamental differences between the Mandelbrot set on the one side
and our parameter tree and Penrose’s abstract abstract Mandelbrot set on the other
side (besides the fact that the Mandelbrot set is a rich topological space embedded in C,
while the others are just combinatorial models with a topological structure inherited
from the order): the first difference is that the combinatorial spaces contain non-
admissible kneading sequences (which do not occur for the Mandelbrot set); the second
one is that admissible sequences may occur several times in the Mandelbrot set (they
are distinguished by angled internal addresses; see Definition 11.9).

In the following, it will be convenient to set A(ν) = A(ν) := ν for non-periodic ν.

7.5. Lemma (Intermediate Kneading Sequence)
Let ν ′ < ν be any two kneading sequences. Suppose that A(ν ′) 6= A(ν). Let n∗ be
the position of the first difference between A(ν ′) and A(ν). Then the unique ?-periodic
kneading sequence ν∗ of period n∗ which coincides with A(ν ′) and A(ν) for n∗ − 1
entries satisfies ν ′ < ν∗ < ν.

If A(ν ′) = A(ν), then there exists no ?-periodic kneading sequence with ν ′ < ν∗ < ν.

Proof. If ν is not ?-periodic, then we replace it by one of its approximating ?-periodic
kneading sequences νk < ν, for k large enough so that ν and νk differ only after their
n∗-th entries. We proceed similarly for ν ′. If we show that (ν ′)k < ν∗ < νk for all large
k, then ν∗ < ν follows by transitivity, and ν∗ > ν ′ follows by definition. We may thus
assume that ν and ν ′ are ?-periodic to begin with.

Since ν ′ < ν, there is a tame characteristic periodic point p′ with itinerary A(ν ′)
in the Hubbard tree for ν. The limiting itinerary for points x near c1 is A(ν) by
Lemma 5.15.
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Suppose that A(ν ′) 6= A(ν). Then there is an earliest precritical point ζ∗ ∈ (p′, c1),
it maps to c1 after exactly n∗ steps and its itinerary coincides with A(ν ′) and A(ν) for
n∗−1 entries. By Lemma 5.18, there is a tame characteristic periodic point p∗ ∈ [ζ∗, c1]
with exact period n∗ such that its itinerary coincides with that of ζ∗ for n∗− 1 entries.
We claim that this itinerary is A(ν∗): for the first n∗ − 1 entries, this is clear, and for
the n∗-th entry it follows from Proposition 4.8. But by definition, this implies ν∗ < ν.
Since p∗ ∈ (p′, c1), Theorem 6.2 (3) implies ν ′ < ν∗.

If A(ν ′) = A(ν) and there is a ?-periodic kneading sequence ν∗ with ν ′ < ν∗ < ν,
then there is a tame characteristic periodic point p∗ ∈ (p′, c1) with itinerary A(ν∗); this
itinerary must coincide with A(ν ′). Since the exact periods of ν∗ and ν ′ coincide with
those of A(ν∗) and A(ν ′) by Proposition 5.16, we have ν∗ = ν ′. 2

The following is a more general variant of Corollary 6.9.

7.6. Corollary (Order Near ?-Periodic Kneading Sequences)
Let ν be a ?-periodic kneading sequence of some period n and let ν ′ ∈ Σ?? be such that
A(ν ′) coincides with ν for n − 1 entries. Then ν ′ > ν if and only if the n-th entry in
A(ν ′) equals that of A(ν).

Remark. If the n-th entries differ, then ν ′ and ν may or may not be comparable.

Proof. We will use Corollary 6.9 several times; it settles the case that ν ′ is periodic
and its period exceeds n.

If ν ′ is non-periodic, then take some approximating ?-periodic kneading sequence
(ν ′)k < ν ′, where k is large enough so that the period of (ν ′)k is greater than n. If
the n-th entries in A(ν) and A(ν ′) = ν ′ coincide, then ν < (ν ′)k < ν ′. Conversely, if
ν < ν ′, then ν < (ν ′)k for sufficiently large k, and the claim follows.

It remains the case that ν ′ is ?-periodic with some period n′ < n. If ν ′ > ν, then
the Hubbard tree for ν ′ has a tame characteristic periodic point p with itinerary A(ν),
and it has is no precritical point ζ on (p, c1) with Step(ζ) ≤ n. Therefore, the first n
entries in A(ν) and in A(ν ′) coincide by Lemma 5.15.

For the converse, let 1 → S1 → . . . → Sk → n′ be the internal address of ν ′.
Since the first n − 1 ≥ n′ entries of ν and A(ν ′) coincide, the internal address of ν
must start with 1 → S1 → . . . → Sk → Sk+1 . . . with Sk+1 > n′. Since νk < ν ′

(Proposition 6.8 (2)) and the kneading sequence of lowest period between νk and ν is
νk+1 of period Sk+1 > n′, Lemma 7.5 shows that νk+1 is also the kneading sequence of
lowest period between νk and ν ′, hence νk+1 < ν ′. If ν = νk+1, then we are through.
Otherwise, Sk+1 < n and the argument can be repeated: let Sk+2 ≤ n be the next
entry in the internal address of ν, so that νk+1 < νk+2 ≤ ν. Again by Lemma 7.5,
νk+1 < νk+2 < ν ′, and a finite repetition of the argument until νk+s = ν shows ν < ν ′.

2
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7.7. Corollary (Internal Address and Truncated Kneading Sequence)
For a ?-periodic or non-periodic kneading sequence ν and s ≥ 1, let νs be the ?-periodic
sequence of period s which coincides with ν for s − 1 positions; if ν is ?-periodic of
some period n, suppose s < n. Then νs < ν if and only if s occurs in the internal
address of ν.

Proof. Suppose first that ν is ?-periodic. Since ν coincides with νs for s− 1 entries,
it follows that ν > νs if and only if the s-th entry in ν is the same as in A(νs)
(Corollary 6.9), which holds if and only if s occurs in the internal address of ν (because
the internal address of A(νs) ends with s).

If ν is non-periodic, we have ν > νS for every S on the internal address of ν by
definition, and the converse follows by replacing ν with νS for sufficiently large S. 2

7.8. Definition (Endpoints of Parameter Tree)
A kneading sequence ν is called an endpoint of the parameter tree T if there is no
?-periodic kneading sequence ν ′ with ν ′ > ν.

Remark. Endpoints which are admissible can also be characterized in the following
way: suppose that the Mandelbrot set is locally connected (or use a locally connected
model). Then an admissible ν is an endpoint of the parameter tree if and only if it
describes points in the Mandelbrot set which are landing points of exactly one external
ray each, while admissible non-endpoints are sequences corresponding to landing points
of at least two external rays each (see Section 17).

Remark. If ν is an endpoint of the parameter tree, then there can be no ν ′ > ν even
for non-periodic ν ′ (otherwise, by Lemma 7.2, we would have (ν ′)k > ν for some of the
approximating ?-periodic sequences (ν ′)k of ν ′).

No ?-periodic kneading sequence ν can be an endpoint of the parameter tree: if ν
corresponds to 1→ S1 → . . .→ Sk, where Sk is the period of ν, then the kneading se-
quence corresponding to 1→ S1 → . . .→ Sk → Sk+1 is greater by Proposition 6.8 (2).

However, there are endpoints which are preperiodic or which are not (pre-)periodic;
examples are 10 (which is preperiodic and associated to 1→ 2→ 3→ 4→ . . .) and the
kneading sequence associated to 1 → 3 → 9 → 27 → . . . which is not (pre-)periodic.
Examples of kneading sequences which are not endpoints are 1→ 3→ 6→ 9→ 12→
. . . (preperiodic) or 1→ 2→ 4→ 8→ . . . (not (pre-)periodic).

7.9. Proposition (Endpoints of Parameter Tree)
A non-periodic kneading sequence ν is an endpoint of the parameter tree if and only if,
for every positive integer s, the ρ-orbits of 1 and of s eventually meet.

More generally, for any non-periodic kneading sequence ν and s ≥ 1, let νs be the
unique ?-periodic kneading sequence of period s which coincides with ν for s−1 entries.
Then for any s, we have νs > ν if and only if the ρ-orbits of 1 and of s never meet.
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Proof. Most of the work is in showing the second statement. Since ν is non-periodic,
ρ(s) < ∞ for every s ≥ 1, and the internal address 1 → S1 → . . . → Sk → . . . of ν is
infinite with Sk = ρ◦k(1). For typographical reasons, we will write ν(s) for νs.

The strategy of the proof will be as follows: we have ? = ν(1) < ν(S1) <
· · · < ν(Sk) < · · · < ν by Proposition 6.8 (2’); this describes the positions of ν(s)
for s ∈ orbρ(1). For an arbitrary s > 1, it will turn out that ν(s) > ν implies
ν(s) > ν(ρ(s)) > ν(ρ◦2(s)) > · · · > ν and the ρ-orbits of 1 and s are disjoint, while
ν(s) 6> ν implies that there is an m with ν(s) > ν(ρ(s)) > · · · > ν(ρ◦m(s)) and
ν(ρ◦(m+1)(s)) < ν(ρ◦(m+2)(s)) < · · · < ν and the ρ-orbits of 1 and s meet eventually.

The case that s is on the internal address of ν is equivalent to ν(s) < ν, and we
already know that ν(s) < ν(ρ(s)) < ν(ρ(ρ(s))) < · · · < ν. Therefore, we may assume
that s is not on the internal address, hence ν(s) 6< ν. Then ν and A(ν(s)) coincide
for at least s entries (this is clear for the first s− 1 entries, and for the last it follows
from Corollary 7.6 because ν(s) 6< ν). We claim that the first difference is at position
ρ(s) using a standard argument: if σs(ν) and A(ν(s)) differ first at position s′, say,
then ν and A(ν(s)) differ first at position s′+ s > s′; the position of the first difference
between ν and σs(ν) is by definition at position ρ(s)− s, hence ρ(s)− s = s′.

If ν(s) > ν, then ν(s) > ν(ρ(s)) > ν by Lemma 7.5, and inductively ν(s) >
ν(ρ(s)) > ν(ρ(ρ(s))) > · · · > ν. It follows that the ρ-orbits of s and 1 are disjoint.

Finally, suppose that ν(s) and ν are not comparable. Exactly one of ν and A(ν(s))
coincides with A(ν(ρ(s))) for ρ(s) positions. If this is ν, then ν > ν(ρ(s)) (and only
then); then ρ(s) ∈ orbρ(1), and the ρ-orbits of s and 1 eventually meet. Otherwise
ν(s) > ν(ρ(s)) (Corollary 7.6), and we continue inductively with ρ(s) in place of s.

If there is an m with ν(ρ◦(m)) < ν, then the ρ-orbits of s and 1 eventually meet.
If there is no such m, then ν(s) > ν(ρ(s)) > · · · > ν(ρ◦m(s)) > ν(ρ◦(m+1)(s)) > . . .
for all m. In this case, for every entry Sk in the internal address of ν, all sufficiently
large m satisfy ν(s) > ν(ρ◦m(s)) > ν(Sk) (because we have ν > ν(Sk) and the first
sufficiently many entries in ν(ρ◦m(s)) and ν coincide). Since this is true for all Sk, it
follows ν(s) > ν by definition, and we are in the first case above. This proves the
second claim.

Now the rest is easy: if ν is an endpoint of the parameter tree, then for every s ≥ 1,
we cannot have ν(s) > ν, so the ρ-orbits of 1 and s eventually meet.

Conversely, if ν is not an endpoint of the parameter tree, then there is a ?-periodic
kneading sequence ν ′ of some period s with ν ′ > ν. We may assume that there is no
kneading sequence of lower period between ν and ν ′. Then ν ′ = ν(s) > ν, and the
ρ-orbit of s is disjoint from the orbit of 1. 2

Remark. More generally, we can define “branches” at a non-periodic kneading se-
quence ν as follows, again writing ν(s) for νs. Start by partitioning the set of positive
integers into equivalence classes so that s ∼ 1 unless ν(s) > ν; if ν(s1) > ν and
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ν(s2) > ν, then s1 ∼ s2 if and only if there are m1,m2 > 0 with ν(ρ◦m1(s1)) < ν(s2)
and ν(ρ◦m2(s2)) < ν(s1). The proof just given extends to show that two positive in-
tegers are equivalent if and only if their ρ-orbits eventually meet, and the number of
equivalence classes equals the number of disjoint ρ-orbits for ν. Every equivalence class
of positive integers gives then rise to a branch at ν: all ν ′ ∈ Σ?? with ν ′ 6> ν form one
branch, and every other branch is the set of all ν ′ with ν ′ > ν(s) for some s from any
given equivalence class.

It can be shown that these branches partition Σ?? \{ν} into finitely many branches:
the number of branches is 1 if and only if ν is an endpoint, and it can exceed 2 only
if ν is eventually periodic: i.e., branch points of the parameter tree are periodic or
preperiodic. We do not give a proof here. See also Section 8 and Theorem 9.13.

Remark. Proposition 6.7 extends easily to arbitrary sequences in Σ??: every non-
admissible sequence sits in a non-admissible subtree which branches off from the subtree
of admissible kneading sequences at a ?-periodic sequence.

Finiteness of the number of branches at any non-periodic kneading sequence follows
like this: if there are at least three arms, then the sequence is preperiodic by the Branch
Theorem above, and the number of arms there is the same as in the dynamic plane. This
needs to be discussed in context of Alex’ theorem. In any case, the last two paragraphs
need to be checked.

Further facts to be proved: whatever is left of translation and correspondence principles,
even for non-existing trees (what can we say about them???)
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8. The Branch Theorem

In this section we show that for the space (Σ??, <) branching occurs only at preperiodic

or ?-periodic kneading sequences. This result is based on a study of the dynamical plane:

motivated by the correspondence principle of dynamic and parameter rays, we investigate

the arrangement of periodic points in Hubbard trees and extend Theorem 6.2.12

8.1. Definition (Attracting Dynamics)
A Hubbard tree (T, f) with n-periodic critical point has attracting dynamics if for each
ck ∈ orb(0), there is a neighborhood Uk of ck such that for all x ∈ Uk, f ◦jn(x)→ ck as
j →∞.

The next lemma identifies all exact periods that periodic points with given itinerary
τ might have. Lemma 8.3 summarizes some properties of Hubbard trees with attracting
dynamics. Proposition 8.4 then shows that every equivalence class of Hubbard trees
with periodic critical point contains a representative which has attracting dynamics.

The following statement is an easy but useful observation: suppose that f |[x,y]

is injective and there are three consecutive iterates p, f(p), f ◦2(p) ∈ [x, y] such that
f(p) ∈ (p, f ◦2(p)). Then f ◦2(p) ∈ (f(p), f ◦3(p)).

8.2. Lemma (Length of Periodic Orbits)
Let τ ∈ {0, 1}N∗ be a periodic itinerary of exact period n. Then there is an l > 0 such
that the exact period of any periodic point in T with itinerary τ is either n or ln.

Proof. Let Tτ = {p ∈ T : τ(p) = τ} and assume that this set is non-empty (otherwise
the claim is trivially true). By expansivity, Tτ contains at most one branch point, and
there is at most one periodic point in Tτ of exact period n whose local arms are not
all fixed. By the above observation, for any periodic point p ∈ Tτ with exact period ln
and l > 1, there is an n-periodic point z ∈ (p, f ◦n(p)) and f ◦n does not fix the local
arms at z pointing to p and f ◦n(p) (z is a branch point for l > 2 because otherwise the
orbit of z would be infinite).

Therefore, if for every periodic point in Tτ of exact period n all its local arms are
fixed under f ◦n, then all periodic points in Tτ have exact period n. Now suppose that
there is a periodic point z ∈ Tτ of exact period n that has a cycle C of local arms of
length l > 1. By Corollary 4.4, there is at most one such cycle at z. Let G be a global
arm of z whose local arm L is contained in the cycle C. If p ∈ G ∩ Tτ is periodic,
then p must be fixed under the first return map f ◦ln of L: if not, the reasoning above
shows that G ∩ Tτ contains a periodic (inner) point p′ of exact period ln whose local
arms are permuted by f ◦ln. This contradicts that f ◦ln([z, p′]) = [z, p′]. If z has an arm
G′ such that the associated local arm is fixed under f ◦n, then all periodic points in

12The results of this section have been obtained in [Kaf2, Kaf1]. Our discussion stays fairly close
to these manuscripts.
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G′ ∩ Tτ have exact period n; for otherwise G′ ∩ Tτ would contain another n-periodic
point whose local arms are not all fixed, which is impossible. Thus, the period of any
periodic point in Tτ equals n or ln. 2

8.3. Lemma (Consequences of Attracting Dynamics)
Let (T, f) be a Hubbard tree with periodic critical point and attracting dynamics. Then
the following are true:

(1) The set of all periodic points with itinerary τ is closed.
(2) There is a neighborhood U of c1 such that f ◦j|U is injective for all j ≥ 0.

Proof. For the first claim, observe that if τ contains a ?, then the claim is trivially
true because there is at most one point with this itinerary. Otherwise suppose that p is
the limit point of periodic points pn with τ(pn) = τ . By Lemma 8.2, there is an m ∈ N
such that all pn have (not necessarily exact) period m. By continuity, f ◦m(p) = p, i.e.,
p is periodic and its period divides m. Moreover, p has either itinerary τ or is on the
critical orbit. But since T has attracting dynamics, no point on the critical orbit can
be the limit point of periodic points.

For the second claim, let n be the period of c1. There is a neighborhood U of c1

such that U contains no precritical point unequal to c1 of Step at most n. Since (T, f)
has attracting dynamics, we can choose U so small that for all p ∈ U , f ◦n(p) ∈ (p, c1).
If there was a precritical point ξ ∈ U with ξ 6= c1, then there is a j0 such that f ◦j0(ξ)
is precritical of Step at most n and by the choice of U , we have f ◦j0(ξ) ∈ U , a
contradiction. 2

8.4. Proposition (Representative with Attracting Dynamics)
Every equivalence class of Hubbard trees with periodic critical point contains a repre-
sentative with attracting dynamics.

Proof. For any given equivalence class pick a Hubbard tree (T, f) and suppose that

the critical orbit is not attracting. We are going to define a new dynamics f̃ on the
topological tree T such that any point on the critical orbit is locally attracting. To
achieve this, it suffices to change f locally at the critical point 0. Let V be the set
of marked points of T , let n be the exact period of 0 and let G be the unique global
arm of 0 whose associated local arm is fixed under f ◦n. Choose y0 ∈ G such that the
interval I := (0, y0) has the following properties: f ◦n|I is a homeomorphism onto its
image, I ∩ V = ∅ = f ◦n(I) ∩ V and f ◦i(I) ∩ I = ∅ for all 0 < i < n. Without loss
of generality, we can assume that there is a z ∈ I such that f ◦n(z) = z: if such a
point does not exist then p ∈ (0, f ◦n(p)) for all p ∈ I, and we can pick z, y, y′ ∈ I
with 0 < y < z < f ◦n(z) < y′ (here < denotes the natural order on I with 0 as the
smallest element). There is a homeomorphism h′ : T → T such that h′|T\[y,y′] ≡ id and
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h′(f ◦n(z)) = z. Set f ′ := h′ ◦ f . Then (f ′)◦n(z) = z and the two Hubbard trees (T, f)
and (T, f ′) are equivalent.

So we can assume that there is a z ∈ I which is fixed under f ◦n. Pick any home-
omorphism ϕ : [0, z] → [0, 1] with ϕ(0) = 0, ϕ(z) = 1, and consider the function
h : [0, 1]→ [0, 1], x 7→ x2. It induces a map

h̃ : T −→ T, p 7→
{

(ϕ−1 ◦ h ◦ ϕ)(p) if p ∈ [0, z]
p otherwise.

Let f−n be the inverse branch of f ◦n|I that maps [0, z] onto itself and define

g : T −→ T, p 7→
{

(h̃ ◦ f−n)(p) if p ∈ [0, z]
p otherwise.

The map f̃ := g ◦ f : T → T is a continuous surjection and (T, f̃) is a Hubbard tree.
Moreover, it is equivalent to the given one and has attracting dynamics: for the first
part, observe that V ⊂ T \f−1((0, z)) =: S and f̃ |S = g◦f |S = f |S; to prove attracting

dynamics, it suffices to show that f̃ ◦jn(x) → 0 as j → ∞ for all x ∈ (0, z). For any
x ∈ (0, z), we have

f̃ ◦n(x) =
(
(g ◦ f) ◦ (id ◦ f)◦(n−1)

)
(x) = (g ◦ f ◦n)(x) = (h̃ ◦ f−n ◦ f ◦n)(x) = h̃(x)

and h̃(x) ∈ (0, z). Thus, f̃ ◦jn(x) = h̃◦j(x) for all j ∈ N and all x ∈ (0, z), and by

definition h̃◦j(x)→ 0 as j →∞. 2

8.5. Definition (Minimal Hubbard Trees)
A Hubbard tree (T, f) is minimal if it satisfies the following two properties:

(1) there are no two periodic points p 6= p′ in T with τ(p) = τ(p′);
(2) if 0 is periodic then (T, f) has attracting dynamics.

Remark. This definition implies that minimal Hubbard trees do not contain two
preperiodic points which have the same itinerary either. Recall that expansivity implies
that there are no (pre-)periodic marked points with the same itinerary. Thus one
could consider minimal Hubbard trees to be Hubbard trees with all (pre-)periodic
points marked. Minimal Hubbard trees have the property that the exact period and
preperiod of any (pre-)periodic point p equals the exact period and preperiod of its
itinerary τ(p) (cf. Lemma 3.9).

8.6. Lemma (Properties of Minimal Hubbard Trees)
Let (T, f) be a minimal Hubbard tree and z ∈ T be any periodic point which is disjoint
from the critical orbit.

(1) Let G be a global arm of z and I := {p ∈ G : p has the same itinerary as z}.
If I is not a singleton then I = [z, x) such that x ∈ orb(0) and 0 is periodic.
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(2) The periodic point z is repelling, i.e., there is a neighborhood U of z such that
for all p ∈ U , p ∈ (z, f ◦jn(p)), where n is the exact period of p and j is the
period of the local arm at z pointing to p.

(3) If the Hubbard tree (T, f) generates the ?-periodic kneading sequence ν then
there is a characteristic point z such that τ(z) = A(ν).

Proof. For the first statement, recall that by expansivity, I is an interval. The
boundary point x 6= z is periodic: note first that I contains no precritical point nor
an image of 0 (by minimality) and that there is an integer N such that the local arm
pointing to x is fixed. Suppose first that x is precritical. Then f ◦N(x) 6∈ I and if
f ◦N(x) 6= x, then continuity implies that not all points in I have itinerary τ(z). Thus
in this case, f ◦N(x) = x. On the other hand, if x is not precritical, then τ(x) = τ(z)
and f ◦N(x) = x by continuity and maximality of I. This contradicts that (T, f) is
minimal.

To show the second statement, let k equal the period of a non-fixed local arm at
z if such a local arm exists, and set k = 1 otherwise. Furthermore, let U ⊂ T be a
neighborhood of z such that f ◦kn|U is a homeomorphism onto its image. For any global
arm G of z, set L := G∩U . Since z is the only periodic point in T with itinerary τ(z),
either f ◦jn(p) ∈ (z, p) for all p ∈ L or p ∈ (z, f ◦jn(p)) for all p ∈ L, where j ∈ {1, k} is
the period of the local arm associated to G. Suppose that the first case holds. Then
the property that f ◦jn(p) ∈ (z, p) extends to all p ∈ L′ := {x ∈ G : τ(x) = τ(z)} ⊃ L.
The hypothesis implies that the set L′ is an interval and its boundary point p0 6= z is a
periodic point contained in orb(0) by statement (1). By construction, all points in L′

(except for z) are repelled from p0 by f ◦jn. This contradicts that (T, f) has attracting
dynamics.

For statement (3), let n be the period of c1 and let U ⊂ T be the maximal connected
set with c1 ∈ U such that U contains no precritical point and such that for all p ∈ U ,
f ◦jn(p) converges to c1 as j →∞. By Lemma 8.3, U 6= ∅ and since each branch point
in T has finite orbit, U is an interval contained in (0, c1). By continuity, f ◦n(U) ⊂ U ,
orb(0)∩U = {c1} and if z ∈ ∂U with z 6= c1 then z is not precritical. If f ◦n(z) 6= z then
there is a y 6∈ [z, c1] close to z such that [y, z] contains no precritical point of Step
at most n and f ◦n(y) ∈ (z, c1). Thus f ◦n([y, z]) ⊂ U , [y, z] contains no precritical
point and f ◦jn(p) converges to c1 for all p ∈ [y, z], in contradiction to maximality of
U . Therefore f ◦n(z) = z, and since all points in [z, c1) have the same itinerary, which
equals A(ν) by Lemma 5.15, the claim is proven. 2

8.7. Proposition (Minimal Representative)
Every equivalence class of Hubbard trees contains a minimal representative.

Proof. Given any equivalence class of Hubbard trees, pick a representative (T, f) so
that (T, f) has attracting dynamics if 0 is periodic. For any periodic itinerary τ , let
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Xτ ⊂ T be the smallest connected subset of T which contains all periodic points of
itinerary τ . By Lemma 8.3 (1) and expansivity, Xτ is a closed (possibly degenerate)
n-od. We define the following equivalence relation on T :

x ∼ y :⇐⇒ x = y or τ(x) = τ(y) and there is an n > 0 such that
f ◦n(x) and f ◦n(y) ∈ Xτ for some periodic itinerary τ .

Observe that an equivalence class is either a singleton, of the form Xτ or a non-periodic
iterated preimage of some Xτ . Thus all equivalence classes are closed connected subsets
of T . Let f̃ be the dynamics induced by f on the quotient T̃ := T/∼ and π : T −→ T̃

the natural projection. It suffices to show that (T̃ , f̃) is a Hubbard tree: it is minimal by
construction and equivalent to (T, f) because we have not changed the mutual location
of marked points (marked points and in particular branch points are preserved under
π by expansivity of (T, f)). Since all equivalence classes are closed and connected, ∼ is
a closed equivalence relation. It follows that T̃ is Hausdorff, and since all equivalence
classes are connected, T̃ is a tree. The map f̃ is continuous and locally injective on
T̃ \ {π(0)}, and since f−1(Xτ ) splits into at most two equivalence classes, f̃ is at

most 2-to-1. Furthermore, (T̃ , f̃) meets the expansivity condition. Putting everything

together, (T̃ , f̃) is a Hubbard tree. 2

In the remainder of the section, we only regard minimal Hubbard trees.

8.8. Definition (Bifurcation Itinerary)
Suppose τ ∈ {0, 1}N∗ is periodic of exact period n. Then we define for any q > 0

Bq(τ) := (τ1 · · · τn)q−1τ1 · · · τ ′n, where τ ′n = 1− τn.

8.9. Lemma (Points with Bifurcation Itinerary)
Let (T, f) be a Hubbard tree and z be a characteristic point of period n with itinerary
τ . If z′ is periodic with itinerary Bk(τ) for some k > 0, then there is a 0 ≤ j ≤ k such
that f ◦jn(z′) is the characteristic point of orb(z′).

Moreover, f ◦jn(z′) ∈ (z, c1) unless j = 0, τ(z) = A(ν) and τ(z′) = A(ν) for some
?-periodic kneading sequence ν.

Proof. Let ζ be the precritical point in (z, z′) of lowest Step, which equals kn.
Assume first that z′ is characteristic. If k > 1 and z ∈ (z′, c1), then the local arm
of z pointing to 0 is fixed under f ◦n. On the other hand, f ◦kn([ζ, z]) = [z, c1], a
contradiction. If k = 1 and z ∈ (z′, c1), it follows that the local arm of z′ pointing to c1

is fixed and therefore the local arm of z′ pointing to 0 is fixed, too. Thus τ(z) equals
the upper kneading sequence and τ(z′) the lower kneading sequence of a ?-periodic
kneading sequence µ as claimed.

Now suppose that z′ is not characteristic and let f ◦i0(z′) be the characteristic point
of orb(z′), where 0 < i0 < kn. Since τi(p) = τi(z) for all p ∈ [z, z′] and all 0 < i ≤ kn,
minimality implies that orb(z) ∩ (z′, z) = ∅ and orb(z′) ∩ (z′, z) = ∅. Thus f ◦i0(z′) ∈
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(z, c1). Now suppose that i0 6= jn for all 0 < j < k. Then z ∈ (f ◦i0(z), f ◦i0(z′))
and f ◦(kn−i0)(z) ∈ f ◦(kn−i0)((f ◦i0(z), f ◦i0(z′))) = (z, c1] ∪ (z′, c1]. Now z characteristic
implies that f ◦(kn−i0)(z) ∈ (z, z′), contradicting that (z, z′) contains no iterate of z. 2

8.10. Proposition (Existence of Dynamical Bifurcation Point)
Let (T, f) be a Hubbard tree with itinerary ν and z ∈ (0, c1) be a characteristic n-
periodic point with itinerary τ . Then there is a characteristic point z′ ∈ (z, c1] such
that (z, z′) contains no further characteristic point. Moreover, either z′ ∈ (z, c1) and
z′ has itinerary BQ(τ), or z′ = c1 and ν = A−1

Qn(τ), where Q is the period of the local
arm at z that points to c1.

By Corollary 4.4, Q or Q+ 1 equals the number of arms at z according to whether
z is tame or not.

Proof. We first consider the case that 0 is periodic. Let G be the global arm of z
containing the critical value c1 and set N := Qn. Moreover, let H be the connected
component of the set {p ∈ G : f ◦N(p) ∈ G} that contains z. Pick any non-empty

interval I := [z, y) ⊂ H such that f ◦N |I is a homeomorphism and I̊ contains no
marked point, and such that for all p ∈ I, p ∈ (z, f ◦N(p)) (this is guaranteed by
Lemma 8.3 (3)).

Let ξ denote the precritical point in H of lowest Step. We claim that Step(ξ) = N .
Note that there is a 0 < j < N such that 0 ∈ f ◦j(H): if such an iterate does not exist,
then H = G. But then f ◦N(G) = G and 0 6∈ f ◦j(G) for all j ∈ N, contradicting
expansivity. Therefore, there is a smallest integer j0 < N with 0 ∈ f ◦j0(H). By
Lemma 4.6, j0 6= kn− 1 for kn < N and thus j0 < N − 1 implies that f ◦(j0+1)(H) 3 c1

contains z in its interior and f ◦(N−j0−1)(z) ∈ f ◦N(H) ⊂ G, contradicting that z is
characteristic. Hence, j0 = N − 1.

As a consequence, f ◦N |H is at most 2-to-1 and since f ◦N(z) = z, ∂H contains at
most one non-periodic N -th preimage of z, denote it by z−. Now continuity implies

that G \H consists of at most one connected component. Consider the set H ′ := H \I
and the continuous map

g : H ′ −→ H ′, p 7→ r ◦ f ◦N(p),

where r : G −→ H ′ is the unique retraction. Since the tree H ′ has the fixed point
property, there is a point z′ ∈ H ′ with g(z′) = z′. If g(z′) 6= f ◦N(z′), then z′ ∈
∂H ′ \ G = {y, z−}. But g(z−) = r ◦ f ◦N(z−) = r(z) = y and by the choice of I,
g(y) 6= y. Thus g(z′) = f ◦N(z′), which shows the existence of an N -periodic point in
H. By minimality, ξ ∈ (z, z′) (ξ as defined above). Consequently, τ(z′) = BQ(τ), or
ν = A−1

Qn(τ) if z′ = c1.
If z′ 6= c1, then Lemmas 8.9 and 4.6 imply that z′ ∈ (z, c1) is characteristic.

The second possibility is that 0 is preperiodic. By minimality, there is a precrit-
ical point ξ ∈ (z, c1). Let ζ ∈ (z, c1) be the precritical point of lowest Step. By
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Missing picture here!

Figure 8.1. Subsets and points considered in the proof of the existence
of dynamical bifurcation points. The subtree H ′ is drawn in thick lines.

Lemma 5.18, there is a tame characteristic point x ∈ (ζ, c1). Let ν ′ be ?-periodic such
that τ(x) = A(ν ′). Then Theorem 6.2 implies that there is a characteristic point zν′
with τ(zν′) = τ in the tree T (ν ′) associated to ν ′. By case (1), (zν′ , c1] ⊂ T (ν ′) contains
a characteristic periodic point z′ν′ with itinerary BQ(τ) or ν ′ = A−1

Qn(τ). Now we apply

again Theorem 6.2 to see that there is a characteristic point z′ ∈ T with τ(z′) = BQ(τ).
Since z, zν′ are of the same type and have the same number of arms, this proves the
claim. 2

This proposition says in particular that if T contains an inner characteristic point
z such that its two arms are fixed, then the next characteristic point z′ has the same
period as z and all its arms are permuted transitively, that is, z′ is tame.

8.11. Corollary (Precritical Point Behind Characteristic Point)
Suppose that z ∈ T is a characteristic point with exact period n and q arms. Then
there is a precritical point ζ ∈ (z, c1] such that if N = Step(ζ), then N = qn if z is
tame and N = (q − 1)n otherwise. More precisely, if z′ ∈ (z, c1] is the characteristic
point constructed in the previous proposition, then ζ is the precritical point of lowest
Step contained in (z, z′]. 2

The following lemma extends Theorem 6.2 (3): we drop the requirement that the
point p ∈ T has to be characteristic.

8.12. Lemma (Forcing of Characteristic Points)
Let (T, f) be a Hubbard tree and p ∈ T be a periodic non-precritical point of exact
period n and itinerary τ such that [0, c1]∩ [0, p] =: [0, b] is non-empty. Set ν̃ := A−1

n (τ)

and let (T̃ , f̃) be the Hubbard tree associated to the kneading sequence ν̃. If z ∈ (0, b)

is a characteristic point, then there is a characteristic point z̃ ∈ T̃ such that z and
z̃ have the same itinerary and are of the same type. If additionally (z, b) contains a
characteristic point, then z and z̃ have the same number of arms.
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Figure 8.2. Location of points in the proof of the modified Orbit Forc-
ing Lemma 8.12.

Proof. In order to tell points in the two Hubbard trees apart, all points in T̃ are
marked by ∼. We can assume that T contains both preimages p0,−p0 of p: if it does
not contain the preimage, say, p0, then we attach an arc [0, p0] to the tree T such that
[0, p0] is mapped homeomorphically onto [c1, p]. This extended tree is not a Hubbard
tree in the strict sense anymore because not all of its endpoints are on the critical orbit.
However, all other properties of Hubbard trees are preserved under this extension. We
assume that p0 ∈ T1, that is in the component of T \{0} containing c1. Observe that if
p ∈ [−p0, p0] then there is no characteristic point in [0, b] and the statement is empty.

Analogously to the proof of Theorem 6.2, we define iteratively closed intervals Ik
with endpoints in P = {−p0, p0, p, f(p), . . . , f ◦(n−1)(p)} such that f ◦k(z) ∈ Ik and f |Ik
is a homeomorphism. Whenever 0 ∈ f |Ik =: [xk, yk] we chop the interval; that is,
if f ◦k(z) ∈ [xk, 0] we set Ik+1 = [±p0, yk], where ±p0 it the preimage of p such that
0 6∈ Ik+1. Since z ∈ (0, b) is characteristic, orb(z)∩ [−p0, p0] = ∅ and f ◦(k+1)(z) ∈ Ik+1.
(Contrary to the intervals defined in Theorem 6.2, it is possible that Ik+1 6⊂ f(Ik)

because p is not characteristic.) Let Ĩk ⊂ T̃ be the closed interval with endpoints

in {0, c̃1, . . . , f
◦(n−1)(c̃1)} which correspond to the endpoints of Ik (0 ∈ T̃ corresponds

both to p0 and −p0 in T ). Since p and c̃1 have the same itinerary (modulo ?), f |Ĩk is

a homeomorphism onto its image and Ĩk+1 ⊂ Ĩk because in T̃ we replace the chopped

off point by 0. Therefore the set S̃ := {x̃ ∈ [0, c̃1] : f̃ ◦k(x̃) ∈ Ĩk for all k ≥ 0} is a

non-empty, compact (possibly degenerate) interval. Each x̃ in the interior of S̃ has

itinerary τ(z). By Lemma 3.9, T̃ contains a periodic point z̃ with itinerary τ(z) unless

S̃ = {x̃} and τ(x̃) contains a ?, in which case x̃ ∈ orb(0) (compare the proof of
Theorem 6.2). We claim that this situation cannot occur for minimal Hubbard trees.

Let us assume the contrary. Then the construction of the set S̃ implies that x̃ is the
limit of precritical points. But x̃ is contained in the critical orbit and thus is locally
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attracting; in particular x̃ is not the limit of precritical points, a contradiction. Thus
we showed the existence of a periodic point z̃ ∈ (0, c̃1) of itinerary τ(z).

A triod argument shows that z̃ is characteristic. Let m be the period of z̃ and
suppose that z̃ was not characteristic. Then there is an l ≤ m such that f ◦(l−1)(z̃) =: z̃l,
z̃ and p̃ = c̃1 form a degenerate triod with z̃l in the middle while in the Hubbard tree
T , the points zl, z, p form a degenerate triod with z in the middle. Iterate the triods

Y, Ỹ under f, f̃ so that whenever 0 is contained in their interiors the endpoint which is

chopped off is replaced by p0 or −p0 in T and 0 in T̃ . Since no image of z is contained
in [−p0, p0] chopping does not change the mutual location of the three points that
generate the triods. This process eventually yields a contradiction to the fact that the
itineraries of p, z and c̃1, z̃ coincide (modulo ?).

The two points z and z̃ are of the same type because the type is completely encoded
in the internal address by Lemma 5.17.

To prove the last statement of the lemma, let z be a characteristic m-periodic point
such that (z, b) contains a further characteristic point y, and let q, q̃ be the number
of arms at z, z̃, respectively. We are going to show that q = q̃. By Proposition 8.10,

there are characteristic points zq ∈ (z, y] ⊂ (z, b) ⊂ T and z̃q̃ ∈ T̃ with itinerary
Bq(τ(z)) and B q̃(τ(z)) (or A−1

q̃m(τ(z))). If q 6= q̃, then there is a characteristic point

z̃q ∈ T̃ with itinerary Bq(τ(z)) as we just proved and z̃q ∈ (z̃, c̃1). Let us assume that
z̃q ∈ (z̃, z̃q̃), the case that z̃q̃ ∈ (z̃, z̃q) works exactly the same way. The precritical
point ζqm ∈ [z̃, z̃q] of smallest Step has Step(ζqm) = qm, and the one in [z̃, z̃q̃], denote
it by ζq̃m, has Step(ζq̃m) = q̃m. Therefore we must have that q > q̃ and ζq̃m ∈ (z̃q, z̃q̃).
By minimality, we have for all x̃ ∈ (z̃, ζq̃m) that x̃ ∈ (z̃, f ◦q̃m(x̃)) ⊂ (z̃, c̃1); this is in
particular true for z̃q, which consequently cannot be characteristic. 2

Remark. Let ν ′ be ?-periodic. If T contains no periodic point p with itinerary A(ν ′),
then we can extend T to a tree T ′ such as to contain the orbit of p (see Corollary 20.12).
The claim of Lemma 8.12 also holds in this situation. Observe first that there are several
possibilities for the location of p in T ′:

If p ∈ T0 then the statement is empty. If p is contained in a subtree branching
off from (0, c1), then we have exactly the same situation as in Lemma 8.12. The last
possibility is that c1 ∈ (0, p). In this case, 0 ∈ T ′ is a branch point and f |f(Ik) might be
injective although 0 ∈ f(Ik). As a consequence, the criterion for chopping is now that
f |f(Ik) is not injective so that there might be intervals Ik which contain the critical
point 0. (This always holds if we have to chop the interval f(Ik−1) to get Ik.) So
the proof of Lemma 8.12 carries over to all characteristic points z ∈ (0, c1), and thus
Lemma 8.12 extends to the case of c1 ∈ (0, p).

8.13. Lemma (Characteristic Points Not Forced)
Let (T, f) be a Hubbard Tree and define p, b ∈ T and ν̃ as in Lemma 8.12. Suppose
that z ∈ (b, c1) is a characteristic point such that either there is a characteristic point
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y 6= p in [b, z) or b is the limit of characteristic points in (0, b). Then there is no

characteristic point z̃ with itinerary τ(z) in the Hubbard tree T̃ of ν̃.

Proof. We state the proof for the case that there is a characteristic point y ∈ [b, z).
For the reasoning of the second case we refer to the footnotes. By way of contradiction,

we assume that there is a characteristic point z̃ ∈ T̃ such that τ(z) = τ(z̃).

The triod [p, y, z] ⊂ T is degenerate and contains y in the middle. The point z̃ ∈ T̃
forces a characteristic point ỹ ∈ T̃ with itinerary τ(ỹ) = τ(y) by Theorem 6.2. Thus

the triod [ỹ, z̃, p̃] ⊂ T̃ is degenerate with z̃ in the middle (where p̃ = c̃1).13 Iterate the
triods so that a chopped off point in T is replaced by the appropriate preimage ±z0 of

z and a chopped off point in T̃ by ±z̃0. There is a iterate k where the images of y, z
(under the chopping map) are separated by 0. At this moment, the images of p, z are
separated by 0 while the images p̃, z̃ are not, contradicting that corresponding points
have equal itineraries (modulo ?). Note that chopping causes no problems because no
image of the characteristic point y is contained in [−z0, z0]14. 2

8.14. Lemma (Periodic Points Behind c1)

Suppose (T, f) and (T̃ , f̃) are two Hubbard trees that generate the ?-periodic kneading
sequences ν 6= ν̃. If necessary, extend T such as to contain a periodic point p with

itinerary A(ν̃) and T̃ such as to contain a periodic point q̃ with τ(q̃) = A(ν). Then it
is not possible that both c1 ∈ (0, p) and c̃1 ∈ (0, q̃).

Proof. By way of contradiction assume that c1 ∈ (0, p) and c̃1 ∈ (0, q̃). By Lemma
8.6 (3), there is a characteristic point z ∈ (0, c1) ⊂ T with itinerary A(ν) and by

the remark after Lemma 8.12, p forces a characteristic point z̃ ∈ (0, c̃1) ⊂ T̃ with

τ(z̃) = A(ν). Thus, if n equals the period of ν, then the precritical point ζ̃ of lowest

step in (z̃, q̃) has Step(ζ̃) = n. Therefore f̃ ◦n maps [z̃, ζ̃] homeomorphically onto

[z̃, c̃1] and [ζ̃ , q̃] homeomorphically onto [c̃1, q̃]. If c̃1 ∈ (z̃, ζ̃), then f̃ ◦n(c̃1) ∈ (c̃1, z̃) and

|orb(c̃1)| =∞. Otherwise, since ν̃ 6= ν and thus c̃1 6= ζ, c̃1 ∈ (ζ̃ , q̃) and f̃ ◦n(c̃1) ∈ (c̃1, q̃).
But this contradicts the fact that orb(c̃1) spans the (not extended) Hubbard tree T .2

8.15. Definition (Combinatorial Arc)
For two pre- or ?-periodic kneading sequences ν ≤ ν ′, we define

[ν, ν ′] := {µ ∈ Σ? : µ pre- or ?-periodic such that ν ≤ µ ≤ ν ′}.
We call [ν, ν ′] the combinatorial arc between ν and ν ′.

13If there is no characteristic point in [b, z), we set y = b. Any characteristic point in [0, b) ⊂ T

is forced in T̃ by Lemma 8.12. Hence there is a limit point b̃ ∈ T̃ , which is either the critical value or
has the same itinerary as b. Because of the existence of z̃, the second case must hold. We consider
the degenerate triod [b̃, z̃, p̃].

14Since b is the limit of characteristic points it follows that no image of b is contained in [−z0, z0].



86 Section 8, Version of July 27, 2011

Missing picture here!T̃

Figure 8.3. The extended Hubbard tree T̃ with the periodic points
z̃, q̃, where τ(z̃) = Aν and τ(q̃) = A(ν).

8.16. Theorem (Branch Theorem)
Let ν and ν̃ be two ?-periodic kneading sequences. Then there is a unique kneading
sequence µ such that exactly one of the following holds:

(1) [?, ν] ∩ [?, ν̃] = [?, µ], where µ is either ?-periodic or preperiodic.
(2) [?, ν] ∩ [?, ν̃] = [?, µ] \ {µ}, where µ is ?-periodic such that the exact period of

µ and A(µ) are equal.

In both cases, it is possible that µ = ν or µ = ν̃. Observe that the case (2) can only
occur if at least one of the two given kneading sequences ν and ν̃ is non-admissible.

Proof. Note first that [?, ν] ∩ [?, ν̃] = {µ′ ?- or preperiodic: µ′ ≤ ν and µ′ ≤ ν̃}.
Thus finding the kneading sequence µ of the Branch Theorem is equivalent to finding
the supremum of the set {µ′ ?-periodic: µ′ ≤ ν and µ′ ≤ ν̃}. Let T be the Hubbard

tree of ν and T̃ the one of ν̃.
If ν = ν̃, there is nothing to show. If T (or T̃ ) contains a characteristic point with

itinerary A(ν̃) (or A(ν)), then ν > ν̃ (or ν̃ > ν), and µ := ν̃ (or µ := ν) satisfies the
theorem. This is in particular true if one of the given kneading sequences equals ?. For
the remaining cases we can assume that T contains a periodic point p with itinerary
A(ν̃) (by possibly enlarging T ) and by Lemma 8.14 that c1 6∈ [0, p] (interchange T and

T̃ if necessary). Let b ∈ T be such that [0, p] ∩ [0, c1] = [0, b]. The point b is either a
branch point or equals p. Let

P := {z ∈ [0, b) : z is a characteristic point}.

Suppose that there is a kneading sequence ν ′ = 1 . . . 1? such that ν ′ < ν and ν ′ < ν̃
(otherwise [?, ν] ∩ [?, ν̃] = {?}). Then by Lemma 8.13, P contains the α-fixed point
and hence is not empty. Set a := sup(P ). We distinguish whether a = b or not:
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Missing picture here!

Figure 8.4. Location of points in the proof of the Branch Theorem 8.16.

• Let us first assume that a = b. Since b is the limit of characteristic points, the
local arm L of b pointing towards 0 is fixed and all iterates of b are contained
in the closure of the global arm associated to L. So if b is periodic then it is
a non-tame characteristic point. Lemma ?? implies that τ(b) 6= A(ν̃) = τ(p)
and b 6= p. Thus b is a preperiodic or periodic branch point, and in the latter
case, b is characteristic and evil.

We first consider the case that b is preperiodic. Let µ := τ(b) be the
preperiodic kneading sequence generated by b. We claim that [?, ν] ∩ [?, ν̃] =
[?, µ]. Let 1 → S1 → · · · → Sk → · · · be the (infinite) internal address of µ,
and let µk be the unique ?-periodic sequence associated to 1→ S1 → · · · → Sk
for each k > 0. We claim that b is the limit point of characteristic points
pSk ∈ (0, b) with itinerary τ(pSk) = A(µk). By assumption, b is the limit point
of a sequence of characteristic points zk ∈ (0, b) of period nk. We can assume
that for all k ≥ l, the itineraries of zk have the same first nl entries as µ. Fix
an entry Sk of the internal address of µ. Then there are nk1 , nk2 ∈ N such that
nk1 < Sk ≤ nk2 . Since the itinerary τk2 of zk2 coincides with µ for the first nk2
entries, Sk is contained in the internal address of zk2 . Then by Proposition 6.8,
there is a characteristic point p′Sk with internal address 1→ S1 → · · · → Sk in
the Hubbard tree of A−1

nk2
(τ(zk2)). This forces a characteristic point pSk ∈ T

with τ(pSk) = A(µk). By induction on k, we get a sequence of characteristic
points pSk ∈ T , which has to converge to b because pSk ∈ [zk1 , zk2 ] for all k.
Since for all k > 0, T contains a characteristic point with itinerary A(µk) and
since these points are contained in the arc [0, b), we have ν > µk, ν̃ > µk for
all k > 0 and thus, ν > µ and ν̃ > µ.

To finish this case, it remains to prove that µ is the largest sequence with
these properties. If µ′ is ?-periodic such that ν > µ′ and ν̃ > µ′, then there
is a characteristic point q′ 6= b with itinerary A(µ′). Since b is the limit of
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characteristic points, Lemma 8.13 implies that q′ ∈ [0, b), and since pSk → b,
there is a k0 such that q′ ∈ (0, pSk0 ). By Theorem 6.2, the Hubbard tree of µk0

contains a characteristic point with itinerary A(µ′) and hence µ′ < µk0 < µ.

Now suppose that b is periodic. Let µ = A−1(τ(b)). Then the exact periods
of A(µ) and µ coincide, and since b is an evil branch point, τ(b) = A(µ).
Then µ 6< ν but all µ′ < µ satisfy µ′ < ν by Proposition 6.7. We know that
b is the limit point of characteristic points zn ∈ P . We may assume that
0 < zn < zn+1 < b. Hence, there is a sequence of corresponding characteristic

points z̃n ∈ T̃ . By compactness of the Hubbard tree and since 0 < z̃n <

z̃n+1 < c̃1, this sequence has to converge to a point b̃ ∈ (0, c̃1) ⊂ T̃ (b̃ 6= c̃1 by

Lemma 8.3 (2)). Since τ(z̃n)→ A(µ), the itinerary of b̃ is A(µ) by continuity.

We claim that b̃ is a characteristic point. Since b̃ is the limit of characteristic
points, all iterates f ◦i(b̃) are contained in the closure of the global arm of b̃

containing 0. Let m be the period of µ. If b̃ was not m-periodic, then there
is a k ∈ N such that z̃k ∈ (f ◦m(b̃), b̃) and τ(z̃k) = τ(b̃) = A(µ), which is not
true.

We claim that either µ 6< ν̃ and µ′ < ν for all µ′ < µ or µ ≤ ν̃, so that no
sequence smaller than µ is the supremum of {µ′ ?-periodic: µ′ ≤ ν and µ′ ≤
ν̃}. If b̃ is an inner point, then Proposition 8.10 guarantees the existence of a

characteristic point with itinerary A(µ) or µ and hence µ ≤ ν̃. If b̃ is an evil
branch point, then again by Proposition 6.7, µ 6< ν̃ and µ′ < ν̃ for all µ′ < µ.

There is no µ′ 6< µ such that both µ′ < ν and µ′ < ν̃. Indeed, if µ′ < ν
and µ′ 6< µ, then there is a characteristic periodic point z ∈ (b, c1] ⊂ T with
itinerary A(µ′). Since b is characteristic itself, Lemma 8.13 says that there

is no characteristic point in T̃ with itinerary τ(z) = A(µ′), and so µ′ 6< ν̃.
Consequently, µ satisfies the theorem.

• The second possibility is that a ∈ (0, b). We claim that in this case a ∈ P . To
show this observe first that the arc (a, b) contains a precritical point because a
and b have different itineraries. Let I be the set of points in [0, b] with itinerary
τ(b). The reasoning of Lemma 8.6 (1) can be applied to show that I = (ζ, b]
where ζ is a precritical point. So, if a ∈ I, then there is an open neighborhood
of a which is also contained in I and hence P ∩ I 6= ∅, a contradiction to
minimality.

Suppose that there are infinitely many points in P (otherwise a ∈ P triv-
ially holds). Let ζ be the precritical point in (a, b) such that there is no
precritical point in (a, b) with lower Step and set k :=Step(ζ). Since a is a
limit point of characteristic points, we have that for all l ∈ N, f ◦l(a) 6∈ (a, c1].
Hence, f ◦k([a, ζ]) covers [a, ζ] homeomorphically.
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Therefore, there is a z ∈ [a, ζ) with z = f ◦k(z). If z = a, we are done.
Otherwise, let w ∈ [a, ζ] be the periodic point with lowest period. If w 6= a
(otherwise we are done), then the point w is characteristic. If it is not, then
there is an s < k such that f ◦s([a, w]) covers [a, w] homeomorphically. But
this yields a periodic point w̃ ∈ (a, w) of period smaller than the one of w, a
contradiction to the choice of w. Hence w ∈ P and a 6= sup(P ), which is false.
This proves that a is periodic and as a limit point of characteristic points it is
characteristic itself.

Let τ be the itinerary of a, n be its period and let µ′ be the ?-periodic
kneading sequence such that τ = A(µ′) or τ = A(µ′) according as a is tame
or not. Let q be the number of arms at a and Q be the period of the local

arm at a pointing to c1. By Lemma 8.12, there is a characteristic point ã ∈ T̃
which has itinerary τ and is of the same type as a. Let q̃ be the number of
arms at ã and Q̃ the period of the local arm at ã pointing to c̃1. Then q = q̃ if
and only if Q = Q̃. Proposition 8.10 implies that T contains a characteristic

point x with itinerary BQ(τ) (it is not possible that x = c1) and T̃ contains

a characteristic point x̃ that has itinerary BQ̃(τ) or A−1

Q̃n
(τ) = BQ̃(µ′). In the

last paragraph of the proof of Lemma 8.12, we have seen that a Hubbard tree

cannot contain two characteristic points with itinerary BQ(τ) and BQ̃(τ) for
Q 6= Q̃.

Since there is no characteristic point in (a, x), it follows that x ∈ [b, c1).
Therefore Lemma 8.13 yields that if q 6= q̃ and µ′′ is ?-periodic with µ′′ < ν
and µ′′ < ν̃, then µ′′ ≤ µ′. If τ = A(µ′), then µ′ < ν and µ′ < ν̃. If τ = A(µ′),
then the exact period of µ′ and A(µ′) are equal. If a (or ã) is an inner point,
then µ′ < ν (µ′ < ν̃). If a is a branch point then µ′ 6< ν and µ′′ < ν for
all µ′′ < µ′. Similarly, if ã is a branch point, then µ′ 6< ν̃ but µ′′ < ν̃ for all
µ′′ < µ′. In all cases, µ = µ′ is the claimed kneading sequence.

If q = q̃, then [?, ν] ∩ [?, ν̃] = [?,BQ(µ′)], so that µ = BQ(µ′) satisfies the
theorem. Let µ′′ be ?-periodic such that µ′′ < ν and µ′′ 6≤ BQ(µ′). Then there
is a characteristic point y ∈ T with τ(y) = A(µ′′) and y ∈ (x, c1). Since p 6= x,

Lemma 8.13 yields that there is no characteristic point in T̃ with itinerary
τ(y) and thus, µ′′ 6< ν̃. 2

Remark. The statement of Theorem 8.16 extends to all kneading sequences in Σ??

by continuity.
Douady and Hubbard show in [DH1] that branching in the Mandelbrot set can

only occur at postcritically finite parameters. Since admissible kneading sequences
form a combinatorial model for the Mandelbrot set (compare Section ??), Theorem 8.16
extends Douady’s and Hubbard’s result to the space Σ??, which comprises all admissible
and non-admissible kneading sequences that are ?-periodic or non-periodic.
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In the remark after Definition 7.1 the order “<” on Σ?? is extended to the set Σ?

of all kneading sequences. For Σ?, the branch theorem reads as follows: Given any
two kneading sequences ν, ν ′ then either ν ≤ ν ′ or ν ′ ≤ ν or there is a largest third
kneading sequence µ such that ν > µ and ν ′ > µ and µ is either preperiodic or periodic
but not ?-periodic. In particular, in item (2) of Theorem 8.16, the branch point now
exists and equals the lower kneading sequence A(µ) of µ, where µ is such that the
exact periods of A(µ) and µ coincide. Figure 6.2 illustrates the local structure near a
?-periodic kneading sequence.

Remark. In the remark after Proposition 7.9, for any non-periodic kneading sequence
ν its “branches” are defined as equivalence classes, where two kneading sequences µ, µ′

are equivalent if the following holds: let ν(s) denote the ?-periodic kneading sequence
whose (s − 1)-st symbols coincide with those of ν. Then µ ≡ µ′ if there are s, s′ such
that µ > ν(s) > ν and µ′ > ν(s′) > ν and there are m,m′ > 0 with ν(ρ◦m(s) < ν(s′)
and ν(ρ◦m

′
(s′)) < ν(s). Let us denote this branches by combinatorial branches.

8.17. Proposition (Title! )
Let ν, µ, µ′ ∈ Σ??. Then µ, µ′ lie in two different combinatorial branches of ν that
are both unequal to the one containing the origin if and only if µ and µ′ cannot be
compared (with respect to < on Σ??) and ν is the branch point of µ, µ′ as defined via
(the extension to Σ?? of) Theorem 8.16.

Proof. Since non-periodic kneading sequences can be approximated arbitrarily closely
by ?-periodic ones, we can assume that µ, µ′ are ?-periodic.

Let us first consider the case that ν is the branch point of µ, µ′. Suppose that
µ, µ′ were contained in the same combinatorial branch. Thus there is an t such that
ν < ν(t) ≤ µ, µ′.

If ν is ?-periodic, then there are s, s′ such that ν < ν(s) ≤ µ and ν < ν(s′) ≤ µ′ (s, s′

are distinct multiples of the period of ν). Since there is no element of Σ?? contained
in ]ν, ν(s)[, it follows that ν(s) ≤ ν(t) (recall that the set of sequences smaller than
a given one is linearly ordered), and thus ν(s) ≤ µ′ and µ′ 6> ν(s′), contradicting our
assumption.

If ν is preperiodic, then ν < ν(ρ(t)) < ν(t) and there is a sequence of ?-periodic
kneading sequences τn < ν converging to ν. Consider the Hubbard tree associated to
µ and extend it such as to contain a periodic point p′ with itinerary A(µ′). Then there
is a b ∈ T such that ]0, c1]∩]0, p′] =]0, b]. Let zν be the characteristic point in T with
itinerary A(ν), and z, ẑ the characteristic points with itineraries A(ν(t)), Aν(ρ(t)).
We are going to show that the ẑ ∈]zν , b[ and thus by Lemma 8.12, ν is not the branch
point of µ, µ′. If b = c1 this statement is trivial, otherwise suppose that ẑ ∈ [b, c1].
Then Lemma ?? implies that there is no characteristic point z′ in the Hubbard tree of
µ′ with itinerary A(ν(t)) and thus ν(t) 6< µ′, contradicting our assumption again.
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To prove the other direction, suppose that there is a ν ′ > ν such that ν ′ < µ and
ν ′ < µ′. If ν is ?-periodic, then the existence of ν ′ implies that there is a t such that
ν(t) ≤ µ, µ′ and thus µ and µ′ are in the same combinatorial branch of ν. If ν is
preperiodic then there is a t such that µ > ν(t) > ν(ρ◦i(t)) > ν(ρ◦(i+1)(t)) > ν for all
i > 0. Since all sequences smaller than a given one are totally ordered, there is a j
such that ν ′ > ν(ρ◦j(t)). Pick s := ρ◦j(t), s′ := ρ◦(j+1)(t) and m := 2, m′ = 1. Then
µ > ν(s) > ν(ρm

′
(s′)) and µ′ > ν(s′) > ν(ρ◦m(s)) and thus by definition, µ, µ′ are in

the same combinatorial branch. 2

It seems that sometimes we denote open intervals by (a, b) and sometimes by ]a, b[. We
need to check for consistency! Also: several references don’t work or lemmas don’t exist.
Changed use of macros: A, Step
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9. The Mandelbrot Set

In this section, we review and prove some important results about combinatorics and

topology of the Mandelbrot set. Most of these results are “folklore” and go back to Douady

and Hubbard and their Orsay Notes [DH1] at least implicitly; other useful references include

[Bra, Mi2, Sch2, Eb, Sch3]. However, a number of these results are difficult to find with

proofs in the literature, even though many of them are “well known among those who know

them well”. Therefore we try to provide complete proofs for all results that have not yet been

formally published.

9.1. Rays and Ray Pairs. For every parameter c ∈ C, iteration of the polynomial
pc(z) = z2 + c defines a dynamical system, and every quadratic polynomial is affinely
conjugate to a unique pc. The filled-in Julia set Kc is defined as

Kc = {z ∈ C : the orbit of z under iteration of pc is bounded} ;

we also define the Julia set Jc := ∂Kc. The Mandelbrot set M is defined as the set of
parameters c for which the Jc or equivalently Kc are connected. For these parameters,
there is a preferred conformal isomorphism Φc : C \ Kc → C \ D with Φc(∞) = ∞
and limz→∞Φc(z)/z = 1 [DH1, Mi1]. The map Φc conjugates the dynamics of pc on
C \Kc to the dynamics of z 7→ z2 on C \ D: we have

Φc(pc(z)) = (Φc(z))2 on C \Kc . (4)

We define dynamic rays Rc(ϑ) := Φ−1
c

(
e2πiϑ(1,∞)

)
for ϑ ∈ S1 = R/Z (Figure 9.1).

Equation (4) implies that pc(Rc(ϑ)) = Rc(2ϑ): the dynamic ray Rc(ϑ) is periodic (as
a set) under pc if and only if ϑ is periodic (as an element of S1) under multiplication
by 2, i.e., ϑ has the form a/(2n − 1) for some positive integers a and n.

A dynamic ray Rc(ϑ) lands at a point z ∈ C if limr↘1 Φ−1
c

(
re2πiϑ

)
exists and equals

z. If a ray Rc(ϑ) lands at z ∈ Kc, then Rc(2ϑ) lands at pc(z), and conversely: if
Rc(2ϑ) lands at pc(z), then Rc(ϑ) lands at one of the two pc-preimages of pc(z), i.e. at
z or at −z. If two dynamic rays Rc(ϑ) and Rc(ϑ

′) land at a common point z, we call
Pc(ϑ, ϑ

′) := Rc(ϑ)∪Rc(ϑ
′)∪{z} a dynamic ray pair. Then C \Pc(ϑ, ϑ′) consists of two

components, say X1 and X2, and we say that the ray pair separates two points if one
of them is in X1 and the other in X2.

If c /∈M, there is still a preferred conformal isomorphism Φc in a neighborhood of
∞ satisfying (4): more precisely, there is a neighborhood U(c) of ∞ containing c on
which Φc is defined so that Φc(U(c)) = {z ∈ C : |z| > r} for some r > 1. The map Φc

allows to define restrictions of dynamic rays within U(c), and these can be extended by
pulling back under the dynamics unless the critical value interferes: Φ−1

c (e2πi2ϑ(r, ϑ))

1The angles are, in counterclockwise order, 1
32 , 1

16 , 17
240 , 19

240 , 23
240 , 1

8 , 31
240 , 9

56 , 1
6 , 11

56 , 5
24 , 1

4 , 15
56 , 289

992 ,
297
992 , 299

992 , 315
992 , 319

992 , 43
128 , 11

32 , 3
8 , 13

32 , 7
16 (upper half), 16

31 , 8
15 , 17

31 , 4
7 , 18

31 , 9
15 , 38

63 , 19
31 , 20

31 , 41
63 , 2

3 , 21
31 , 22

31 , 5
7 ,

46
63 , 11

15 , 23
31 , 24

31 , 12
15 , 23

31 , 26
31 , 53

63 , 6
7 , 13

15 , 27
31 , 28

31 , 14
15 , 29

31 , 59
63 , 60

63 , 30
31 , 61

63 , 62
63 (lower half).
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Figure 9.1. The Mandelbrot set with a number of parameter rays
drawn in: the 23 parameter rays in the upper half are at preperiodic
angles, the 33 rays in the lower half are at periodic angles1.

is well-defined for sufficiently large r > 1 and defines Rc(2ϑ) near infinity; if it does
not contain the critical value, then p−1

c (Φ−1
c (e2πi2ϑ(r, ϑ))) consists of two connected

components; one of them contains Φ−1
c (e2πiϑ(r, ϑ)) and thus extends the definition of

Rc(ϑ). Countable repetition of the argument defines Rc(ϑ) for all ϑ ∈ S1 with at most
countably many exceptions (compare [GM, Appendix A] and Section ??).

It is well known [Mi1] that for pc with c ∈M every dynamic ray at a periodic angle
lands at a periodic point which is on a repelling or parabolic orbit; and conversely,
every repelling or parabolic periodic point is the landing point of at least one periodic
dynamic rays. If c 6∈ M, then the dynamic ray at any periodic angle ϑ either fails to
exist (because c = Φ−1

c (e2πi2kϑ) for some k ≥ 1), or it lands at a repelling periodic point
(the accumulation set of the ray is a connected subset of the Julia set, and the latter is
totally disconnected). All rays landing at the same periodic point have the same period:
the common period of the rays is a (possibly proper) multiple of the period of their
landing point; therefore one distinguishes the ray period from the orbit period. As a
consequence, only finitely many rays can land at any periodic point. Analogous results
follow for preperiodic rays and preperiodic points on repelling or parabolic orbits.
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A dynamic ray pair Pc(ϑ, ϑ
′) is called characteristic if it separates the critical value

from all rays Rc(2
kϑ) and Rc(2

kϑ′) for all k ≥ 1 (except of course from those on the
ray pair Pc(ϑ, ϑ

′) itself)2. Every cycle of periodic ray pairs has a unique characteristic
ray pair with angles in

⋃
k≥0{2kϑ, 2kϑ′} (see Lemma 9.3 below).

As described earlier, Φc(c) is defined for every c ∈ C \ M (because c ∈ U(c)).
This defines a map Φ: C \ M → C \ D via Φ(c) := Φc(c). Douady and Hubbard
[DH1, DH0] showed that Φ: C\M→ C\D is a conformal isomorphism. This implies
that M is connected, and it gives rise to parameter rays of the Mandelbrot set via
R(ϑ) := Φ−1

(
e2πiϑ(1,∞)

)
for ϑ ∈ S1. If two parameter rays R(ϑ) and R(ϑ′) land

at a common parameter c ∈ M, then we say that P (ϑ, ϑ′) = R(ϑ) ∪ R(ϑ′) ∪ {c} is a
parameter ray pair. It will be convenient to say that the parameter rays R(0) and R(1)
form a ray pair as well (although 0 = 1 in S1). As above, we say that a parameter ray
pair P (ϑ, ϑ′) separates two points c, c′ ∈ C if c and c′ are in different components of
C \ P (ϑ, ϑ′).

The following theorem is one of the fundamental results of Douady and Hubbard.
It is the basis of all results on the combinatorial structure of the Mandelbrot set.

9.1. Theorem (Parameter Ray Pairs at Periodic Angles)
For every period n, the parameter rays of the Mandelbrot set at angles with exact period
n land in pairs at parabolic parameters. Every parabolic parameter is the landing point
of exactly two parameter rays at periodic angles, and both angles have equal period.3

No parameter ray at non-periodic angle lands at a parabolic parameter.
Suppose R(ϑ) and R(ϑ′) are the two parameter rays landing at a parabolic parameter

c, where ϑ and ϑ′ are periodic angles of the same period n. Then the dynamic rays Rc(ϑ)
and Rc(ϑ

′) land together at a point of the parabolic orbit of pc and form a characteristic
ray pair. Conversely, if pc has a parabolic orbit, then at least two dynamic rays land
at each point of the parabolic orbit1; if Pc(ϑ, ϑ

′) is the characteristic ray pair of the
dynamic rays landing at the parabolic orbit, then the parameter rays R(ϑ) and R(ϑ′)
both land at c. 2

Most of this was shown in the Orsay Notes [DH1]; more recent proofs can be
found in [Mi2, PetR, Sch2]. The fact that parameter rays at non-periodic angles
cannot land at parabolic parameters additionally requires a deeper local study of the
Mandelbrot set near parabolic parameters; see [HY], [Ta4] or [Sch3].

This theorem implies that there is an involution on the set of periodic angles of
exact period n, associating to any n-periodic angle ϑ the unique angle ϑ′ such that

2This definition is sufficient for periodic ray pairs. For non-periodic rays, we allow a characteristic
ray pair to contain the critical value: a ray pair Pc(ϑ, ϑ

′) is characteristic if C \ Pc(ϑ, ϑ′) consists of
two components X0, X1 so that X0 contains all rays Rc(2

kϑ) and Rc(2
kϑ′) for k ≥ 1 and X1 contains

the critical value.
3For n = 1, there is only a single parameter ray R(0) = R(1), and only a single dynamic ray

Rc(0) = Rc(1); the statement still holds if we count these rays separately.
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P (ϑ, ϑ′) forms a ray pair. We say that ϑ and ϑ′ are conjugate angles and provide
two algorithms to calculate one from the other: one is known as Lavaurs’ algorithm
and determines the pairs of conjugate angles systematically in the order of increasing
periods (Algorithm 13.4); the other finds conjugate angles directly using the dynamics
of ray pairs (Algorithm 13.3). In Figure 9.2, we sketch the ray pairs of periods up to
4, and we draw the corresponding parameter rays of the Mandelbrot set (compare also
Figure 13.2).

1/15

2/15
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Figure 9.2. Left: Pairs of conjugate angles of periods up to 4 (schemat-
ically). Right: the corresponding parameter ray pairs of the Mandelbrot
set.

We will also need parameter rays at preperiodic angles. For these, we use the
following definition: a Misiurewicz-Thurston parameter is a parameter c ∈M for which
the critical orbit is strictly preperiodic4. The following result is due to Douady and
Hubbard’s Orsay Notes [DH1] with extensions by Yoccoz [HY] or Tan Lei [Ta3]; a
simplified approach is in [Sch2, Theorem 1.1].

9.2. Theorem (Parameter Rays at Preperiodic Angles)
Every parameter ray R(ϑ) at a preperiodic angle ϑ lands at a Misiurewicz-Thurston
parameter, and every Misiurewicz-Thurston parameter is the landing point of a finite
positive number of preperiodic parameter rays.

A Misiurewicz-Thurston parameter c is the landing point of a parameter ray R(ϑ)
if and only if, in the dynamical plane of pc, the dynamic ray Rc(ϑ) at the same angle

4The original definition of a Misiurewicz parameter is one where the critical orbit is non-recurrent.
In complex dynamics, this term is often used in the much stricter sense when the critical orbit is strictly
preperiodic (and hence non-recurrent). For clarity, we use the term Misiurewicz-Thurston parameter.
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9/56

11/56

15/56

9/56
11/5615/56

Figure 9.3. Illustration of Theorem 9.2. Left: there is a Misiurewicz-
Thurston parameter c ∈ M which is the landing point of the parameter
rays R(9/56), R(11/56) and R(15/56); right: in the dynamical plane of
this polynomial pc, the critical value is the landing point of the dynamic
rays Rc(9/56), Rc(11/56) and Rc(15/56).

lands at the critical value. All such rays have preperiodic angles; all angles have equal
preperiods and equal periods. 2

The following dynamical facts are often useful; the first part is [Mi2, Lemma 2.11]
(the “smallest sector”), the second one [Mi2, Lemma 2.7], and (4) is analogous to
Lemma 4.6. Check Milnor: Lemma 2.7 or 2.11?

9.3. Lemma (Permutation by First Return Map and Characteristic Ray
Pairs)
(1) Every orbit of periodic dynamic ray pairs has a unique characteristic ray pair; the
forward orbit of any preperiodic dynamic ray pairs has at least one characteristic ray
pair.
(2) If q ≥ 3 dynamic rays land at the same periodic point z of a quadratic polynomial,
then the first return map of z permutes its rays transitively. If q = 2, then the first
return map of z may or may not permute its two rays.
(3) If two rays Rc(ϑ) and Rc(ϑ

′) land a common periodic point z of period n, then a
ray Rc(ϑ

′′) lands at z if and only if ϑ′′ = 2knϑ or ϑ′′ = 2knϑ′ for some k ≥ 0.
(4) If z is the landing point of q ≥ 3 rays, including the characteristic ray pair, then the
connected components of C\{z} with these q rays removed can be labelled V1, . . . , Vq so
that V1 contains the critical value and the first return map of z maps Vj conformally
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onto Vj+1 for j = 1, 2, . . . , q− 2, and Vq contains the entire orbit of z (except the point
z itself).
(5) If the critical value is strictly preperiodic, then the dynamic rays landing at the
critical value subdivide C into finitely many sectors so that one of them contains the
entire postcritical orbit.

Proof. Suppose z is a repelling periodic point at which a characteristic periodic ray

pair Pc(ϑ, ϑ
′) lands. Let zi := p

◦(i−1)
c (z) for i = 1, 2, 3, . . . , and let n be the period of z.

Each zi is the landing point of the same number q ≥ 2 of periodic dynamic rays, and
these divide C into q open sectors at zi. The map pc is a bijection from the rays at zi
to the rays at zi+1, and this bijection preserves the cyclic order of the rays at zi and
zi+1 because pc is a local homeomorphism between neighborhoods of zi and zi+1.

If a sector V does not contain the critical point, then pc maps V conformally onto a
unique sector at zi+1. Otherwise, there is a unique sector V ′ at zi+1 so that pc : V → C
covers V ′ twice and C \ V ′ once, and V ′ contains the critical value (each sector at zi
other than V has a unique image sector at zi+1). In this case, we call V ′ the image
sector of V ; in fact, pc maps the restriction to V of a sufficiently small neighborhood
of zi to a neighborhood of zi+1 in V ′.

If a sector V is bounded by Rc(ϑ) and Rc(ϑ
′), we define its width w(V ) as the length

of the interval in S1 bounded by {ϑ, ϑ′} that contains all angles of rays in V , so that
always w(V ) ≤ 1. With respect to the sector dynamics defined above, every sector is
periodic (because its boundary rays are), and every cycle of sectors must contain at
least one sector containing the critical point (a sector V does not contain the critical
point if and only if w(V ) ≤ 1/2; in this case, the image sector has width 2w(V )).

Among all the qn sectors at all the n points zi, let V1 be one of minimal width,
and let V be the unique sector whose image sector is V1. Then V must contain the
critical point (because otherwise w(V ) = w(V1)/2 would contradict the choice of V1),
so V1 contains the critical value but cannot contain any zi. It follows that V1 is the
unique sector of minimal width, and the rays bounding V1 form the characteristic ray
pair. Uniqueness of the characteristic ray pair is clear; this proves (1) in the periodic
case. Thus any preperiodic ray pair has a characteristic periodic ray pair on its forward
orbit, and this is all we need to prove (1) also in the preperiodic case.

For items (2), (3) and (4) there is nothing to show if q = 2, so we may suppose
that q ≥ 3. It is easy to find a point zk at which a single sector, say V ′k , contains all zi
for i 6= k (start with some zi; if at least two sectors contain points zi′ , then one sector
contains a point zj with a sector that contains more points zi′ than any sector at zi).

Suppose that some sector V contains a point zi. Then either V maps onto its
image sector homeomorphically, so the image sector contains zi+1, or the image sector
contains the critical value and hence V1. In this case, the image sector either equals
V1 or it contains z1. We claim that every forward orbit of sectors must include V1: the
orbit must include a critical sector, hence a sector containing the critical value; this is
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either V1 (and we are done) or a sector containing z1. In the latter case, the orbit of
sectors either includes V1, or all sectors on this periodic orbit must contain some points
zi. Therefore the orbits of at least q − 1 sectors at zk must contain V1; but since the
sector dynamics preserves the cyclic order of sectors at the zi and q ≥ 3, this implies
that every sector at zk, and thus every sector at every zi eventually maps to V1, so all
sectors at all zi are on a single orbit. This proves claim (2) and (3).

The sector V1 contains no point zi, and as soon as some sector contains some point
zi, then all further image sectors will contain some point zi until V1 is reached again.
Therefore the sector orbit of V1 first visits all sectors that contain no zi. Since there
exists a point zk so that a single sector contains all zi 6= zk, the point z1 must have the
same property.

Label the sectors at z1 by V1, . . . , Vq in the order of the first return dynamics at
z1. Since V1, . . . , Vq−1 contain no point zi, it follows that p◦nc : Vi → Vi+1 is a conformal
isomorphism for i = 1, 2, . . . , q − 2. This proves claim (4).

For claim (5), let z1, . . . , zn be the periodic orbit that the critical orbit falls into,
and suppose again that each zi is the landing point of q ≥ 2 periodic rays, so that z1

is the characteristic point of the orbit. The sectors V1,. . . ,Vq−1 at z1 contain no point
on the forward orbit of z1. Let z0 be one of the two preimages of z1; then q − 1 of the
q sectors at z0 contain no point on the forward orbit of z1. Continue this pull-back
argument until the critical value is reached, and the claim follows. 2

We will need the following lemma from [GM, Lemma B.1].

9.4. Lemma (Stability of Rays Landing at Repelling Orbit)
Suppose a quadratic polynomial pc0 has the property that the periodic dynamic ray
Rc0(ϑ) is defined and lands at a repelling periodic point. Then there is a neighborhood
U of c0 so that for all c ∈ U , the dynamic ray Rc(ϑ) is defined and lands at a repelling
periodic point z(c) that depends holomorphically on c. 2

The following result is fundamental for the transfer of many combinatorial results
between dynamical planes and parameter space; see Figure 9.4 for an illustration.

9.5. Theorem (Correspondence Theorem for (Pre-)Periodic Ray Pairs)
For every parameter c ∈ C, there is a bijection between

• ray pairs P (ϑ, ϑ′) in parameter space at periodic or preperiodic angles ϑ, ϑ′ ∈ S1

which separate 0 from c (the parameter), and
• characteristic ray pairs Pc(ϑ, ϑ

′) in the dynamical plane of pc(z) = z2 + c at
periodic or preperiodic angles ϑ, ϑ′ ∈ S1 which land at repelling periodic or
preperiodic points and which separate 0 from c (the critical value);

this bijection preserves external angles.

Proof. Consider a polynomial pc1 and suppose there is a characteristic ray pair
Pc1(ϑ, ϑ

′) landing at a repelling periodic point, say z1. Let U ⊂ C be the set of
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c c

Figure 9.4. Illustration of Theorem 9.5. Left: a parameter c ∈ C is
marked and several parameter ray pairs separating 0 and c are shown:
(beginning with the ray pairs closest to c) P (23
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of pc, the dynamic ray pairs at the same angles separate 0 and c.

parameters c that have a characteristic ray pair Pc(ϑ, ϑ
′) landing at a repelling periodic

point, say z(c). By Lemma 9.4, U is open, and for c ∈ ∂U , one of the dynamic rays
Rc(ϑ), Rc(ϑ

′) is either not defined or, if it is, then it does not land at a repelling orbit.
This implies that if c ∈ ∂U ∩M, then Rc(ϑ) or Rc(ϑ

′) lands at a parabolic periodic
point, while if c ∈ ∂U \ M, then the ray Rc(ϑ) or Rc(ϑ

′) must fail to exist. The
latter condition means the critical value must be contained in one of the dynamic rays
Rc(2

kϑ), Rc(2
kϑ′) for k ≥ 1, and the fundamental formula Φ(c) := Φc(c) implies that

the parameter c must be on one of the finitely many parameter rays R(2kϑ), R(2kϑ′)
for k ≥ 1.

There are only finitely many parameters c with parabolic orbits at which dynamic
rays of given period land because by Theorem 9.1 each of these parameters must be
the landing point of a parameter ray at a periodic angle of the same period.

We have c1 ∈ U and 0 6∈ U , so ∂U 6= ∅ and it follows that ∂U consists of finitely
many parameter rays plus finitely many parabolic parameters, and in particular that
U intersects C \M. But for a parameter c ∈ C \M, the definition of the characteristic
ray pair Pc(ϑ, ϑ

′) implies that the critical value c must be on a dynamic ray at external

angle ϑ̃ ∈ (ϑ, ϑ′). Therefore, ∂U consists exactly of the two parameter rays R(ϑ) and
R(ϑ′) together with their common landing point (in fact, this argument shows that
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R(ϑ) and R(ϑ′) must land; this is a key argument in Milnor’s proof of Theorem 9.1).
It follows that the parameter c1 is separated from the origin by the parameter ray pair
P (ϑ, ϑ′).

The argument in the preperiodic case is similar, with the following difference: the
landing point z(c) of the dynamic ray pair Pc(ϑ, ϑ

′) is preperiodic, and a parameter
c ∈ ∂U ∩M can either be parabolic as above, or it can be such that the critical value
intersects the forward orbit of z(c), which means that the critical value c is preperiodic
with an upper bound on period and preperiod. Such parameters c satisfy a polynomial
equation of fixed degree, so there are only finitely many such parameters and we con-
clude as above that U is bounded by the two preperiodic parameter rays R(ϑ) and R(ϑ′)
and their common landing point, which must necessarily be a Misiurewicz-Thurston
parameter.

For the converse, suppose there is a parameter ray pair P (ϑ, ϑ′) at periodic angles,
let c0 be their common landing point and let U be the domain separated from the origin
by this ray pair. By Theorem 9.1, the polynomial pc0 has a parabolic orbit and the
rays Rc0(ϑ) and Rc0(ϑ

′) form a characteristic ray pair landing at the parabolic orbit.
We only need to know that there exists a polynomial pc1 as above: this would prove as
in the first part that every c ∈ U has the property that pc has a characteristic dynamic
ray pair Pc(ϑ, ϑ

′) landing at a repelling orbit. The existence of c1 is shown by Milnor
[Mi2, Lemma 2.9].

If the parameter ray pair P (ϑ, ϑ′) has preperiodic angles, then the landing point is
a Misiurewicz-Thurston parameter c0 by Theorem 9.2, and for pc0 the dynamic rays
Rc0(ϑ) and Rc0(ϑ

′) land together at the critical value, which is a repelling preperiodic
point. We may assume that ϑ < ϑ′ are such that (ϑ, ϑ′) contains no further preperiodic
angle ϑ′′ for which R(ϑ′′) lands at c0. By Lemma 9.3 (5), (ϑ, ϑ′) contains no angle 2kϑ
or 2kϑ′ for k ≥ 0.

By Lemma 9.4, there is a neighborhood V of c0 in parameter space where the
dynamic rays Rc(ϑ) and Rc(ϑ

′) land together at a repelling preperiodic point z(c).
The map c 7→ z(c) − c is holomorphic and has an isolated zero at c0, and it follows
that there is a parameter c′ ∈ V for which the ray pair Pc′(ϑ, ϑ

′) separates the critical
value from the origin. By the first half of the theorem as shown above, this implies
that the parameter c′ is separated from the origin by P (ϑ, ϑ′). Since the interval (ϑ, ϑ′)
contains no angle 2kϑ, it follows that the ray pair Pc′(ϑ, ϑ

′) is characteristic, and every
parameter c′ in the domain bounded by P (ϑ, ϑ′) contains this characteristic preperiodic
ray pair P (ϑ, ϑ′). 2

Note that a ray pair Pc(ϑ, ϑ
′) at preperiodic angles may have several characteristic

ray pairs on its forward orbit: for instance, Pc(ϑ, ϑ
′) could be characteristic, and the

periodic angles on the forward orbit of ϑ and ϑ′ form another periodic ray pair.
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9.6. Lemma (Characteristic Angles Determine All Angles)
If Pc(ϑ, ϑ

′) is the characteristic ray pair of a periodic point z, then the angles of all
rays landing at z are determined uniquely by {ϑ, ϑ′}.

Proof. Let Θ be the set of angles of all rays landing at z. By Lemma 9.3, there are
only two possibilities: either the first return map of z permutes all rays at z transitively,
or z is the landing point of two rays, and both are fixed under the first return map of
z.

If ϑ and ϑ′ are on different orbits under multiplication by 2, then Θ = {ϑ, ϑ′}, and
no further ray can land at z. Otherwise, there is a k ≥ 1 so that 2kϑ = ϑ′. Since
Rc(ϑ) and Rc(ϑ

′) are adjacent rays landing at z (with respect to the cyclic order at
z), the map p◦kc permutes all rays landing at z transitively (the period of z might be
a proper divisor of k). Therefore, the entire set Θ is determined uniquely by the two
characteristic angles. 2

9.2. Hyperbolic Components, Wakes, Limbs, and Bifurcations. A rational
map is said to have hyperbolic dynamics if all critical orbits converge to attracting peri-
odic orbits (this is equivalent to the existence of a Riemannian metric in a neighborhood
of the Julia set that is uniformly expanded under the dynamics [Mi1, Theorem 19.1]).
Every attracting orbit is the limit of a critical orbit [Mi1, Theorem 8.6]. Specifically
for quadratic polynomials, this means that every pc can have at most one attracting
periodic orbit (other than the superattracting fixed point at ∞), and pc is hyperbolic
if and only either c 6∈ M (so the unique finite critical orbit converges to the superat-
tracting fixed point at ∞), or c ∈ M and pc has an attracting periodic orbit (which
must attract the finite critical orbit).

A hyperbolic component of the Mandelbrot set is a component W of the set of
polynomials pc which have attracting periodic orbits. The period of the attracting
orbit is constant on the component, and the attracting orbit has a multiplier µ(c) ∈ D.
This defines a multiplier map µW : W → D. The center of W is a point cW ∈ W with
µW (cW ) = 0, and the root of W is a point rW ∈ ∂W with µ(c)→ 1 as c→ rW within
W .

9.7. Theorem (Hyperbolic Components [DH1, Mi2, Sch2])
For every hyperbolic component W , the multiplier map is a conformal isomorphism
µW : W → D which extends to a homeomorphism µW : W → D; in particular, ev-
ery hyperbolic component has a unique center and a unique root. Different hyperbolic
components of equal period have disjoint closures.

Every parameter ray pair at periodic angles of period n lands at the root of a hy-
perbolic component of period n. Conversely, for every hyperbolic component of period
n, the root is the landing point of a parameter ray pair of period n, and (for n ≥ 2)
this parameter ray pair separates W from the origin. 2
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A point of bifurcation is a parabolic parameter which is on the common boundary
of two hyperbolic components, necessarily of different periods by Theorem 9.7. A
hyperbolic component whose root is a point of bifurcation is called a component of
satellite type; all other hyperbolic components are called primitive; see Figure 9.5.

Suppose a parabolic orbit has orbit period k, ray period n = qk and multiplier µ.
Then every parabolic periodic point is the landing point of q rays (if q ≥ 2) or of 2
rays (if q = 1 and k > 1). If the combinatorial rotation number of the q rays is p/q,
then µ = e2πip/q: the dynamic rays land at parabolic periodic points through well-
defined repelling directions, hence tangentially; the permutation of the dynamic rays
is determined by the permutation of the repelling directions at the parabolic periodic
points, and the latter has combinatorial rotation number p/q if µ = e2πip/q. It follows
that n = k if and only if µ = 1.

A proof of the following result can be found in [Sch2, Lemma 5.1].

9.8. Lemma (Primitive and Satellite Hyperbolic Components)
Let W be a hyperbolic component with root c. Suppose that the parabolic orbit of pc has
orbit period k and ray period n. The component W is primitive if and only if n = k
and the parabolic orbit has multiplier µ = 1; W is of satellite type if and only if n > k
and µ 6= 1. 2

4
6

Figure 9.5. Left: a primitive hyperbolic component of period 4; right:
a satellite type component of period 6.
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9.9. Definition (Wake and Limb, Width of Wake)
For a hyperbolic component W of M of period n ≥ 2, the wake WW of W is defined as
the open subset of C that is separated from the parameter c = 0 by the parameter ray
pair landing at the root rW of W . For the unique component of period 1, we define its
wake to be C\[1/4,∞). The width of the wake of W is defined as |W | := |ϑ′−ϑ|, where
P (ϑ, ϑ′) is the parameter ray pair bounding the wake of W . The limb of a hyperbolic
component W is LW :=WW ∩M.

9.10. Theorem (Wakes and Dynamics)
Consider a hyperbolic component W and let P (ϑ, ϑ′) be the two parameter rays bounding
the wake WW .

(1) Then WW is the locus of parameters c so that pc has a repelling periodic point
zc which is the landing point of a characteristic dynamic ray pair Pc(ϑ, ϑ

′).
(2) Let q ≥ 2 be the number of dynamic rays landing at zc. The first return map of

zc induces a cyclic permutation among these q rays with combinatorial rotation number
p/q for some p ∈ {0, 1, 2, . . . , q − 1}.

(3) If W is primitive, then q = 2 and p = 0. If W is of satellite type, and in
particular if q ≥ 3, then p is coprime to q (and p 6= 0).

(4) In any case, the multiplier of the parabolic orbit at the landing point of P (ϑ, ϑ′)
equals e2πip/q.

(5) For parameters c /∈ WW , the two dynamic rays Rc(ϑ) and Rc(ϑ
′) do not land

at a common point (or do not land at all).
(6) The root of W is the unique parameter c for which there is a characteristic

dynamic ray pair Pc(ϑ, ϑ
′) landing at a parabolic periodic point.

(7) We have W ⊂ WW . Moreover, if c0 is the root of a hyperbolic component W
and c ∈ W arbitrary, then the dynamic rays at the same angles land at a common point
for pc0 and for pc.

Proof. Claim (1) is Theorem 9.5. The q rays landing at zc are permuted cyclically
by the first return map of zc; since this first return map is a local homeomorphism
near zc, the rays have a well-defined combinatorial rotation number p/q for some p ∈
{0, 1, . . . , q − 1}. This is claim (2).

Let c0 be the landing point of P (ϑ, ϑ′). This is a parabolic parameter, and by
Theorem 9.1 the dynamic rays Pc0(ϑ, ϑ

′) land at the parabolic orbit and form its
characteristic ray pair; let zc0 be their landing point. By Lemma 9.6, the rays at the
same angles land at zc0 and at zc for all c ∈ U . The first return map of zc0 permutes
these rays with combinatorial rotation number p/q, and this implies that the parabolic
orbit has multiplier µ0 = e2πip/q. This is claim (4).

If the component W is primitive, then by Lemma 9.8 n = k and µ0 = 1, hence
p = 0; this implies q = 2 by Lemma 9.3. If W is of satellite type, then µ0 6= 1
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and n > k, hence p ∈ {1, 2, . . . , q}. Lemma 9.3 implies that all q rays are permuted
transitively, so p is coprime to q; this is claim (3).

Suppose for some c /∈ WW , there is a dynamic ray pair Pc(ϑ, ϑ
′); it is then not

characteristic. Let Pc(ϕ, ϕ
′) be the associated characteristic ray pair. By definition,

(ϕ, ϕ′) ⊂ (ϑ, ϑ′) and c must be contained in the wake bounded by P (ϕ, ϕ′). This wake
is contained in WW , and this contradiction proves (5).

For (6), let c0 be the root of W and hence the landing point of P (ϑ, ϑ′). By
Theorem 9.1, pc0 is the unique quadratic polynomial with a parabolic periodic point
that is the landing point of a characteristic dynamic ray pair Pc(ϑ, ϑ

′).
Finally, we discuss (7). The fact that for any two periodic angles ϕ, ϕ′ there is a

periodic dynamic ray pair Pc0(ϕ, ϕ) if and only there is a a ray pair Pc(ϕ, ϕ
′) (necessarily

landing at a repelling orbit) follows from Corollary [Sch2, Corollary 5.3] or [Mi2,
Theorem 4.1]. This implies W ⊂ WW . 2

Remark. Let c0 be the root of a hyperbolic component W . Denote the orbit period by
k and the ray period by n. When the parameter is perturbed intoW , the parabolic orbit
splits up into one repelling orbit of period k that inherits all rays from the parabolic
orbit, and one orbit of period n that is attracting throughout W (compare [DH1],
[Mi2, Theorem 4.1] and [Sch2, Lemma 5.1 and Corollary 5.3]).

9.11. Proposition (Bifurcations)

(1) Let W be a hyperbolic component of some period n ≥ 1. Every boundary point
cp/q := µ−1

W (e2πip/q) (with q ≥ 2 and p coprime to q) is a bifurcation point: it
is the root of a unique hyperbolic component Wp/q; the component Wp/q is of
satellite type and has period qn.

(2) The closures of any two hyperbolic components intersect at most in one point;
and if they do, the intersection is a bifurcation as in (1).

(3) If c is the point of bifurcation from a hyperbolic component of period n to a
hyperbolic component of period qn, then the two parameter rays landing at c
separate these two components from each other so that the origin is on the
same side of the separation as the component of period n.

(4) Let P (ϑ, ϑ′) be a periodic parameter ray pair with ϑ < ϑ′ and let W be the
hyperbolic component whose root rW is the landing point of P (ϑ, ϑ′). Then the
angles ϑ, ϑ′ are on different orbits under multiplication by 2 if and only if W
is primitive.

Statements (1) and (2) can be found in [Mi2, Section 6] and [Sch2, Section 5].
Statement (4) is in [Mi2, Section 6]. For statement (3), let W be the hyperbolic
component with root c so that W has period qn. Recall from Definition 9.9 that the
wake WW is bounded by the two parameter rays landing at c. We have W ⊂ WW by
Theorem 9.10 (7). Let W0 be the component of period n so that c is the bifurcation
point from W0 to W . It follows from [Mi2, Lemma 4.4] that W0 ∩WW = ∅. 2
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9.12. Definition (Subwakes and Sublimbs)
In the setting of Proposition 9.11 (1), we say that Wp/q is a bifurcation of W at internal
angle p/q. Wake and limb of Wp/q are called the p/q-subwake and p/q-sublimb of W .

Clearly, all subwakes Wp/q have disjoint closures.

We also define subwakes for Misiurewicz-Thurston parameters as follows: suppose
c is the landing point of finitely many parameter rays, say R(ϑ1), . . . , R(ϑk) (with
k ≥ 1), where all ϑi are strictly preperiodic. A subwake of c is defined as a component
of C \ ({c} ∪ R(ϑ1) ∪ · · · ∪ R(ϑk)) other than the component containing the origin. A
sublimb is the intersection of the subwake with M.

Different subwakes of a Misiurewicz-Thurston parameter c have different char-
acteristic preperiodic ray pairs by Theorem 9.5: if c′ is in the subwake bounded
by P (ϑi, ϑi+1), then Pc′(ϑi, ϑ

′
i) is characteristic. The dynamic rays Pc′(ϑi/2) and

Pc′(ϑi+1/2) land together unless c′ is in the subwake bounded by P (ϑi, ϑi+1). It follows
that the Misiurewicz-Thurston subwakes can be distinguished by the patterns of which
preperiodic dynamic rays land together.

Suppose two parameters c, c′ ∈M are such that c ∈ WW implies c′ ∈ WW for every
hyperbolic component W . In a combinatorial sense, this means that c′ is further away
from the origin than c. We say that c′ is combinatorially at least as great as c and
write c′ � c. In this sense, we have monotonicity of periodic ray pairs : for every ray
pair Pc(ϕ, ϕ

′) at periodic angles there is a corresponding ray pair Pc′(ϕ, ϕ
′) (going out

combinatorially only adds extra combinatorial ray pairs). The corresponding statement
for preperiodic ray pairs is false: for example, a polynomial pc has a dynamic ray pair
Pc(9/56, 11/56) landing at a repelling orbit if and only if c is separated from the origin
by P (1/7, 2/7) but not by P (9/56, 11/56). This is related to the fact mentioned earlier
that preperiodic ray pairs may have several characteristic ray pairs.

9.3. Combinatorial Classes. We now review a number of important theorems
about the structure of the Mandelbrot set which deal with its combinatorial structure
as generated by periodic or preperiodic parameter rays. In fact, the periodic parameter
rays alone determine the entire combinatorial structure (every non-periodic parameter
ray pair is a limit of periodic parameter ray pairs, see Theorem 9.29). Conjecturally, the
entire topological structure of M is determined by the periodic parameter rays: this is
a consequence of the famous MLC conjecture the Mandelbrot set is Locally Connected;
compare Sections 9.4 and 24 make sure explanation is there! .

9.13. Theorem (The Branch Theorem)
Let W and W ′ be two hyperbolic components of the Mandelbrot set. Then exactly one
of the following is true:

• W is contained in the wake of W ′, or vice versa;
• there is a hyperbolic component W0 so that W and W ′ are contained in two

different sublimbs of W0;
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• there is a Misiurewicz-Thurston parameter c so that W and W ′ are contained
in two different sublimbs of c. 2

This theorem is the main result of the theory of nervures in [DH1, Exposés XX–
XXII] which in turn is the main motor for the proof of Douady and Hubbard [DH1,
Exposé XXII.4] that local connectivity of M implies that hyperbolicity is dense in the
space of quadratic polynomials (see also [Sch3, Theorem 3.1 and Corollary 4.6]).

9.14. Corollary (Local Connectivity Implies Density of Hyperbolicity)
If M is locally connected, then hyperbolic dynamics is open and dense in the space of
quadratic polynomials.

Proof. Hyperbolic dynamics is clearly open: if all critical orbits converge to at-
tracting orbits for a particular rational map, then this persists under sufficiently small
perturbations of the map.

Every hyperbolic component W of M satisfies ∂W ⊂ ∂M because parabolic param-
eters are dense on ∂W and these are landing points of parameter rays by Theorem 9.1.
Therefore each component of the interior of M is either hyperbolic or non-hyperbolic;
since all pc with c 6∈ M are hyperbolic, we need to prove that every component of the
interior of M is hyperbolic.

Suppose there is a non-hyperbolic component V of the interior of M; we have ∂V ⊂
∂M. Pick any three different parameters c1, c2, c3 ∈ ∂V . If M is locally connected, then
every ci is the landing point of a parameter ray R(ϑi). Since ∂V is uncountable, we
may assume that no ci the landing point of a parameter ray at rational angle, and
in particular that all ϑi are neither periodic nor preperiodic. Suppose without loss of
generality that ϑ1 < ϑ2 < ϑ3. There are parameter ray pairs P (ϕ1, ϕ

′
1) and P (ϕ2, ϕ

′
2)

at periodic angles with ϑ1 < ϕ1 < ϕ′1 < ϑ2 < ϕ2 < ϕ′2 < ϑ3 (for every periodic angle
ϕ1 ∈ (ϑ1, ϑ2) there is a parameter ray pair P (ϕ1, ϕ

′
1) by Theorem 9.1, and it must

satisfy the claim). Let W1 and W2 be the hyperbolic components whose roots are the
landing points of the parameter ray pairs P (ϕ1, ϕ

′
1) and P (ϕ2, ϕ

′
2)

By the Branch Theorem 9.13, there must be either a hyperbolic component W0 or
a Misiurewicz-Thurston parameter c so that W1 and W2 are in two different subwakes
of W0 or of c. In the second case, at least three parameter rays must land at c in order
to define different subwakes for W1 and W2. The component V must be in one of the
two subwakes, or outside of all subwakes of c, and c is different from c1, c2, c3. In all
cases, at least one of the three rays R(ϑ1), R(ϑ2), R(ϑ3) must be in a different subwake
than V and cannot land at V , and this is a contradiction.

In the first case, the component W0 and the boundaries of the two subwakes contain-
ing W1 and W2 provide a separation between R(ϑ2) and the two rays R(ϑ1), R(ϑ3), and
this is a contradiction again (by construction no R(ϑi) lands at a parabolic parameter).

2
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All bifurcations at hyperbolic components occur at parabolic boundary points (i.e.,
at points c ∈ ∂W with µW (c) ∈ exp(2πiQ)); this result is sometimes quoted as saying
that “there are no ghost limbs”: all decorations to a hyperbolic component occur at
rational internal angles.

9.15. Theorem (No Irrational Sublimbs)
For every hyperbolic component W , we have

LW ∪ {rW} = W ∪
⋃
p/q

LWp/q
,

where the infinite union runs over all p/q ∈ (0, 1) in lowest terms. In words: the limb
of the component W (union the root of W ) is the disjoint union of the component, its
boundary, and all sublimbs at rational internal angles. 2

The original proof uses the Yoccoz inequality [HY, Theorem I]; an alternate proof
can be found in [Sch3, Theorem 2.3].

9.16. Corollary (Irrational Internal Angles)
For every hyperbolic component W of M and every irrational (internal) angle ϕ ∈ S1,
there is a unique external angle ϑϕ ∈ S1 so that the parameter ray R(ϑϕ) lands at the
boundary point µ−1

W (e2πiϕ). Moreover, we have

WW = W ∪
⋃
p/q

WWp/q
∪

⋃
ϕ∈S1irrational

(
R(ϑϕ) ∪ µ−1

W (e2πiϕ)
)
, (5)

where the first infinite union runs over all p/q ∈ (0, 1) in lowest terms. In particular,
if a parameter ray R(ϑ) is in the wake of W but not in any subwake at rational internal
angle, then ϑ = ϑϕ for some irrational ϕ ∈ S1, and R(ϑ) lands at ∂W .

Proof. For irrational ϕ ∈ S1, consider two sequences ϕk ↗ ϕ and ϕ′k ↘ ϕ of rational
angles in S1. Every ck := µ−1

W (ϕk) and every c′k := µ−1
W (ϕ′k) is the landing point of

a parameter ray R(ϑk) or R(ϑ′k) by Theorem 9.1. The sequence ϑk is monotonically
increasing and ϑ′k is monotonically decreasing, and we have ϑk < ϑ′k for all k. Therefore,
Θ :=

⋂
k[ϑk, ϑ

′
k] is non-empty, and for all ϑ ∈ Θ, the parameter ray R(ϑ) must land at

µ−1
W (e2πiϕ) by Theorem 9.15 (all limit points of the ray must be in ∂M, and all other

points in ∂M are inaccessible for R(ϑ)). By the Riesz theorem [Mi1, Theorem A.3] (or
by the combinatorial estimate in Proposition 9.24), there can be only one such angle
ϑ, and this proves the first claim.

The restriction of (5) to M is the statement of Theorem 9.15. So consider some
parameter ray R(ϑ) in WW . If it is not in the closure of some subwake, then every
limit point of R(ϑ) must be in ∂W ; and since parabolic parameters are dense on ∂W
and these are landing points of parameter rays by Theorem 9.1, it follows that R(ϑ)
lands at a well-defined point on c ∈ ∂W , hence c = µ−1

W (e2πiϕ) for some ϕ ∈ S1. If c is
not parabolic, then ϕ must be irrational. 2
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The external angles ϑϕ that occur in this corollary have many interesting properties.
For instance, these are exactly the angles that are irrational and have finite internal
addresses (this follows directly from Algorithm 11.3), and this implies that the angles
ϑϕ are exactly those angles that generate periodic kneading sequences without ?; see
also Theorem 14.10. There are interesting number theoretic relations between the
internal angle ϕ and the associated external angle ϑϕ; see [BuS] and Section ??.

Theorem 9.15 (or equivalently Corollary 9.16) implies that the Mandelbrot set is
locally connected at all boundary points of hyperbolic components, except possibly at
roots of primitive components. The following stronger result from [Sch3, Corollary 6.3]
implies local connectivity at all boundary points of hyperbolic components. For a
different argument, see [Ta4, Theorem 1.1 and Corollary D.6].

9.17. Theorem (Trivial Fibers of Indifferent Parameters)
Suppose that pc has an indifferent orbit and c′ ∈ M is so that there is no hyperbolic
component W of M with c, c′ ∈ W . Then there is a parameter ray pair at periodic
angles which separates c and c′. 2

9.18. Definition (Combinatorial Class)
A combinatorial class in the Mandelbrot set is an equivalence class where two param-
eters c, c′ ∈ M are equivalent if for pc and pc′ the dynamic rays at the same periodic
angles form ray pairs, i.e., there is a dynamic ray pair Pc(ϑ, ϑ

′) if and only if there is
a dynamic ray pair Pc′(ϑ, ϑ

′), for all periodic angles ϑ, ϑ′.

9.19. Proposition (Combinatorial Class)
Two parameters c, c′ ∈ M belong to different combinatorial classes if and only if one
of the following two (mutually exclusive) conditions are satisfied:

• they are separated by a parameter ray pair at periodic angles;
• there is a hyperbolic component W of M with c, c′ ∈ W and at least one of c

and c′ is a parabolic boundary point of W other than the root of W .

Proof. If c and c′ are separated by a parameter ray pair P (ϑ, ϑ′) at periodic angles,
then exactly one of them (say c) is in the wake bounded by P (ϑ, ϑ′) and by Theorem 9.5
there is a characteristic dynamic ray pair Pc(ϑ, ϑ

′) landing at a repelling orbit for pc
but there is no such ray pair for pc′ ; and a ray pay Pc(ϑ, ϑ

′) landing at a parabolic orbit
exists only at the landing point of P (ϑ, ϑ′) by Theorem 9.1.

Suppose c, c′ ∈ W and c ∈ ∂W is a parabolic parameter other than the root of W .
Let ϑ, ϑ′ be the two characteristic angles of the parabolic orbit. A parameter c′′ has a
characteristic periodic ray pair Pc′′(ϑ, ϑ

′) landing at a repelling orbit if and only c′′ is
in the wake with root c; but W is outside of this wake by Proposition 9.11 (3). The
parameter c′′ has such a ray pair landing at a parabolic orbit only if c′′ = c (because
c′′ must be the landing point of R(ϑ) and R(ϑ′) by Theorem 9.1). Therefore, c and c′

belong to different combinatorial classes.
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For the converse, suppose the combinatorial classes of c and c′ are different. Suppose
without loss of generality that pc has a periodic ray pair Pc(ϑ, ϑ

′) that pc′ does not have.
If the ray pair Pc(ϑ, ϑ

′) in pc lands at a repelling orbit, then c is in the wake bounded
by P (ϑ, ϑ′) but c′ is not (Theorem 9.5), and c′ cannot be in the wake boundary by
Theorem 9.1; thus the parameter ray pair P (ϑ, ϑ′) separates c and c′. The other
possibility is that the ray pair Pc(ϑ, ϑ

′) lands at a parabolic orbit. Then c is the root
of a hyperbolic component W , while c′ is not in the wake of W . If c is not separated
from c′ by a periodic ray pair, then by Theorem 9.17, this means that c and c′ are both

in the closure of some hyperbolic component W ′, and W ′ 6= W because c′ ∈ W ′
is not

in the wake of W . Therefore c is the bifurcation point between W and W ′. The point
c is the root of W , hence not the root of W ′. 2

9.20. Corollary (Hyperbolic Component and Combinatorial Class)
Every hyperbolic component is contained in a single combinatorial class: this class
consists of the component, its root, and all its boundary points at irrational internal
angles, but no other point. 2

Combinatorial classes of Misiurewicz-Thurston points are easy to describe; proofs
can be found in [Ta3, Sch3] (see also [HY]).

9.21. Theorem (Fiber of Misiurewicz-Thurston Point)
If c is a Misiurewicz-Thurston point and c′ ∈M \ {c}, then there is a parameter ray at
periodic angles separating c∗ from c. In particular, every Misiurewicz-Thurston point
is its own combinatorial class. 2

A substantial body of work has been devoted to proving that many combinatorial
classes are points; see Section 9.4.

9.4. Local Connectivity and Fibers. The principal conjecture about the Man-
delbrot set is called MLC: the Mandelbrot set is locally connected. This would have a
number of implications:

Topological models: there are a number of combinatorial-topological models
for the Mandelbrot set, such as the pinched disk model related to Thurston’s
quadratic minor lamination (see Section 24). These models are homeomorphic
to M if and only if M is locally connected, so the topology of M would be
completely described in terms of combinatorics and symbolic dynamics [D3].

Rigidity: a related point of view has been nicknamed by Douady as points are
points: combinatorics of periodic dynamic rays distinguishes combinatorial
classes of M. Non-hyperbolic combinatorial classes can be viewed as “combina-
torial points”, and MLC is equivalent to the statement that all non-hyperbolic
combinatorial classes in M are points in C. This is sometimes called combi-
natorial rigidity of M. (We will introduce below the concept of fibers of M;
then MLC is equivalent to the statement that all fibers of M are points.)
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Landing of Parameter Rays: local connectivity of M is equivalent to the
statement that every parameter ray lands and the landing points depend con-
tinuously on the angle; then every c ∈ ∂M is the landing point of a finite
positive number of rays. This gives a continuous surjection Ψ: S1 → ∂M
which is sometimes called the Carathéodory loop of M. In fact, one can ex-
plicitly describe in combinatorial terms whether Ψ(ϑ) = Ψ(ϑ′)5.

Geometry: certain statements about geometric properties of ∂M can be made
only under the hypothesis of MLC, such as statements on the Hausdorff di-
mension of biaccessible parameters in M in Section 17. There are more and
better references!

Density of Hyperbolicity: local connectivity of M implies that hyperbolic dy-
namics is dense in the space of quadratic polynomials. This is one of the main
results of the Orsay Notes of Douady and Hubbard [DH1]; see Corollary 9.14.
Hyperbolic dynamical systems are particularly easy to understand, and it is
part of the general philosophy of dynamical systems that while it may be diffi-
cult to analyze each individual system, one should try to understand an open
dense subset (or a full measure subset) of cases.

There is some subtle confusion of notation: if M (or any compact connected subset
of C so that C \M is connected) is locally connected at some point c ∈ ∂M, this does
not imply that c is the landing point of a parameter ray. Counterexamples are provided
by comb-like structures as in Figure 9.6; see [Sch3] for a detailed discussion. A more
appropriate notion is that of a fiber of a point in M; the following discussion is taken
from [Sch3].

Figure 9.6. This compact connected and full set K ⊂ C is locally
connected at the center, but no ray (or even a curve in C \K) can land
at the center. No matter which external rays are used to define fibers
of K, the fiber of the center must always contain the vertical interval at
the center (which belongs to K by compactness).

5The condition is that ϑ and ϑ′ are both periodic or both non-periodic, that they have the
same angled internal address and, if ϑ 6= ϑ′ are non-periodic, that their internal address is infinite
Section 11). The quotient S1/ ∼ with ϑ ∼ ϑ′ iff Ψ(ϑ) = Ψ(ϑ′), is an explicit topological topological
model for ∂M (still under the condition of MLC).
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9.22. Definition (Fibers of M)
Two points c, c′ ∈M can be separated if one the following two conditions is satisfied:

(1) there is a parameter ray pair P (ϑ, ϑ′) at periodic angles that separates c and
c′;

(2) there are two parameter rays R(ϑ) and R(ϑ′) at periodic angles landing on
the boundary of the same hyperbolic component W , and there is a curve γ ⊂
W connecting these two landing points, so that R(ϑ), R(ϑ′) and γ together
separate c and c′.

The fiber of a point c ∈M consists of the set of all points in M that cannot be separated
from c.

A fiber is trivial if it consists of a single point.

Fibers are compact and connected subsets of M, and different points have either
identical or disjoint fibers (the original definition involves parameter rays at periodic
or preperiodic angles, but these definitions are equivalent; see [Sch3, Section 8]). For
every c ∈ M with trivial fiber, it follows easily that M is locally connected at c. This
is not known to be an equivalence, and this difference is important: a parameter c
is necessarily the landing point of one or several parameter rays if the fiber of c is
trivial (but not necessarily if M is locally connected at c: see Figure 9.6). Moreover,
if the fiber of c is trivial, then the following holds: if the impression of a parameter
ray R(ϑ) contains c, then the impression equals {c}, and in particular R(ϑ) lands at
c (impressions are defined in (19) in Section 17). In general, the impression of an
arbitrary parameter ray is contained in a single fiber.

Even though triviality of the fiber of c ∈ M is stronger than local connectivity,
there is a converse as follows: if M is locally connected at all points in the fiber of c,
then the fiber of c is trivial [RS]. In particular, M is locally connected everywhere if
and only if all fibers of M are trivial.

The following statements follow directly from Section 9.3; see also [Sch3].

9.23. Corollary (Fibers, Hyperbolic Components, and Combinat. Classes)
Every point on the closure of a hyperbolic component and every Misiurewicz-Thurston
point has trivial fiber. For every point which is not on the closure of a hyperbolic
component, its fiber is exactly the set of parameters c′ that cannot be separated from c
by a periodic parameter ray pair (separation lines through hyperbolic components are
not necessary in this case). A combinatorial class which does not intersect the closure
of a hyperbolic component is exactly equal to a fiber.

There has been a lot of deep work to prove that many further boundary points of
M have trivial fibers, notably by Yoccoz [HY], Lyubich and coauthors [Ly2, ?] (even
though sometimes only the weaker result is stated that M is locally connected at that
point).
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9.5. More on Combinatorics of Wakes and Ray Pairs. We had defined
widths of wakes in Definition 9.9. We now give a useful formula for these widths
at bifurcations.

9.24. Proposition (Width of Wake)
If W is a hyperbolic component of some period n and Wp/q is the bifurcation component
of W at internal angle p/q in lowest terms, then the widths of the wakes W and Wp/q

are related as follows:

|Wp/q| = |W |
(2n − 1)2

2qn − 1
.

In particular, the width of the wake of Wp/q does not depend on p. Moreover,

|W | =
∑
p,q

|Wp/q| .

In other words, almost every ray in the wake of W is contained in one of its rational
subwakes (the summation is over all p/q ∈ (0, 1) with p coprime to q).

This result helps to determine periods of hyperbolic components that occur within
the wake of a given component W : if k is the least period of hyperbolic components
occurring in WW , then k equals the least integer so that |W | ≥ 1/(2k − 1). To see
this, recall that the width of a component of period k is at least 1/(2k−1), so we must
have |W | ≥ 1/(2k − 1). Conversely, if |W | ≥ 1/(2k − 1), then WW contains at least
one parameter ray of period k (or dividing k) and hence one component of period k
or dividing k; but a component whose period strictly divides k would have period less
than k, and this is impossible.

To prove the proposition, we need the following two lemmas.

9.25. Lemma (Summing Up Widths of Subwakes)
For every n ≥ 1, we have ∑

p,q

1

2nq − 1
=

1

(2n − 1)2
,

where the sum is over all (p, q) with q ≥ 1 and p ∈ {1, . . . , q − 1} coprime to q.

Proof. This is a matter of clever rearrangement as in [GM]. We calculate∑
p,q

1

2nq − 1
=

∑
q≥2

∑
p⊥q

(
2−nq + 2−2nq + 2−3nq + . . .

)
=
∑
q≥2

∑
p⊥q

∑
k≥1

2−knq

?
=

∑
q≥2

∑
p=1,...,q−1

2−nq =
∑
p≥1

∑
q>p

2−nq =
∑
p≥1

2−np

2n − 1
=

1

(2n − 1)2
.

The crucial step is marked with a ?. The summations before, marked with p ⊥ q,
involve only p ∈ {1, . . . , q − 1} coprime to p. For such a pair (p, q), we associate the
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term 2−knq to the pair (kp, kq) in the next sum, so in the second line we sum over all
pairs (p, q), coprime or not. The rest is just the geometric series. 2

9.26. Lemma (Preperiodic Ray Pair Behind Characteristic Ray Pair)
Suppose that for a parameter c ∈ C, there is a periodic dynamic ray pair Pc(ϑ, ϑ

′)
which is characteristic and has period n. Then there is a unique preperiodic ray pair
Pc(ϑ̃, ϑ̃

′) with ϑ < ϑ̃ < ϑ̃′ < ϑ′ so that 2n : (ϑ, ϑ̃)→ (ϑ, ϑ′) and 2n : (ϑ̃′, ϑ′)→ (ϑ, ϑ′) are

homeomorphisms (Figure 9.7); it satisfies |ϑ̃′ − ϑ̃| = (1− 2 · 2−n)|ϑ′ − ϑ|. The ray pair

Pc(ϑ̃, ϑ̃
′) is characteristic if and only if it separates the critical value from the origin.

Let U ⊂ C be the component of C \ Pc(ϑ, ϑ′) containing the critical value and

let U1 ⊂ C be the domain bounded by the ray pairs Pc(ϑ, ϑ
′) and Pc(ϑ̃, ϑ̃

′). Then
the restriction pc|U1 : U1 → U is a branched cover of degree 2. All the domains U ,

pc(U1),. . . ,p
◦(n−1)
c (U1) are disjoint.

R(ϑ)R(ϑ̃)
R(ϑ̃′)R(ϑ′)

U

Un

Un−1

U2

U1

Figure 9.7. Illustration of Lemma 9.26, for n = 4: the narrow strip
between Pc(ϑ, ϑ

′) and Pc(ϑ̃, ϑ̃
′) is U1, and the domain separated from the

origin by Pc(ϑ, ϑ
′) is U ⊃ U1; the map pc : U1 → U is a covering of degree

2.

Proof. The domain Un := p−1
c (U) is bounded by the two ray pairs Pc(2

n−1ϑ, 2n−1ϑ′)
and Pc(2

n−1ϑ + 1/2, 2n−1ϑ′ + 1/2). Since Pc(ϑ, ϑ
′) is characteristic, U is disjoint from

the rays Rc(2
kϑ) and Rc(2

kϑ′) for all k ≥ 0, and Un enjoys the same property.
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Define recursively domains Un−1, Un−2, . . . , U1 so that each Uk is a component
of p−1

c (Uk+1), choosing the branch so that ∂Uk contains Pc(2
k−1ϑ, 2k−1ϑ′). The only

obstacle for doing this would be if the critical value c was contained in Uk+1. But
c ∈ U , and c ∈ Uk+1 would imply that U and Uk+1 overlapped, and since the ray
pair Pc(2

kϑ, 2kϑ′) ∈ ∂Uk+1 does not intersect U , this would imply Rc(ϑ) ∈ Uk+1 or
Rc(ϑ

′) ∈ Uk+1; but this in turn would imply Rc(2
n−k−1ϑ) ∈ Un or Rc(2

n−k−1ϑ′) ∈ Un,
a contradiction. This also shows that Uk ∩ U = ∅ for k = 2, 3, . . . , n, and by taking
preimages it follows that U1,. . . ,Un are disjoint.

The domain U1 is bounded by two ray pairs; one of them is Pc(ϑ, ϑ
′). Denote the

other one Pc(ϑ̃, ϑ̃
′); then 2nϑ̃ = ϑ′ and 2nϑ̃′ = ϑ. Since both Rc(ϑ) and Rc(ϑ

′) are fixed
by p◦nc , it follows that U1 ⊂ U (the domains U and U1 have a common boundary ray
pair and the map p◦nc sends U1 onto U and fixes both rays on Pc(ϑ, ϑ

′)). Therefore

ϑ < ϑ̃ < ϑ̃′ < ϑ′.
By construction, pc : Un → U is a degree 2 branched cover, and p

◦(n−1)
c : U1 → Un is

a conformal isomorphism. It follows that |ϑ̃− ϑ| = |ϑ′ − ϑ̃′| = 2−n|ϑ′ − ϑ| as claimed;

this implies uniqueness of ϑ̃ and ϑ̃′. We also get |ϑ̃′ − ϑ̃| = (1 − 2 · 2−n)|ϑ′ − ϑ|. It is

clear that Pc(ϑ̃, ϑ̃
′) separates C so that all its forward images are on the same side as

the origin; therefore this ray pair is characteristic if and only if it separates the critical
value from the origin. 2

Proof of Proposition 9.24. Suppose we have the lower bound |Wp/q| ≥ |W | (2
n−1)2

2qn−1
.

Since all wakes of Wp/q are disjoint for all p/q ∈ (0, 1) in lowest terms, their combined
widths are at least

|W | ≥
∑
p/q

|Wp/q| ≥ |W |(2n − 1)2
∑
p/q

1

2qn − 1
= |W |

where the last equality is Lemma 9.25. This shows that we must have equality through-
out, so it suffices to prove the lower bounds.

Let P (ϑ, ϑ′) be the parameter ray pair landing at the root of W and let δ :=
|ϑ′ − ϑ| = |W |. For every parameter c in the wake of W , there is a characteristic

periodic ray pair Pc(ϑ, ϑ
′) by Theorem 9.5, and a preperiodic ray pair Pc(ϑ̃, ϑ̃

′) with

ϑ < ϑ̃ < ϑ̃′ < ϑ′ and |ϑ̃− ϑ| = |ϑ′ − ϑ̃′| = 2−nδ by Lemma 9.26. Let U ′ be the domain

bounded by Pc(ϑ, ϑ
′) and Pc(ϑ̃, ϑ̃

′) (compare Figure 9.8).
For simplicity, suppose c is the center of Wp/q. Let P (ϑp/q, ϑ

′
p/q) be the parameter

ray pair bounding the wake of Wp/q. Then by Theorem 9.5, there is a characteristic
dynamic ray pair Pc(ϑp/q, ϑ

′
p/q); these are two of a total of q ≥ 2 rays which land

together at the same periodic point zp/q of pc and which are permuted transitively by
p◦nc (Theorem 9.10).

Now we claim that Pc(ϑ̃, ϑ̃
′) does not separate c from the origin: otherwise, this

dynamic ray pair would be characteristic by Lemma 9.26, so by Theorem 9.5 the
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Rc(ϑ)

Rc(ϑ̃)

Rc(ϑ
′)

Rc(ϑ̃
′)

Rc(ϑp/q)

Rc(ϑ
′
p/q)

Vp/q

U ′

Figure 9.8. Dynamic ray pairs in the proof of Proposition 9.24: the
characteristic ray pair P (ϑ, ϑ′), the precharacteristic ray pair P (ϑ̃, ϑ̃′) on
the same orbit, and another characteristic ray pair P (ϑp/q, ϑ

′
p/q).

parameter c would have to be separated from P (ϑ, ϑ′) by a parameter ray pair P (ϑ̃, ϑ̃′);
but this is impossible because c ∈ Wp/q and P (ϑ, ϑ′) lands on ∂W . However, the
characteristic ray pair Pc(ϑp/q, ϑ

′
p/q) separates the critical value c from the origin and

from Pc(ϑ, ϑ
′), and this implies that Pc(ϑp/q, ϑ

′
p/q) ⊂ U ′.

Let Vp/q be the sector bounded by the ray pair Pc(ϑp/q, ϑ
′
p/q). Since the ray pair

is characteristic, the sector Vp/q contains the critical value and thus, by Lemma 9.3,
maps forward homeomorphically for at least (q − 2)n iterations. It follows that one of

p◦knc (Vp/q) (for k = 0, 1, . . . , q − 2) contains Pc(ϑ̃, ϑ̃
′), so |ϑ̃′ − ϑ̃| < 2kn|ϑ′p/q − ϑp/q| ≤

2(q−2)n|ϑ′p/q − ϑp/q| or

|Wp/q| = |ϑ′p/q − ϑp/q| > 2−(q−2)n|ϑ̃′ − ϑ̃| = 2−(q−2)n(1− 2 · 2−n)δ .

But since ϑp/q and ϑ′p/q are periodic of period qn, they have the form a/(2qn − 1) and

a′/(2qn − 1) with integers a, a′, hence |Wp/q| = b/(2qn − 1) for an integer b. Similarly,
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δ = b0/(2
n − 1) for another integer b0. Therefore

b > (2qn − 1)2−(q−2)n(1− 2 · 2−n)δ = (2n − 2−(q−1)n)(2n − 2)δ

=
[
(2n − 1)(2n − 1) + (−1− 2−(q−2)n + 2−(q−1)n+1]

)
δ

= b0(2n − 1) +
[
−1− 2−(q−2)n + 2−(q−1)n+1

]
δ .

Now b and b0 are odd integers, while the value in the square bracket on the last line is
in (−2, 0) and δ ∈ (0, 1). This implies b ≥ b0(2n − 1) = δ(2n − 1)2 as claimed. 2

9.27. Lemma (Centers and Roots Accumulate in Boundary of M)
Let C and R be the sets of centers and roots of hyperbolic components of M, and let
MT be the set of Misiurewicz-Thurston parameters. Then ∂M = MT = R ⊂ C.

Proof. Let U be an open set intersecting ∂M and consider the sequence of poly-
nomials Pn defined via P0(c) := 0, Pn+1(c) := P 2

n(c) + c. This sequence is bounded
for c ∈ M (an easy induction proves that |Pn(c)| ≤ 4 for c ∈ M) but unbounded
for c /∈ M. Therefore the restrictions of Pn to U do not form a normal family. By
Montel’s theorem, it follows that there are infinitely many n for which there are c ∈ U
with Pn(c) ∈ {0, c,∞}. Since Pn(c) = ∞ is impossible, we either have Pn(c) = 0 or
Pn(c) = c, hence Pn−1(c) = 0. But this means there are infinitely many n for which
the orbit of 0 under z 7→ z2 + c is periodic of period n or n − 1, so U ∩ C is infinite.
This implies ∂M ⊂ C.

Similarly, let α(c), β(c) := 1/2 ±
√

1/4− c be the two fixed points of pc; these
depend holomorphically on c for c ∈ C \ {1/4}. As above, use Montel’s theorem:
let U ⊂ C \ {1/4} be open so that α(c) and β(c) are invertible; every c0 ∈ ∂M
has such a neighborhood, possibly with finitely many exceptions for c0 (where α(c)
or β(c) have critical points). For every c ∈ U there is an automorphism Mc : z 7→
(z−α(c))/(β(c)−α(c)) of C. The maps c 7→Mc(Pn(c)) : U → C are holomorphic in c,
and they cannot form a normal family if U intersects ∂M. But Mc(c) ∈ {0, 1} means
that Pn(c) ∈ {α(c), β(c)}, so pc is a Misiurewicz-Thurston parameter with c ∈ U . This
proves that ∂M ⊂ MT . The converse is clear: every Misiurewicz-Thurston parameter
c is in M because the critical orbit is preperiodic, and it is in ∂M because c is the
landing point of a parameter ray by Theorem 9.2.

Finally, we discuss the set R of roots. Since R ⊂ ∂M, it suffices to prove that for
every c ∈ ∂M there is a sequence of roots rk ∈ R with rk → c. We just showed there
is a sequence of centers ck ∈ C with ck → c. For every k, let Wk be the component
with center ck. We may as well suppose that the periods of all Wk are different, hence
all Wk are disjoint. Since the total area of Wk is finite, there is a sequence of parabolic
boundary points rk ∈ ∂Wk with |rk − ck| → 0 (we do not claim that rk is the root of
Wk); then rk → c. 2

Show that centers are simple!
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Parameter ray pairs at periodic angles satisfy the following important property
which is the fundamental motor of Lavaurs’ Algorithm 13.4 for constructing periodic
parameter ray pairs inductively by increasing periods; it was shown by Lavaurs [Lv].

9.28. Lavaurs’ Lemma
If P (ϑ, ϑ′) and P (ϑ̃, ϑ̃′) are two periodic parameter ray pairs of equal period such that

P (ϑ, ϑ′) separates P (ϑ̃, ϑ̃′) from the origin, then these two ray pairs are separated from
each other by a ray pair of lower period.

Proof. Suppose P (ϑ, ϑ′) and P (ϑ̃, ϑ̃′) are two ray pairs of equal period, say n, so that

P (ϑ, ϑ′) separates P (ϑ̃, ϑ̃′) from the origin.

Let U be the domain separated from the origin by P (ϑ̃, ϑ̃′), and pick a Misiurewicz-
Thurston parameter c ∈ U (such a parameter exists as the landing point of a parameter
ray at preperiodic angle in U). The reason why we prefer to work with a Misiurewicz-
Thurston-parameter is that the filled-in Julia set Kc is a dendrite and hence uniquely
arcwise connected: any two z, z′ ∈ Kc are connected by a unique (injective) arc in Kc,
say [z, z′]: by [Mi1, Theorem 19.7, Lemma 17.17 and Lemma 17.18], Kc is arcwise
connected, and uniqueness of the arc follows because the Fatou set is connected and
the Julia set has no interior.

By the Correspondence Theorem 9.5, in the dynamical plane of pc there are two
characteristic dynamic ray pairs Pc(ϑ, ϑ) and Pc(ϑ̃, ϑ̃

′); let w and w̃ be their landing
points and consider the arc [w, w̃] ⊂ Kc connecting them. Let k ≥ 1 be maximal so
that p◦kc : [w, w̃] is injective. It is easy to see that k < n: otherwise, p◦nc : [w, w̃]→ [w, w̃]
would be a homeomorphism, and repeated pull-back of [w, w̃] could bring this arc back
to itself; but such pull-backs are contracting with respect to the hyperbolic metric in
the complement (in C) of the critical orbit; this would force w̃ = w.

It follows that there is a unique point w′ ∈ [w, w̃] so that p
◦(k−1)
c (w′) = 0, hence

p◦kc : [w,w′] → [p◦kc (w), c] is a homeomorphism. Since Pc(ϑ, ϑ
′) and Pc(ϑ̃, ϑ̃

′) are char-
acteristic, it follows that p◦kc [w,w′] ⊃ [w,w′]. If p◦kc (w) = w, we would have rays of
period n land at a periodic point of period k strictly dividing n, but this would be a
contradiction to Lemma 9.3 because the same sector at w′ must contain c and w̃, and
p◦kc : [w,w′]→ [w′, c] is a homeomorphism.

Therefore [w,w′] contains an interior point, say z, that is fixed by p◦kc , and in fact
z has exact period k. Let V be a linearizing neighborhood of z. Then an appropriate

branch of p
◦(−k)
c fixes z; this branch maps V into itself and [w,w′] ∩ V into itself.

It follows that z is the landing point of two dynamic rays of period k, one in each
component of V \ [w,w′]. The period of the rays equals the period of z, so no further
rays can land at z by Lemma 9.3. Let Pc(ϕ, ϕ

′) be the ray pair landing at z. It

separates Pc(ϑ̃, ϑ̃
′) from P (ϑ, ϑ′). This ray pair must be characteristic because w is

characteristic and p◦mc : [w,w′] is injective for m = 0, 1, . . . , k−1, so no p◦mc : [w,w′] can
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intersect [w,w′] if m ≤ k − 1. Again by Theorem 9.5, we obtain a parameter ray pair
P (ϕ, ϕ′) of period k < n as desired. 2

A different proof of Lavaurs’ Lemma uses basic ideas about internal addresses as
in Section 11 (it is a variant of [LS, Lemma 3.8]).

Proof of Lavaurs’ Lemma 9.28, second variant. Suppose P (ϑ, ϑ′) and P (ϑ̃, ϑ̃′)
are two parameter ray pairs of equal period, say n, that violate the result. Without
loss of generality, suppose that P (ϑ, ϑ′) separates P (ϑ̃, ϑ̃′) from the origin. Let U be
the wake bounded by P (ϑ, ϑ′); then for every c ∈ U , there is a characteristic dynamic

ray pair Pc(ϑ, ϑ
′) landing at a repelling orbit (Theorem 9.5), and P (ϑ̃, ϑ̃′) ⊂ U .

Let c̃ be the landing point of P (ϑ̃, ϑ̃′). In the dynamics of pc̃, the ray pair Pc̃(ϑ̃, ϑ̃
′)

must land at the parabolic orbit by Theorem 9.1, and there is a dynamic ray pair
Pc̃(ϑ, ϑ

′) landing at a repelling orbit. Let V and Ṽ be the domains separated from the

origin by Pc̃(ϑ, ϑ
′) and Pc̃(ϑ̃, ϑ̃

′); then Ṽ ⊂ V . Let V0 := p−1
c̃ (V ) and Ṽ0 := p−1

c̃ (Ṽ ) ⊂
V0; since the Fatou component containing the critical point must be contained in
Ṽ0, it follows that Pc̃(ϑ, ϑ

′) does not land at any periodic Fatou component (hence
not at any Fatou component at all). The kneading sequence ν := ν(ϑ) equals the
itinerary of the orbit of Rc̃(ϑ) under the dynamics of pc̃ with respect to the partition
P := C \ (V0 ∪Rc̃(ϑ/2) ∪Rc̃((1 + ϑ)/2)) (generating an entry ? at every n-the entry);

the kneading sequence ν̃ := ν(ϑ̃) is defined similarly with respect to the partition

P̃ := C \ (Ṽ0∪Rc̃(ϑ̃/2)∪Rc̃((1 + ϑ̃)/2)). But P̃ ⊂ P ; this implies that the itinerary of

Rc̃(ϑ) with respect to P̃ equals either A(ν) or A(ν). We will argue below that ν̃ = ν
and first continue the proof.

Let P =
⋃
k≥0 p

◦k
c (0) be the postcritical set and W := C \ P . Let z and z̃ be the

landing points of Pc̃(ϑ, ϑ
′) and Pc̃(ϑ̃, ϑ̃

′), and let Uc be the Fatou component containing
c; then z̃ ∈ Uc. Connect z and z̃ by a smooth curve γ ∈ W that does not intersect
Pc̃(ϑ̃, ϑ̃

′) other than at the endpoint. Pulling back this curve along the periodic branch
of the backwards orbit of Pc̃(ϑ, ϑ

′), we obtain a sequence of curves in W connecting
z with Uc (equal itineraries assure that a consistent branches connects preimages, so
that after n backwards iterations we connect the periodic point z with the periodic
component Uc, rather than with preperiodic preimages). After n backwards steps, the

only boundary point of Uc that can be reached from z without crossing Pc̃(ϑ̃, ϑ̃
′) is z̃,

so we obtain a family of smooth curves connecting z with z̃.
The continued preimages are contracting with respect to the hyperbolic metric of

W , even though the hyperbolic length of γ in W is infinite. However, it is easy to see
that under continued pull-backs, points on γ must converge to z and simultaneously
to z̃ (the curve accesses Uc through a repelling petal). This implies that z = z̃, but
one point is repelling and the other is parabolic, a contradiction.
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Finally, we need to show that ν = ν̃: it is here that the assumption enters that
P (ϑ, ϑ′) and P (ϑ̃, ϑ̃′) are not separated by a ray pair of lower period. The short and
self-contained proof can be found in Lemma 11.2. 2

An extension of Lavaurs’ Lemma is true even if none of the two parameter ray pairs
P (ϑ, ϑ′) and P (ϑ̃, ϑ̃′) separates the other from the origin: any two parameter rays (or
two hyperbolic components) of equal period n are either separated by a parameter ray
of lower period, or they are in different subwakes of a hyperbolic component of lower
period. This is shown in Theorem 11.10 as completeness of internal addresses. An
abstract version of Lavaurs’ lemma can be found in Lemma 6.6.

Most of the attention so far has been on parameter ray pairs at periodic angles. In
fact, these ray pairs determine the entire combinatorial structure of M: every parameter
ray pair in the Mandelbrot set can be approximated by periodic parameter ray pairs.
We will show the following.

9.29. Theorem (Periodic Lamination Suffices)
Suppose ϑ < ϑ′ are non-periodic and P (ϑ, ϑ′) is a ray pair of the Mandelbrot set. Then
there is a sequence of periodic parameter ray pairs P (ϑn, ϑ

′
n) with ϑn → ϑ and ϑ′n → ϑ′.

If ϑ and ϑ′ are not even preperiodic, then there are two such sequences of periodic
parameter ray pairs, one with ϑn ↗ ϑ and ϑ′n ↘ ϑ′, and the other one with ϑn ↘ ϑ
and ϑ′n ↗ ϑ′.

The same is true if ϑ and ϑ′ are preperiodic and no further parameter ray lands at
the same parameter as R(ϑ) and R(ϑ′).

What we will actually prove is the stronger Corollary 9.33; see below.

9.30. Proposition (Approximation by Rational Ray Pairs, Irrational Case)
Suppose R(ϑ) and R(ϑ′) are two parameter rays at irrational angles which are not
separated by a periodic or preperiodic parameter ray pair. Then either both rays land
on the boundary of the same hyperbolic component, or for every ε > 0 there are two
parameter ray pairs P (ϑ1, ϑ

′
1) and P (ϑ2, ϑ

′
2) at rational angles with |ϑ1 − ϑ2| < ε,

|ϑ′1 − ϑ′2| < ε and ϑ ∈ (ϑ1, ϑ2), ϑ′ ∈ (ϑ′1, ϑ
′
2).

Proof. Suppose without loss of generality that ϑ < ϑ′. Let ϑ̃ < ϑ̃′ be the infimum of
angles in rational parameter ray pairs with angles in (ϑ, ϑ′), in the following sense: for

every ε > 0 there is a rational ray pair connecting an angle in (ϑ̃, ϑ̃+ ε) with an angle

in (ϑ̃′ − ε, ϑ̃), and |ϑ̃′ − ϑ̃| is maximal possible with this property. We want to show

that ϑ̃ = ϑ and ϑ̃′ = ϑ′. Our proof is inspired by the proof that local connectivity of
M implies density of hyperbolicity (Corollary 9.14).

Suppose not. If ϑ̃′ = ϑ′ but ϑ̃ 6= ϑ, then pick two periodic angles ϕ1 ∈ (ϑ, ϑ̃) and

ϕ2 ∈ (ϑ̃, ϑ′) and let ϕ′1, ϕ′2 be the corresponding angles so that P (ϕ1, ϕ
′
1) and P (ϕ2, ϕ

′
2)

are two parameter ray pairs; let W1 and W2 be the hyperbolic components at whose
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roots they land. By construction, we must have ϕ′1 ∈ (ϑ, ϑ̃) and ϕ′2 ∈ (ϑ̃, ϑ′). Now we
apply the Branch Theorem 9.13 to W1 and W2. The wakes of these components are
disjoint, so they are separated by either a hyperbolic component W or a Misiurewicz-
Thurston point. The second case would imply that a parameter ray pair landing at this
Misiurewicz-Thurston point intersects a parameter ray pair at angles near ϑ̃ and ϑ′, or
it separates R(ϑ) from R(ϑ′), and both is a contradiction. In the first case, the wake of

W contains R(ϑ̃) and thus also R(ϑ) and R(ϑ′). They cannot be in the same subwake
by choice of W and they cannot be subwake boundaries because ϑ, ϑ′ are non-periodic.
Since R(ϑ) and R(ϑ′) are not separated from each other by periodic ray pairs, none
of R(ϑ) and R(ϑ′) can be in a subwake, so both parameter rays must land at ∂W by

Corollary 9.16 (in fact, one easily gets a contradiction to the condition ϑ̃′ = ϑ′). The

same argument applies if ϑ̃ = ϑ but ϑ̃′ 6= ϑ′.
Therefore we may suppose that ϑ < ϑ̃ < ϑ̃′ < ϑ′. As above, there are two parameter

ray pairs ϕ1 ∈ (ϑ, ϑ̃) and ϕ2 ∈ (ϑ̃′, ϑ′) at rational angles; they form parameter ray pairs
P (ϕ1, ϕ

′
1) and P (ϕ2, ϕ

′
2) landing at roots of hyperbolic components W1 and W2. We

may again suppose that ϑ < ϕ1 < ϕ′1 < ϑ̃ < ϑ̃′ < ϕ2 < ϕ′2 < ϑ′ (otherwise one of

the ray pairs P (ϕ1, ϕ
′
1) and P (ϕ2, ϕ

′
2) would contradict the choice of ϑ̃, ϑ̃′). As before,

we apply the Branch Theorem 9.13 to W1 and W2, which have again disjoint wakes.
As above, this yields a rational ray pair contradicting the choice of ϑ̃, ϑ̃′ unless the
separation is provided by a hyperbolic component W so that neither R(ϑ) nor R(ϑ′)
are separated from W . In the latter case, both parameter rays must land at W by
Corollary 9.16.

This proves that, unless R(ϑ), R(ϑ′) land on the boundary of the same hyperbolic
component, there is a sequence of parameter ray pairs at rational angles so that the
angles converge to {ϑ, ϑ′} from within (ϑ, ϑ′). There is a similar sequence of ray pairs
whose angles converge from outside, so that one angle is in (ϑ−ε, ϑ) and the other one
in (ϑ′, ϑ′+ε); the reasoning is similar (if R(ϑ) and R(ϑ′) are in the wake of a hyperbolic
component W , they must either both land at ∂W as above, or they must be in the
same subwake at rational internal angle by Proposition 9.24). 2

The same argument also works if ϑ and ϑ′ are preperiodic. Since three or more pa-
rameter rays at preperiodic angles may land together, the statement has to be adapted;
it becomes simpler because all preperiodic parameter rays land. Similarly, if ϑ and ϑ′

are periodic and P (ϑ, ϑ′) lands at the root of a primitive component, then this pa-
rameter ray pair can be approximated from one side. In all cases, the proof remains
essentially the same as above. We obtain the following statements which also prove
Theorem 9.29.

9.31. Corollary (Approximation by Rational Ray Pairs, Rational Cases)
(1) Suppose P (ϑ, ϑ′) is a parameter ray pair at preperiodic angles so that no parameter
ray R(ϑ′′) with ϑ′′ ∈ (ϑ, ϑ′) lands at the same point. Then for every ε > 0 there is a
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parameter ray pair P (ϑ1, ϑ
′
1) at rational angles with |ϑ1 − ϑ| < ε, |ϑ′1 − ϑ′| < ε and

ϑ < ϑ1 < ϑ′1 < ϑ′.
(2) Suppose P (ϑ, ϑ′) is a parameter ray pair at preperiodic angles so that no pa-

rameter ray R(ϑ′′) with ϑ′′ ∈ S1 \ [ϑ, ϑ′] lands at the same point. Then for every ε > 0
there is a parameter ray pair P (ϑ1, ϑ

′
1) at rational angles with |ϑ1−ϑ| < ε, |ϑ′1−ϑ′| < ε

and ϑ1 < ϑ < ϑ′ < ϑ′1.
(3) Suppose R(ϑ) is a parameter ray at a preperiodic angle so that no parameter ray

R(ϑ′′) with ϑ′′ 6= ϑ lands at the same point. Then for every ε > 0 there is a parameter
ray pair P (ϑ1, ϑ

′
1) at rational angles with |ϑ′1 − ϑ1| < ε and ϑ1 < ϑ < ϑ′1.

(4) Suppose P (ϑ, ϑ′) is a parameter ray pair at periodic angles which lands at the
root of a primitive hyperbolic component. Then for every ε > 0 there is a parameter ray
pair P (ϑ1, ϑ

′
1) at rational angles with |ϑ1− ϑ| < ε, |ϑ′1− ϑ′| < ε and ϑ1 < ϑ < ϑ′ < ϑ′1.

2

9.32. Lemma (Approximation of Preperiodic by Periodic Ray Pairs)
Suppose P (ϑ, ϑ′) is a preperiodic parameter ray pair at preperiodic angles so that no
parameter ray R(ϑ′′) with ϑ′′ ∈ (ϑ, ϑ′) lands at the same point. Then for every ε > 0
there is a parameter ray pair P (ϑ1, ϑ

′
1) at periodic angles with |ϑ1−ϑ| < ε, |ϑ′1−ϑ′| < ε

and ϑ < ϑ1 < ϑ′1 < ϑ′.

Proof. By Corollary 9.31, there is a sequence of parameter ray pairs P (ϑn, ϑ
′
n) at

rational angles with ϑn ↘ ϑ and ϑ′n ↗ ϑ′, say with monotone convergence of both
sequences. We want to show that this sequence can be chosen so that all ϑn, and
hence all ϑ′n, are periodic. For a proof by contradiction, assume that there is no such
subsequence, i.e., all (ϑn, ϑ

′
n) are preperiodic and no two parameter ray pairs P (ϑn, ϑ

′
n)

are separated by a parameter ray pair at periodic angles. Since there are only finitely
many external angles with given period or preperiod, we may assume that no two ϑn
have identical period and preperiod. That means, the dynamic rays Rc(ϑn) and Rc(ϑn′)
cannot land together for any pc if n′ 6= n.

Let c be the landing point of the parameter ray pair P (ϑ1, ϑ
′
1). We will work in the

dynamical plane of pc, and our contradiction will be that all Rc(ϑ) must land together.
There are characteristic dynamic ray pairs Pc(ϑn, ϑ

′
n) for all n; let Vn be the domains

separated from the origin by Pc(ϑn, ϑ
′
n), so that Vn+1 ⊃ Vn for all n. Let Wn := p−1

c (Vn);
this is a neighborhood of the origin bounded by the two preimage ray pairs of Pc(ϑn, ϑ

′
n).

We will prove that all angles ϑn have identical associated kneading sequences ν(ϑn),
that therefore the landing points zn of Pc(ϑn, ϑ

′
n) have identical itineraries with respect

to C \W1, and that this implies that all zn coincide; but this is a contradiction to the
fact that all ϑn have different periods and preperiods.

The kneading sequence νn := ν(ϑn) is defined as the itinerary of ϑn on S1 \
{ϑn/2, (1 + ϑ2)/2} as in Definition 2.1; since ϑn is preperiodic, the orbit of ϑn never
hits the boundary {ϑn/2, (1 + ϑ2)/2}. The kneading sequence νn coincides with the
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itinerary of Rc(ϑn) on C \Wn or, since W1 ⊂ Wn, on C \W1. Therefore, the point
zn has itinerary νn with respect to C \W1; no point on the forward orbit of any zn
ever enters Wn (the ray pairs Rc(ϑ, ϑ

′) are characteristic, and their orbits never enter
Vn = pc(Wn)). Since the parameter ray pairs P (ϑn, ϑ

′
n) are not separated by parameter

ray pairs at periodic angles, all ϑn have identical kneading sequences νn (the proof of
Lemma 11.2 is self-contained). But this means that all zn have identical itineraries,
and a simple hyperbolic contraction argument shows that all zn must coincide, a con-
tradiction as claimed. 2

9.33. Corollary (Approximation by Periodic Ray Pairs)
All parameter ray pairs P (ϑ1, ϑ

′
1) and P (ϑ2, ϑ

′
2) in Proposition 9.30 and Corollary 9.31

can be chosen so that ϑ1, ϑ′1, ϑ2 and ϑ′2 are periodic.

Proof. If the approximating parameter ray pairs P (ϑ1, ϑ
′
1) and P (ϑ2, ϑ

′
2) in Propo-

sition 9.30 and Corollary 9.31 have preperiodic angles, then these can in turn be ap-
proximated by periodic ray pairs by Lemma 9.32 (perhaps only from one side, but this
is good enough, even if three or more preperiodic parameter rays land together). 2

The following result says in particular that if three rays land together, their angles
must be preperiodic.

9.34. Corollary (Three Unseparated Rays)
Suppose that there are three parameter rays R(ϑ1), R(ϑ2), R(ϑ3) so that no two of
them are separated by a parameter ray pair at a periodic angle. Then either all three
rays land on the boundary of the same hyperbolic component, or all three angles are
preperiodic and the three rays land at the same Misiurewicz-Thurston point.

Proof. The proof is analogous to the proof in Proposition 9.30. We may suppose
that ϑ1 < ϑ2 < ϑ3. There are two hyperbolic components W1 and W2 so that the
parameter rays pairs P (ϕ1, ϕ

′
1) and P (ϕ2, ϕ

′
2) landing at their roots satisfy

ϑ1 < ϕ1 < ϕ′1 < ϑ2 < ϕ2 < ϕ′2 < ϑ3 .

Once more we apply the Branch Theorem 9.13 to W1 and W2. The wakes of these
components are disjoint, so they are separated by either a hyperbolic component W or
a Misiurewicz-Thurston parameter c0. In the first, case, none of the rays R(ϑi) can be
in a subwake of W , so all R(ϑi) must land at ∂W by Corollary 9.16. In the second case,
each R(ϑi) either lands at c0 or is separated from c0 by a parameter ray at periodic
angles by Corollaries 9.31 and 9.33. 2
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10. Renormalization

We discuss renormalization

The theory of renormalization is one of the deepest and most interesting topics in
the study of quadratic polynomials and the Mandelbrot set M. One reason is that
it explains the appearance of countably many homeomorphic copies of M embedded
within itself, and in fact within all nontrivial parameter spaces of rational maps (in
the words of McMullen [Mcxxx], the Mandelbrot set is universal). Another reason is
that the study of quadratic polynomials — for example by the famous Yoccoz puzzle
method [HY] — is feasible only for non-renormalizable maps, and many interesting
properties of the dynamics are preserved under renormalization.

10.1. Definition (Polynomial-Like Mapping)
Let U, V ⊂ C be two bounded domains. A holomorphic map f : U → V is called a
polynomial-like map if the following conditions are satisfied:

• U and V are simply connected, U is compact and U ⊂ V ;
• f : U → V is holomorphic and proper.

The filled-in Julia set Kf is the set of all z ∈ U which remain in U for all iterates of
f .

Recall that a map f : U → V is proper if the preimage of every compact set is
compact; equivalently, if zn → ∂U , then f(zn)→ ∂V . Every proper holomorphic map
on a connected domain has a well-defined mapping degree: for every z ∈ V , the number
or preimages f−1(z) is constant, counting multiplicities. Often, a polynomial-like map
is required to have mapping degree at least 2 (for degree 1, we simply have a domain
of linearization of a repelling fixed point). A polynomial-like map of degree 2 is oftten
called a quadratic-like map.

For polynomial-like maps it is particularly important to specify the domains U
and V precisely: often, restrictions of high degree polynomials (or even transcendental
functions) to appropriate domains are polynomial-like of low degrees, and different
restrictions might be polynomial-like of different degrees.

The fundamental result about the dynamics of polynomial-like maps is the Straight-
ening Theorem due to Douady and Hubbard [DHx]. In order to state it, we need qua-
siconformal homeomorphisms6. Two polynomial-like maps f : U → V and f ′ : U ′ → V ′

are called hybrid equivalent if there exists a quasiconformal homeomorphism h : V → V ′

which conjugates f on U to f ′ on U ′, and so that ∂h/∂z = 0 almost everywhere on
Kf . Check: was there a condition about generating this equivalence relation?

6A homeomorphism h : U → U ′ (for U,U ′ ⊂ C) is quasiconformal if there exists a k ≥ 1 so that
for every open annulus A ⊂ U , k−1 mod (A) ≤ mod (h(A)) ≤ kmod (A), where mod (A) denotes
the modulus of an annulus. Every quasiconformal homeomorphism is differentiable almost everywhere
[Ah2].
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10.2. Theorem (The Straightening Theorem [DHx, Theorem ???])
For every polynomial-like map f : U → V of degree d there is a polynomial p of degree d,
and there are two domains Up, Vp ⊂ C so that the restriction p : Up → Vp is polynomial-
like of degree d and hybrid equivalent to f . The polynomial p (but not the domains Up
or Vp) are unique up to affine conjugation if and only if Kf is connected; and Kf is
connected if and only if all critical points of f : U → V have their entire orbits in U .

2

10.3. Definition (Renormalization)
A quadratic polynomial pc is n-renormalizable if there exist domains U, V ⊂ C so that
the restriction p◦nc : U → V is quadratic-like so that the filled-in Julia set K of p◦nc is
connected, or equivalently if the orbit of the unique critical point of p◦nc on U remains
in U under iteration of p◦nc

7 The set K is called the little Julia set of p◦nc : U → V .

• The renormalization is of disjoint type if all sets K, pc(K), . . . , p
◦(n−1)
c (K)

are disjoint.
• The renormalization if of β-type if there exists k ∈ {1, 2, . . . , n − 1} and a

periodic z ∈ K ∩ p◦kc (K) which is the landing point of periodic dynamic rays
of period at most n.8

• The renormalization if of α-type if there exists k ∈ {1, 2, . . . , n − 1} and a
periodic z ∈ K ∩ p◦kc (K) which is the landing point of periodic dynamic rays
of period greater than n.

Renormalizations of disjoint or β-type are also known as simple renormalizations;
renormalizations of α-type are known as crossed renormalizations.

Every quadratic polynomial pc(z) = z2 + c has two fixed points: if the Julia set is
connected, then the dynamic ray Rc(0) lands at one of them, called the β-fixed point;
the other fixed point is called α (we have α = β exactly for z2 +1/4). The α-fixed point
must be the landing point of periodic dynamic rays [Mi1, ???], and since no fixed ray
is available, there must be q ≥ 2 dynamic rays landing at α, all of period q, and all on
the same orbit of rays (this follows from Lemma 9.3 for q ≥ 3, and for q = 2 there are
only two rays of period 2, namely at angles 1/3 and 2/3).

If K is the little Julia set of the quadratic-like map p◦nc : U → V , then p◦nc has
two fixed points on K; under the straightening map, these correspond to the two fixed
points of a quadratic polynomial, so it makes sense to speak of the α- and β- fixed
points of K.

10.4. Lemma (Rays at Fixed Points of Little Julia Set)
Suppose pc is n-renormalizable on domains U ⊂ V , and let K be the little Julia set
with fixed points α and β; suppose both are repelling. Then β is the landing point of

7The equivalence of these two conditions follows from the Straightening Theorem 10.2.
8We will show in where? that the rays landing at z always have exact period n.
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dynamic rays of period at most n, while α is the landing point of dynamic rays whose
period is a proper multiple of n.

Proof. The quadratic-like map p◦nc : U → V is hybrid equivalent to a quadratic
polynomial p with connected Julia set Kp and fixed points αp, βp so that βp is the
landing point of the unique ray of period 1, while αp is the landing point of q ≥ 2 rays
of period q. These q rays divide Kp into q components so that in a neighborhood of
αp, each component maps to some other component in a transitive way.

McMullen [Mc, Sec. 7] shows that every renormalization of a quadratic polynomial
has exactly one of the types “disjoint”, “β”, or “α”. He first shows that K ∩ p◦kc (K)
is either empty or a repelling periodic point z of p◦nc so that the period of z divides
n [Mc, Theorem 7.3]. Thus z is the landing point of a periodic dynamic ray whose
period is a multiple of the period of z. Since p◦nc : U → V is hybrid equivalent to a
quadratic polynomial p and in particular topologically conjugate to p on K, the point
z corresponds to a fixed point of p. In a renormalization of β- or α-type, the point
z ∈ K∩p◦kc (K) corresponds after straightening to the β- or α-fixed point of p; thus the
name of the renormalization type: if the fixed point z of p◦nc is the landing point of a
dynamic ray of period kn for k ≥ 1, then the conjugation provides a periodic invariant
curve of period k landing at the corresponding fixed point of p, and the fixed point
is then the landing point of periodic rays of the same period k which are homotopic
in C \ K(p) to the ray (by Lindelöf’s theorem, a point z ∈ K that is accessible by
a curve γ ∈ C \ K is also the landing point of a ray which is homotopic in C \ K
to γ; see [Ah1, Theorem 3.5]). If pc is n-renormalizable of non-disjoint type, then
there is a single repelling periodic orbit of period at most n which contains all points
of intersection p◦kc (K) ∩ p◦mc (K) [Mc, Theorem 7.13]: this shows that the type of
renormalization cannot jump from α to β or vice versa when replacing K by pc(K).

An equivalent (and perhaps more frequent) definition of renormalization of β- and
α-type goes as follows: a non-disjoint renormalization is of α-type if z disconnects K,
and it is of β-type otherwise. This uses the fact that the α-fixed point of p disconnects
the filled-in Julia set into as many components as there are rays landing at α (at least
two rays), while the β-fixed point does not disconnect the filled-in Julia set [Mi1,
Theorem 6.10]. Our definition has the advantage that it is more combinatorial and
thus easier to verify in our context.

All renormalizable maps pc are completely classified. The parameters c ∈ M for
which pc are simple n-renormalizable are organized in the form of finitely many compact
and connected subsets M′ of M which are each homeomorphic to M: see Theorem 10.8
below and compare [?, DH1, ?]. The parameters c ∈ M which are crossed renormal-
izable are organized in homeomorphic copies of limbs of M [RiSch].
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10.5. Lemma (Simple Renormalization Associated to Periodic Ray Pair)
For a polynomial pc with c ∈M, consider a characteristic periodic dynamic ray Pc(ϑ, ϑ

′)

of some period n ≥ 2 and let Pc(ϑ̃, ϑ̃
′) be the associated precharacteristic dynamic ray

pair from Lemma 9.26. Let U1 ⊂ C be the domain bounded by Pc(ϑ, ϑ
′) and Pc(ϑ̃, ϑ̃

′).
If p◦knc (c) ∈ U1 for all k ≥ 1, then pc is simple n-renormalizable.

In the context of this lemma, we say that the n-renormalization of pc is associated
to the angles (ϑ, ϑ′).

Proof. Let U ⊂ C be the domain separated from the origin by Pc(ϑ, ϑ
′). Then

by Lemma 9.26, the restriction p◦nc : U1 → U is a branched cover of degree 2. This
is “almost” a polynomial-like map of degree 2; the problem is that U1 and U are
unbounded and share part of their boundaries, so we do not have U1 ⊂ U .

Pick any t > 0 and let V ′ be the domain U restricted to potentials less than t (that
is, using the Böttcher coordinate Φc : C\Kc → C\D, set V ′ := U \Φ−1

c (C\Det), where
Det = {z ∈ C : |z| < et}). Similarly, let V ′1 be the restriction of U1 to equipotentials
below t/2. Then V ′1 and V ′ are bounded and the restriction p◦nc : V ′1 → V ′ is a branched
cover of degree 2, and ∂V ′1 ∩ ∂V ′ consists of the ray pair P (ϑ, ϑ′) at potentials below
t/2, plus their common landing point, say w. As a landing point of periodic dynamic,
rays, w is repelling or parabolic.

All we need to do is “thicken” V ′1 and V ′ near their common boundary; this is a
well-known procedure. Let D be a small disk centered at w, small enough so that
D ⊂ p◦nc (D) if w is repelling, and D ⊂ p◦nc (D) ∪ U1 if w is parabolic (this will always
be satisfied if D is sufficiently small). Choose a small ε > 0 and define Figure!

V : = V ′ ∪ p◦nc (D) ∪ Φ−1
c

(
{z ∈ C : 1 < |z| < et;ϑ− ε < arg(z) < ϑ}

)
∪ Φ−1

c

(
{z ∈ C : 1 < |z| < et;ϑ′ < arg(z) < ϑ′ + ε}

)
and

V1 : = V ′1 ∪D ∪ Φ−1
c

(
{z ∈ C : 1 < |z| < et/2

n

;ϑ− ε/2n < arg(z) < ϑ}
)

∪ Φ−1
c

(
{z ∈ C : 1 < |z| < et/2

n

;ϑ′ < arg(z) < ϑ′ + ε/2n}
)

(see Figure 10.1). Then it is easy to check that p◦nc : V1 → V is polynomial-like of
degree 2. By the Straightening Theorem 10.2, there is a quadratic polynomial p which
has a restriction p|W1 : W1 → W that is hybrid equivalent to p◦nc : V1 → V . Note
that any orbit of p◦nc on V ′1 \ U1 will eventually leave V ′1 , so the filled-in Julia set
Kpc of p◦nc : V1 → V is contained in U1. The unique critical orbit is the orbit of c
under iteration of p◦nc , and it remains in U1 forever by hypothesis; therefore, p◦nc is
renormalizable.

Figure 10.1. Illustration of the proof of Lemma 10.5.
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By Lemma 9.26, the domains U1, pc(U1), . . . , p
◦(n−1)
c (U1) are disjoint, so the only

possible point of intersection of Kpc and p◦kc (Kpc) (for k ∈ {1, 2, . . . , n−1}) could be w;
it is the landing point of dynamic rays of period n, so our renormalizations are always
of disjoint type or β-type, hence simple. 2

10.6. Lemma (Precharacteristic Ray Pairs)
Let W by a hyperbolic component of some period n ≥ 2 with center c0 and let P (ϑ, ϑ′)
be the parameter ray pair bounding the wake of W . Then for every k ≥ 1, there are 2k−1

preperiodic ray pairs Pc0(ϑk,j, ϑ
′
k,j) (for j = 1, 2, . . . , 2k−1) with the following properties

(see Figure 10.2):

• ϑ < ϑk,j < ϑ′k,j < ϑ′;
• 2nϑk,j = ϑk−1,j′ and 2nϑ′k,j = ϑ′k−1,j′ for some j′ if k > 1;
• 2nϑ1,1 = ϑ′ and 2nϑ′1,1 = ϑ;

• |ϑ′k,j − ϑk,j| = 2−(k−1)n|ϑ′1,1 − ϑ1,1|;
•
∑

k≥1

∑2k

j=1 |ϑ′k,j − ϑk,j| = |ϑ′ − ϑ|;
• none of these ray pairs separates any of the others from Pc0(ϑ, ϑ

′);
• every ray pair other than the Pc0(ϑk,j, ϑ

′
k,j) is separated from the critical value

by exactly one of the Pc0(ϑk,j, ϑ
′
k,j).

The ray pairs Pc0(ϑk,j, ϑ
′
k,j) are called precharacteristic ray pairs.

Figure 10.2. Illustration of Lemma 10.6.

Sketch. The ray pair Pc0(ϑ1,1, ϑ
′
1,1) is exactly the ray pair Pc0(ϑ̃, ϑ̃

′) from Lemma 9.26.
Let U1 ⊂ C be the domain bounded by Pc0(ϑ, ϑ

′) and Pc0(ϑ1,1, ϑ
′
1,1) and U the domain

separated from the origin by Pc0(ϑ, ϑ
′); then p◦nc0 : U1 → U is a branched cover of

degree 2. There are two ray pairs Pc0(ϑ2,1, ϑ
′
2,1) and Pc0(ϑ2,2, ϑ

′
2,2) within U1 that map

to Pc0(ϑ1,1, ϑ
′
1,1) under p◦nc0 , and the construction of the remaining ray pairs follows

inductively. The construction shows that none of the Pc0(ϑk,j, ϑ
′
k,j) separates any other

from P (ϑ, ϑ′), and the first four itemized properties in the claim are clearly satisfied.
By Lemma 9.26, we have |ϑ′1,1 − ϑ1,1| = (1− 2−n+1)|ϑ′ − ϑ| and thus∑

k≥1

2k−1∑
j=1

|ϑ′k,j − ϑk,j| =
∑
k≥1

2k−12−(k−1)n|ϑ′1,1 − ϑ1,1|

= 2n−1
∑
k≥1

2−k(n−1)(1− 2−n+1)|ϑ′ − ϑ| = |ϑ′ − ϑ| .

The last condition will be inserted once we see where it is needed. Idea is that all these ray
pairs are on boundary of same Fatou comp. 2



130 Section 10, Version of July 27, 2011

10.7. Lemma (Precharacteristic Parameter Ray Pairs)
For all dynamic ray pairs Pc0(ϑk,j, ϑ

′
k,j) constructed in Lemma 10.6, there are parameter

ray pairs P (ϑk,j, ϑ
′
k,j) at the same angles. A polynomial pc has the property that p◦knc (c)

is contained in the closure of the domain bounded by Pc(ϑ, ϑ
′) and Pc(ϑ1,1, ϑ

′
1,1) for all

k ≥ 0 if and only if c ∈ WW , but c is not separated from P (ϑ, ϑ′) by any of the ray
pairs P (ϑk,j, ϑ

′
k,j).

Proof. We also show that a polynomial pc has dynamic ray pairs Pc0(ϑk,j, ϑ
′
k,j) for

all k and j if and only if the parameter c is separated from 0 by P (ϑ, ϑ′) but by none
of the P (ϑk,j, ϑ

′
k,j).

The parameter ray pair P (ϑ, ϑ′) lands at some parabolic parameter cW ∈ M and
bounds the wakeWW , and a polynomial pc has a dynamic ray pair Pc(ϑ, ϑ

′) if and only
if c ∈ WW ∪ {cW} by Theorem 9.10. Let U1(c) be the domain bounded by Pc(ϑ, ϑ

′)
and Pc(ϑ1,1, ϑ

′
1,1).

For every pc with c ∈ WW , there exists the dynamic ray pair Pc(ϑ1,1, ϑ
′
1,1) = Pc(ϑ̃, ϑ̃

′)
by Lemma 9.26. In particular, there are parameters c ∈ WW for which Pc(ϑ1,1, ϑ

′
1,1)

separates the critical value from the origin; since Pc(ϑ1,1, ϑ
′
1,1) must be characteristic in

these cases, Theorem 9.5 implies that there is a parameter ray pair P (ϑ1,1, ϑ
′
1,1). Let

U1,1 be the domain in parameter space separated from 0 by P (ϑ1,1, ϑ
′
1,1).

The critical value c = p◦0c (c) is separated from 0 by the ray pair Pc(ϑ, ϑ
′) whenever

this ray pair exists, that is if c ∈ WW ∪ {cW}, and c is in U1(c) if and only if c is not
separated from 0 by Pc(ϑ1,1, ϑ

′
1,1), i.e., unless the parameter c is separated from 0 by

P (ϑ1,1, ϑ
′
1,1).

The immediate preimages under pc of Pc(ϑ1,1, ϑ
′
1,1) are two ray pairs. Their angles

coincide with those for pc0 for all parameters in M ∩ WW \ U1,1. For parameters in
U1,1, the preimage rays combine to different ray pairs, while at the landing point c1,1 of
P (ϑ1,1, ϑ

′
1,1), the critical value is the landing point of Pc1,1(ϑ1,1, ϑ

′
1,1) and both preimage

ray pairs land at the same point. For all c ∈ WW , the next n−1 preimage steps can be
performed unambiguously. Continuing this argument inductively, the claims follow.
Extra explanation needed, or picture? 2

For each parameter ray pair P (ϑk,j, ϑ
′
k,j), let Uk,j be the component of C\P (ϑk,j, ϑ

′
k,j)

not containing 0. Define

MW := M ∩WW \
⋃
k,j

Uk,j . (6)

As a nested intersection of compact connected sets, MW is compact and connected.
It turns out that each MW is homeomorphic to M: this is the explanation for the

existence of countably many homeomorphic copies of M within itself.
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10.8. Theorem (Simple Renormalization and Little Mandelbrot Sets)
Consider a hyperbolic component W of some period n. Then MW is the locus of param-
eters c ∈M which are simple n-renormalizable so that this renormalization is associated
to the angles (ϑ, ϑ′). Moreover, renormalization induces a homeomorphism MW →M

which is conformal on M̊W .

Proof. If c ∈MW , then by definition this means that c ∈ WW , but c is not separated
from 0 by any of the parameter rays P (ϑk,j, ϑ

′
k,j). By Lemma 10.7, this means that

for every k ≥ 0, p◦knc (0) ∈ U1(c), where U1(c) denotes the domain bounded by the
dynamic ray pairs Pc(ϑ, ϑ

′) and Pc(ϑ1,1, ϑ
′
1,1). But now Lemma 10.5 says that pc is

n-renormalizable associated to the angles (ϑ, ϑ′).
Conversely, if a parameter c is simple n-renormalizable, we need to have c ∈ M;

and if the renormalization is associated to (ϑ, ϑ′), then we need the dynamic ray pairs
Pc(ϑ, ϑ

′) and Pc(ϑ1,1, ϑ
′
1,1); this implies that c ∈ WW ∩M. In order for the critical orbit

of p◦nc : U1(c)→ C) to remain within U1(c), the parameter c cannot be separated from
0 by any of the parameter rays Pc(ϑk,j, ϑ

′
k,j), again by Lemma 10.7. This proves the

first claim.
For every c ∈ MW , the map p◦nc : U1(c) → U(c) is simple n-renormalizable associ-

ated to ϑ, ϑ′, and since the filled-in Julia set is connected by definition, it follows that
p◦nc : U1(c) → U(c) is hybrid equivalent to a quadratic polynomial p := χW (c) with
connected Julia set, and so that the polynomial p is unique up to affine conjugation.
This defines a map χW : MW →M. The fact that this a homeomorphism follows from
a deep theorem of Douady and Hubbard [DHx]; here we can only sketch a few main
points in the argument.

Douady and Hubbard show that χ : MW →M is continuous in c and “topologically
holomorphic”, so it “has the same topological properties as a holomorphic map”. It
can be extended to a neighborhood of MW as a branched cover (though not uniquely),
and under certain conditions it has a well-defined mapping degree d as a map from MW

to M. Douady and Hubbard give the following criterion: if c surrounds MW once along
a simple closed curve γ ⊂ C so that the straightening map is defined continuously in a
neighborhood of MW containing γ, then the critical value of p◦nc : U1(c) → U(c) turns
exactly d times around the critical point. In our case, it is not hard to see that d = 1,
so χ : MW → M is a homeomorphism. To see that d = 1, we describe the curve γ in
terms of Böttcher coordinates Φ(γ(t)); since Φ(c) = Φc(c), we know the position of the
critical value with respect to Böttcher coordinates in the dynamical plane of p◦nc , and
from here one can conclude that d = 1. 2

10.9. Corollary (Boundary Points of Renormalization Locus)
Let W be a hyperbolic component and c ∈ WW \MW . Then there is a Misiurewicz-
Thurston parameter c∗ ∈MW so that two parameter rays landing at c∗ separate c from
MW \ {c∗}, and the image of c∗ under the renormalization homeomorphism MW →M
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is the landing point of a parameter ray at external angle m/2k for some k,m ≥ 0 (i.e.,
a dyadic Misiurewicz-Thurston parameter).

Conversely, dyadic Misiurewicz-Thurston parameter has the property that its image
point under renormalization is the landing point of two preperiodic parameter rays that
separate points in M from MW .

Roughly speaking, this result says that WW consists of the “little Mandelbrot set”
MW together with countably many decorations attached to MW at the renormalized
images of dyadic Misiurewicz-Thurston parameters.

Proof. Let n be the period of W . Since MW = M ∩ WW \
⋃
k,j Uk,j by definition

in (6), we have c ∈ Uk,j for some k, j. But Uk,j is bounded by a parameter ray pair
P (ϑk,j, ϑ

′
k,j) with the property that there are two periodic angles ϑ, ϑ′ of period n so

that 2nk(ϑk,j) = ϑ′, 2nk(ϑ′k,j) = ϑ. Let c∗ be the landing point of the parameter ray
pair P (ϑk,j, ϑ

′
k,j).

In the dynamics of pc∗ , there is a dynamic ray pair Pc∗(ϑk,j, ϑ
′
k,j) that lands at the

critical value c∗, and p◦kc∗ (c∗) is a periodic point at which dynamic rays of period n
land. Let c∗ be the preimage of c∗ under the renormalization homeomorphism. Then
in the dynamics of c∗, the k-th image of the critical point is a periodic point at which
a dynamic ray of period 1 lands. There is only one such ray, the ray Rc∗(0), so pc∗(c

∗)
is the β-fixed point and c∗ is the landing point of a ray at angles m/2k for some integer
m.

The converse statement follows by counting: there are 2k−1 ray pairs P (ϑk,j, ϑ
′
k,j) for

every k ≥ 1, and equally many dyadic external angles m/2k (only odd values of m have
preperiod k). Since renormalization is a homeomorphism, every dyadic Misiurewicz-
Thurston parameter must be reached by the construction described above. 2

Note that p◦kc∗ (c∗) is the landing point of two periodic dynamic rays of period n;
after straightening, these yield two invariant curves of period 1 that are not necessarily
rays. In fact, they are both homotopic to the unique ray of period 0.

10.10. Theorem (Simple Renormalization Contained in Some MW )
Every simple n-renormalizable c ∈M is associated to a pair of angles (ϑ, ϑ′) of period
n, and thus contained in MW for some hyperbolic component W of period n.

Proof. Suppose pc is n-renormalizable, i.e., there are two domains U ⊂ V ⊂ C
so that p◦nc : U → V is a quadratic-like map with connected “little” Julia set K Let
Kc be the Julia set of pc (the “big” Julia set). Then p◦nc (K) = K and there is an
m ∈ {0, 1, . . . , n − 1} so that p◦mc (K) contains the critical point. Set K0 := p◦mc (K)
and Ki+1 := pc(Ki) for all i ≥ 0. There are neighborhoods U0, V0 of K0 so that
p◦nc : U0 → V0 is a quadratic-like map with connected Julia set (these sets can be

chosen so that p
◦(n−m
c (U0) = U and p

◦(n−m
c (V0) = V , and they can be constructed by

appropriate pull-backs of U and V ). Set Ui+1 := pc(Ui) and Vi+1 := pc(V1) for i ≥ 0.
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We distinguish between renormalizations of disjoint and of β-type. In the former
case, the sets K1, K2, . . .Kn = k0 are disjoint. Then we may assume that the sets V1,
V2,. . . , Vn are disjoint as well (possibly by pulling back repeatedly under appropriate
branches of p◦nc ).

The following argument mirrors the well-known argument “the critical point is an
endpoint of the Hubbard tree” (see [DH1, ???]). For every i = 0, 1, 2, . . . , n, let si be
the number of components of K\Vi that contain some Kj. Clearly si ∈ {1, 2, . . . , n−1}.
Since n ≥ 2, an easy argument shows that there must be at least 2 numbers si and sj
with i, j ∈ {0, 1, . . . , n−1} and si = sj = 1. If K ′ is such a component of K \Vi and K ′

does not contain the critical point of pc, then pc(K
′) is a similar component of K \Vi+1

that does not contain the critical value. It follows that si+1 ≥ si if i = 1, 2, . . . , n − 1
(some component of K \ Vi must contain the critical point, and some component of
K \ Vi+1 must contain the critical value). This implies that s1 = 1 (it is not hard to
show that sn ≤ 2).

Let γ1 ⊂ C be an injective curve consisting of an arc γ′1 ⊂ ∂U1, together with parts
of two dynamic rays that connect the endpoints of γ′1 to ∞. Then γ1 separates K1

from all other Ki. The preimage (p◦nc )−1(γ1) has two components that intersect U1,
and exactly one of them separates K1 from γ1. Denote these two components γ2 and
γ̃2 so that γ2 separates K1 from γ1. This construction can be continued and yields a
sequence of curves γk for k ≥ 1 so that each γk+1 separates K1 from γk; we also get a
similar sequence of curves γ̃k with p◦nc (γ̃k+1) = γk.

Each curve γk follows two dynamic rays, say Rc(ϑk) and Rc(ϑ
′
k) with ϑk < ϑ′k. Then

we get two sequences of angles 0 < · · · < ϑk < ϑk+1 < · · · < ϑ′k+1 < ϑ′k < · · · < 1. Both
sequences converge, say to limits ϑ, ϑ′, and indeed ϑ < ϑ′ because all γk with k > 1
separate K1 from γ1. Since we have 2nϑk+1 = ϑk and 2nϑ′k+1 = ϑ′k, it follows that
both ϑ and ϑ′ are fixed under multiplication by 2n. A routine hyperbolic contraction
argument (within C \

⋃
Ki) shows that the diameters of γk ∩ Kc shrink to zero, and

this implies that Rc(ϑ) and Rc(ϑ
′) is a characteristic dynamic ray pair of period n. Let

w be its landing point. Then Pc(ϑ, ϑ
′) separates K1 \ {w} from all other Ki.

For k ≥ 1, let U(k) be the domain bounded by γk+1 and γ̃k+1 and let V (k) be the
domain containing K1 and bounded by γk. Then it is easy to check that p◦nc : U(k)→
V (k) is quadratic-like with filled-in Julia set K1, and from this it follows that our
renormalization is associated to the angles (ϑ, ϑ′).

Now suppose the renormalization is of β-type. Let m be minimal so that K1

intersects Km+1, and let w be this point of intersection. Then m is a proper divisor of
n. The exact period of m cannot be less than m, and in fact it equals m because Km+1

intersects K1 and Km+1 in the same point [Mc, Theorem 7.13].
By hypothesis, w is the landing point of at least one periodic dynamic ray of period

at most n.
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This implies that the rays landing at w must separate K1 from all other Ki, and
again it follows that the renormalization is associated to some pair of periodic angles
(ϑ, ϑ′) of period n so that Pc(ϑ, ϑ

′) lands at w.
The ray pair is Pc(ϑ, ϑ

′) is characteristic, so by Theorem 9.5 there is a parameter
ray pair P (ϑ, ϑ′) of period n; its landing point is the root of a hyperbolic component
W of period n, and Theorem 10.8 implies that c ∈MW . 2

Renormalization forms a non-abelian semi-group: any two hyperbolic components
W,W ′ ⊂M of respective periods n and n′ have their own renormalization homeomor-
phisms χW : MW → M and χW ′ : MW ′ → M, so the parameter c ∈ χ−1

W ◦ χ
−1
W ′(M) is

n-renormalizable so that χW (c) is still n′-renormalizable. Therefore, c is renormalizable
of periods n and nn′. This is not well enough explained.

10.11. Theorem (Renormalization Preserves Trivial Fibers)
Suppose MW is a little Mandelbrot set as in ?? and ξW : MW →M is the corresponding
straightening homeomorphism. Then the fiber of c ∈ MW is trivial if and only if the
fiber of χW (c) is trivial.

Proof. Suppose a separation line separates c, c′ ∈ M. Then it is easy to find a
separation line separating χ−1

W (c) and χ−1
W (c′) (the map χW does not act directly on

parameter rays at periodic angles, but it does act on their landing points, which are
parabolic parameters). If the fiber of χW (c) is trivial, then the fiber of c intersects
MW only in c itself. If c is a Misiurewicz-Thurston parameter, then c has trivial fiber
by [Sch3, where?]. If not, then any c′ ∈ (M \MW ) can be separated from c by a
parameter ray pair at periodic or preperiodic angles, so the fiber of c is trivial.

Conversely, if c ∈MW has trivial fiber, then in particular every c′ ∈MW \ {c} can
be separated from c, and we get a separation between χW (c) and χW (c′), so χW (c) has
trivial fiber. 2

10.12. Definition (Infinite Renormalization)
A parameter c ∈ M is infinitely renormalizable if c is n-renormalizable for infinitely
many n.

10.13. Theorem (Yoccoz’ Rigidity Result)
Every parameter c ∈M which is not infinitely renormalizable has trivial fiber. 2

The proof of this result distinguishes many cases: for parameters on the boundary of
hyperbolic components, except primitive roots, this follows from the “No Ghost Limb”
Theorem 9.15; primitive roots require a separate argument; see Theorem 9.17. For
Misiurewicz-Thurston parameters, this is Theorem 9.21. For the remaining parameters,
the proof uses the puzzle technique that was pioneered by Branner, Hubbard, and
Yoccoz. These puzzles again distinguish whether the critical orbit is non-recurrent,
non-persistently recurrent, or persistently recurrent.
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10.14. Corollary (Non-Infinitely Renormalizable Parameter Rays)
If an angle ϑ ∈ S1 is not infinitely renormalizable, then R(ϑ) lands at a parameter
c ∈M with trivial fiber.

Proof. By Lemma ??, all points in the impression of R(ϑ) are not infinitely renor-
malizable and hence have trivial fibers by Theorem 10.13; since every impression is
contained in a single fiber, the claim follows. 2

There are many results about trivial fibers of infinitely renormalizable parameters
c ∈M due to Lyubich, Kahn, Avila and coauthors; see [?].

Describe Crossed Renormalization here!
There is more stuff about renormalization and Cremer points in hide.
Some stuff about combinatorial renormalization in hide
Describe (briefly) crossed renormalization
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11. Internal Addresses of the Mandelbrot Set

In the early 1990’s, Devaney asked the question: how can you tell where in the Mandelbrot
set a given external ray lands, without having Adrien Douady at your side? In this section, we
provide an answer to this question in terms of internal addresses: these are a convenient and
efficient way of describing the combinatorial structure of the Mandelbrot set, and of giving
geometric meaning to the ubiquitous kneading sequences in human-readable form.

We give the most important results from [LS] about the combinatorial geometry of in-

ternal addresses. These will be used in Section 12 to derive some algebraic results about

permutations of periodic points and Galois groups.

The combinatorial structure of the Mandelbrot set has been studied by many people,
notably in terms of quadratic minor laminations by Thurston [Th], pinched disks by
Douady [D3], or orbit portraits by Milnor [Mi2] (see also Appendix ??). All of these
results are modeled on parameter rays of the Mandelbrot set at periodic angles, as well
as their landing properties. Internal addresses are a natural way to distinguish the
components in the complement of parameter rays of bounded periods.

Parameter rays of the Mandelbrot set are defined as follows (see Section 9). By
[DH1], the Mandelbrot set is compact, connected and full, i.e., there is a conformal
isomorphism Φ: (C\M)→ (C\D); it can be normalized so that Φ(c)/c→ 1 as c→∞.
The parameter ray of M at angle ϑ ∈ R/Z is then Φ−1(e2πiϑ(1,∞)). If R(ϑ) and R(ϑ′)
land at a common point z, we call R(ϑ)∪R(ϑ′)∪{z} a parameter ray pair and denote
it P (ϑ, ϑ′). Then C \ P (ϑ, ϑ′) has two components, and we say that P (ϑ, ϑ′) separates
two points or sets if they are in different components. If a polynomial pc(z) = z2 + c
has connected Julia set, then there are analogous definitions of dynamic rays Rc(ϑ)
and dynamic ray pairs Pc(ϑ, ϑ

′). General background can be found in Milnor [Mi1].
The most important properties of parameter rays at periodic angles are collected in

the following well known theorem; see Theorems 9.1 and 9.5 and Lavaurs’ Lemma 9.28.

11.1. Theorem (Properties of Periodic Parameter Ray Pairs)
For every n ≥ 1, there are finitely many parameter rays of period up to n. They land
in pairs so that any two parameter rays of equal period are separated by a parameter
ray of lower period. Every parameter ray pair P (ϑ, ϑ′) of period n lands at the root of
a hyperbolic component W of period n, and the root of every hyperbolic component of
period n is the landing point of exactly two parameter rays, both of period n.

The ray pair P (ϑ, ϑ′) partitions C into two open components; let WW be the com-
ponent not containing the origin: this is the wake of W and contains W . This wake
is the locus of parameters c ∈ C for which the dynamic rays Rc(ϑ) and Rc(ϑ

′) land
together at a repelling periodic point; the ray pair Pc(ϑ, ϑ

′) is necessarily characteristic.

Here a dynamic ray pair is characteristic if it separates the critical value from the
rays Rc(2

kϑ) and Rc(2
kϑ′) for all k ≥ 1 (except of course from those on the ray pair

Pc(ϑ, ϑ
′) itself).
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Every angle ϑ ∈ S1 := R/Z has an associated kneading sequence ν(ϑ) = ν1ν2ν3 . . .
(Definition 2.1), defined as the itinerary of ϑ (under angle doubling) on the unit circle
S1 with respect to the partition S1 \ {ϑ/2, (ϑ+ 1)/2}, so that

νk =

 1 if 2k−1ϑ ∈ (ϑ/2, (ϑ+ 1)/2);
0 if 2k−1ϑ ∈ ((ϑ+ 1)/2, ϑ/2) = S1 \ [ϑ/2, (ϑ+ 1)/2];
? if 2k−1ϑ ∈ {ϑ/2, (ϑ+ 1)/2}.

If ϑ is non-periodic, then ν(ϑ) is a sequence over {0, 1}. If ϑ is periodic of exact period
n, then ν(ϑ) also has period n so that the first n− 1 entries are in {0, 1} and the n-th
entry is ?; such ν(ϑ) are called ?-periodic. The partition is such that every ν(ϑ) starts
with 1 (unless ϑ = 0).

The parameter rays at periodic angles of periods up to n partition C into finitely
many components. This partition has interesting symbolic dynamic properties, com-
pare Figure 11.1 and Lemma 11.2: if two parameter rays R(ϑ1) and R(ϑ2) are in the
same component, then the kneading sequences ν(ϑ1) and ν(ϑ2) associated to ϑ1 and
ϑ2 coincide at least for n entries. The combinatorics of these partitions, and thus the
combinatorial structure of the Mandelbrot set, can conveniently be described in terms
of internal addresses, which are “human-readable” recodings of kneading sequences;
see below.
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1/3 2/7 4/15 3/15 1/7
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Figure 11.1. Left: the 10 parameter rays of period up to 4 in the
Mandelbrot set partition C into 11 components. In each component, the
first 4 entries of the kneading sequences ν(ϑ) for arbitrary parameter
rays R(ϑ) are constant. Right: the same parameter ray pairs sketched
symbolically, and the first 4 entries in the kneading sequences drawn in.
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11.2. Lemma (Parameter Ray Pairs and Kneading Sequences)
If two parameter rays R(ϑ) and R(ϑ′) are not separated by a ray pair of period at most
n, then ϑ and ϑ′ have kneading sequences which coincide for at least n entries (provided
neither ϑ nor ϑ′ are periodic of period n or less).

If R(ϑ) and R(ϑ′) with ϑ < ϑ′ form a ray pair, then ν(ϑ) = ν(ϑ′) =: ν?. If in
addition both angles are periodic with exact period n, then ν? is ?-periodic of period n,
we have

lim
ϕ↗ϑ

ν(ϕ) = lim
ϕ↘ϑ′

ν(ϕ) and lim
ϕ↘ϑ

ν(ϕ) = lim
ϕ↗ϑ′

ν(ϕ) ,

and both limits are periodic with period n or dividing n so that their first difference is
exactly at the n-th position.

Proof. This result is at the heart of [LS], but not explicitly spelled out there (compare
[LS, Observation 3.3 and Proposition 5.2]). As ϑ varies in S1, the n-th entry in its
kneading sequence changes exactly at angles which are periodic of period dividing n.

Consider two external angles ϑ < ϑ′ which are not separated by any ray pair of
period at most n, and which are not periodic of period up to n (it is quite possible that
(ϑ, ϑ′) contains a periodic angle of period up to n, as long as the other angle of the
same ray pair is also contained in (ϑ, ϑ′)). Then for every k ≤ n, the parameter rays
of period k with angles ϕ ∈ (ϑ, ϑ′) must land in pairs (Theorem 11.1), so the number
of such rays is even. Therefore, as the angle varies from ϑ to ϑ′, the k-th entry in the
kneading sequence of ϑ changes an even number of times, and the kneading sequences
of ϑ and ϑ′ have identical k-th entries. This settles the first claim, and it shows that
ν(ϑ) = ν(ϑ′) if R(ϑ) and R(ϑ′) land together and neither ϑ nor ϑ′ are periodic.

However, if R(ϑ) and R(ϑ′) land together and one of the two angles is periodic, then
both are periodic with the same exact period, say n (Theorem 11.1). In this case, the
kneading sequences ν(ϑ) and ν(ϑ′) are ?-periodic with exact period n, so they coincide
as soon as their first n− 1 entries coincide; this case is covered by the first claim.

It is quite easy to see that limits such as limϕ↘ϑ ν(ϕ) exist; moreover, if ϑ is non-
periodic, then the limit equals ν(ϑ). If ϑ is periodic of exact period n, then limϕ↘ϑ ν(ϕ)
and limϕ↘ϑ ν(ϕ) are periodic of period n or dividing n, they contain no ?, and their first
n− 1 entries coincide with those of ν(ϑ). Clearly, limϕ↘ϑ ν(ϕ) and limϕ↗ϑ ν(ϕ) differ
exactly at positions which are multiplies of n. Finally, limϕ↘ϑ ν(ϕ) = limϕ↗ϑ′ ν(ϕ)
because for sufficiently small ε, the parameter rays R(ϑ + ε) and R(ϑ′ − ε) are not
separated by a ray pair of period at most n, so the limits must be equal. 2

The following should be taken as an algorithmic definition of internal addresses in
the Mandelbrot set. It is the original definition of internal addresses from [LS] (except
that in [LS], it was applied to hyperbolic components and Misiurewicz-Thurston points,
but this makes no difference: see the remark below).
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11.3. Algorithm (Internal Address in the Mandelbrot Set)
Given a parameter c ∈ C, the internal address of c in the Mandelbrot set is a strictly
increasing finite or infinite sequence of integers. It is defined as follows:

seed: the internal address starts with S0 = 1 and the ray pair P (0, 1);
inductive step: if S0 → . . . → Sk is an initial segment of the internal ad-

dress of c, where Sk corresponds to a ray pair P (ϑk, ϑ
′
k) of period Sk, then let

P (ϑk+1, ϑ
′
k+1) be the ray pair of least period which separates P (ϑk, ϑ

′
k) from c

(or for which c ∈ P (ϑk+1, ϑ
′
k+1)); let Sk+1 be the common period of ϑk+1 and

ϑ′k+1. The internal address of c then continues as S0 → . . .→ Sk → Sk+1 with
the ray pair P (ϑk+1, ϑ

′
k+1).

This continues for every k ≥ 1 unless there is a finite k so that P (ϑk, ϑ
′
k) is not

separated from c by any periodic ray pair (in particular if c ∈ P (ϑk, ϑ
′
k)).

Remark. The internal address is only the sequence S0 → . . .→ Sk → . . . of periods;
it does not contain the ray pairs used in the construction. The ray pair P (ϑk+1, ϑ

′
k+1)

of lowest period is always unique by Lavaurs’ Lemma 9.28.
The internal address of c ∈M can be viewed as a road description for the way from

the origin to c in the Mandelbrot set: at any intermediate place, the internal address
describes the most important landmark on the remaining way to c; see Figure 11.1.
Landmarks are hyperbolic components (or equivalently the periodic parameter rays
landing at their roots, see Theorem 9.7), and hyperbolic components are the more
important the lower their periods are. The road description starts with the most
important landmark: the component of period 1, and inductively continues with the
period of the component of lowest period on the remaining way.

Different hyperbolic components (or combinatorial classes) are not distinguished
completely by their internal addresses; the remaining ambiguity has a combinatorial
interpretation and will be removed by angled internal addresses : see Theorem 11.10.

We can give an analogous definition of internal addresses in dynamic planes.

11.4. Definition (Internal Address in Julia Set)
Consider a polynomial pc for which all periodic dynamic rays land and let Kc be the
filled-in Julia set. For a point z ∈ Kc, the internal address of z is defined as follows,
in analogy to Algorithm 11.3:

seed: the internal address starts with S0 = 1 and the ray pair Pc(0, 1);
inductive step: if S0 → . . . → Sk is an initial segment of the internal address

of z, where Sk corresponds to a dynamic ray pair Pc(ϑk, ϑ
′
k) of period Sk,

then let Pc(ϑk+1, ϑ
′
k+1) be the dynamic ray pair of least period which separates

Pc(ϑk, ϑ
′
k) from z (or for which z ∈ Pc(ϑk+1, ϑ

′
k+1)); let Sk+1 be the common
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period of ϑk+1 and ϑ′k+1. The internal address of z then continues as S0 →
. . .→ Sk → Sk+1.9

This continues for every k ≥ 1 unless there is a finite k so that Pc(ϑk, ϑ
′
k) is not

separated from z by any periodic ray pair.

Every kneading sequence has an associated internal address as follows (compare
Definition 2.1):

11.5. Definition (Internal Address and Kneading Sequence)
Given a kneading sequence ν with initial entry 1, it has the following associated internal
address 1 → S1 → . . . → Sk → . . . : we start with S0 = 1 and ν0 = 1. Then define
recursively Sk+1 as the position of the first difference between ν and νk, and let νSk+1

be the periodic continuation of the first Sk+1 entries in ν (if ν is periodic or period Sk,
then the internal address is finite and stops with entry Sk).

Observe that this definition is algorithmic. It can be inverted so as to assign to any
finite or infinite strictly increasing sequence starting with 1 (viewed as internal address)
a kneading sequence consisting of entries 0 and 1 and starting with 1 (Algorithm 2.3).

For a ?-periodic kneading sequence ν of exact period n, we defined A(ν) and A(ν)
as the two sequences in which every ? was replaced consistently by 0 or consistently by
1, chosen so that the internal address of A(ν) contains the entry n, while the internal
address of A(ν) does not (Definition 5.14). It turns out that A(ν) has exact period n,
while the exact period of A(ν) equals or divides n (Proposition 5.16 and independently
Lemma 20.2). The sequences A(ν) and A(ν) are called the upper and lower periodic
kneading sequences associated to ν.

The point of the various algorithmic definitions of internal addresses is of course
the following.

11.6. Proposition (Equal Internal Addresses)
(1) For every c ∈ C so that all periodic dynamic rays of pc land, the internal address in
parameter space equals the internal address of the critical value of c in the dynamical
plane of pc.

(2) Let P (ϑk, ϑ
′
k) be the ray pairs from Algorithm 11.3, let Sk be their periods and

let νk be the common kneading sequence of ϑk and ϑ′k. Then each νk is a ?-periodic
kneading sequence of period Sk so that

lim
ϕ↘ϑk

ν(ϕ) = lim
ϕ↗ϑ′k

ν(ϕ) = A(νk) and lim
ϕ↗ϑk

ν(ϕ) = lim
ϕ↘ϑ′k

ν(ϕ) = A(νk) .

9If several dynamic ray pairs of equal period Sk+1 separate Pc(ϑk, ϑ
′
k) from z, take the one which

minimizes |ϑ′k+1−ϑk+1|. (There is an analog to Lavaurs’ Lemma 9.28 in dynamical planes which says
that all candidate ray pairs have to land at the same periodic point; this is not hard to prove, but we
do not need it here.)
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(3) The first Sk entries in A(νk) coincide with those of νk+1 and, if c ∈ R(ϑ), with
the first Sk entries of ν(ϑ).

(4) For every ϑ ∈ S1, the internal address of any parameter c ∈ R(ϑ) in Algo-
rithm 11.3 is the same as the internal address associated to the kneading sequence of
ϑ from Definition 11.5.

Proof. The first statement is simply a reformulation of Theorem 11.1 about the cor-
respondence of parameter ray pairs and characteristic dynamic ray pairs: all we need
to observe is that the internal address of the critical value in the Julia set uses only
characteristic dynamic ray pairs; this follows directly from the definition of “charac-
teristic”.

We prove the second statement by induction, starting with the ray pair P (ϑ0, ϑ
′
0)

with ϑ0 = 0, ϑ′0 = 1 and S0 = 1; both angles ϑ0 and ϑ′0 have kneading sequence ν0 = ?
and A(ν0) = 1.

For the inductive step, suppose that P (ϑk, ϑ
′
k) is a ray pair of period Sk with

ϑk < ϑ′k, ν(ϑk) = ν(ϑ′k) = νk and limϕ↘ϑk ν(ϕ) = limϕ↗ϑ′k ν(ϕ) = A(νk), and c is not
separated from P (ϑk, ϑ

′
k) by a ray pair of period Sk or less.

As in Algorithm 11.3, let P (ϑk+1, ϑ
′
k+1) be a ray pair of lowest period, say Sk+1,

which separates P (ϑk, ϑ
′
k) from c (or which contains c); then ϑk < ϑk+1 < ϑ′k+1 < ϑ′k.

We have Sk+1 > Sk by construction, and the ray pair P (ϑk+1, ϑ
′
k+1) is unique by

Lavaurs’ Lemma 9.28. Since R(ϑk) and R(ϑk+1) are not separated by a ray pair of
period Sk+1 or less, it follows that the first Sk+1 entries in limϕ↘ϑk ν(ϕ) = A(νk) and in
limϕ↗ϑk+1

ν(ϕ) are equal (the same holds for limϕ↗ϑ′k ν(ϕ) = A(νk) and limϕ↘ϑ′k+1
ν(ϕ)).

Now we show that limϕ↗ϑk+1
ν(ϕ) = limϕ↘ϑ′k+1

ν(ϕ) = A(νk+1); the first equality

is Lemma 11.2. The internal address associated to ν(ϑk + ε) has no entries in {Sk +
1, . . . , Sk+1} provided ε > 0 is sufficiently small (again Lemma 11.2). The internal
address associated to ν(ϑk+1 − ε) can then have no entry in {Sk + 1, . . . , Sk+1} either,
for small ε (or R(ϑk) and R(ϑk+1) would have to be separated by a ray pair of period at
most Sk+1). Thus limϕ↗ϑk+1

ν(ϕ) = A(νk+1). The other limiting kneading sequences
limϕ↘ϑk+1

ν(ϕ) and limϕ↗ϑ′k+1
ν(ϕ) must then be equal to A(νk+1).

Claim (3) follows because neither P (ϑk+1, ϑ
′
k+1) nor c are separated from P (ϑk, ϑ

′
k)

by a ray pair of period Sk or less.
We prove Claim (4) again by induction. If c ∈ R(ϑ), assume by induction that

the internal address of ν(ϑ) starts with 1 → . . . → Sk and ϑk < ϑ < ϑ′k; then ν(ϑ)
coincides with A(νk) for at least Sk entries. The ray pair of least period separating
R(ϑk) and R(ϑ) is P (ϑk+1, ϑ

′
k+1), so the first difference between A(νk) and ν(ϑ) occurs

at position Sk+1. Hence the internal address of ν(ϑ) as in Definition 11.5 continues
as 1 → . . . → Sk → Sk+1 and we have ϑk+1 < ϑ < ϑ′k+1 as required to maintain the
induction. 2

The previous proof also shows the following useful observation.
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11.7. Corollary (Intermediate Ray Pair of Lowest Period)
Let P (ϑ1, ϑ

′
1) and P (ϑ2, ϑ

′
2) be two parameter ray pairs (not necessarily at periodic

angles) and suppose that P (ϑ1, ϑ
′
1) separates P (ϑ2, ϑ

′
2) from the origin. If the limits

limϕ↗ϑ2 ν(ϕ) and limϕ↘ϑ1 ν(ϕ) do not differ, then the two ray pairs P (ϑ1, ϑ
′
1) and

P (ϑ2, ϑ
′
2) are not separated by any periodic ray pair. If the limits do differ, say at

position n for the first time, then both ray pairs are separated by a unique periodic ray
pair P (ϑ, ϑ′) of period n (but not by ray pairs of lower period); the first n − 1 entries
in ν(ϑ) = ν(ϑ′) coincide with those of limϕ↗ϑ2 ν(ϕ) and limϕ↘ϑ1 ν(ϕ).

Proof. Let n be the position of the first difference in limϕ↘ϑ1 ν(ϕ) and limϕ↗ϑ2 ν(ϕ).
Then the number of periodic angles of period dividing n in (ϑ1, ϑ2) is odd (because only
at these angles, the n-th entry in the kneading sequence changes). Since parameter
rays at period dividing n land in pairs, there is at least one parameter ray pair at period
dividing n which is part of a parameter ray pair separating P (ϑ1, ϑ

′
1) and P (ϑ2, ϑ

′
2). If

P (ϑ1, ϑ
′
1) and P (ϑ2, ϑ

′
2) are separated by a parameter ray pair of period less than n,

let n′ be the least such period. By Lavaurs’ Lemma 9.28, there would be a single such
parameter ray pair of period n′, and it follows n′ = n. The remaining claims follow in
a similar way. 2

Most internal address are infinite; exceptions are related to hyperbolic components
as follows.

11.8. Corollary (Finite Internal Address)
The internal address of c ∈M is finite if and only if there is a hyperbolic component W
with c ∈ W . More precisely, if c ∈ W but c is not the root of a hyperbolic component
other than W , then the internal address of c terminates with the period of W (if c is
the root of a hyperbolic component W ′ 6= W , then the internal address of c terminates
with the period of W ′).

For a non-periodic external angle ϑ ∈ S1, the internal address of R(ϑ) is finite if
and only if R(ϑ) lands on the boundary of a hyperbolic component W .

Proof. Consider a parameter ray R(ϑ) with finite internal address and let n be the
last entry in this internal address. Then there is a parameter ray pair P (ϑ, ϑ′) of period
n which separates R(ϑ) from the origin, and no periodic parameter ray pair separates
R(ϑ) from P (ϑ, ϑ′). The ray pair P (ϑ, ϑ′) bounds the wake of a hyperbolic component
W and lands at the root of W , so R(ϑ) is in the wake of W (or on its boundary) but
not in one of its subwakes. Every such parameter ray lands on the boundary of W ; see
Corollary 9.16. The converse is clear.

The statements about c ∈ M follow in a similar way, using the fact that the limb
of W is the union of W and its sublimbs at rational internal angles; see Theorem 9.15.

2
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Remark. The previous result shows (through the topology of the Mandelbrot set) that
non-periodic external angles can generate periodic kneading sequences which have finite
internal addresses. Of course there are periodic kneading sequences which have infinite
internal addresses; but these are never generated by external angles (Lemma 14.6).

For a hyperbolic component W , we have many different ways of associating an
internal address to it:

(1) using Algorithm 11.3 within the plane of the Mandelbrot set;
(2) taking a parameter ray R(ϑ) landing at the root of W and then Algorithm 11.3

for this parameter ray;
(3) taking a parameter ray R(ϑ′) at an irrational angle landing at a boundary point

of W (as in Corollary 11.8) and then again Algorithm 11.3 for this parameter
ray;

(4) taking a parameter ray R(ϑ) or R(ϑ′) as in (2) or (3) and then using the inter-
nal address associated to the kneading sequence of ϑ or ϑ′; see Definitions 2.1
and 11.5. The periodic angle ϑ generates a ?-periodic kneading sequence, while
the non-periodic angle ϑ′ generates a periodic kneading sequence without ?;

(5) for every c ∈ W , we have the internal address of the critical value in the Julia
set from Definition 11.4;

(6) specifically if c is the center of W , then the critical orbit is periodic and pc has
a Hubbard tree in the original sense of Douady and Hubbard (Definition 3.4),
so we can use all definitions from Proposition 6.8.

All these internal addresses are of course the same: this is obvious for the first three;
the next two definitions agree with the first ones by Proposition 11.6 (4) and (1), and
the last two agree by Proposition 6.8.

11.9. Definition (Angled Internal Address)
For a parameter c ∈ C, the angled internal address is the sequence

(S0)p0/q0 → (S1)p1/q1 → . . .→ (Sk)pk/qk → . . .

where S0 → S1 → . . . → Sk → . . . is the internal address of c as in Algorithm 11.3
and the angles pk/qk are defined as follows: for k ≥ 0, let P (ϑk, ϑ

′
k) be the parameter

ray pair associated to the entry Sk in the internal address of c; then the landing point
of P (ϑk, ϑ

′
k) is the root of a hyperbolic component Wk of period Sk. The angle pk/qk is

defined such that c is contained in the closure of the pk/qk-subwake of Wk. If the internal
address of c is finite and terminates with an entry Sk (which happens if and only if c
is not contained in the closure of any subwake of Wk), then the angled internal address
of c is also finite and terminates with the same entry Sk without angle: (S0)p0/q0 →
(S1)p1/q1 → . . .→ (Sk−1)pk−1/qk−1

→ (Sk).

This definition is illustrated in Figure 11.2. The main point in this definition
is that it distinguishes different points in the Mandelbrot set. More precisely, angled
internal addresses distinguish combinatorial classes: a combinatorial class is a maximal
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subset of M \ {parabolic parameters} so that no two of its points can be separated
by a parameter ray pair at periodic angles; a parabolic parameter c0 belongs to the
combinatorial class of the hyperbolic component of which c0 is the root. Then a
combinatorial class is the equivalence class of parameters in M so that two parameters
c1 and c2 are equivalent if and only if for both polynomials, the same periodic and
preperiodic parameters land at common points (see Section 9.3 or [Sch3, Section 8]).
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1 >3 >7
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1 >3 >5 >6 >7
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1 >3 >5 >6 >12
1/3 1/2 1/2 1/2

1 >2 >4 >7
1/2 1/2 1/3

1 >3 >7
1/3 2/3

1 >2 >4 >15
1/2 1/2 2/5

Figure 11.2. Angled internal addresses for various hyperbolic compo-
nents in M.

11.10. Theorem (Completeness of Angled Internal Addresses)
If two parameters in M have the same angled internal address, then they belong to the
same combinatorial class. In particular, if two hyperbolic parameters in M have the
same angled internal address, then they belong to the same hyperbolic component.

We postpone the proof of this theorem and of subsequent results and first discuss
some interesting consequences.

The Geometry of Internal Addresses.
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Now we turn to Devaney’s question: how can you tell where in the Mandelbrot set a
given external ray lands, without having Adrien Douady at your side? Angled internal
addresses provide a convenient answer. We already know how to turn an external angle
into an internal address; now we turn it into an angled internal address.

It turns out that the internal address without angles completely determines the
denominators of any associated angled internal address, but it says nothing about the
numerators.

11.11. Lemma (Estimates on Denominators in Internal Address)
We have Sk+1/Sk ≤ qk < Sk+1/Sk + 2; moreover, qk = Sk+1/Sk whenever the latter is
an integer.

If Sk+1 is a multiple of Sk, then the component of period Sk+1 is a bifurcation from
that of period Sk.

Now we give a precise formula for qk. It is analogous to Formula (2) in Propo-
sition 5.19. Recall that every internal address has an associated kneading sequence
(see Definition 11.5 or Algorithm 2.3). For every kneading sequence ν = ν1ν2ν3 . . . we
define an associated function ρν as follows: for r ≥ 1, let

ρν(r) := min{k > r : νk 6= νk−r} .
The ρν-orbit of r is denoted orbρν (r) (compare Definition 2.2). We usually write ρ for
ρν .

11.12. Lemma (Denominators in Angled Internal Address)
In an angled internal address (S0)p0/q0 → . . . → (Sk)pk/qk → (Sk+1)pk+1/qk+1

. . . , the
denominator qk in the bifurcation angle is uniquely determined by the internal address
S0 → . . . → Sk → Sk+1 . . . as follows: let ν be the kneading sequence associated
to the internal address and let ρ be the associated function as just described. Let
r ∈ {1, 2, . . . , Sk} be congruent to Sk+1 modulo Sk. Then

qk :=

{
Sk+1−r
Sk

+ 1 if Sk ∈ orbρ(r) ,
Sk+1−r
Sk

+ 2 if Sk /∈ orbρ(r) .

While the internal address completely specifies the denominators in any correspond-
ing angled internal address, it says says nothing about the numerators: of course, not all
internal addresses are realized in the Mandelbrot set (not all are (complex) admissible;
see Sections 5 and 14), but this is independent of the numerators.

11.13. Theorem (Independence of Numerators in Angled Int. Address)
If an angled internal address describes a point in the Mandelbrot set, then the numer-
ators pk can be changed arbitrarily (coprime to qk) and the modified angled internal
address still describes a point in the Mandelbrot set.

In other words, for every hyperbolic component there is a natural bijection be-
tween combinatorial classes of the p/q-sublimb and p′/q-sublimb, for every q ≥ 2 and
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all p, p′ coprime to q. This bijection would give rise to a homeomorphism between these
sublimbs if the Mandelbrot set was locally connected. Unlike other homeomorphisms
constructed by surgery as in Branner and Fagella [BF] or Riedl [Ri], this homeomor-
phism preserves periods of hyperbolic components.

Here is a way to find the numerators pk from an external angle.

11.14. Lemma (Numerators in Angled Internal Address)
Suppose the external angle ϑ has angled internal address (S0)p0/q0 → . . .→ (Sk)pk/qk →
(Sk+1)pk+1/qk+1

. . . . In order to find the numerator pk, consider the qk − 1 angles ϑ,

2Skϑ, 22Skϑ, . . . , 2(qk−2)Skϑ. Then pk is the number of these angles that do not exceed
ϑ.

If ϑ is periodic, then it is the angle of one of the two parameter rays landing at the
root of a hyperbolic component. Here is a way to tell which of the two rays it is.

11.15. Lemma (Left or Right Ray)
Let R(ϑ) and R(ϑ′) be the two parameter rays landing at the root of a hyperbolic com-
ponent W of period n ≥ 2, and suppose that ϑ < ϑ′. Let b and b′ be the n-th entries in
the binary expansions of ϑ and ϑ′. Then

• if the kneading sequence of W has n-th entry 0, then b = 1 and b′ = 0;
• if the kneading sequence of W has n-th entry 1, then b = 0 and b′ = 1.

For example, the hyperbolic component with internal address 11/3 → 31/2 → 4 has
kneading sequence 1100, and the parameter ray R(4/15) lands at its root. The binary
expansion of 4/15 is 0.0100. The 4-th entries in the kneading sequence and in the
binary expansion of 4/15 are 0 and 0, so the second ray landing together with R(4/15)
has angle ϑ < 4/15 (indeed, the second ray is R(3/15)).

The following result complements the interpretation of internal addresses as road
descriptions by saying that whenever the path from the origin to a parameter c ∈ M

branches off from the main road, an entry in the internal address is generated: the way
to most parameters c ∈M traverses infinitely many hyperbolic components, but most
of them are traversed “straight on” and left into the 1/2-limb.

11.16. Proposition (Sublimbs Other Than 1/2 in Internal Address)
If a parameter c ∈ C is contained in the subwake of a hyperbolic component W at
internal angle other than 1/2, then W occurs in the internal address of c. More pre-
cisely, the period of W occurs in the internal address, and the truncation of the angled
internal address of c up to this period describes exactly the component W .

Proof. Let n be the period of W . If W does not occur in the internal address
of c, then the internal address of c must have an entry n′ < n corresponding to a
hyperbolic component W ′ in the wake of W . Denoting the width of W ′ by |W ′|, we
have |W ′| ≥ 1/(2n

′−1). By Proposition 9.24, if |W | denotes the width of a hyperbolic
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component W of period n, the width of its p/q-subwake is |W |(2n − 1)2/(2qn − 1), so
we must have

1/(2n
′ − 1) ≤ |W |(2n − 1)2/(2qn − 1) < (2n − 1)2/(2qn − 1)

or 2qn − 1 < (2n
′ − 1)(2n − 1)2 < (2n − 1)3 < 23n − 1, hence q < 3. 2

The internal address of a parameter c also says whether or not this parameter is
renormalizable in the sense of Section 10:

11.17. Proposition (Internal Address and Renormalization)
Let c ∈M be a parameter with internal address (S0)p0/q0 → . . .→ (Sk)pk/qk . . . .

• c is simply renormalizable of period n if and only if there is a k with Sk = n
and n|Sk′ for k′ ≥ k;
• c is crossed renormalizable of period n if and only if there is an m strictly

dividing n so that Sk = m for an appropriate k and all Sk′ with k′ > k are
proper multiples of n (in particular, n does not occur in the internal address).
In this case, the crossing point of the little Julia sets has period m.

Remark. We can also describe combinatorially whether any given parameter rays
R(ϑ) and R(ϑ′) can land at the same point in M: a necessary condition is that they
have the same angled internal address. This condition is also sufficient from a combi-
natorial point of view: suppose R(ϑ) and R(ϑ′) have the same angled internal address.
Then both rays accumulate at the same combinatorial class. If the internal address is
finite, then R(ϑ) and R(ϑ′) land on the boundary of the same hyperbolic component.
Otherwise, both rays accumulate at the same combinatorial class. As soon as it is
known that this combinatorial class consists of a single point (which would imply local
connectivity of M at that point [Sch3]), then both rays land together.

Proofs about Internal Addresses.
Now we give the proofs of the results stated so far; most of them go back to [LS].

Many of the proofs are based on the concept of long internal addresses, which show
that even though internal addresses themselves are a compact road description, they
encode refinements to arbitrary detail. Parameter ray pairs have a partial order as
follows: P (ϑ1, ϑ

′
1) < P (ϑ2, ϑ

′
2) iff P (ϑ1, ϑ

′
1) separates P (ϑ2, ϑ

′
2) from the origin c = 0,

or equivalently from c = 1/4, the landing point of the ray pair P (0, 1). It will be
convenient to say P (0, 1) < P (ϑ, ϑ′) for every ray pair P (ϑ, ϑ′) 6= P (0, 1). For every
parameter c ∈ C, the set of parameter ray pairs separating c from the origin is totally
ordered (by definition, this set always includes the pair P (0, 1) as its minimum). A
similar partial order can be defined for dynamic ray pairs for every c ∈M.

11.18. Definition (Long Internal Address in the Mandelbrot Set)
For a parameter ray c ∈ C, consider the set of periodic parameter ray pairs which
separate c from the origin, totally ordered as described above; the long internal address
of c is the collection of periods of these ray pairs with the same total order.
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The long internal address always starts with the entry 1, and it is usually infinite
and not well-ordered. For most c ∈ C, many periods appear several times on the long
internal address (which means that several ray pairs of equal period separate c from
the origin).

One useful feature of internal addresses is that they completely encode the asso-
ciated long internal addresses. The following proposition is in fact algorithmic, as its
proof shows.

11.19. Proposition (Long Internal Address Encoded in Internal Address)
Any internal address completely encodes the associated long internal address.

Proof. The internal address is a strictly increasing (finite or infinite) sequence of
integers, each of which comes with an associated ?-periodic kneading sequence. If it is
the internal address of some c ∈ C, then each entry in the internal address represents
a parameter ray pair with this period. Corollary 11.7 describes the least period of a
periodic parameter ray pair which separates any two given parameter ray pairs, and it
also describes the kneading sequence of the ray pair of least period. This allows us to
inductively find the periods of all parameter ray pairs of given maximal periods which
separate c from the origin, together with the order and kneading sequences of these
ray pairs, and in the limit determines the long internal address. 2

Remark. Of course, it makes perfect sense to speak of an angled long internal address,
which is a long internal address in which all entries (except the last, if there is a
last entry) are decorated with the bifurcation angles of the sublimb containing the
parameter associated with this address. All entries with angles different from 1/2 are
already contained in the “short” internal address by Proposition 11.16, so the angled
internal address completely encodes the angled long internal address.

Proof of Theorem 11.10 (Completeness of angled internal addresses).
Since combinatorial classes are based upon periodic parameter ray pairs, it suffices
to prove the claim for periodic ray pairs and thus for hyperbolic components. If the
claim is false, then there is a least period Sk for which there are two different hyper-
bolic components W and W ′ of period Sk that share the same angled internal address
(S1)p1/q1 → . . . → (Sk−1)pk−1/qk−1

→ Sk. By minimality of Sk, the ray pair of period
Sk−1 is the same in both internal addresses.

By the Branch Theorem 9.13, there are three possibilities: either (1) W is contained
in the wake of W ′ (or vice versa), or (2) there is a hyperbolic component W∗ so that
W and W ′ are in two different of its sublimbs, or (3) there is a Misiurewicz-Thurston
point c∗ so that W and W ′ are in two different of its sublimbs.

(1) In the first case, there must by a parameter ray pair of period less than Sk
separating W and W ′ by Lavaurs’ Lemma 9.28. This ray pair would have to occur in
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the internal address of W ′ (between entries Sk−1 and Sk) but not of W , and this is a
contradiction.

(2) The second possibility is handled by angled internal addresses: at least one of
W or W ′ must be contained in a sublimb of W∗ other than the 1/2-sublimb, so by
Proposition 11.16, W∗ must occur in the internal address, and the angles at W∗ in the
angled internal address distinguish W and W ′.

(3) The case of a Misiurewicz-Thurston c∗ point needs more attention. The pa-
rameter c∗ is the landing point of k ≥ 3 parameter rays R(ϑ1) . . .R(ϑk) at preperiodic
angles.

By Proposition 11.19, W and W ′ have the same long internal address, and by
minimality of Sk there is no hyperbolic component W ∗ of period less than Sk in a
sublimb of c∗ so that W ⊂ WW ∗ .

Let P (ϑ, ϑ′) be the parameter ray pair landing at the root of W and let c be
the center of W . In the dynamics of pc, there is a characteristic preperiodic point
w which is the landing point of the dynamic rays Rc(ϑ1), . . .Rc(ϑK) (the definition
of characteristic preperiodic points is in analogy to the definition of characteristic
periodic points after Theorem 11.1; the existence of the characteristic preperiodic point
w is well known (“The Correspondence Theorem”); see e.g., Theorem 9.5 or [Sch3,
Theorem 2.1]). We use the Hubbard tree Tc of pc in the original sense of Douady and
Hubbard (Definition 3.4). Let I ⊂ Tc be the arc connecting w to c.

If the restriction p◦Skc |I is not injective, then let n ≤ Sk be maximal so that p
◦(n−1)
c |I

is injective. There is a sub-arc I ′ ⊂ I starting at w so that p◦nc |I′ is injective and p◦nc (I ′)
connects p◦nc (w) with c. If n = Sk then I ′ = I because c is an endpoint of p◦nc (I), a
contradiction; thus n < Sk. Since w is characteristic, this implies that p◦nc (I ′) ⊃ I ′, so
there is a fixed point z of p◦nc on I ′. If z is not characteristic, then the characteristic
point on the orbit of z is between z and c. In any case, we have a hyperbolic component
W ∗ of period n < Sk in a sublimb of c∗ so that W ⊂ WW ∗ (again by Theorem 11.1),
and this is a contradiction.

It follows that the restriction p◦Skc |I is injective. There is a unique component of
C \ (Rc(2

Skϑ1) ∪ · · · ∪ Rc(2
Skϑk) ∪ {p◦Skc (w)}) that contains p◦Skc (I): it is the com-

ponent containing c and the dynamic ray pair Pc(ϑ, ϑ
′), and thus also the dynamic

rays Rc(ϑ1), . . . , Rc(ϑk), so this component is uniquely specified by the external an-
gles of c∗. But by injectivity of p◦Skc |I , this also uniquely specifies the component of
C \ (Rc(ϑ1)∪ · · · ∪Rc(ϑk)∪ {z}) that must contain I and hence c. In other words, the
subwake of c∗ containing W (and, by symmetry, W ′) is uniquely specified. 2

Proof of Lemma 11.11 (Estimates on Denominators). The angled internal
address (S0)p0/q0 → (S1)p1/q1 → . . . → (Sk)pk/qk → (Sk+1)pk+1/qk+1

. . . , when truncated
at periods Sk, describes a sequence of hyperbolic components Wk of periods Sk. If
Wk+1 is contained in the pk/qk-sublimb of Wk, then we have Sk+1 ≤ qkSk (otherwise an
entry qkSk would be generated in the internal address); thus qk ≥ Sk+1/Sk. The other
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inequality follows from Proposition 9.24: the width of the wake of Wk+1 cannot exceed
the width of the pk/qk-subwake of Wk, so 1/(2Sk+1 − 1) ≤ (2Sk − 1)2/(2qkSk − 1) or

2qkSk − 1 ≤ (2Sk+1 − 1)(2Sk − 1)2 < 2Sk+1+2Sk − 1 ,

hence Sk+1 > (qk − 2)Sk or qk < Sk+1/Sk + 2.
It remains to show that whenever Sk+1/Sk is an integer, it equals qk: there are

associated parameter ray pairs P (ϑk, ϑ
′
k) of period Sk and P (ϑk+1, ϑ

′
k+1) of period Sk+1,

and the limiting kneading sequences limϕ↘ϑk ν(ϕ) and limϕ↗ϑk+1
ν(ϕ) are periodic of

period Sk and Sk+1; both can be viewed as being periodic of period Sk+1. Since
they correspond to adjacent entries in the internal address, these ray pairs cannot be
separated by a ray pair of period up to Sk+1, so both limiting kneading sequences are
equal. Therefore, Corollary 11.7 implies that the two ray pairs are not separated by
any periodic parameter ray pair. If Wk+1 was not a bifurcation from Wk, then it would
have to be in some subwake of Wk whose boundary would be some ray pair separating
P (ϑk, ϑ

′
k) from P (ϑk+1, ϑ

′
k+1); this is not the case. So let pk/qk be the bifurcation angle

from Wk to Wk+1; then the corresponding periods satisfy Sk+1 = qkSk as claimed. 2

In the following lemma, we use the function ρν as defined before Lemma 11.12.

11.20. Lemma (Intermediate Ray Pair of Lowest Period)
Let P (ϑk, ϑ

′
k) and P (ϑk+1, ϑ

′
k+1) be two periodic parameter ray pairs with periods Sk <

Sk+1 and suppose that P (ϑk, ϑ
′
k) separates P (ϑk+1, ϑ

′
k+1) from the origin. Write Sk+1 =

aSk+r with r ∈ {1, . . . , Sk}. Let S be the least period of a ray pair separating P (ϑk, ϑ
′
k)

from P (ϑk+1, ϑ
′
k+1). If Sk+1 < S ≤ (a + 1)Sk, then S = aSk + ρν(r), where ν is any

kneading sequence that has the same initial Sk entries as ν(ϑk+1) = ν(ϑ′k+1).

Proof. Let B and R denote the initial blocks inA(ν(ϑk)) = A(ν(ϑ′k)) consisting of the
first Sk or r entries, respectively. Then A(ν(ϑk)) = B. Since S > Sk+1, Corollary 11.7
implies A(ν(ϑk+1)) = BaR. Therefore, S is the position of the first difference between
B and BaR, and S − aSk is the position of the first difference between B and RBa.
Since S ≤ (a + 1)Sk, this difference occurs among the first Sk symbols, and these are
specified by B and RB. Since R is the initial segment of B of length r, S− aSk equals
ρν(r) for any sequence ν that starts with B. 2

Proof of Lemma 11.12 (Finding denominators). The internal address (without
angles) uniquely determines the long internal address by Proposition 11.19. The entry
Sk occurs in the internal address and the subsequent entry in the long internal address
is qkSk, so the denominators are uniquely encoded (and depend only on the qkSk initial
entries in the kneading sequence). Recall the bound Sk+1 ≤ qkSk < Sk+1 + 2Sk from
Lemma 11.11.

Write again Sk+1 = aSk + r with r ∈ {1, . . . , Sk}. If r = Sk, then Sk+1 is divisible
by Sk and qk = Sk+1/Sk by Lemma 11.11, and this is what our formula predicts.
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Otherwise, we have qk ∈ {a + 1, a + 2}. Below, we will find the lowest period S ′

between Sk and Sk+1, then the lowest period S ′′ between Sk and S ′, and so on (of
course, the “between” refers to the order of the associated ray pairs). This procedure
must eventually reach the bifurcating period qkSk. If qkSk = (a+1)Sk, then eventually
one of the periods S ′, S ′′,. . . must be equal to (a + 1)Sk. If not, the sequence S ′, S ′′,
. . . skips (a+ 1)Sk, and then necessarily qkSk = (a+ 2)Sk.

We can use Lemma 11.20 for this purpose: we have S ′ = aSk + ρν(r), then S ′′ =
aSk + ρν(ρν(r)) etc. until the entries reach or exceed aSk + Sk: if the entries reach
aSk + Sk, then qk = a+ 1; if not, then qk > a+ 1, and the only choice is qk = a+ 2. 2

Proof of Theorem 11.13 (Numerators arbitrary). We prove a stronger state-
ment: given a hyperbolic component W of period n, then we can combinatorially de-
termine for any s′ > 1 how many components of period up to s′ are contained in the
wake WW , how the wakes of all these components are nested, and what the widths of
their wakes are; all we need to know about W are the width of its wake and its internal
address (without angles). In particular, these data encode how the internal address of
the component W can be continued within M. This proves the theorem (and it also
shows that the width of the wake of W is determined by the internal address of W ).

For any period s, the number of periodic angles of period s or dividing s within any
interval of S1 of length δ is either bδ/(2s−1)c or dδ/(2s−1)e (the closest integers above
and below δ/(2s−1)). If the interval of length δ is the wake of a hyperbolic component,
then the corresponding parameter rays land in pairs, and the correct number of angles
is the unique even integer among bδ/(2s−1)c and dδ/(2s−1)e. This argument uniquely
determines the exact number of hyperbolic components of any period within any wake
of given width.

There is a unique component Ws of lowest period s, say, in WW (if there were two
such components, then this would imply the existence of at least one parameter ray of
period less than s and thus of a component of period less than s). The width ofWWs is
exactly 1/(2s− 1) (this is the minimal possible width, and greater widths would imply
the existence of a component with period less than s).

Now suppose we know the number of components of periods up to s′ within the wake
WW , together with the widths of all their wakes and how these wakes are nested. The
wake boundaries of period up to s′ decompose WW into finitely many components.
Some of these components are wakes; the others are complements of wakes within
other wakes. We can uniquely determine the number of components of period s′ + 1
within each of these wakes (using the widths of these wakes), and then also within
each complementary component outside of some of the wakes (simply by calculating
differences). Each wake and each complementary component can contain at most one
component of period s′+1 by Theorem 11.10. The long internal addresses tell us which
wakes of period s′ + 1 contain which other wakes, and from this we can determine the
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widths of the wakes of period s′ + 1. This provides all information for period s′ + 1,
and this way we can continue inductively and prove the claimed statement.

Starting with the unique component of period 1, it follows that the width of a wake
WW is determined uniquely by the internal address of W . 2

Proof of Lemma 11.14 (Finding numerators). We only need to find the nu-
merator pk if qk ≥ 3. Let Wk be the unique hyperbolic component with angled internal
address (S0)p0/q0 → . . . → (Sk) and let P (ϑk, ϑ

′
k) be the ray pair bounding its wake

WWk
. Let W ′

k be the component with angled internal address (S0)p0/q0 → . . . →
(Sk)pk/qk → qkSk; it is an immediate bifurcation from Wk.

By Theorem 11.1, every c ∈ WWk
has a repelling periodic point zc which is the

landing point of the characteristic dynamic ray pair Pc(ϑk, ϑ
′
k); we find it convenient

to describe our proof in such a dynamic plane, even though the result is purely com-
binatorial. Let Θ be the set of angles of rays landing at zc; this is the same for all
c ∈ WWk

. Especially if c ∈ W ′
k, it is well known and easy to see that Θ contains exactly

qk elements, the first return map of zc permutes the corresponding rays transitively and
their combinatorial rotation number is pk/qk (Lemma 9.3). These rays disconnect C
into qk sectors which can be labelled V0, V1, . . . , Vqk−1 so that the first return map of zc
sends Vj homeomorphically onto Vj+1 for j = 1, 2, . . . , qk − 2, and so that V1 contains
the critical value and V0 contains the critical point and the ray Rc(0). Finally, under
the first return map of zc, points in V0 near zc map into V1, and points in Vqk−1 near zc
map into V0. The number of sectors between V0 and V1 in the counterclockwise cyclic
order at zc is then pk − 1, where pk is the numerator in the combinatorial rotation
number.

Now suppose the dynamic ray Rc(ϑ) contains the critical value or lands at it. Then
Rc(ϑ) ∈ V1, andRc(2

(j−1)Skϑ) ∈ Vj for j = 1, 2, . . . , qk−1. Counting the sectors between
V0 and V1 means counting the rays Rc(ϑ), Rc(2

Skϑ), . . . , Rc(2
(qk−2)Skϑ) in these sectors,

and this means counting the angles ϑ, 2Skϑ, . . . , 2(qk−2)Sk in (0, ϑ). The numerator pk
exceeds this number by one, and this equals the number of angles ϑ, 2Skϑ, . . . , 2(qk−2)Sk

in (0, ϑ]. 2

Proof of Lemma 11.15 (Left or right ray). The n-th entry in the kneading
sequence of ν(ϑ) is determined by the position of the angle 2n−1ϑ ∈ {ϑ/2, (ϑ + 1)/2}.
The n-th entry in the kneading sequence of W equals the n-th entry in the kneading
sequence of ϑ̃ for ϑ̃ slightly greater than ϑ (for ϑ′, we use an angle ϑ̃′ slightly smaller

than ϑ̃); this is 1 if and only if 2n−1ϑ = ϑ/2 and 0 otherwise. But 2n−1ϑ = ϑ/2 implies
2n−1ϑ ∈ (0, 1/2), hence b = 0, while 2n−1ϑ = (ϑ + 1)/2 implies 2n−1ϑ ∈ (1/2, 1) and
b = 1. The reasoning for ϑ′ is similar. 2
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Proof of Proposition 11.17 (Internal Address and Renormalization).
We only discuss the case of simple renormalization (the case of crossed renormalization
is treated in [RiSch, Corollary 4.2]).

Fix a hyperbolic component W of period n. Let MW be the component of n-
renormalizable parameters in M containing W (all c ∈ W are n-renormalizable), and
let ΨW : M→MW be the tuning homeomorphism; see [Hai, Mix, Mi2] or Section 10.
Let 1→ S1 → . . .→ Sk = n be the internal address of W . Then the internal address of
every c ∈MW starts with 1→ S1 → . . .→ Sk = n because MW contains no hyperbolic
component of period less than n, so points in MW are not separated from each other
by parameter ray pairs of period less than n. All hyperbolic components within MW ,
and thus all ray pairs separating points in MW , have periods that are multiples of n, so
all internal addresses of parameters within MW have the form 1→ S1 → . . .→ Sk →
Sk+1 . . . so that all Sm ≥ n are divisible by n. In fact, if c ∈ M has internal address
1 → S ′1 → . . . → S ′k′ . . . , then it is not hard to see that the internal address of ΨW (c)
is 1→ S1 → . . .→ n→ nS ′1 → . . .→ nS ′k . . . (hyperbolic components of period S ′ in
M map to hyperbolic components of period nS ′ in MW , and all ray pairs separating
points in MW are associated to hyperbolic components in MW that are images under
ΨW ).

For the converse, we need dyadic Misiurewicz-Thurston parameters : these are by
definition the landing points of parameter rays R(ϑ) with ϑ = m/2k; dynamically, these
are the parameters for which the singular orbit is strictly preperiodic and terminates
at the β fixed point. If ϑ = m/2k, then the kneading sequence ν(ϑ) has only entries
0 from position k + 1, so the internal address of ν(ϑ) contains all integers that are
at least 2k − 1. But the internal address of ν(ϑ) from Algorithm 11.5 equals the
internal address of R(ϑ) in parameter space (Proposition 11.6), and the landing point
of R(ϑ) has the same internal address. Therefore, the internal address of any dyadic
Misiurewicz-Thurston parameter contains all sufficiently large positive integers.

Suppose the internal address of some c ∈ M has the form 1 → S1 → . . . → Sk →
Sk+1 . . . with Sk = n and all Sm ≥ n are divisible by n. There is a component W with
address 1 → S1 → . . . → Sk so that c ∈ WW . If c 6∈ MW , then c is separated from
MW by a Misiurewicz-Thurston parameter c∗ ∈ MW which is the tuning image of a
dyadic Misiurewicz-Thurston parameter (see [D4], [Mi2, Section 8], or Corollary 10.9).
Therefore, the internal address of c∗ contains all integers that are divisible by n and
sufficiently large, say at least Kn. Let S be the first entry in the internal address of c
that corresponds to a component “behind MW” (so that it is separated from MW by
c∗). The long internal address of c contains “behind” W only hyperbolic components
of periods divisible by n, and this implies that before and after c∗ there must be two
components of equal period (greater than Kn) that are not separated by a ray pair of
lower period. This contradicts Lavaurs’ Lemma 9.28. 2
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Remark. In Definition 11.9, we defined angled internal addresses in parameter space,
but they can also be defined dynamically: the angles are combinatorial rotation num-
bers of rays landing at characteristic periodic points the periods of which occur in the
internal address. This allows us to give more dynamic proofs of several theorems that
we proved in parameter space. For instance, changing numerators has no impact on
whether an angled internal address is realized in the complex plane (Theorem 11.13):
for the Hubbard trees at centers of hyperbolic components, this simply changes the em-
bedding of the tree, but not the issue whether such a tree can be embedded (compare
the discussion in Corollary 4.11 and Lemma 16.11). (The denominators are determined
already by the internal address without angles; see Lemma 11.12). Similarly, the an-
gled internal address completely determines a Hubbard tree with its embedding and
thus the dynamics at the center of a hyperbolic component; this is Theorem 11.10: the
(finite) angled internal address completely specifies every hyperbolic component.

We can define a partial order of hyperbolic components W,W ′ in M as follows: we
say that W ′ is greater than W if W ′ 6= W and the wake of W contains W ′ (and thus
the wake of W ′). Since wakes are by definition bounded by parameter ray pairs at
periodic angles, and are thus either nested or disjoint, Theorem 11.1 implies that an
equivalent dynamical definition goes as follows: W ′ is greater than W if any parameter
c′ ∈ W ′ (or even c′ in the wake of W ′) has the property that if P (ϑ, ϑ′) is the ray pair
bounding the wake of W , then pc′ has a characteristic dynamic ray pair Pc′(ϑ, ϑ

′). (An
extension of this partial order to all c, c′ ∈ M goes as follows: c′ is greater than c if
there is a parameter ray pair P (ϑ, ϑ′) at periodic angles that separates c′ from c and
the origin.)

In Definition 6.1, the space of all ?-periodic kneading sequences (realized by a
complex polynomial or not) was endowed with a partial order, so that ν ′ > ν if the
Hubbard tree for ν ′ contains a periodic point with itinerary A(ν). These two partial
orders are related as follows.

11.21. Proposition (Order for Hyperbolic Components and Kneadings)
Consider two hyperbolic components W 6= W ′ with associated kneading sequences ν
and ν ′. If W ′ is greater than W , then ν ′ > ν. Conversely, if ν ′ > ν, then there is
a hyperbolic component W ′′ greater than W so that W ′′ has kneading sequence ν ′ and
thus the same period and internal address as W ′. 2

We omit the proof, which is not difficult: it follows from the dynamical definition
of the partial order as given above. Note that it is not true that if ν ′ > ν, then W ′ is
greater than W : there can be several hyperbolic components with the same kneading
sequence ν ′ and thus the same internal address, and these components are distinguished
by their angled internal addresses. At least one of these components is greater than
W , while the other components may not be comparable.



Section 12, Version of July 27, 2011 155

12. Symbolic Dynamics, Permutations, Galois Groups

We investigate which permutations of periodic points of pc can be achieved by analytic

continuation with respect to the parameter c. This makes it possible to determine Galois

groups of those polynomials which represent the periodic points. In order to do this, we need

some existence theorems of kneading sequences, and these will be derived from results on the

structure of the Mandelbrot set using internal addresses.

Every component W of period n has an associated internal address (finite, ending
with entry n); compare the remark before Definition 11.9. The component W also has
an associated periodic kneading sequence ν(W ) consisting only of entries 0 and 1: one
way of defining this is to take any parameter ray R(ϕ) with irrational ϕ landing at ∂W ;
then ν(W ) := ν(ϕ). Equivalently, let P (ϑ, ϑ′) be the parameter ray pair landing at the
root of W ; then ϑ and ϑ′ have period n and ν(ϑ) = ν(ϑ′) are ?-periodic of period n,
and ν(W ) = A(ν(ϑ)) = A(ν(ϑ′)) (see Lemma 11.2 and Proposition 11.6). Of course,
the internal address of W is the same as the internal address of R(ϕ), R(ϑ), R(ϑ′) or
of ϕ, ϑ or ϑ′.

12.1. Definition (Narrow Component)
A hyperbolic component of period n is narrow if its wake contains no component of
lower period, or equivalently if the wake has width 1/(2n − 1).

Remark. It follows directly from Proposition 9.24 that if W ′ is a bifurcation from
another component W , then W ′ is narrow if and only if W has period 1.

If W,W ′ are two hyperbolic components of periods n and n′ so that W ′ ⊂ WW ,
then we say that W ′ is visible from W if there exists no parameter ray pair of period
less than n′ that separates W and W ′. If n < n′, then this is equivalent to the condition
that the internal address of W ′ be formed by the internal address of W , extended by
the entry n′.

12.2. Lemma (Visible Components from Narrow Component)
For every narrow hyperbolic component of period n, there are visible components of all
periods greater than n. More precisely, every p/q sublimb contains exactly n visible
components: exactly one component each of period qn− (n− 1), qn− (n− 2),. . . , qn.

Proof. Let W be a narrow hyperbolic component of period n and consider its p/q-
subwake. The visible components in this wake have periods at most qn. First we show
that any two visible components within the p/q-subwake of W have different internal
addresses. By way of contradiction, suppose there are two components W1 and W2 of
equal period m ≤ qn with the same internal address. By Theorem 11.10 there must be
another hyperbolic component W ′ in the same subwake of W so that W1 and W2 are in
different p1/q

′- and p2/q
′-subwakes of W ′ with q′ ≥ 3 (different hyperbolic components

with the same internal address must have different angled internal addresses). Let
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n′ > n be the period of W ′. Then the width of these subwakes is, according to
Proposition 9.24,

|W ′|(2
n′ − 1)2

2q′n′ − 1
≤ |W |(2

n − 1)2

2qn − 1
· (2n

′ − 1)2

2q′n′ − 1
=

2n − 1

2qn − 1
· (2n

′ − 1)2

2q′n′ − 1

<
2n(2(2−q′)n′)(1− 2−q

′n′)−1

2qn − 1
≤ 2(n−n′) · 2

2qn − 1
≤ 1

2qn − 1

because W ′ is contained in the p/q-wake of W . But this is not large enough to contain
a component of period at most qn, a contradiction.

The next step is to prove that every subwake of W of denominator q contains
exactly 2k external rays with angles a/(2(q−1)n+k − 1) for 1 ≤ k ≤ n, including the two
rays bounding the wake. In fact, Proposition 9.24 says that the width of the wake is
(2n− 1)/(2qn− 1), so the number of rays one expects by comparing widths of wakes is

(2n − 1)(2(q−1)n+k − 1)

2qn − 1
=: 2k + α,

where an easy calculation shows that −1 ≤ α < 1 and that α = −1 can occur only for
k = n. The actual number of rays can differ from this expected value by no more than
one and is even, hence equal to 2k. Moreover, no such ray of angle a/(2(q−1)n+k−1) can
have period smaller than (q−1)n+k because it would land at a hyperbolic component
of some period dividing (q− 1)n+ k — but in the considered wake there would not be
room enough to contain a second ray of equal period.

This shows that, for any k ≤ n, the number of hyperbolic components of period
m = (q − 1)n + k in any subwake of W of denominator q equals 2k−1. They must
all have different internal addresses. The single component of period (q − 1)n + 1
takes care of the case k = 1, and its wake subdivides the p/q-subwake of W into two
components. There are two components of period (q− 1)n+ 2, and since their internal
addresses are different, exactly one of them must be in the wake of the component of
period (q − 1)n + 1, while the other is not; the latter one is visible from W . (The
non-visible component is necessarily narrow, while the visible component may or may
not be narrow.)

So far we have taken are of 3 components, and they subdivide the p/q-subwake
of W into 4 components. Each component most contain one component of period
(q − 1)n + 3, so exactly one of these components is visible from W , and so on. The
argument continues as long as we have uniqueness of components for given internal
addresses, which is for k ≤ n. 2

12.3. Lemma (Narrow Visible Components from Narrow Component)
Suppose W and W ′ are two hyperbolic components of periods n and n + s with s > 0
so that W is narrow and W ′ is visible from W . Let k ∈ {1, . . . , n − 1, n} be so that
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s ≡ k modulo n. Then the question whether or not W ′ is narrow depends only on the
first k entries in the kneading sequence of W (but not otherwise on W ).

Proof. By Lemma 12.2, every p/q-subwake of W contains exactly one visible hy-
perbolic component Wm of period m = (q − 1)n + k for k = 1, 2, . . . , n. Such a
component Wm is narrow unless the wake WWm contains a visible component Wm′

with m′ = (q − 1)n + k′ and k′ ∈ {1, 2, . . . , k − 1}. If there is such a component, let
m′ be so that the width |Wm′ | is maximal (i.e., Wm and Wm′ are not separated by a
parameter ray pair of period less than m′).

In order to find out whether the unique visible component Wm′ is contained in
WWm , we need to compare the kneading sequence ν associated to W with the kneading
sequence ν ′ “just before” Wm′ and find whether their first difference occurs at position
m (according to Corollary 11.7, the position of the first difference is the least period
of two ray pairs separating W and Wm′ : if this difference occurs after entry m, then
the ray pairs landing at the root of Wm do not separate W from Wm′ ; the difference
cannot occur before entry m because of visibility of Wm and the choice of m′).

By visibility of Wm′ , the kneading sequences ν and ν ′ coincide for at least m′ > n
entries. Eliminating these, we need to compare σm

′
(ν) with ν ′ for m−m′ = k− k′ < n

entries. Equivalently, we need to compare the first k − k′ entries in σk
′
(ν) with ν ′

or equivalently with ν: these are the entries νk′+1 . . . νk and ν1 . . . νk−k′ . But this
comparison involves only the first k entries in ν. (The precise criterion is: W ′ is not
narrow if and only if there is a k′ ∈ {1, 2, . . . , k− 1} with ρ(k′) = k; compare (3) in the
proof of Corollary 5.20.) 2

12.4. Proposition (Combinatorics of Purely Narrow Components)
Consider a hyperbolic component W with internal address 1 → S1 → . . . → Sk and
associated kneading sequence ν. Suppose that νSi = 0 for i = 1 = 2, . . . , k. Then W
is narrow and for every Sk+1 > Sk, there exists a hyperbolic component with internal
address 1→ S1 → . . .→ Sk → Sk+1; it is narrow if and only if νSk+1

= 1.

Proof. We prove the claim by induction on the length of internal addresses, starting
with the address 1 of length 0. The associated component has period 1, it is narrow
and has ν = 1, and there is no condition on νSi to check. For every S1 > 1, there
exists a hyperbolic component with internal address 1 → S1 (these are components
of period S1 bifurcating immediately from the main cardioid). By the remark after
Definition 12.1, these components are narrow, and indeed νS1 = 1.

Now assume by induction that the claim is true for a narrow component Wk−1 with
internal addresses 1 → S1 → . . . → Sk−1 of length k − 1 and associated kneading
sequence µ. We will prove the claim when W is a hyperbolic component with internal
address 1 → S1 → . . . → Sk−1 → Sk of length k and with associated internal address
ν so that νSk = 0. First we show that W is narrow: by the inductive hypothesis, it is
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narrow if and only if µSk = 1, but this is equivalent to νSk = 0 because ν and µ first
differ at position Sk.

Consider some integer Sk+1 > Sk. By Lemma 12.2, there exists another component
Wk+1 with internal address 1 → S1 → . . . → Sk → Sk+1. We need to show that it is
narrow if and only if νSk+1

= 1. If Sk+1 is a proper multiple of Sk, then the assumption
νSk = 0 implies νSk+1

= 0, and we have to show that Wk+1 is not narrow. Indeed, Wk+1

is a bifurcation from W by Lemma 11.11, and by the remark after Definition 12.1
bifurcations are narrow if and only if they bifurcate from the period 1 component. We
can thus write Sk+1 = qSk + S ′k+1 with S ′k+1 ∈ {Sk + 1, Sk + 2, . . . , 2Sk − 1}.

Again by Lemma 12.2, there exists another component W ′
k+1 with internal address

1 → S1 → . . . → Sk → S ′k+1; by Lemma 12.3, it is narrow if and only if Wk+1 is. But
ν has period Sk, so νSk+1

= νS′k+1
and the claim holds for Sk+1 if and only if it holds

for S ′k+1. It thus suffices to restrict attention to the case Sk+1 < 2Sk. Whether or not
Wk+1 is narrow is determined by the initial Sk+1 − Sk < Sk entries in ν.

Now we use the inductive hypothesis for Wk−1: there exists a component W ′ with
address 1 → S1 → . . . → Sk−1 → (Sk−1 + Sk+1 − Sk), and it is narrow if and only if
µSk−1+Sk+1−Sk = 1. The kneading sequences µ and ν first differ at position Sk, so their
initial Sk+1 − Sk entries coincide. Therefore, by Lemma 12.3, the component W ′ is
narrow if and only if Wk+1 is. Therefore, Wk+1 is narrow if and only if µSk−1+Sk+1−Sk =
1. Finally, we have

νSk+1
= νSk+1−Sk = µSk+1−Sk = µSk−1+Sk+1−Sk

by periodicity of ν (period Sk) and of µ (period Sk−1) and because the first difference
between ν and µ occurs at position Sk > Sk+1 − Sk. This proves the proposition. 2

Remark. We call a hyperbolic component Wk+1 with internal address 1 → S1 →
. . . → Sk → Sk+1 and associated kneading sequence ν purely narrow if νSi = 0 for
i = 1, 2, . . . , k + 1. Proposition 12.4 implies that this is equivalent to the condition
that 1 → S1 → . . . → Si−1 → Si describes a narrow component for i = 1, . . . , k + 1
(hence the name). The asymmetry in the statement of the proposition (for narrow
components, the last entry in ν must be 1, rather than 0 for all earlier components) is
because the condition is with respect to the kneading sequence of period Sk, not with
respect to the sequence of period Sk+1 associated to Wk+1.

Remark. For every narrow hyperbolic component, the previous results allow to con-
struct combinatorially the trees of visible components within any sublimb; for purely
narrow components, the global tree structure can thus be reconstructed by what we
call “growing of trees”: see Figure 12.1. These issues have been explored further by
Kauko [Kau1].
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12.5. Lemma (Maximal Shift of Kneading Sequence)
For a kneading sequence ν (without ?) with associated internal address 1 → S1 →
. . .→ Sk → . . . , the following are equivalent:

(1) no shift σk(ν) exceeds ν with respect to lexicographic ordering;
(2) for every r ≥ 1, νρ(r) = 0.
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Figure 12.1. Left: For a narrow hyperbolic component W (here of
period 5), the trees of visible components within any p/q- and p′/q′-
subwake are the same when adding (q′ − q)n to the periods of all com-
ponents in the p/q-subwake; this “translation principle” follows directly
from Lemma 12.3, using just the combinatorics of internal addresses or
kneading sequences (even the embeddings of the trees are the same; this
follows from comparisons with dynamical planes). Right: if W ′ (here of
period 19) is visible from W and both are narrow, then the tree of visible
components within the 1/2-subwake of W ′ can be reconstructed from the
trees of visible components within various subwakes of W : if n′ and n are
the periods of W ′ and W , then the tree formed by the visible components
in the 1/2-subwake of W ′ of periods n′ + 1, . . . , 2n′ − 1 (excluding the
bifurcating component of period n′) equals the tree formed by the visible
components of periods n + 1, . . . , n + n′ − 1 in the 1/q-subwakes of W ,
adding n′ − n to all periods.
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Every such kneading sequence is realized by a purely narrow hyperbolic component.

Proof. Pick some r ≥ 1. If νρ(r) = 1, then the entries νr+1νr+2 . . . νρ(r) exceed the
entries ν1ν2 . . . νρ(r)−r, hence σr(ν) > ν in the lexicographic ordering; conversely, if
νρ(r) = 0, then σr(ν) < ν. Thus both conditions are indeed equivalent.

By Proposition 12.4, it follows inductively that all internal addresses 1 → S1 →
. . .→ Sk−1 → Sk are realized by narrow components because the associated kneading
sequence ν satisfies νSi = νρ(Si−1) = 0. 2

Remark. The existence of kneading sequences as described in this lemma can also
be derived from the general admissibility condition on kneading sequences, see Corol-
lary 5.20 (this is a more abstract and difficult, but also more general result). Schmeling
observed that sequences that are maximal shifts with respect to the lexicographic order
are exactly the fixed points of the map ϑ 7→ ν(ϑ).

Symbolic Dynamics and Permutations.
We will now discuss permutations of periodic points of pc(z) = z2 + c. We make

a brief excursion to algebra and describe our theorem first in algebraic terms (for
readers that are less familiar with these algebraic formulations, we restate the result in
Theorem 12.8). For n ≥ 1, let Qn(z) := p◦nc (z)− z (consider these as polynomials in z
with coefficients in C[c]). The roots of Qn are periodic points of period dividing n, so
we can factor them as

Qn =
∏
k|n

Pk ;

this product defines the Pk recursively, starting with P1 = Q1.

12.6. Theorem (Galois Groups of Polynomials)
For every n ≥ 1, the polynomials Pn are irreducible over C[c]. Their Galois groups Gn

consist of all the permutations of the roots of Pn that commute with the dynamics of
pc. There is a short exact sequence

0 −→ (Zn)Nn −→ Gn −→ SNn −→ 0 ,

where Zn = Z/nZ, Nn is the number of periodic orbits of exact period n for pc with
c ∈ Xn, and SNn is the symmetric group on Nn elements.

In this statement, the injections (Zn)Nn → Gn correspond to independent cyclic
permutations of the Nn orbits of period n, while the surjection is the projection from
periodic points to periodic orbits and yields arbitrary permutations among the orbits.
This theorem was derived independently by algebraic means in [Bou1, MP].

A related statement in parameter space is still unsolved: consider the polynomials
Q̃n(c) := p◦nc (c)− c ∈ Z[c]. Their roots are parameters c for which the critical orbit is
periodic of period dividing n (i.e., c is the center of a hyperbolic component of period
n), so we can again factor as Q̃n =

∏
k|n P̃k with P̃1 = Q̃1.
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12.7. Conjecture (Galois Groups for Centers of Hyperbolic Components)
All P̃n are irreducible over Q, and their Galois groups are the full symmetric groups.

This would say that the centers of hyperbolic components of fixed period n have
the maximal symmetry possible. Manning confirmed this conjecture for low values of
n by computer experiments (unpublished).

Our approach for proving Theorem 12.6 will be using analytic continuation, like
in the proof of the Ruffini-Abel theorem. This will yield explicit paths along which
analytic continuation yields any given permutations. For specific values of c ∈ C, the
Pn are polynomials in C[z] and factor over C; we write them as Pn(c). Let

Xn := {c ∈ C : all roots of Pn(c) are simple} .
Then all periodic points of period n can be continued analytically through Xn, so the
fundamental group of Xn (with respect to any basepoint) acts on periodic points by
analytic continuation. The question is which permutations can be so achieved. Of
course, all permutations have to commute with the dynamics: if z is a periodic points
of pc, then any permutation π that is achieved by analytic continuation must have the
property that pc(π(z)) = π(pc(z)). It turns out that this is the only condition.

12.8. Theorem (Analytic Continuation of Periodic Points)
For every period n ≥ 1, analytic continuation in Xn induces all permutations among
periodic points of exact period n that commute with the dynamics.

If z0 is a double root of Pn(c) for some c ∈ C , then z0 is also a double root of Qn and
(d/dz)Qn(z0) = 0, hence µ := (d/dz)p◦nc (z0) = 1. Here µ is the multiplier of the peri-
odic orbit containing z0. It is well known that a quadratic polynomial can have at most
one non-repelling cycle. If µ = 1, there are two possibilities [DH1, Mi2, Sch2]: every
point on the non-repelling cycle is either a merger of two points on different orbits of the
same exact period n, or it is a merger of one point of period k (so that k strictly divides
n) and n/k points from one orbit of period n. In either case, c is the root of a hyperbolic
component of period n: it is primitive in the first case and a satellite component in the
second. Therefore, c is the landing point of a parameter ray R(ϑ), where ϑ = a/(2n−1)
for some a ∈ {0, 1, . . . , 2n−2}. It follows that C\Xn is finite, and all periodic points of
period n can be continued analytically along curves in Xn (as roots of Pn(c)). (However,⋃
nC \Xn = ∂M: every c ∈ ∂M is a limit point of centers of hyperbolic components

[DH1], and it follows easily that the same is true for parabolics because for every ε > 0
almost every center has a parabolic parameter at distance less than ε).

12.9. Lemma (Local Coordinates Near Parabolic Parameters)
Let c0 be the root of a hyperbolic component W of period n.

• If W is primitive, then the parabolic orbit at c0 is the merger of two peri-
odic orbits of exact period n; when c makes a small loop around c0, analytic
continuation of both orbits interchanges them.
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• If W is a satellite from a component of period k, then q := n/k is an integer
with q ≥ 2, and the parabolic orbit at c0 is the merger of one orbit of period
n with one orbit of period k; when c makes a small loop around c0, analytic
continuation leaves the period k orbit unchanged and permutes the period n
orbit cyclically. Specifically if k = 1, the period n orbit is permuted transitively.

Every other periodic point of pc0 is simple and on a repelling orbit, and it can be
continued analytically in a neighborhood of c0.

Proof. For the the primitive case, see [Sch2, Lemma 5.1 and Corollary 5.7] or
the proof of [Mi2, Lemma 4.2] (the fact that the two orbits are indeed interchanged is
equivalent to the fact that no two hyperbolic components of equal period have common
boundary points).

In the satellite case, the parabolic orbit of pc0 has exact period k and breaks up
under perturbation into one orbit of period n and one of period k (see e.g., [Mi2,
Theorem 4.1] or [Sch2, Lemma 5.1]). The multiplier of the parabolic orbit is µ0 =
e2πip/q for some p coprime to q (Proposition 9.11). Since µ0 6= 1, the period k orbit
can be continued analytically in a neighborhood of c0, so small loops around c0 can act
only on the orbit of period n; any permutation of points on this orbit must commute
with the dynamics, so only cyclic permutations are possible.

Perturbing c0 to nearby parameters c, every parabolic periodic point breaks up into
one point w of period k and q points of period n. These q points form, to leading order, a
regular q-gon with center w because the first return map of w has the local form z 7→ µz
with µ near e2πip/q. When c turns once around c0, analytic continuation induces a cyclic
permutation among these q points of period n so that during the loop, the q points of
period n continue to lie on (almost) regular q-gons. When the loop is completed, the
vertices of the q-gon are restored, so the q-gon will rotate by s/q of a full turn, for some
s ≥ 1. If s > 1, then the period n orbit and its multiplier would be restored to leading
order after c has completed 1/s-th of a turn, and since boundaries of hyperbolic compo-
nents are smooth curves this would imply that c0 was on the boundary of s hyperbolic
components of period n. This is not the case by Proposition 9.11. Therefore s = 1. 2

The fundamental group of Xn (with respect to any basepoint) acts on the set of
periodic points of pc of period n by analytic continuation. Set X := C\ (M∪R+): this
is a simply connected subset of all Xn and will be used as a “fat basepoint” for the
fundamental group of Xn.

For every c ∈ X we will describe periodic points of pc using symbolic dynamics:
since c 6∈M, the critical value c is on the dynamic ray Rc(ϑ) for some ϑ ∈ S1. Therefore
the two dynamic rays Rc(ϑ/2) and Rc((ϑ + 1)/2) both land at 0 and separate the
complex plane into two open parts, say U0 and U1 so that c ∈ U1 (see Figure 12.2).
The partition boundary does not intersect the Julia set Jc of pc, so we have Jc ⊂
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U0 ∪ U1. Every z ∈ Jc has an associated itinerary τ1τ2τ3 . . . , where τk ∈ {0, 1} so that

p
◦(k−1)
c (z) ∈ Uτk .

0

1

Figure 12.2. The partition for disconnected quadratic Julia sets is de-
fined by the two dynamic rays that crash into the critical point; itineraries
are defined with respect to this partition.

12.10. Lemma (Permutations and Symbolic Dynamics)
Let c0 be the landing point of the parameter ray R(ϑ), where ϑ = a/(2n − 1). We
consider the action of analytic continuation along a small loop around c0 starting and
ending at R(ϑ). Let W be the component of period n with root c0.

• If W is primitive, then analytic continuation along this loop interchanges the
two periodic points with itineraries A(ν(ϑ)) and A(ν(ϑ)).
• If W is a satellite component, then exactly one of the two itineraries A(ν(ϑ))

and A(ν(ϑ)) has exact period n, and the periodic point with this itinerary is
on the orbit that is affected by analytic continuation along the same loop.

Proof. Let U ⊂ C be a disk neighborhood of c0 in which c0 is the only puncture of
Xn, and which intersects no parameter ray at n-periodic angles other than R(ϑ) and
the second parameter ray landing at c0. Let γ ⊂ Xn be the loop under consideration;
assume it is small enough so that γ ⊂ U , and assume furthermore that γ does not
intersect R(ϑ) except at its endpoints. For external angles ϑ1 < ϑ < ϑ2 sufficiently
close to ϑ, there are two parameters c1,2 ∈ γ with ci ∈ R(ϑi) for i = 1, 2 (the points
ci are near the two ends of γ). For pc1 and pc2 , the periodic dynamic rays Rc1(ϑ) and
Rc2(ϑ) land at repelling periodic points, say z1 and z2.

Consider a curve of parameters within U tending from c1 to c0 avoiding R(ϑ). The
analytic continuation of z1 along this path tends to a periodic point z0 of pc0 that is
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either repelling or parabolic. Landing points of periodic rays depend continuously on
the parameter whenever the rays land ([DH1, Exposé XVII], [Sch2, Proposition 5.2]).
Therefore, the dynamic ray Rc0(ϑ) lands at z0. Since the parabolic parameter c0 is the
landing point of R(ϑ), the dynamic ray Rc0(ϑ) lands at the parabolic orbit ([DH1];
see also [Mi2, Sch3] or Theorem 9.1). Therefore z1 (and similarly z2) tend to the
parabolic orbit when the parameter tends to c0. In the primitive case, Lemma 12.9
says that the analytic continuations of z1 and z2 are affected by analytic continuation
along γ. In the satellite case, exactly one of the points z1 and z2 has exact period n,
the other one has period dividing n, and the same is true for their itineraries. Again
by Lemma 12.9, it is the period n orbit that is affected by analytic continuation. All
that remains to be described are the itineraries of z1 and z2.

For i = 1, 2, the itinerary of zi within the Julia set of pci equals the itinerary of ϑ
with respect to ϑi, and these are equal to the limiting kneading sequences limϕ↗ϑ ν(ϕ)
and limϕ↘ϑ ν(ϕ), hence equal to A(ν(ϑ)) and A(ν(ϑ)). They differ exactly at the n-th
position within the period, so they have different numbers of symbols 0 within every
period. Therefore analytic continuation within X does not move z1 to z2, so both are
on different orbits throughout X. 2

12.11. Proposition (Symmetric Permutation Group on Orbits)
Analytic continuation in Xn induces the full symmetric group on the set of periodic
orbits of period n.

Proof. The domain Xn is the complement of the finite set of roots of components of
period n, and a loop around any of these roots affects at most two periodic orbits of
period n; if it does affect two orbits, then both orbits are interchanged. The permuta-
tion group among the periodic orbits of period n is thus generated by pair exchanges.
As soon as it acts transitively, it is automatically the full symmetric group.

It thus suffices to show that any orbit of period n can be moved to the unique orbit
containing the itinerary 11 . . . 110. In fact, it suffices to show the following: suppose a
periodic point has an itinerary containing at least two entries 0 during its period; then
it can be moved to a periodic point whose itinerary has one entry 0 fewer per period.
Repeated application will bring any periodic point onto the unique orbit with a single
0 per period, i.e., onto the orbit containing the itinerary 11 . . . 110.

Now consider a periodic point z of period n and assume that its itinerary τz contains
at least two entries 0 per period. Let τ be the maximal shift of τz (with respect to
the lexicographic order), and let τ ′ be the same sequence in which the n-th entry
(which is necessarily a 0 in τ) is replaced by a 1, again repeating the first n entries
periodically. Then by Lemma 12.5 there is a narrow hyperbolic component W with
associated kneading sequence ν(W ) = τ . Let R(ϑ) be a parameter ray landing at the
root of W ; then A(ν(ϑ)) = ν(W ), so the ?-periodic sequence ν(ϑ) coincides with τ and
τ ′ for n−1 entries. The component W is primitive: by the remark after Definition 12.1,
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a narrow component that is not primitive must bifurcate from the period 1 component,
and it would then have internal address 1 → n and kneading sequence with a single
entry 0 in the period. Let c0 be the root of W . Then by Lemma 12.10, a small loop
around c0 interchanges the periodic points with itineraries τ and τ ′. This is exactly
the statement we need: we found a loop along which analytic continuation turns z into
a periodic point whose itinerary has one entry 0 fewer per period. 2

Proof of Theorem 12.8. Analytic continuation can achieve only permutations
that commute with the dynamics. To see that all of them can actually be achieved,
it suffices to specify one loop in Xn that permutes one orbit transitively and leaves all
other orbits (of the same period) unchanged: together with transitive permutations of
all orbits, this generates all permutations that commute with the dynamics.

Let c0 be the landing point of the parameter ray R(1/(2n − 1)); it is the bifurca-
tion point from the period 1 component to a component of period n. According to
Lemma 12.9, a small loop around c0 induces a transitive permutation on a single orbit
of period n and leaves all other orbits unchanged. This is exactly what is needed to
prove the claim. 2

12.12. Corollary (Riemann Surface of Periodic Points)
For every n ≥ 1, the analytic curve

{(c, z) : c ∈ Xn and z is a periodic under pc of exact period n}
is connected, i.e., it is a Riemann surface.

These results can be extended to preperiodic points as follows [Mü].

12.13. Corollary (Permutations of Preperiodic Points)
Consider the set of preperiodic points that take exactly k iterations to become periodic
of period n. For all positive integers k and n, analytic continuation along appropriate
curves in C achieves all permutations that commute with the dynamics.

Proof. The parameter ray R(ϑk,n) with ϑk,n = 1/(2k2(n−1)) lands at a Misiurewicz-
Thurston-parameter ck,n for which the dynamic ray Rck,n(ϑ) lands at the critical value.

We have νk,n := ν(ϑk,n) = 11 . . . 1 11 . . . 10 = 1k 1n−10. A small loop around ck,n
interchanges the two preperiodic points with itineraries 0νk,n and 1νk,n (these are the
two preimage itineraries of the critical values): every periodic point can be continued
analytically in a sufficiently small neighborhood of ck,n and all points on their backwards
orbit as long as taking preimages does not involve the critical value. It follows that
small loops around ck,n interchange the preperiodic points with itineraries τ0νk,n and
τ1νk,n for every finite sequence τ over {0, 1}.

Consider a preperiodic point z with itinerary τ1 1n−10, where τ is an arbitrary string
over {0, 1} of length k − 1 (the entry after τ must be 1, or the periodic part in the
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itinerary would start earlier). If τ has at least one entry 0, there is a value k′ so that a
small loop around ck′,n turns the last entry 0 within τ into an entry 1. Repeating this a
finite number of times, z can be continued analytically into the preperiodic point with
itinerary νk,n. Analytic continuation thus acts transitively on the set of preperiodic

points with itineraries τ1 1n−10, for all 2k−1 sequences τ of length k − 1. Since this is
achieved by pair exchanges, the full symmetric group on these points is realized.

Two preperiodic points z, z′ of pc are on the same grand orbit if p◦nc (z) = p◦n
′

c (z′)
for some positive integers n, n′. In terms of symbolic dynamics, this is the case if they
have the same period, and the periodic parts of their itineraries are cyclic permutations
of each other. A permutation of preperiodic points of preperiod k and period n on the
same grand orbit commutes with the dynamics if and only if it induces the same cyclic
permutations on the periodic parts of the orbit.

For the grand orbit containing the point with itinerary 1n−10, all permutations
that commute with the dynamics can thus be achieved by analytic continuation around
Misiurewicz-Thurston parameters ck,n and the root of the hyperbolic component 11/n →
n (a loop around the latter induces a transitive cyclic permutation of the periodic orbit

containing the periodic point with itinerary 1n−10).
Since analytic continuation induces the full symmetric group on the set of grand

orbits, the claim follows. 2

Note that any permutation of preperiodic points of preperiod k and period n induces
a permutation of preperiodic points of preperiod in {k−1, k−2, . . . , 1, 0} and period n.
Analytic continuation takes place inXn from which finitely many Misiurewicz-Thurston
points are removed (and there is an ambiguity at centers of hyperbolic components of
period n: the critical point should count both as a periodic point and a preperiodic
point of preperiod 1).

Analogous results can also be derived for the families of unicritical polynomials,
parametrized in the form z 7→ zd + c for d ≥ 2. Again, analytic continuation allows
us to achieve all permutations of periodic points that commute with the dynamics; for
details, see [LS, Section 12]. Note that the analogous statement for general degree d
polynomials is much weaker: the bigger the space of maps, the easier it is to achieve
permutations by analytic continuation.

A related study was done by Blanchard, Devaney, Keen [BDK]: analytic continu-
ation in the shift locus of degree d polynomials realizes all automorphisms of the shift
over d symbols (in the special case of d = 2, this corresponds to a loop around M, and
this interchanges all entries 0 and 1 in itineraries; indeed, this is the only non-trivial
automorphism of the 2-shift).

A simple space where not all permutations can be achieved is the space of quadratic
polynomials, parametrized as z 7→ λz(1−z) with λ ∈ C: the two fixed points are z = 0
and z = 1−1/λ and they cannot be permuted by analytic continuation. This is related
to the fact that the λ-space is not a true parameter space; every affine conjugacy class
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of quadratic polynomials is represented twice: the λ-space is the double cover over the
true parameter space (written as z 7→ z2 + c) that distinguishes the two fixed points.
Another example is the space fc : z 7→ (z2 + c)2 + c of second iterates of quadratic
polynomials. Fixed points of such maps may have period 1 or 2 for z 7→ z2 + c; this
yields obstructions for permutations of fixed points of fc.

Include in Sec 5 a quotable theorem that kneading sequences are admissible iff they
satisfy the condition!
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13. More Algorithms

In this section, we collect old and new algorithms to turn the various combinatorial

data into each other. In the first part of this section, we give two ways how to determine

conjugate external angles (the second angle for a ray pair in the Mandelbrot set, given a

periodic angle). In the second part, we describe algorithms related to Hubbard trees (find the

associated external angle and vice versa, find its kneading sequence). The third part presents

some more combinatorial algorithms. In the fourth part, we discuss spider theory find a

complex parameter for a postcritically finite quadratic polynomial with given combinatorics,

and conversely how to read off from the complex polymnomial its external angles or kneading

sequence.

Conjugate Periodic Angles

It has been known since the work of Douady and Hubbard [DH1] (see also [Mi2,
Sch2]) that for the Mandelbrot set, parameter rays at periodic angles land in pairs
(see Theorem 9.1). Given a periodic external angle, its conjugate angle will be the
angle of the second ray landing at the same point (Proposition 13.2). We will give
two algorithms how to find conjugate angles: in Algorithm 13.3, we directly construct
the conjugate angle, and in Algorithm 13.4, we construct all pairs of conjugate angles
in the order of increasing periods. Conjugate angles will also help to construct the
Hubbard tree associated to any periodic angle (Algorithm 13.5).

We say that two pairs of different angles (α, α′) and (β, β′) are unlinked if {β, β′} is
in a single connected component of S1 \ {α, α′} (or equivalently, if {α, α′} is in a single
connected component of S1 \ {β, β′}).

The length of a pair (α, β) will be the shortest unsigned distance along S1 = R/Z,
written `(α, β).

13.1. Lemma (Conjugate External Angle)
Let ϑ ∈ S1 be an external angle of exact period n ≥ 2. Then there is a conjugate
external angle ϑ′ ∈ S1 with the following properties:

(1) The exact period of ϑ′ is n as well;
(2) for all k ∈ {1, 2, . . . , n− 1}, `(2kϑ, 2kϑ′) > `(ϑ, ϑ′);
(3) all pairs of angles (2kϑ, 2kϑ′) are unlinked, for k = 0, 1, . . . , n− 1;
(4) the interval (ϑ, ϑ′) (or (ϑ′, ϑ), whichever is shorter) does not intersect the

forward orbit of ϑ or ϑ′;
(5) if ϑ1 and ϑ′1 are the preperiodic inverse images of ϑ and ϑ′, then (ϑ1,−ϑ′1) is

unlinked to all pairs (2kϑ, 2kϑ′);
(6) the angles ϑ and ϑ′ have the same kneading sequence;
(7) the first n− 1 entries in the following four itineraries coincide: Iϑ(ϑ), Iϑ(ϑ′),

Iϑ′(ϑ), and Iϑ′(ϑ
′).
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Among all n-periodic angles in S1, ϑ′ is already uniquely described by the first three
conditions.

Proof. This result is folklore and is proved along the way to the proof that parameter
rays of the Mandelbrot set at periodic angles land in pairs; we give a constructive proof
in Algorithm 13.3 below. 2

13.2. Proposition (Second Ray in the Mandelbrot Set)
Let ϑ′ be the conjugate angle of a periodic angle ϑ. Then the two parameter rays R(ϑ)
and R(ϑ′) of the Mandelbrot set land together.

Proof. It is shown in all three references cited above that when two parameter rays
R(ϑ) and R(ϑ′) at periodic angles land together, then the landing point is a parameter
c ∈ C so that the polynomial pc(z) = z2 + c has a parabolic periodic orbit, and the
dynamic rays Rc(ϑ), Rc(ϑ

′) land at a common point on this orbit so that these rays form
a characteristic ray pair, which means that the first three properties in Lemma 13.1
are satisfied. By the uniqueness statement in that lemma, the claim follows. 2

13.3. Algorithm (Conjugate External Angle)
Given an external angle ϑ of exact period n ≥ 2, the conjugate angle ϑ′ can be found
as follows: let ϑ1 be the preperiodic preimage of ϑ, and for k = 2, 3, . . . , n, let ϑk be
the unique preimage of ϑk−1 such that (2n−kϑ, ϑk) and (2n−1ϑ, ϑ1) are unlinked; then

ϑ′ = ϑ+
ϑn − ϑ
1− 2−n

= ϑn + 2−n
ϑn − ϑ
1− 2−n

. (7)

See Figure 13.1 for the angle ϑ = 6/15 of period 4.

Proof. (0) This proof uses ideas from Thurston’s theory of quadratic minor lamina-
tions [Th], but it is self-contained. It was first pointed out to us by Mary Rees.

First observe that ϑ′ is indeed periodic of period n: we have

2nϑ′ = 2nϑn +
ϑn − ϑ
1− 2−n

= ϑ+
ϑn − ϑ
1− 2−n

= ϑ′ ;

at this point, we do not claim that n is the exact period of ϑ′. In this proof, we will
suppose that ϑn > ϑ in (0, 1), hence ϑ′ > ϑn; the other case is analogous.

The two preimages of ϑ are {ϑ1, 2
n−1ϑ} = {ϑ/2, (ϑ+1)/2}: they form a diameter in

S1 which is the boundary for the itinerary with respect to ϑ (note that 2n−1ϑ is always
the periodic preimage of ϑ, while ϑ/2 may be the periodic or preperiodic preimage,
depending on ϑ).

By construction, the first n − 1 entries in the itinerary of ϑn (with respect to
ϑ) are the same as the itinerary of ϑ, i.e. the kneading sequence of ϑ (indeed, since
2nϑn = 2nϑ = ϑ, the entire itineraries of ϑn and ϑ coincide, although the first angle is
preperiodic and the second periodic; this is because both ϑ/2 and (ϑ+ 1)/2 are coded
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ϑ = 6
15

ϑ′ = 22ϑ = 9
15

ϑ4 = 141
240

3
15

= ϑ/2 = 23ϑ

ϑ1 = 21
30

12
15

= 2ϑ

ϑ2 = 21
60

ϑ5 = 141
480

21
120

= ϑ3

ϑ5 + 1
2

= 381
480

0

Figure 13.1. The conjugate angle of ϑ = 6/15 is 9/15; both have period
n = 4.

by the entry ?). In order to show that the first n−1 entries in the itineraries of ϑn and
ϑ′ coincide, it suffices to show that for k = 1, 2, . . . , n, the interval (2kϑn, 2

kϑ′) does
not contain ϑ.

(1) As a first step, note that all pairs (2n−kϑ, ϑk) are unlinked: otherwise, if
(2n−kϑ, ϑk) and (2n−mϑ, ϑm) were linked and k > m say, all four angles would be
contained in the closure of a connected component of S1 \ {ϑ/2, (ϑ+ 1)/2}. If m > 1,
then one could iterate one step further so that (2n−(k−1)ϑ, ϑk−1) and (2n−(m−1)ϑ, ϑm−1)
were also linked, and they would still be contained in a half circle because of their
itineraries. However, when finally m = 2, then (2n−(k−m+1)ϑ, ϑk−m+1) and (2n−1ϑ, ϑ1)
would be linked as well, but this would violate the way ϑk−m+1 was constructed.

Let ϑn+1 and ϑn+1 + 1
2

be the two preimages of ϑn so that ϑn+1 is closest to 2n−1ϑ

(and ϑn+1 + 1
2

is closest to ϑ1). Then the argument just given extends to show that

all (2n−kϑ, ϑk) are unlinked with (2n−1ϑ, ϑn+1) and with (ϑ1, ϑn+1 + 1
2
). Since they are

also unlinked with (2n−1ϑ, ϑ1), it follows that they are unlinked with (2n−1ϑ, ϑn+1 + 1
2
)

and with (ϑ1, ϑn+1).
The unlinking property of the (2n−kϑ, ϑk) implies that no (2n−kϑ, ϑk) can have

greater length than (ϑ1, ϑn+1) (which has the same length as the opposite pair (2n−1ϑ, ϑn+1+
1
2
)). This implies that no (2n−kϑ, ϑk) (with k ∈ {1, 2, . . . , n−1}) can have shorter length

than (ϑn, ϑ): note that if (α, β) has length x, then (2α, 2β) has length min(2x, 1− 2x);
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therefore, if (2n−kϑ, ϑk) is the pair with shortest length with k < n, then (2n−(k−1)ϑ, ϑk−1)
must be the longest pair and longer than (ϑ1, ϑn+1), which is impossible.

Since (2kϑ, 2kϑ′) = (2kϑ, ϑn−k] ∪ [ϑn−k, 2
kϑ′) and the length of [ϑn−k, 2

kϑ′) doubles
every time k is increased by one, while (ϑ, ϑn] is as most as long as any (2kϑ, ϑn−k], it
follows that `(ϑ, ϑ′) < `(2kϑ, 2kϑ′) for all k ∈ {1, 2, . . . , n− 1}.

Since no (ϑk−1, 2
n−(k−1)ϑ) is shorter than (ϑn, ϑ) and both are unlinked, this implies

that the interval (ϑ, ϑn) does not contain any 2n−kϑ, i.e. no angle on the forward orbit
of ϑ.

(2) Now suppose that the first n − 1 entries in the itineraries of ϑn and ϑ′ (with
respect to ϑ) do not coincide; say that the first difference is at position k. Then the
interval [2k−1ϑn, 2

k−1ϑ′] contains one of ϑ/2 and (ϑ + 1)/2, so [2kϑn, 2
kϑ′] contains ϑ

and [2nϑn, 2
nϑ′] = [ϑ, ϑ′] contains 2n−kϑ. But [ϑ, ϑ′] = [ϑ, ϑn]∪ [ϑn∪ϑ′] and `(ϑ′, ϑn) <

1/(2n − 1) by (7). Since adjacent n-periodic angles differ by 1/(2n − 1) and ϑ′ is n-
periodic, it follows that 2n−kϑ ∈ [ϑ, ϑn], which is a contradiction. Therefore, the first
n−1 entries in the itineraries Iϑ(ϑ′) and Iϑ(ϑn) coincide (and those of Iϑ(ϑn) and Iϑ(ϑ)
do by construction).

(3) It also follows that the exact period of ϑ′ is n: if the exact period was k < n,
then (2kϑn, 2

kϑ′) = (ϑn−k, ϑ
′) would imply that ϑn−k ∈ (ϑ, ϑn), while 2kϑ /∈ (ϑ, ϑn) in

contradiction to the unlinking properties.
(4) Now we show that all pairs (2kϑ, 2kϑ′) are unlinked. We already know from

Step (1) that no 2kϑ ∈ (ϑ, ϑn), and no 2kϑ ∈ (ϑn, ϑ
′) because ϑ′ is n-periodic and

the distance between any two n-periodic angles is a multiple of 1/(2n − 1). The same
argument shows that no 2kϑ′ ∈ (ϑn, ϑ

′).
The k-th iterate of (ϑn, ϑ

′) is (ϑn−k, 2
kϑ′) with length less than 1. Therefore, if

2kϑ′ ∈ (ϑ, ϑ′), then either ϑn−k ∈ (ϑ, ϑ′), or ϑ ∈ (ϑn−k, 2
kϑ′). But in the first case, the

unlinking property is violated because 2kϑ /∈ (ϑ, ϑ′). In the second case, n− k further
iterations would yield 2n−kϑ ∈ (ϑ, ϑ′), a contradiction. Therefore, the interval (ϑ, ϑ′)
does not intersect the forward orbits of ϑ or of ϑ′.

The periodic preimage of (ϑ, ϑ′) is (2n−1ϑ, 2n−1ϑ′) and the preperiodic preimage is
(2n−1ϑ+ 1

2
, 2n−1ϑ′+ 1

2
). The “short” intervals (2n−1ϑ, 2n−1ϑ′+ 1

2
) and (2n−1ϑ+ 1

2
, 2n−1ϑ′)

map under doubling onto (ϑ, ϑ′), so they cannot intersect the forward orbits of ϑ and
ϑ′. Since no (2kϑ, 2kϑ′) intersects the diagonal (2n−1ϑ, 2n−1ϑ + 1

2
), it follows that all

(2kϑ, 2kϑ′) are unlinked with (2n−1ϑ, 2n−1ϑ′); as above, it follows indeed that all pairs
(2kϑ, 2kϑ′) are unlinked (any linked pair could be mapped forward until one of the
affected pairs was (2n−1ϑ, 2n−1ϑ′)).

We have now justified the first five properties in Lemma 13.1.
(5) Since the first n− 1 entries in the kneading sequences of ϑ and ϑ′ are the same,

both have a ? at position n, and both have period at most n, it follows that the entire
kneading sequences coincide. Since neither ϑ nor ϑ′ have an element of their forward
orbits in (ϑ, ϑ′), it follows that itineraries of both ϑ and ϑ′ do not change when the
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partition (2n−1ϑ, 2n−1ϑ + 1
2
) is replaced by (2n−1ϑ′, 2n−1ϑ′ + 1

2
) (except that a ? may

turn into 0 or 1, or conversely, which happens at the earliest in the n-th entry); in
other words, the first n− 1 entries in Iϑ(ϑ) and in Iϑ′(ϑ) coincide, and so do the first
n− 1 entries in Iϑ(ϑ′) and in Iϑ′(ϑ

′). But we had seen in (2) that the first n− 1 entries
in Iϑ(ϑ′) and in Iϑ(ϑ) coincide, so all these sequences have identical initial n−1 entries
and Property 7 is shown.

This holds in particular for the kneading sequences of ϑ and of ϑ′, which are both
n-periodic with a ? at position n, so both kneading sequences coincide as soon as their
initial n − 1 entries coincide. This settles the remaining Property 6, and ϑ′ is indeed
the conjugate angle to ϑ.

(6) It remains to show uniqueness of ϑ′ using the first three properties in Lemma 13.1.
Along the way, we will show directly that most of the properties in the lemma follow
from the first three. Suppose again that ϑ < ϑ′.

Note that the fourth property in Lemma 13.1 follows directly from the second and
third (if (ϑ, ϑ′) contains 2kϑ, then because of the unlinking condition it must also
contain 2kϑ′ and vice versa, but this contradicts the length condition).

To show that Property 7 follows from the first three, suppose that for k ≤ n−1, the
k-th entry in Iϑ′(ϑ) differs from Iϑ(ϑ) = ν(ϑ). That implies either 2k−1ϑ ∈ (ϑ/2, ϑ′/2)
or 2k−1ϑ ∈ ((ϑ + 1)/2, (ϑ′ + 1)/2), hence in both cases 2kϑ ∈ (ϑ, ϑ′), a contradiction.
Similarly, the first n− 1 entries in Iϑ(ϑ′) and in Iϑ′(ϑ

′) coincide.
Now suppose that the k-th entries in Iϑ(ϑ) and in Iϑ(ϑ′) differ, for k ≤ n− 1. This

implies that ϑ/2 ∈ (2k−1ϑ, 2k−1ϑ′) or (ϑ + 1)/2 ∈ (2k−1ϑ, 2k−1ϑ′). But neither 2k−1ϑ
nor 2k−1ϑ′ can be contained in (ϑ/2, ϑ′/2) or in ((ϑ+ 1)/2, (ϑ′ + 1)/2) (otherwise, 2kϑ
or 2kϑ′ would be in (ϑ, ϑ′)), hence it follows that (2k−1ϑ, 2k−1ϑ′) is linked with both
(ϑ′/2, (ϑ + 1)/2) and ((ϑ′ + 1)/2, ϑ/2); but one of them equals (2nϑ, 2nϑ′), and this is
a contradiction. This proves Property 7, of which Property 6 is a special case.

Now for uniqueness of ϑ′. There is a unique ϑn ∈ (ϑ, ϑ′) such that multiplication
by 2n maps (ϑn, ϑ

′) homeomorphically onto (ϑ, ϑ′). By Property 4, (ϑ, ϑ′) does not
intersect the forward orbits of ϑ or ϑ′. Now ϑ /∈ (2kϑn, 2

kϑ′) for k = 0, 1, . . . , n (or
n − k iterations further, we would have 2n−kϑ ∈ (ϑ, ϑ′)), so the first n − 1 entries in
the itineraries Iϑ(ϑn) and Iϑ(ϑ′) coincide, and by Property 7 they coincide also with
the corresponding entries in the kneading sequence of ϑ. But this uniquely determines
ϑn among {α ∈ S1 : 2nα = ϑ}, so ϑn is exactly the angle constructed in the claim
of the algorithm and ϑ′ is the least n-periodic angle greater than ϑn. Therefore, the
construction of ϑ′ at the beginning of the proof is the only one possible. 2

13.4. Algorithm (The Lavaurs’ Algorithm for Conjugate External Angles)
The ray pairs at periodic angles can be determined recursively as follows: suppose all
ray pairs for periods less than n are known. Let ϑ1, ϑ2, . . . be the finitely many external
angles of exact period n, ordered within (0, 1). Inspect these angles in increasing order;
for every ϑi which has not yet been determined as the conjugate angle for a smaller ϑj,



Section 13, Version of July 27, 2011 173

the conjugate angle of ϑi is the least angle ϑk > ϑi which is not separated from ϑi by a
ray pair of lower period.

Proof. From Theorem 9.1, we know that all periodic parameter rays land in pairs at
equal periods, and ray pairs at different periods do not cross. The only ambiguity can
thus occur if some angle ϑi can be connected to more than one angle of equal period
without crossing ray pairs of lower periods. If ϑi was not conjugate to the least angle
available, then there would be two ray pairs (ϑi, ϑj) and (ϑk, ϑl) of the same period
with ϑi < ϑk < ϑl < ϑj which were not separated by a ray pair of lower period, and
this contradicts Lavaurs’ Lemma 9.28. 2

Figure 13.2. Ray pairs up to period 4 by Lavaurs’ algorithm.

Remark. Here we show how this algorithm works for low periods, see Figure 13.2. The
only two angles of period 2 are 1/3 and 2/3, and they form a ray pair. For period 3, there
are the six angles 1/7, . . . , 6/7 forming the pairs (1/7, 2/7), (3/7, 4/7), (5/7, 6/7). Pe-
riod 4 is a little more interesting: we have the 12 angles a/15 for a = 1, 2, . . . , 14 (except
5/15 = 1/3 and 10/15 = 2/3), and we connect (1/15, 2/15), (3/15, 4/15), (6/15, 9/15)
(note that 6/15 and 7/15 are separated by (3/7, 4/7)!), (7/15, 8/15), (11/15, 12/15)
and (13/15, 14/15). So far, for every angle there was only one angle available that
it could be connected to without crossing ray pairs of lower periods, and there was
no choice. Things are different for period 5: the rays at angles 1/31, 2/31, 9/31,
10/31, as well as the symmetric ones 30/31, 29/31, 22/31, 21/31, are all unseparated
by ray pairs of lower periods (they have identical internal addresses 1 → 5, and the
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corresponding parameter rays all land on the boundary of the main cardioid of the
Mandelbrot set). These angles form the ray pairs (1/31, 2/31) and (9/31, 10/31) etc.
(and not (1/31, 10/31) and (2/31, 9/31) etc., or (1/31, 30/31) and (2/31, 29/31) etc.).

The Hubbard Tree

13.5. Algorithm (From the External Angle to the Hubbard Tree)
Given a periodic external angle ϑ, the associated Hubbard tree can be constructed
as follows: construct the conjugate angle ϑ′, draw the n leafs (2kϑ, 2kϑ′) (for k =
0, 1, . . . , n− 1) in D and pick a point ck+1 on each leaf (2kϑ, 2kϑ′). The action of f on
these points is by cyclic permutation. Note that c0 = cn will be the critical point; let us
abbreviate the leaf (2kϑ, 2kϑ′) that contains it by L0.

Also draw the leaf (2n−1ϑ+ 1/2, 2n−1ϑ′+ 1/2) and call it L′0. The images of L0 and
L′0 are the same, namely (ϑ, ϑ′).

Next draw the preimages of L0 and L′0, except when they are separated by some
(2kϑ, 2kϑ′) from all other angles 2iϑ. Draw the preimages of the preimage leafs of the
previous step, except when they are separated by (2kϑ, 2kϑ′) from all other angles 2iϑ.
Continue this way until the preimages of order n are found.

Pick a point on each of the new (i.e., different from (2kϑ, 2kϑ′)) preimage leaf. The
arguments of the proof of Algorithm 13.3 show that all these leafs are unlinked.

Now for each component U of D \ {drawn leafs}, connect the points in its boundary
leafs as follows:

• If U has only one boundary leaf (which by construction is (2kϑ, 2kϑ′) for some
k < n), then ignore U . The point ck will be an endpoint of the Hubbard tree.
• If U has two boundary leafs, connect the chosen points on these leafs by an arc

within U .
• If U has m ≥ 3 boundary leafs, connect the chosen points on these leafs by an
m-star within U .

In the resulting tree, take the minimal subtree connecting all the points ck, k = 1, . . . , n.
Call this tree T ; it is the Hubbard tree.

Proof. Since the action of f is known on the critical orbit, the action on the other
marked points (the branch points) follows uniquely.

The squaring map acts homeomorphically on non-central components of D \ (L0 ∪
L′0), there is no critical point in these components. Since there is no leaf between L0

and L′0, 0 ∈ L0 is indeed the only marked point that can serve as critical point in T .
It remains to show that the configuration of the branch points of T is correct.

Suppose by contradiction that instead of an m-star in component U , the boundary
leafs of U should have been connected in a more complicated way. Then U would
contain at least two branch points, say x and y. By expansivity of Hubbard trees,
these branch points will be separated by 0 under iteration of f . Since there are no
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more than n branch points, this separation occurs within n iterates. But then x and
y should have been separated by a preimage leaf (ray pair) of L0 or L′0 of order ≤ n.
This contradiction establishes the right configuration. 2

c0

c1

c2

c3

c4

c5
L0

L′0

Figure 13.3. Construction of the Hubbard tree for external angle 52/63.

Figure 13.3 gives an example for external angle 52/63 with conjugate angle 51/63.
The orbits of these angles are 52/63→ 41/63→ 19/63→ 38/63→ 13/63→ 26/63→
52/63 and 51/63 → 39/63 → 15/63 → 30/63 → 60/63 → 57/63 → 51/63. One
component of D \ ∪3

k=0(2kϑ, 2kϑ′) contains the four leafs in its boundary. Taking the
preimages of L0 (the dashed line) up to order 1 already reveals that this component
should contain a subtree homeomorphic to the letter H to connect the points c0, c1, c2, c4

on these boundary leafs.

13.6. Algorithm (From the Hubbard Tree to the External Angle)
Let T be a Hubbard tree without evilorbits and finite critical orbit {0, c1, . . . , cn} (where
cn = 0 or not). Suppose T comes with an embedding in the plane C. The remark
following Proposition 3.10 states that we can extend T as to contain the β fixed point
(with itinerary 0) and its preimage −β (with itinerary 10). In practice, this can be
done as follows. Let T0 and T1 be the components of T \ {0} such that c1 ∈ T1. Find
the subgraph Y ⊂ T0 of points whose itineraries starts with the most 0’s. There are
three possibilities:

• T0 = ∅. In this case, 0 = cn. Extend T with an arc [0, β] and let f map it
homeomorphically onto [c1, β]. Attach another arc [cn−1,−β] to cn−1 and map
it homeomorphically onto [0, β].
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• There is a subgraph Y ⊂ T0 of points with itinerary 0. Then f maps Y
homeomorphically onto itself, and for each component Y ′ of Y , f fixes the
local arm of Y ′ towards 0. This implies that the other arms of Y ′ are mapped
homeomorphically among themselves, and so they all have itinerary 0. In
other words, Y ′ has only one arm, and contains at least one endpoint of T .
By expansivity, Y has only one component and contains precisely one endpoint.
This endpoint is fixed, and lies of the critical orbit, hence it equals cn. Call it
β and let −β := cn−1 ∈ T1.
• There is a maximal m ≥ 2 and a subgraph Y ⊂ T0 of point whose itinerary

starts with exactly m − 1 symbols 0 followed by a 1. Again Y is connected,
because any arc connecting different components of Y must belong to Y itself.
Let y ∈ Y be such that f ◦m−1(y) (which lies in T1∪{0}) is closest to 0. Attach
an arc [y, β] to y and let f map it homeomorphically onto [f(y), β]. The
embedding of [y, β] in C can be determined (up to homotopy) by observing that
f ◦m−1 should map Y ∪ [y, β] onto f ◦m−1(Y )∪ [f ◦m−1(y), β] in a homeomorphic,
orientation preserving fashion. Finally, find y′ ∈ T1 such that f(y′) = y,
attach an arc [y′,−β] embedded in such a way that f maps T ∪ [y′,−β] in an
orientation preserving fashion onto T ∪ [y, β].

Let Rβ and R−β be disjoint rays coming from ∞ and landing at β resp. −β. Together
with the arc [−β, β], they separate the plane, say into a region C0 and a region C1.
Now define ϑk = j if ck ∈ Cj. If ck /∈ [−β, β] for all k ≥ 1, then (ϑk) gives the binary
expansion of the external angle ϑ: ϑ =

∑
k≥1 ϑk2

−k.
Note that ϑ depends on the embedding, and the choice of the regions C0 and C1.

However, all different results ϑ are external angles generating ν.
If ck ∈ [−β, β] for some maximal k ≤ n, then we argue as follows. First extend f

continuously to a neighborhood V of T ∪ [−β, β]. Let U be a small neighborhood of ck
and choose a component U ′ of U \ (T ∪Rβ ∪ [−β, β] ∪R−β). (The choice is arbitrary,
but each choice gives rise to a different external angle.) Let ϑk = 0 or 1 according to
whether U ′ ⊂ C0 or C1,

For i < k, determine the digit ϑi by pulling back U ′ along the backward orbit
ck, ck−1, . . . , ci. Because T ∪ Rβ ∪ [−β, β] ∪ R−β is forward invariant, this pullback
of U ′ is indeed contained in C0 or C1.

To determine the digits ϑi for i > k, we distinguish two case:

• If 0 is periodic (and hence k = n), then f |U is not homeomorphic, but we can
extend (ϑi) periodically in this case.
• If 0 6= ci for all i > k, then f ◦i−k|U ′ is well-defined for U ′ sufficiently small,

and disjoint from T ∪Rβ ∪ [−β, β]∪R−β. In fact, since orb(0) is preperiodic,
(ϑi) will be preperiodic too, although its period may be a proper multiple of the
period of orb(0).

Now ϑ =
∑

k≥1 ϑk2
−k (for each choice of U ′) is an external angle generating ν.
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Remark. This algorithm shows that if c1 is periodic, then it has exactly two external
angles. These are of course conjugate.

13.7. Corollary (Admissible Kneading Sequences and External Angles)
A ?-periodic kneading sequence ν is admissible if and only if there is an external angle
ϑ ∈ S1 such that ν is the kneading sequence generated by ϑ.

Proof. Every ?-periodic kneading sequence ν has an associated Hubbard tree by
Theorem 3.10, and by definition of admissibility of the sequence, the tree can be em-
bedded into the plane so that Algorithm 13.6 finds an external angle which generates
ν.

Conversely, given a periodic external angle ϑ, Algorithm 13.5 constructs a Hubbard
tree embedded in the plane with the kneading sequence of ϑ, which is thus admissible.

2

Remark. It is easy to conclude that the corollary also holds for non-periodic kneading
sequences; see Corollary 14.2. A periodic kneading sequence ν without ? (with exact
period n) is realized by an external angle (necessarily irrational) if and only if there is
a ?-periodic kneading sequence ν∗ so that ν = A(ν∗); see Theorem 14.10.

More Combinatorial Algorithms

13.8. Algorithm (Cutting Times Algorithm for the Internal Address)
In a Hubbard tree (T, f), the internal address can be read off as follows: let γ1 :=
[c1, x0] := [c1, c0] and given γn = [cn, xn] for n ≥ 1, let

γn+1 :=

{
[cn+1, c0] if c0 ∈ [cn+1, f(xn)];
[cn+1, f(xn)] otherwise .

Then the internal address associated to (T, f) is the sequence of indices n for which γn
ends at c0.

Remark. The name of the algorithm comes from the following observation: start
with the arc γ1 and map it forward under the dynamics; each time it covers c0, cut the
arc at c0 and retain only the part near the orbit point of c1. This assures that every
time the arc is mapped forward homeomorphically, and the internal address records
the times at which the arc was cut.

Proof. By construction, for every n there is a point ζn ∈ [c1, c0] such that the map
f ◦(n−1) : [c1, ζn]→ γn is a homeomorphism. Now n is a cutting time if and only if ζn is
a precritical point, and clearly (c1, ζn] cannot contain a precritical point which maps to
0 before ζn does: hence the sequence of cutting times is exactly the sequence of closest
precritical points on (c1, c0], and these give the internal address by Proposition 6.8. 2
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13.9. Algorithm (From Ordered Kneading Sequence to External Angle)
Let ϑ1 ∈ S1 be a periodic angle of exact period n ≥ 2, let ϑk := 2k−1ϑ1 for k = 2, 3, . . .
(with ϑn+1 = ϑ1) and ϑ0 := ϑn + 1/2 (the preperiodic preimage of ϑ1). Knowing only
the cyclic order of ϑ0, ϑ1, . . . , ϑn, the external angle of ϑ1 can be found as follows:

(1) Among the two oriented intervals [ϑ0, ϑn] and [ϑn, ϑ0], let I1 be the one con-
taining ϑ1 and let I0 be the other interval.

(2) Find two consecutive points ϑi, ϑj ∈ I0 such that (ϑi+1, ϑj+1) ⊃ (ϑi, ϑj). Mark
an arbitrary point z ∈ (ϑi, ϑj) as a fixed point for angle doubling.

(3) Find two consecutive points ϑi′ , ϑj′ ∈ I1 such that z ∈ (ϑi′+1, ϑj′+1), and mark
an arbitrary point z′ ∈ (ϑi′ , ϑj′).

(4) Define two intervals J0 := (z, z′) and J1 := (z′, z) (with respect to the order
inherited from S1). Define numbers x1, x2, . . . , xn ∈ {0, 1} such that xi = 0 if
ϑi ∈ J0 and xi = 1 if ϑi ∈ J1.

(5) The binary representation of ϑ1 ∈ (0, 1) is 0.x1x2 . . . xn.

Proof. We know that {ϑ0, ϑn} is a diameter of S1 formed by the two preimages of
ϑ1. Angle doubling on the circle has exactly one fixed point (at angle 0 = 1), which is
separated from ϑ1 by {ϑ0, ϑn}. Given the choice of I1, it follows that I0 contains the
fixed point. Since ϑ1 is periodic by assumption with period n ≥ 2, all ϑi 6= 0, so there
is exactly one pair of consecutive points ϑi, ϑj ∈ I0 which contains the fixed point 0.
Clearly, for consecutive points ϑi, ϑj ∈ S1, the interval (ϑi, ϑj) (of length less than 1/2)
contains a fixed point if and only if (ϑi+1, ϑj+1) ⊃ (ϑi, ϑj). Therefore, ϑi and ϑj are
uniquely determined.

Angle doubling sends the interior of I1 homeomorphically onto S1 \ {ϑ1}, so there
is a unique z′ ∈ I1 as claimed, which is the unique pre-fixed point other than the fixed
point itself, i.e. z′ = 1/2.

Since the orbit of ϑ1 never visits 0 or 1/2, we have ϑi ∈ J0 if and only if ϑi ∈ (0, 1/2)
and ϑi ∈ J1 if and only if ϑi ∈ (1/2, 1), and the itinerary of ϑ1 with respect to the
partition (0, 1/2) and (1/2, 1) is exactly the binary expansion of ϑ1. 2

Spider Theory

Apart from its combinatorial data, a quadratic polynomial can of course also be
specified by its complex parameter c in the parametrization z 7→ z2 + c. We show
now how to turn external angles into the parameter c and vice versa. In the case
that the critical orbit is periodic, let the characteristic Fatou component be the Fatou
component containing the critical value. It has a unique boundary point which is fixed
under the first return map of the component; it is called the root of this component.
At least two dynamic rays land at this root (we exclude the trivial case of period 1 in
the rest of this section). If there are exactly two rays, they are called the characteristic
external ray (or supporting rays) of the polynomial; their external angles angles are the
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characteristic angles. If there are more than two rays, then the two rays which surround
the critical value closest possible are the characteristic rays. An extended characteristic
ray is a characteristic ray into the root of the characteristic Fatou component, extended
to the critical value by an arbitrary simple closed curve within the characteristic Fatou
component.

In the preperiodic case, there is a positive finite number of rays landing at the
critical value; we call each of them a characteristic ray.

A spider for a postcritically finite quadratic polynomial with critical orbit c0 =
0, c1, c2, . . . , cn−1 (and cn = cl for some l ∈ {0, 1, . . . , n − 1} is a collection of injective
curves γi : [0, 1]→ C (for i = 1, 2, . . . , n) with γi(0) =∞ and γi(1) = ci such that these
curves are disjoint, except that they all begin at ∞. These curves are known as spider
legs. We might as well suppose that they all approach ∞ tangentially, which makes it
easier to see that the legs have a well-defined cyclic order at ∞. The notion of spiders
is taken from [HS], where the spider algorithm was introduced (Algorithm 13.11).

We start with an algorithm to find the characteristic angles of a critically periodic
parameter c. In a sense, this is the spider algorithm run backwards. It should be noted
that it can be implemented effectively on a computer, much as the spider algorithm
itself; this is described in [HS].

13.10. Algorithm (From the Parameter to External Angles)
Let p be a quadratic polynomial in which the critical orbit is periodic of period n > 1
and let c0, c1, c2, . . . , cn−1, cn = c0 be the critical orbit, starting with the critical point
c0.

(1) For i = 1, 2, . . . , n, connect all the postcritical points ci to∞ by curves γi : [0, 1]→
C which are injective and disjoint, except that they all meet at ∞. These form
the initial spider Γ0.

(2) From a spider Γk−1, construct a new spider Γk as follows: for i ∈ {1, 2, . . . , n−
1}, take the leg γi+1 ∈ Γk−1 and let γ̃i be the image of γi+1 under the branch
of p−1 which sends ci+1 to ci. For i = n, let γ̃0 and γ̃n be the two branches of
p−1(γ1), always chosen so that the cyclic order near ∞ of γ0, γ1 and γn is the
same in every iteration of the algorithm (but both possibilities are permitted).
Then Γk is the spider with legs γ̃i for i = 1, 2, . . . , n.

(3) Iterate this sequence of spiders until Γk and Γk+1 have legs at all ci which are
homotopic to each other relative to the postcritical set (which will be shown to
happen after finitely many steps). Let γi be the leg at ci in this homotopy class,
for all i. Then the γi are homotopic to the orbit of an extended characteristic
dynamic ray of the polynomial.

(4) Given the cyclic order near ∞ of γ0, γ1, . . . , γn, use Algorithm 13.9 to find the
external angle associated to the leg γ1.
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Proof. Suppose that two spiders Γk−1 and (Γ′)k−1 are homotopic (in the sense that
for every i ∈ {1, 2, . . . , n}, the legs γi and γ′i are homotopic relative to the postcritical
set). Then Γk and (Γ′)k are also homotopic. Hence the map from Γk−1 to Γk descends
to the quotient space obtained from the space of all spiders modulo the equivalence
relation given by homotopy.

The first claim which needs justification is the fact that after finitely many steps,
the spiders Γk−1 and Γk have homotopic legs at the critical value. To see this, we use
the existence of a Hubbard tree T within the filled-in Julia set of p: this is a Hubbard
tree in the sense of Definition 3.2 with respect to the dynamics of the polynomial p;
its existence was shown by Douady and Hubbard [DH1], using local connectivity and
hence pathwise connectivity of the filled-in Julia set. Do we want to include the proof in
this paper? We may replace Γ0 by a homotopic spider for which every leg γi intersects
the Hubbard tree only finitely often. For k ≥ 0, let Nk be the combined number of
times the legs of Γk intersect T (where every Γk is replaced by a homotopic spider with
minimal intersections).

Note that for every N ≥ 1 the number of homotopy classes of spiders with Nk ≤ N
is finite. Since the critical value c1 is an endpoint of T , all legs at c1 which do not
intersect T (except at c1) are homotopic to each other. The orbit of any extended
characteristic dynamic ray supplies an invariant spider with no intersections; this is
the spider we want to find.

We will show that Nk = 0 for k large enough. The construction assures that
Nk+1 ≤ Nk: under the pull-back, new intersections cannot be created; they can be
destroyed because T is not fully backwards invariant: there are subsets of T which
have only one inverse image. Moreover, even if Γk is so that the intersection number is
minimal within its homotopy class, then Γk+1 can possibly be homotopic to a spiders
with fewer intersections.

To see that Nk = 0 for sufficiently large k, let γk1 be the leg at c1 for the spider Γk

and suppose that γk1 is not homotopic to a leg which does not intersect T except at c1.
Let z1 ∈ T ∩ γk1 be a point of intersection so that there is a single postcritical point
ck ∈ [c1, z1], where [c1, z1] ⊂ T denotes the unique subarc in T connecting c1 and z1 (if
there is no such point, then z1 is an inessential point of intersection). Pulling back along
the orbit of ci, we obtain a sequence of arcs [c0, z0] ⊂ p−1(T ), [cn−1, zn−1] ⊂ p−2(T ),. . . .
Exactly one of ck−1 and −ck−1 is in [c0, z0]; if it is −ck−1 and not ck−1, then the point
z0 is an inessential point of intersection of T ∩ γk+1

n and Nk+1 < Nk. Otherwise, we
can continue this argument: after k− 1 iterations, the pull-back of ck is c1 which is an
endpoint of the Hubbard tree, so it can no longer be an interior point of some arc in
T , and one point of intersection has disappeared.

In any case, every intersection point of Γ0 with T eventually either disappears or
can be homotoped away, so that there is a finite k0 such that for k ≥ k0, the spider Γk is
homotopic to one without intersections. But then the legs of these Γk at c1 must all be



Section 13, Version of July 27, 2011 181

homotopic to each other: since T is connected and c1 is an endpoint of T , there is only
one homotopy class of curves γ1 from c1 to ∞ which avoids T except at the endpoint.
There are two homotopy classes of legs at c0: one is γ0 and the other one is γn; they are
distinguished by the cyclic order at ∞ of γ0, γ1 and γn. Given the homotopy class of
γn, the homotopy classes of γn−1, γn−2, . . . , γ2 are determined uniquely by pull-backs.
These are the homotopy classes of the extended dynamic rays into the critical orbit.

We have now justified the claims in Step 3: for a finite k, the spiders Γk and Γk+1

are homotopic (it is clear that from then on, all further spiders will be homotopic too).
Moreover, all γi are homotopic to the orbit of an extended characteristic dynamic ray.

Therefore, we know the cyclic order at ∞ of a characteristic dynamic ray, which is
the same as the cyclic order on S1 of the associated external angle. Now Algorithm 13.9
allows us to determine the characteristic external angle. (Note that the two choices for
γ0 and γn give two different cyclic orders, which exactly specify the two choices for the
characteristic external angle.) 2

It is not difficult to give an analogous algorithm in the preperiodic case.
The following algorithm is known as the Spider Algorithm. It was introduced in

[HS]. It turns combinatorial data (an external angle) into analytical data (the complex
parameter of the polynomial), so it can yield only an approximate solution with arbi-
trary accuracy (of course, since the parameter is the root of a known polynomial with
integer coefficients, it is in principle determined by the knowledge of the polynomial
and an approximate value with known accuracy).

13.11. Algorithm (From the External Angle to the Parameter)
Let ϑ1 ∈ S1 be an external angle which is periodic of period n, and let ϑj := 2j−1ϑ1 for
j ≥ 1.

(1) The initial spider Γ0 (also known as the standard spider) has endpoints w0
j =

exp(2πiϑj), and its legs γ0
j are straight radial lines from w0

j to ∞.

(2) Take the spider Γk with endpoints wkj and legs γkj . As an inductive hypothesis,

we may assume that for each j, its leg γkj tends to ∞ tangentially to the leg

γ0
j . Fix the quadratic polynomial pk(z) = z2 + wk1 . For j = 0, 1, . . . , n − 1,

the leg γkj+1 has exactly one inverse image under pk which is tangent to γ0
j ; let

γ̃k+1
j be this inverse leg, and let wk+1

j be its endpoint. Then the union over j

of the legs γ̃k+1
j form the spider Γk+1; it satisfies the inductive claim about the

approach of its legs to ∞.
(3) In this sequence (Γk) of spiders, the sequence of endpoints wkj converges to

a limit point wj for every j. The point w1 is the parameter of the unique
normalized quadratic polynomial z2 + w1 which has a period n critical orbit
and for which the dynamic ray at external angle ϑ1 is a characteristic ray.

2
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The proof of this algorithm uses analytic machinery completely different from the
contents of this paper. It can be found in [HS]. We should note that the description of
the spider algorithm is slightly different: in [HS] the choice of branch of γkj+1 under the

inverse of pk does not use external angles of rays, but rather their kneading sequence.
The resulting algorithm is the same.

Also want angles in angled internal address.
New result: any segment of tree, when iterated, either covers every interior point of the

tree as an interior point of the image, or there is a renormalizable subtree.
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14. External Angles and Admissibility

In this section, we give a complete description of those kneading sequences that are gen-

erated by external angles. For most kneading sequences, the existence of such an external

angle is equivalent to admissibility of the kneading sequence. Exceptions are periodic knead-

ing sequences without ?: these require a deeper investigation.

14.1. Proposition (Admissibility in Terms of External Angle (?-periodic))
A ?-periodic kneading sequence ν is admissible (in the sense of Definition 5.1) if and
only if there is an angle ϑ ∈ S1 which generates ν (via Definition 2.1, i.e., ν = ν(ϑ)).

In this case the angle ϑ has the same exact period as ν, and (if this period is at least
2) ν has a conjugate angle ϑ′ of the same exact period with the following properties: ϑ′

also has kneading sequence ν, the interval (ϑ, ϑ′) contains no angle 2kϑ or 2kϑ′ with
k ≥ 1, and among the two angles ϑ/2 and ϑ′/2, exactly one is periodic and the other
one is preperiodic.

Proof. This is a purely combinatorial statement which can be shown algorithmi-
cally, see Corollary 13.7. Here we sketch a shorter proof using analytic methods and
some well-known background from complex dynamics. Is this really easier than in 13.7?
Perhaps delete this entire proposition, or write only what’s better than in 13.7.

Let n be the period of ν. If n = 1, then ν = ? is trivially admissible, and it is
generated by ϑ = 0. From now on, we will suppose that n ≥ 2.

Suppose that ν is generated by an angle ϑ ∈ S1, which is necessarily periodic of
exact period n. Then there exists a unique angle ϑ′, necessarily of the same exact
period, so that the two parameter rays R(ϑ) and R(ϑ′) land together (Theorem 9.1).
The landing point of these two parameter rays is the root of a hyperbolic component
W of period n (Theorem 9.7), and the ray pair P (ϑ, ϑ′) separates W from the origin.
Let c be the center of W . Then by Theorem 9.5, the dynamics rays Rc(ϑ) and Rc(ϑ

′)
land together, and the ray pair Pc(ϑ, ϑ

′) separates the critical value from the remaining
critical orbit, as well as from all rays Rc(2

kϑ) and Rc(2
kϑ′) that are not part of the ray

pair Pc(ϑ, ϑ
′).

The polynomial pc has a Hubbard tree in the original sense of Douady and Hubbard
(as in Definition 3.4) for which the kneading sequence of the critical orbit equals
ν(ϑ) = ν(ϑ′). To see this, note that the rays Rc(ϑ/2), Rc(ϑ

′/2), Rc((ϑ + 1)/2) and
Rc((ϑ

′+ 1)/2) all land at the boundary of the Fatou component containing the critical
point. These four rays form two ray pairs, and these subdivide C into three parts, say
U0, U1 and U?, so that U? contains the critical point, U1 contains the critical value
and U0 = −U1. The only point on the critical orbit within U? is 0. Similarly, all rays
Rc(2

kϑ) and Rc(2
kϑ′) for k ≥ 1 are in U0 or U1, except those on ∂U?. It is now easy

to verify the claim that the kneading sequence of the critical orbit (with respect to the
Hubbard tree) equals the kneading sequence of the angle ϑ or equivalently of ϑ′: they
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can all be read off from the visits to the sets U0 and U1. This shows that every kneading
sequence ν which comes from an external angle is realized by a Hubbard tree that can
be embedded, so by Theorem 5.2, ν is admissible in the sense of Definition 5.1.

For the final statement, assume by contradiction that ϑ/2 and ϑ′/2 are both peri-
odic. Then the rays Rc(ϑ/2) and Rc(ϑ

′/2) land together and bound a domain V0 ⊂ C
consisting of rays R(ϕ) with ϕ ∈ (ϑ/2, ϑ′/2), and the domain −V0 is disjoint from
V0. The polynomial z 7→ z2 + c, maps both V0 and −V0 conformally onto the domain
bounded by the rays R(ϑ) and R(ϑ′) and containing the rays Rc(ϕ) with ϕ ∈ (ϑ, ϑ′);
but this domain contains the critical value. HB: I don’t quite understand this previous bit.
The same argument works if ϑ/2 and ϑ′/2 are both preperiodic. Therefore, exactly one
of ϑ/2 and ϑ′/2 must be periodic as claimed.

Conversely, let an admissible ?-periodic ν with period n be given. Its Hubbard
tree can be embedded into the complex plane by definition. Therefore, it satisfies
Poirier’s conditions [Poi] (see Theorem 23.2) which guarantee that it occurs indeed as
the Hubbard tree of a complex quadratic polynomial, say z 7→ z2 + c, with a periodic
critical orbit. Then there are two angles ϑ, ϑ′ as above which generate ν. 2

14.2. Corollary (Admissibility in Terms of External Angle)
A ?-periodic or non-periodic kneading sequence ν is admissible if and only if there is
an angle ϑ ∈ S1 which generates ν.

Proof. The ?-periodic case has been shown in Proposition 14.1. Therefore, we
suppose that ν is non-periodic.

Let ϑ be an external angle which generates ν. Suppose ν is not admissible, i.e., it
fails the admissibility condition for some period m. This depends only on the ρν(m)
initial entries in ν, so all ?-periodic kneading sequences with the same initial entries are
also non-admissible. But a periodic angle ϑ′ ∈ S1 sufficiently close to ϑ will produce
a kneading sequence which coincides with ν for more than ρν(m) entries and which is
admissible by Proposition 14.1. So we have a contradiction.

Conversely, suppose that ν is admissible. Let νk be the sequence of approximating
?-periodic kneading sequences from Definition 7.1. Then νk < ν by Proposition 6.8 (2),
and all νk are admissible by Lemma 7.3. Find angles ϑk generating νk. By compactness,
the ϑk have an accumulation point ϑ ∈ S1. We claim that ϑ generates ν. This is clear
if ϑ is non-periodic. We show that ϑ cannot be periodic. Indeed, if ϑ is periodic,
then ν(ϑ) is ?-periodic, and we can choose a subsequence of the ϑk which converges
monotonically to ϑ. It follows easily that this subsequence of νk must converge to
A(ν(ϑ)) or to A(ν(ϑ)), but these are periodic kneading sequences without ? and hence
different from ν. 2

It follows from Theorem 18.4 that the set of kneading sequences which are generated
by angle doubling has positive measure within the symbol space Σ (using the 1

2
-1

2
-

product measure).
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It remains to consider the case of periodic kneading sequences without ?. This is a
rather complicated story; the final result will be given in Theorem 14.10. We begin
by a sequence of lemmas which prove that periodic sequences without ? are admissible
only if they are upper sequences.

Recall that if ϕ is said to have some itinerary with respect to ϑ, we mean the itinerary
with respect to the partition {(ϑ/2, (ϑ+ 1)/2), ((ϑ+ 1)/2, ϑ/2), {ϑ/2, (ϑ+ 1)/2}} with
symbols 1, 0, ? respectively.

14.3. Lemma (Periodic Itineraries in Markov Case)
Suppose that the angle ϑ is periodic or preperiodic. Then ϕ has a periodic itinerary
with respect to ϑ if and only if ϕ is periodic.

Proof. Let Θ := {ϑ/2, (ϑ+ 1)/2} ∪ {ϑ, 2ϑ, 4ϑ, . . . } be the finite set consisting of the
partition boundary and its forward orbit, and let I1, I2, . . . , Ik be the components of
S1 \ Θ. These intervals form a Markov partition of S1 with respect to angle doubling
because Θ is forward invariant, and the itineraries of all points within any Ij start with
the same symbol. Since angle doubling is expanding, it follows that every periodic
itinerary can only be realized by a single angle within each Ij, and all such angles are
periodic. (The period of ϕ may be a multiple of the period its itinerary. In this case,
several angles have the same itinerary.) 2

Remark. In a similar way, it follows that every periodic itinerary is actually realized
by a periodic angle, except if ϑ is periodic: in this case, the kneading sequence ν of ϑ
is ?-periodic, and the periodic itineraries A(ν) and A(ν) are not realized (and neither
are their shifts).

14.4. Lemma (Periodic Gaps)
Suppose there are closed infinite sets T0, T1, T2, . . . , Tn ⊂ S1 with 2Tk = Tk+1 for all k
and Tn = T0. Suppose also that each set Tk is contained in a semicircle. Then there is
a ϑ ∈ S1 so that one of the sets Tk contains {ϑ/2, (ϑ+ 1)/2}.

The sets Tk in this lemma combinatorially describe external angles of dynamic rays
landing at Siegel disk boundaries (at least when the corresponding Julia sets are locally
connected).

Proof. If (ϑ1, ϑ2) is a component of S1\Tk, then we call {ϑ1, ϑ2} a boundary leaf of Tk;
the length of this leaf is defined as the length of the shortest interval containing the leaf
{ϑ1, ϑ2}. Every Tk has a unique boundary leaf of maximal length, say `k. Renumber
the Tk cyclically so that `0 = max{`k}. For a leaf {ϑ1, ϑ2}, we call {2ϑ1, 2ϑ2} the image
leaf provided 2ϑ1 6= 2ϑ2. I f the interval (ϑ1, ϑ2) has length less than 1/2, then under
angle doubling it maps to one of the two components of S1 \ {2ϑ1, 2ϑ2}.

If `k ≤ 1/4, then `k+1 = 2`k. Thus `0 ∈ (1/4, 1/2], and the image of the leaf with
length `0 is a leaf with length ε1 := 1 − 2`0 (if `0 = 1/2, then the image is a single
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point). Note also that no Tk can contain an interval, hence every Tk has infinitely many
boundary leaves.

Suppose that ε1 > 0. Every Tk has only finitely many boundary leaves of length ε1

or greater. The only chance for the orbit of any leaf of length greater than ε1 to ever
acquire length less than ε1 is to have a leaf of length greater than `0 at the previous
iteration, and this is excluded by hypothesis. As a result, every leaf with length greater
than ε1 must be (eventually) periodic. The angle doubling map from Tk to Tk+1 is a
bijection on boundary leaves for every k. But short boundary leaves have their lengths
doubled, so they eventually acquire lengths greater than ε1, and this is impossible
injectively. This contradiction shows the claim ε1 = 0, and hence `0 = 1/2. 2

In the statement and proof of the following result, we use the standard notation
ω(ϑ) for the set of accumulation points of the orbit of ϑ (the ω-limit set).

14.5. Lemma (Periodic Sequences and Non-Periodic Angles)
Let ϕ, ϑ ∈ S1 and let τ be the itinerary of ϕ with respect to ϑ. If τ is periodic without
?, but ϕ is non-periodic, then the orbit of ϑ is infinite and there is an m ≥ 0 so that ϑ
has periodic itinerary σ◦m(τ) (a shift of τ). Moreover, ϑ ∈ ω(ϑ).

Proof. By Lemma 14.3, ϑ cannot be periodic or preperiodic, so its orbit must be
infinite. Let n be the exact period of τ .

Our first claim is that ϕ ∈ ω(ϕ) or ϑ ∈ ω(ϕ). Since ϕ has an infinite orbit on S1,
there is an accumulation point x ∈ S1 of the set U := {ϕ, 2nϕ, 22nϕ, 23nϕ, . . . , }. Note
that each angle in U has the same itinerary. For a fixed ε > 0, there is a k > 0 so
that |x− 2kϕ| < ε. The interval [x, 2kϕ] (or [2kϕ, x], depending on orientation) can be
pulled back k − 1 times along the orbit of ϕ unless some pull-back interval contains
ϑ. If none of them do, then we obtain an interval [x′, ϕ] or [ϕ, x′] of length ε/2k−1

where 2k−1x′ = x and x′ is another accumulation point of the set U . If this works for
arbitrarily small ε > 0, then ϕ ∈ ω(ϕ). However, if there are arbitrarily small ε > 0
for which we cannot pull back k − 1 times, then it follows that ϑ ∈ ω(ϕ). This proves
the claim.

If ϑ ∈ ω(ϕ), then the itinerary of ϑ is a shift of τ . To see this, recall that ϑ is not
periodic, so for every i > 0 there is an ε > 0 so that if |x′′ − ϑ| < ε, then the first i
entries in the itineraries of ϑ and x′′ coincide. By applying this to x′′ = 2kϕ, we see
that ϑ also has periodic itinerary without being a periodic angle.

We may thus use ϑ for ϕ and repeat the argument. So regardless of whether ω(ϕ)
contains ϕ or ϑ, we find a non-periodic angle ϕ (possibly equal to ϑ) with periodic
itinerary, and ϕ ∈ ω(ϕ).

Let T = U . Since ϕ is an accumulation point of itself, it follows that 2nT = T .
Moreover, T is infinite and each of its points is an accumulation point of T . Let
Tk := 2k−1T for k ≥ 1. Then Tk+n = Tk for all k. Each Tk is the closure of a set
of points with identical itineraries, so Tk is contained in the closure of one of the two
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components of S1 \ {ϑ/2, (ϑ + 1)/2}. By Lemma 14.4, there is an angle ϑ′ and a set
Tk with {ϑ′/2, (ϑ′ + 1)/2} ⊂ Tk; more precisely, we must have ϑ′ = ϑ, hence ϑ ∈ Tk+1

(otherwise, the itineraries of points in Tk would have different initial entries). Since
the angle ϑ is in the closure of the set of points with identical itineraries and ϑ is
non-periodic, we conclude that ϑ has the same periodic itinerary. As above, it also
follows that ϑ is an accumulation point of its own orbit. 2

14.6. Lemma (Periodic Kneading Sequence is Upper Sequence)
If a non-periodic angle ϑ has periodic kneading sequence ν, then ν has no ? and is an
upper sequence (i.e., the exact period is contained in the associated internal address).

Proof. As ϑ is non-periodic, ν cannot be ?-periodic, and all we need to show is that ν
is not a lower sequence. Let n be the exact period of ν, let U = {ϑ, 2nϑ, 22nϑ, 23nϑ, . . . }
and Uk := 2k−1U for k ≥ 0. Let also T := U and Tk := Uk for each k. By Lemma 14.5,
ϑ is an accumulation point of its own orbit, which implies that 2nT = T . Since ν is
periodic, each Tk is contained in a semicircle.

As before, we say that {ϑ1, ϑ2} is a boundary leaf of Tk if (ϑ1, ϑ2) is a component of
S1 \ Tk, and the length of this leaf is the length of the shortest interval containing the
leaf {ϑ1, ϑ2}. The sets Tk are unlinked in the sense that if {ϑ1, ϑ2} is a boundary leaf
of Tk, then Tk′ is contained in the closure of one of the components of S1 \ {ϑ1, ϑ2}).
To show why this is true, let us call {ϑ1, ϑ2} ⊂ S1 is a precritical leaf of Step k if
2kϑ1 = 2kϑ2 = ϑ. For every k ≥ 1, there are exactly 2k−1 precritical leaves of Step
k, so that all precritical leaves of all Steps are disjoint from each other and unlinked.
Indeed, the critical leaf is the unique precritical leaf of Step 1, and there are exactly 2
unlinked precritical leaves of Step 2 (preimages of the critical leaf, one on each side of
the critical leaf). Continue by induction (using the fact that ϑ is non-periodic). The
construction implies that if two points on S1 have itineraries which differ within the
first k entries, then they are separated by a precritical leaf of at most Step k. Since
the itineraries of the points in Uk and Uk′ differ within the first n entries, the precritical
leaves of at most Step n separate the sets Uk, and the closures Tk are indeed unlinked.

Let `k ≥ `′k be the lengths of the longest two boundary leaves of Tk. We claim:

The longest boundary leave in T1 is precritical with Step n. (8)

First note that 0 < `′k < `k ≤ 1/2 for all k because each Tk is infinite and contained
in a semicircle. If `k ≤ 1/4, then `k+1 = 2`k and `′k+1 = 2`′k. If `k > 1/4, then also
`′k ≥ 1/4 (otherwise, Tk+1 would not be contained in a semicircle). In this case, all
boundary leaves of Tk except the two longest have combined length `k − `′k ≤ 1/4, so
each other individual boundary leaf of Tk has length less than 1/4.

The two longest leaves in T0 = Tn have lengths 1/4 ≤ `′0 < `0 = 1/2, and their
images are one leaf with length 1− 2`′0 and a single point ϑ, see Figure 14.1. Let b1 be
the longest leaf of T1; it has length `1 = 1 − 2`′0. The boundary of T0 is contained in
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Figure 14.1. The action of the angle doubling on the leaves `0 and `′0.

two short intervals of combined length `0−`′0, and their images under doubling meet at
ϑ with combined length 1− 2`′0 = `1. Therefore, b1 is the image of the second longest
leaf of T0.

Let mk be the combined lengths of all boundary leaves in Tk other than the longest
two, so mk ≤ `k− `′k. If `k ≤ 1/4, then all leaves just double in length, so mk+1 = 2mk.
If for some k < n, `k > 1/4 and hence `′k ≥ 1/4, then the second longest leaf becomes
the longest leaf of Tk+1, with length `k+1 = 1 − 2`′k, whereas the longest leaf of Tk is
mapped to a leaf of Tk+1 with length 1 − 2`k > 1 − 2`′0 ≥ m0. If this leaf is not the
second longest of Tk+1, then mk+1 > m0, and the same is true for all mi, i ≥ k + 1.
This is a contraction, because mn = m0. Therefore the longest two leaves of Tk remain
the longest two until Tn is reached.

It follows that if b1 is not precritical, then after n−1 iterations, b1 maps to the second
longest boundary leaf of Tn, and hence b1 is periodic of period n. Let J± ⊂ S1 be the
two short arcs of combined length `1−`′1 that cover the boundary of T1. Multiplication
by 2n preserves orientation and is injective on T1, except that the two points of its
second longest leaf (which is then precritical) are mapped to ϑ. It follows that one of
J± is mapped to a short arc. But this contradicts that 2n expands distances on J±.
This contradiction completes the proof of Claim (8).

We define the internal address of ϑ in this context as the sequence S0, S1, . . . , Sm of
strictly increasing integers as follows. We start with the critical leaf, which is precritical
of Step S0 = 1. If the entry Sk−1 stands for a precritical leaf ak−1 of Step Sk−1, then
let ak be the leaf of least Step-number which separates ak−1 from U1, and let Sk be
the Step-number of ak. It is easy to see that ak is uniquely defined and Sk > Sk−1 for
all k; this sequence terminates with the leaf am = b1 of Step Sm = n.

Finally, we claim that the internal address of ϑ in this context equals the internal
address of the kneading sequence ν associated to ϑ (compare Proposition 6.8: our
construction can be viewed as an internal address by precritical points). The limiting
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itinerary of points ϑ/2+ε and (ϑ+1)/2−ε (as ε↘ 0) is the concatenation 1ν. Therefore
the precritical leaf a2 of least Step separating ϑ from a1 has Step S1 = ρν(1) steps,
using ρν from Definition 2.2. Similarly, if a2 = {ϑ2, ϑ

′
2} with ϑ2 < ϑ′2, then the limiting

itinerary of points ϑ2 + ε and ϑ′2 − ε is the concatenation of the first S0 entries of ν,
followed by ν, and thus S2 = ρν(S1), and so on. Thus Sk = ρ◦kν (1), which proves the
claim.

Since the internal address of ν terminates with the entry Sm = n, which is the exact
period of ν, the sequence ν is an upper sequence in the sense of Definition 5.14. 2

Remark. Lower periodic sequences without ? can be the itineraries of non-periodic
angles ϕ with respect of angles ϑ 6= ϕ. For example, the upper sequence 1100 occurs
as the kneading sequence of certain angles ϑ by Corollary 14.8, so 2ϑ generates the
itinerary 1001 which is a lower sequence. Proposition 14.6 means that ϑ 6= ϕ.

14.7. Lemma (Kneading Sequence 1 Generated)
There are uncountably many external angles which generate the kneading sequence 1

(one such angle for every irrational rotation number).

Proof. We follow the arguments of Bullett and Sentenac [BuS] (see also Theo-
rem 26.2). For ϑ ∈ [0, 1], define the function gϑ : [0, 1]→ [0, 1] by

gϑ(x) =

 ϑ if 0 ≤ x ≤ ϑ/2
2x if ϑ/2 < x < (ϑ+ 1)/2
ϑ if (ϑ+ 1)/2 ≤ x .

Then gϑ descends to a continuous self-map of S1 = R/Z of degree one. The map gϑ
has a well-defined rotation number rϑ, depending continuously on ϑ, see e.g. [ALM1].
Moreover, rϑ is rational if and only if gϑ has a periodic point, and rϑ = 0 if and only
if gϑ has a fixed point. (In fact, the map ϑ → rϑ is a monotone surjection from S1 to
itself and has topological degree one.)

For ϑ = 0, gϑ has a fixed point at 0, so r0 = 0. For ϑ 6= 0, there is no fixed point,
so rϑ 6= 0. Since rϑ depends continuously on ϑ, there are uncountably many values of
ϑ for which rϑ is irrational, so gϑ has no periodic point. For such values of ϑ, the orbit
of ϑ must always remain in the interval (ϑ/2, (ϑ+ 1)/2), and so the kneading sequence
of ϑ is 1. 2

Remark. Bullett and Sentenac show more; compare Section ??: the set of angles
ϑ with kneading sequence 1 has Hausdorff dimension 0, and for each such angle ϑ
the set of all points with itinerary 1 also has Hausdorff dimension 0. They also show
interesting number theoretic relations between ϑ and rϑ; compare Section ??. Check
Goldberg and Milnor, and also discuss the Farey algorithm somewhere.
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14.8. Corollary (Upper Periodic Kneading Sequences Generated)
For every admissible ?-periodic kneading sequence ν∗, the upper sequence A(ν∗) is gen-
erated by a non-periodic external angle.

Proof. Let n be the period of ν∗. The case n = 1 has been treated in Lemma 14.7;
now we discuss the general case and reduce it to the case n = 1 by a version of tuning
(compare Section 10).

Since ν∗ is admissible, Proposition 14.1 (and Theorem 9.1) shows that there are two
external angles 0 < ϑ < ϑ′ < 1 of exact period n which generate the kneading sequence
ν∗ so that the interval (ϑ, ϑ′) contains no angle 2kϑ or 2kϑ′. Moreover, among the two
angles ϑ/2 and ϑ′/2, exactly one is periodic and the other one is preperiodic.

Let I1 = (ϑ′/2, (ϑ+ 1)/2) and I0 = ((ϑ′+ 1)/2, ϑ/2) (in the positive orientation, so
that 0 ∈ I0 and 2I1 = 2I0 = S1 \ [ϑ, ϑ′]). See Figure 14.2

Figure 14.2. The intervals I0, I1, J0 and J ′0 and boundary angles ϑ <

ϑ̃ < ϑ̃′ < ϑ′.

There are two strings A = A1 . . . An, B = B1 . . . Bn ∈ {0, 1}n so that

ϑ =
1

2n − 1

n∑
k=1

2n−kAk and ϑ′ =
1

2n − 1

n∑
k=1

2n−kBk,

cf. the Staircase Algorithm 26.4. By Lemma 14.7, there are uncountably many external
angles with kneading sequence 1. Let h be one of them and write h =

∑
hk2

−k for
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k ≥ 1 in the binary expansion with hk ∈ {0, 1}. Replace every 0 by the string A and
every 1 by the string B; this yields the binary expansion of an angle ϑh ∈ (ϑ, ϑ′).

There are two angles 0 < ϑ < ϑ̃ < ϑ̃′ < ϑ′ so that 2n : (ϑ, ϑ̃) → (ϑ, ϑ′) and

2n : (ϑ̃′, ϑ′)→ (ϑ, ϑ′) are homeomorphisms. The binary expansions of ϑ̃ and ϑ̃′ are writ-
ten as ABBBBB . . . and BAAAAA . . . , cf. the rotation sequences of Definition 26.7.
Then for every k ≥ 0, the angle 2knϑh is contained in J := (ϑ, ϑ̃) ∪ (ϑ̃′, ϑ′). Let also
J0 := (ϑ/2, ϑ′/2) ∪ ((ϑ+ 1)/2, (ϑ′ + 1)/2).

We claim that the interval (ϑ, ϑ′) contains no angle 2kϑ̃ or 2kϑ̃′ for k ≥ 1. Indeed,

since 2nϑ̃ = ϑ′ and 2nϑ̃′ = ϑ, this could happen only for k ∈ {1, 2, . . . , n − 1}, and

since 2n : (ϑ, ϑ̃)→ (ϑ, ϑ′) and 2n : (ϑ̃′, ϑ′)→ (ϑ, ϑ′) are homeomorphisms, 2kϑ̃ ∈ (ϑ, ϑ′)

or 2kϑ̃′ ∈ (ϑ, ϑ′) would imply that 2n−kϑ ∈ (ϑ, ϑ′) or 2n−kϑ′ ∈ (ϑ, ϑ′), a contradiction.

Our next claim is if ϕ ∈ (ϑ, ϑ̃), then 2kϕ ∈ J0 implies that k ≥ n − 1 (and an

analogous statement holds for ϕ ∈ (ϑ̃′, ϑ′)). If 2kϕ ∈ J0, then 2k(ϑ, ϑ̃) must contain

the component of J0 that contains 2kϕ. (Otherwise, J0 contains 2kϑ or 2kϑ̃, and one of

2k+1ϑ or 2k+1ϑ̃ would be contained in (ϑ, ϑ′), a contradiction). But if k ≤ n− 1, then
n− k iterations later the forward image of a boundary angle of J0 would be contained
in (ϑ, ϑ′), and this is a contradiction again.

The previous claim implies that for every ϕ ∈ J and every fixed k ∈ {0, 1, . . . , n−2},
all three angles 2kϑ, 2kϑ′ and 2kϕ are in I0 or all three are in I1. None of these angles
can be in J0 = S1 \ (I0 ∪ I1) and the angles 2kϑ and 2kϑ′ are both in I0 or both in

I1 because the kneading sequences of ϑ and ϑ′ coincide. Finally, if ϕ ∈ (ϑ, ϑ̃), then
2kϕ and 2kϑ must both be in I0 or both be in I1 because of the previous claim. If
ϕ ∈ (ϑ̃′, ϑ), then the same is true for 2kϕ and 2kϑ′.

This implies that the first n− 1 entries in the itinerary of ϕ coincides with the first
n − 1 entries in ν∗, and in particular that the kneading sequence of ϑh coincides with
ν∗ except possibly at entries that are divisible by n. (Keep in mind that the kneading
sequence of ϑh is defined with respect to a different partition than the kneading se-
quences of ϑ or ϑ′, but points in the interval I1 always generate an entry 1 and points
in the interval I0 always generate an entry 0, and this suffices.)

So far, the argument works for all angles ϑh whose binary expansion is an infinite
concatenation of strings A and B. To treat the entries in the kneading sequence of
ϑh that are divisible by n, we need the specific form of ϑh derived from Lemma 14.7.
First observe that the last entries An 6= Bn are different. This is a rephrasing of the
statement made earlier that exactly one of ϑ/2 and ϑ′/2 is periodic.

Suppose that the last entry in A is 0 and the last entry in B is 1: this means that
ϑ/2 and (ϑ′ + 1)/2 are periodic. Then the sequence of n-th, 2n-th, 3n-th etc. entries
in the kneading sequence of ϑh are exactly the kneading sequence of h, i.e., they are
all equal to 1 (this requires considering a few cases but is not difficult). Similarly, if
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the last entry in A is 1 and the last entry in B is 0, then the n-th, 2n-th, 3n-th etc.
entries in the kneading sequence of ϑh are all 0.

This shows that the kneading sequence of ϑh is periodic of period n without ?, so
it equals either A(ν∗) or A(ν∗). As the latter case is excluded by Lemma 14.6, this
completes the proof of the corollary. 2

14.9. Lemma (Periodic Sequences in Admissible Cylinders)
Let ν1 . . . νn ∈ {0, 1}n be an admissible word (with ν1 = 1) such that an entry n
is generated in the internal address. Then the kneading sequence ν := ν1 . . . νn is
admissible.

Proof. By hypothesis, the internal address of ν is finite, say 1→ S1 → S2 → . . .→ Sk
with Sk = n. If ν fails the admissibility condition for m, then ρ(m) ∈ orbν(1), hence
ρ(m) ≤ n. But then the entire word ν1 . . . νn is non-admissible. 2

Remark. The assumption about the entry n in the internal address is necessary, as the
example ν = 1011 1010 11? with internal address 1 → 2 → 4 → 8 → 10 → 11 shows:
it fails the admissibility condition for m = 6 (with ρ(6) = 11), and so does A(ν) =
1011 1010 111 (with ρ(6) = 12 and r = m = 6). However, the word 1011 1010 111 is
admissible and realized for example by the internal address 1→ 2→ 4→ 8→ 10→ 14.

14.10. Theorem (Admissibility of Periodic Sequences)
Let ν∗ be a ?-periodic kneading sequence of some exact period n ≥ 2. Define ν = A(ν∗)
and ν ′ = A(ν∗) and let n′ be the exact period of ν ′. Then the exact period of ν is n,
and the following are equivalent:

(1) the sequence ν is generated by an angle ϑ ∈ S1 (necessarily non-periodic);
(2) ν∗ is generated by an angle ϑ∗ ∈ S1 (necessarily periodic);
(3) ν is admissible in the sense of Definition 5.1;
(4) ν∗ is admissible in the sense of Definition 5.1;
(5) the sequence ν ′ is admissible, and either n′ = n or ν ′ = A(ν ′∗) for some ?-

periodic sequence ν ′∗.

Moreover, the following are equivalent:

(6) the sequence ν ′ is generated by an angle ϑ ∈ S1 (necessarily non-periodic);
(7) ν∗ is admissible in the sense of Definition 5.1, n′ < n, and ν ′ = A(ν ′∗) for

some admissible ?-periodic sequence ν ′∗ (necessarily of period n′).

Existence of an external angle ϑ generating ν ′ implies, but is not implied by, admissibi-
lity of ν ′. Admissibility of A(ν∗) implies, but is not implied by, admissibility of A(ν∗).

Remark. This theorem can be interpreted in the context of the Mandelbrot set as
follows: for any ?-periodic kneading sequence ν∗, the sequences A(ν∗) and A(ν∗) are
generated by external angles only if ν∗ is generated by an external angle (or equivalently
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admissible), so there is a parameter ray pair P (ϕ, ϕ′) at periodic angles with ν∗ =
ν(ϕ) = ν(ϕ′), and the landing point of P (ϕ, ϕ′) is the root of a hyperbolic component
W . There are uncountably many parameter rays at irrational external angles ϑ landing
at ∂W , and their associated kneading sequences are always A(ν∗). If W is a satellite
component, i.e., there is a component W ′ from which W bifurcates, then the parameter
rays at irrational angles ϑ′ landing on the boundary of W ′ all generate A(ν∗). In this
case, the period of W ′ equals the exact period n′ of A(ν∗), and n′ properly divides n.
However, if W ′ is a primitive component, then the kneading sequence A(ν∗) has period
n′ = n and it is not generated by any external angles.

Since admissibility of a kneading sequence ν∗ means that ν∗ occurs in the Mandel-
brot set, we can rephrase this theorem in the following way: every ?-periodic kneading
sequence ν∗ satisfies exactly one of the following four cases (where again n and n′

denote the exact periods of A(ν∗) and A(ν∗)):

primitive root in M: n′ = n and the sequences A(ν∗), ν∗ and A(ν∗) are ad-
missible; A(ν∗) and ν∗ are generated by external angles, but A(ν∗) is not.
Example: ν∗ = 10?;

bifurcation in M: n′ strictly divides n and A(ν∗) is an upper sequence for some
ν ′∗. The sequences A(ν∗), ν∗ and A(ν∗) are admissible as well as generated by
external angles. Example: ν∗ = 101?;

minimal non-existing sequence near primitive root: n′ strictly divides n
and A(ν∗) is a lower sequence for some ν ′∗. The sequence A(ν∗) is admissible,
but ν∗ andA(ν∗) are not; none ofA(ν∗), ν∗ andAν∗ is generated by an external
angle. Example: ν∗ = 10110?;

non-existing sequence: n′ divides n, possibly strictly; A(ν∗), ν∗ and A(ν∗)
are non-admissible (within non-admissible subtrees, all three previous cases
occur; the third one describes the creation of a new evil orbit; none of A(ν∗),
ν∗, A(ν∗) are generated by external angles. Example: ν∗ = 1011001101100?.

HB: Do I remember correctly that Karsten Keller wrote about this too in is monograph.
Not that this should affect our writing about this, but if true, it might appropriate be
mentioning this when we get to Karsten in the Other/Further

Proof. By Proposition 5.16, the exact periods of ν∗ and A(ν∗) coincide.
(4) ⇔ (3): This is Lemma 6.11.
(4) ⇔ (2): This is Proposition 14.1.
(4) ⇒ (1): This is Corollary 14.8.
(1) ⇒ (4): Suppose the periodic sequence ν is generated by an angle ϑ ∈ S1; since ν
is not ?-periodic, ϑ cannot be periodic. Arbitrarily close to ϑ there are periodic angles
which generate ?-periodic angles of period greater than n, so there are admissible
kneading sequences that start with the same initial n entries as ν. Since ν is an upper
sequence, Lemma 14.9 shows that ν is admissible.
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Now we focus on the equivalent (3)⇔ (5). Let ν = ν1ν2 . . . νn be the upper sequence
and ν ′ = ν1ν2 . . . ν ′n (with opposite symbols νn and ν ′n) lower sequence. Let ρ and ρ′ be
their respective ρ-functions as in Definition 2.2.
(3) ⇒ (5): Suppose lower sequence ν ′ = ν1ν2 . . . ν ′n fails Admissibility Condition 5.1 at
entry m. Then n ∈ orbρ(1) and n /∈ orbρ′(1). Also, taking s := ρ′(m)−m (mod m), we
have m ∈ orbρ′(s) by part (3) of Admissibility Condition 5.1. We divide the argument
into the following cases:

(i) n < m. Take m′ = m−n. By periodicity of ν ′ we have ρ′(m′)−m′ = ρ′(m)−m = s,
so by Lemma 20.1 there is t ≤ ρ′(m′) < ρ′(m) such that t ∈ orbρ′(s) ∩ orbρ′(1). But
this contradicts that ρ′(m) = min{orbρ′(s) ∩ orbρ′(1)}.

(ii) ρ′(m) < n. Then ν was already inadmissible, because admissibility depends only
on the first ρ′(m) = ρ(m) entries of ν ′ (or ν).

(iii) ρ′(m) = n. This is impossible because ρ′(m) ∈ orbρ′(1) by Lemma 20.1.
(iv) m < n < ρ′(m). First we show that ρ′(m) < n + m. Indeed, if ρ′(m) ≥ n + m,

then for ν̃ = ν1 . . . νm we have ρ̃(n) > n + m. Therefore ν̃ is periodic of exact period
l dividing gcd(m,n). Now l < m contradicts part (2) of Admissibility Condition 5.1
because ρ′(l) = ρ′(m). If on the other hand l = m, then n is a multiple of m, and it is
easy to check that ν already fails the Admissibility condtion at entry m.

Thus we can assume that t := ρ′(m)−m < n. Then

νm+1 . . . ν
′
nν1 . . . νρ′(m)−n = νm+1 . . . ν

′
nνn+1 . . . νρ′(m)

= ν1 . . . νn−mνn−m+1 . . . ν
′
t.

This shows that for the ρ-function of the upper sequence ν we have ρ(m) = n and
ρ(n−m) = ρ(m)−m = t < n. Since m ∈ orbρ(s) for s = t (mod m), this implies that
m ∈ orbρ(n−m (mod m)) = orbρ(ρ(m)−m (mod m)). Hence m fails the admissibility
condition already for ν.

Therefore the cases (ii) and (iv) both lead to ν being inadmissible. Finally, if
the exact period n′ of ν ′ is a proper divisor of n, and n′ /∈ orbρ′(1), then ν fails the
Admissibility Condition at entry n′.
(5) ⇒ (3): Assume that ν ′ is the upper sequence of an admissible ?-periodic kneading
sequence ν ′∗ of period n′, so n′ is the last entry of orbρ′(1). Suppose now that ν fails
the admissibility condition at entry m. Let ρ be the ρ-function of ν. If ρ(m) < n, then
m also failed the admissibility condition for ν ′, so we are left with two cases:

(i) m < n < ρ(m). Write t = ρ(m)−m, and s = t (mod m), so m ∈ orbρ(s) by part
(3) of Definition 5.1. We have for ν

νm+1 . . . νnνn+1 . . . νρ(m) = νm+1 . . . νnν1 . . . νρ(m)−n

= ν1 . . . νn−mν1 . . . ν
′
t.

Therefore ρ(n−m) = t. But this means that for ν ′, we have ρ′(m) = n and ρ′(ρ′(m)−
m) = ρ′(n −m) = t and m ∈ orbρ′(ρ

′(m) −m (mod m)). This means again that ν ′
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failed the Admissibility Condition already at entry m.
(ii) ρ(m) = n. Take again s = ρ(m) −m (mod m). If also n − n′ < m, then s < n′

and for ν ′ neither n′ nor 2n′ belong to orbρ′(s). This contradicts Lemma 20.2. If on the
other hand m < n− n′, then we can take k = m (mod n′) and find ρ(k) = ρ(m) = n.
But then k < n′ and for ν ′ itself we have ρ′(k) > 2n′, again contradicting Lemma 20.2.
This completes the proof of this implication.

Remark. Our standard non-admissible example ν∗ = 101 10? of period 6 with
internal address 1→ 2→ 4→ 5→ 6 has an admissibile lower sequence A(ν∗) = 101 =
A(10?). This shows that the condition A(ν∗) = A(ν ′∗) is essential.

Now we discuss the second set of equivalences.
(6) ⇒ (7): If the kneading sequence ν ′ is generated by a non-periodic angle ϑ, then ν ′

is an upper sequence by Lemma 14.6, so we can write ν ′ = A(ν ′∗) for some ?-periodic
sequence ν ′∗, which is admissible by the first part of the theorem. The sequences
ν ′ and ν ′∗ have identical internal addresses which terminate with the exact period n′

(Proposition 5.16). Since ν ′ = A(ν∗), it follows that n′ properly divides n, because if
n′ = n then ν ′∗ = ν∗, a contradiction. The internal address of ν∗ is then equal to the
internal address of ν ′∗ (or equivalently of ν ′), extended by an entry n. By Lemma 6.12,
ν∗ is admissible.
(7) ⇒ (6): If ν ′ = A(ν ′∗), then the first part of the theorem proves that ν ′ is generated
by an external angle. 2

14.11. Corollary (Preperiodic Kneading Sequences)
If an angle ϑ ∈ S1 generates a preperiodic kneading sequence ν, then ϑ is preperiodic
itself so that ϑ and ν have identical preperiod, while the period of ν divides the period
of ϑ (possibly properly).

Proof. If ϑ is irrational and has a preperiodic kneading sequence ν, then 2kϑ is still
irrational and has a periodic itinerary, and this contradicts Lemma 14.5. Preperiodic
kneading sequences are thus generated rational angles, and only preperiodic angles are
possible. The statements about preperiod and period are easy to check. 2

Remark. It does occur that the period of ν strictly divides the period of ϑ. For
example, the angles ϑ1 = 9/56 = 0.001 001, ϑ2 = 11/56 = 0.001 010 and ϑ3 = 15/56 =
0.010001 which all generate the same kneading sequence ν = 110 1. This has some
interesting consequences, for example on the number of preperiodic rays associated
to Misiurewicz-Thurston points. All three parameter rays R(9/56), R(11/56) and
R(15/56) land together at the same parameter. Moreover, in the context of spiders,
this gives rise to a Thurston Obstruction (see [HS, Section 6]).

HB: I don’t really follow this paragraph below, or why it should be in. A separate
proof of Corollary 14.11 uses the fact that the preperiodic kneading sequence has an
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associated Hubbard tree with finite critical orbit, and only finitely many external angles
are associated to the critical orbit (which terminates on a repelling periodic orbit). In
contrast, a periodic kneading sequence also has a finite Hubbard tree, but infinitely
many external angles may be associated critical orbit: under continued pull-back of
the Hubbard tree, the points on the critical orbit acquire infinitely many branches and
thus allow for infinitely many angles.
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15. Construction of Hubbard Trees

We give an explicit construction of the Hubbard tree of a ?-periodic kneading sequence.

Let us start with a lemma to justify Step 2 in the construction of Hubbard trees.

15.1. Lemma (Interaction of Tame and Evil Orbits)
Let (T, f) be the Hubbard tree with ?-periodic kneading sequence ν and internal address
1 → S1 → . . . → Sk → Sk+1 and let p1 be the Sk-periodic characteristic point whose
itinerary coincides with ν for Sk entries. If T contains an m-periodic evil orbit with
ρ(m) = Sk+1, then its characteristic point x1 lies on (p1, c1), and p1 is not a branch
point.

Proof. Since x1 is the characteristic point of its orbit, x1 ∈ [c1, c0]. If x1 ∈ [p1, 0], then
orb(x1) is contained in the connected hull of orb(p1). By “orbit forcing” this would
imply that the evil orbit orb(x1) already existed in the Hubbard tree with internal
address 1 → . . . → Sk, and then ρ(m) ≤ Sk, contradicting that ρ(m) = Sk+1. Hence
x1 lies behind p1.

For the second assertion, suppose that p1 has q > 2 arms and x1 has q′ > 2 arms.
Denote the global arms of p1 byG0, . . . , Gq−1 and the global arms of x1 byG′0, . . . , G

′
q′−1,

as in Lemma 4.6. Recall that Sk+1 = aSk+r = a′m+r′ where a′ = q′−2 and a = q−2
or q − 1 depending on whether Sk ∈ orbρ(r) or not, see Propositions 5.19 and 5.13.

We distinguish two cases, both leading to a contradiction:

• a′m ≥ aSk. In this case r′ ≤ r ≤ Sk. Since m violates the admissibility con-
dition, m ∈ orbρ(r

′) which implies that ζm ∈ (x1, ζr′) and ζr′ ∈ (x1, c1+a′m) ⊂
G′q′−1 ⊂ G1. Therefore 0 ∈ f ◦r′−1(G1), contradicting that f ◦Sk maps G1 home-
omorphically onto G2.
• a′m < aSk (and therefore m < aSk). Since m violates the admissibility

condition, Sk does not divide m, so p1+m 6= p1 and by Lemma 4.1, p1+m ∈ G0.
Since c1+m ∈ G1, the local arm L at p1+m towards c1+m points to some other
point in orb(p1). Continuing the iteration, the images of L will point to some
point in orb(p1) or to c1 until (and including the iterate where) p1+m reaches
p1. This is the argument of Lemma 4.1. Let j be the smallest integer such that
jSk ≥ m. Clearly 1 ≤ j ≤ a. We have f ◦jSk−m(p1+m) = p1. Now f ◦jSk−m(L)
points towards f ◦jSk(c1) ∈ Gj+1. Clearly Gj+1 6= G1 and if Gj+1 6= G0 as well,
then Gj+1 contains no point in orb(p1) nor the critical value, contradicting the
above property of the local arm L. The final possibility is that Gj+1 = G1; this
can only occur if j = a = q−1 ≥ 2. Choose t ≥ 1 such that m0 := a′m−tSk ∈
{1, . . . , Sk−1}. Since ρ(a′m) = Sk+1 > aSk, we have by Lemma 5.10 that also
ρ(m0) = Sk+1 > 2Sk. This, however, contradicts Lemma 20.2 (2), finishing
the proof. 2
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15.2. Algorithm (Construction of Hubbard Tree)

Let ν be a ?-periodic kneading sequence and 1 → S1 → . . . → Sl be its internal
address. Write ν = ν1 . . . νSl−1?. Our construction of the Hubbard tree of ν will be
inductive.
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Step 1
- blow up c0 to an arc
- rename old critical orbit
- insert the new critical point c0

Step 3a
- attach arcs to orb(p0)
- define f |(−p0, p0)

Step 4 and 5
- backtrack the critical orbit
- define f |(p0, cd]

Figure 15.1. Construction of 1→ 3→ 6→ 10 from 1→ 3→ 6.
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If the internal address is 1 → S1, then the Hubbard tree is an S1-star with a fixed
center vertex (the α-fixed point) and the S1 arms are permuted cyclically. The critical
point is the endpoint of one of the arms and has period S1.

Suppose that we have the Hubbard tree (T, f) for internal address 1 → . . . → Sk.

The induction step consists in constructing the Hubbard tree (T̃ , f̃) with internal address
1→ . . .→ Sk → Sk+1. This is done in five steps (illustrated in Figures 15.1 and 15.2).
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- backtrack the critical orbit
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Figure 15.2. Construction of 1→ 3→ 6→ 7→ 8 from 1→ 3→ 6→ 7.
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Step 1. Replace the critical point c0 by a closed arc [−p0, p0] where p0 is adjacent to
the νSk-side of T . Rename the points c1, . . . , cSk−1

to p1, . . . , pSk−1. Let f(pSk−1) = p0,
f(p0) = f(−p0) = p1 and leave the action on p1, . . . , pSk−2 as well as on the other
marked points (the branch points) unchanged.

As a result, p1 has the itinerary ν1 . . . νSk and the action f is defined on all the
branch points and endpoints of T ∪ (p0,−p0) and their orbits. Extend f homeomorphi-
cally to the arcs connecting these points, except for (−p0, p0).

Take a new critical point c0 = cSk+1
on (−p0, p0).

Step 2. Write Sk+1 = aSk + r (1 ≤ r ≤ Sk) and let 10

q :=

{
a+ 1 if Sk ∈ orbρ(r),
a+ 2 if Sk /∈ orbρ(r).

Next check if the ?-periodic kneading sequence ν1 . . . νSk+1−1? violates the admissibility
condition for period m such that ρ(m) = Sk+1, (see Proposition 5.12) 11. Write Sk+1 =
a′m+ r′ (1 ≤ r′ ≤ m). We have three possibilities 12:

• If q > 2, put d = (q − 2)Sk and proceed with Step 3a.
• If the integer m exists, put d = a′m and proceed with Step 3b.
• If neither of the above, put d = 0 and proceed with Step 4.

Step 3a. Attach q−2 closed arcs to each of the points p0, . . . , pSk−1. Map (−p0, p0)
is a 2-to-1 fashion onto (one of) the arc(s) attached to p1 such that its end point is
c1 := f(c0). Extend f as follows: Let f map [p1, c1] homeomorphically onto one of the
new arcs at p2. (Thus c2 = f(c1) is the endpoint of this arc.) Next let f map [p2, c2]
homeomorphically onto one of the (new) arcs at p3. (Thus c3 = f(c2) is the endpoint
of this arc.)

Continue until the point cd = c(q−2)Sk is defined, as endpoint of the last remaining
arc at p0. Now f is defined on T with all its attached arcs, except for the arc (p0, cd].
Continue with Step 4.

Step 3b. Take points x0 = xm and −x0 on (−p0, p0) on the νm-side resp. opposite
side of c0. We track the orbit xm backwards such that the itinerary of x1 will be ν1 . . . νm.
Find ym−1 on the νm−1-side of the tree created so far such that f(ym−1) is closest to
xm. If f(ym−1) = xm, then take xm−1 = ym−1. Otherwise attach an arc [ym−1, xm−1]
to ym−1 and let f map it homeomorphically onto [f(ym−1), xm].

Continue this way, i.e., if xi is defined, then find yi−1 on the νi−1-side of tree
created so far such that f(yi−1) is closest to xi. If f(yi−1) = xi, then take xi−1 = yi−1.
Otherwise attach an arc [yi−1, xi−1] to yi−1 and let f map it homeomorphically onto
[f(yi−1), xi].

10This choice is of course motivated by Proposition 5.19
11If there is such m we expect the creation of an evil orbit
12It follows from Lemma 15.1 that these cases are mutually exclusive.
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If however xi lies beyond p1 (i.e., p1 ∈ [c0, x1]) and yi−1 = ±p0 (or more generally,
yi−1 is a boundary point of the arc containing c0 on which f is not yet defined), then
take a point w ∈ (yi−1, c0) \ [x0,−x0]. Attach an arc [xi−1, w] to w and let f map
(yi−1, xi−1] homeomorphically onto (f(yi−1), xi].

We stop when y1 and x1 are found. By construction (we give the proof in Proposi-
tion 15.3 below), p1 ∈ (x1, c0).

Now attach a′ closed arcs to each of the points x1, . . . , xm. Extend f as follows:
Map (−p0, p0) in a 2-to-1 fashion onto the union of (p1, x1] and one of the new arcs at
x1 (possibly extending f |(±p0, w]), in such a way that f(x0) = f(−x0) = x1 and the
endpoint of the attached arc is c1 := f(c0). Next let f map [x1, c1] homeomorphically
onto one of the (new) arcs at x2. (Thus c2 = f(c1) is the endpoint of this arc.) Next
let f map [x2, c2] homeomorphically onto one of the (new) arcs at x3. (Thus c3 = f(c2)
is the endpoint of this arc.)

Continue until the point cd = ca′m is defined, as endpoint of the last remaining arc
at xm. Now f is defined on T with all its attached arcs, except for the arc (xm, cd].
Continue with Step 4.

Step 4. In this step we create the points ci for i = Sk+1 − 1 down to d + 1. This
is done as follows: Find ySk+1−1 on the νSk+1−1-side of the tree created so far such that
f(ySk+1−1) is closest to c0 = cSk+1

. If f(ySk+1−1) = c0, then take cSk+1−1 = ySk+1−1.
Otherwise attach an arc [ySk+1−1, cSk+1−1] to ym−1 and let f map it homeomorphically
onto [f(ySk+1−1), c0].

Continue this way, i.e., if ci is defined, then find yi−1 on the νi−1-side of tree created
so far such that f(yi−1) is closest to ci. If f(yi−1) = ci, then take ci−1 = yi−1. Otherwise
attach an arc [yi−1, ci−1] to yi−1 and let f map it homeomorphically onto [f(yi−1), ci].

However, if ci lies beyond p1 (i.e., p1 ∈ [c0, c1]) and yi−1 is a boundary point of the
arc which f is not yet defined, then take an interior point w on this arc. Attach an arc
[ci−1, w] to w and let f map (yi−1, ci−1] homeomorphically onto (f(yi−1), ci].

Step 4 is finished when yd+1 and cd+1 are found.

Step 5. We distinguish three cases according to whether Step 3 is skipped, Step 3a
or Step 3b is carried out.

(1) Step 3. is skipped, d = 0. By construction (proof in Proposition 15.3 below),
p1 ∈ (c1, c0). Map (−p0, p0) in a 2-to-1 fashion onto (p1, c1] such that f(c0) =
c1. (This possibly extends f |(±p0, w].)

(2) Step 3a is carried out, d = (q − 2)Sk. By construction (Proposition 15.3),
p1 ∈ (cd+1, c0). Map (p0, cd] homeomorphically onto (p1, cd+1].

(3) Step 3b is carried out, d = a′m. By construction (Proposition 15.3), x1 ∈
(cd+1, c0). Map (x0, cd] homeomorphically onto (x1, cd+1].

This finishes the induction step.
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Figure 15.3. The Hubbard tree for 1 → 2 → 6 → 7 → 13 → 14 with
orb(p0) drawn in and preperiodic branch point w ∈ [p0, c9]; it maps to
the 2-periodic branch point γ in six iterates.

Remark. The introduction of points w in Step 3b and Step 4 corresponds to strictly
preperiodic branch points beyond p1 in T̃ . An example of this is realized by the internal
address 1 → 2 → 6 → 7 → 13 → 14, see Figure 15.3, where the point w ∈ [c0, p0] is
strictly perperiodic to the period 2 branch point.

Also, if p1 is a branch point with q arms, or x1 is an evil branch point with a′ + 2
arms, then the global arm Gq−1 at p1, or Ga′+1 at x1, labelled as in Lemma 4.6,
can contain preperiodic branch points. One example is the tree with internal address
1 → 2 → 4 → 5 → 11, see Figure 5.2. Another example is the tree with internal
address 1 → 2 → 4 → 5 → 7 → 13, see Figure 15.4. In this case, the characteristic
periodic point p1 of period 6 has three arms, and Step 3a is carried out to find them.
The arm [p1, c8] contains a preperiodic branch point. An example with an evil orbit is
the tree with internal address 1→ 2→ 4→ 6→ 10→ 20→ 40→ 49. One can check
that this tree contains an evil characteristic point x1 of period 30 with three arms. The
arm G2 contains a preperiodic branch point with arms leading to x1, to c31 and to c47.

15.3. Proposition (Construction of Hubbard Tree is Valid)
Algorithm 15.2 is correct. In particular, if (T, f) is a Hubbard Tree with internal
address 1→ S1 → . . .→ Sk, then the above induction step yields a valid Hubbard tree
with internal address 1→ S1 → . . .→ Sk+1.

Proof. By induction, we can assume that the constructed tree (T, f) is a valid
Hubbard tree with internal address 1→ S1 → . . .→ Sk. Section 3 gives the existence
of trees (T̃ , f̃) with internal address 1→ S1 → . . .→ Sk+1. We need to show that the

constructed tree is equivalent to (T̃ , f̃).
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Figure 15.4. The Hubbard tree for 1 → 2 → 4 → 5 → 7 → 13 with
orb(p0) drawn in and preperiodic branch point w ∈ [p0, c7]; it maps to
p1 in three iterates.

The forcing relations discussed in Section 6 show that (T, f) appears as a subtree

of (T̃ , f̃); more precisely, T is homeomorphic to the connected hull [p0, . . . , pSk−1] of
the characteristic periodic point with itinerary ν1 . . . νSk . The action f corresponds to

the restriction of f̃ to Z := {z ∈ T̃ ; f̃ ◦i ∈ [p0, . . . , pSk−1] for all i ≥ 0}. In other words,

there is a map π : Z → T preserving itineraries ( mod ?) such that π ◦ f̃ = f ◦ π.
The algorithm supplies the points {p0, . . . , pSk−1} = π−1(orbT (c0)) with the right

number of arms in T̃ (cf. Proposition 5.19). If the admissibility condition fails, then
the algorithm backtracks the evil orbit orb(x1) in T̃ and supplies the right number of
arms (cf. Proposition 5.13). Also it backtracks the critical orbit in T̃ . In particular,

the various claims in the algorithm follow from the properties of (T̃ , f̃). To be precise:
Claim of Step 3b: p1 ∈ (x1, c0). This is contained in Lemma 15.1.
Claim of Step 5(1): p1 ∈ (c1, c0). This is contained in e.g. Proposition 6.8, part

(4).
Claim of Step 5(2): p1 ∈ (cd+1, c0). This follows from Lemma 4.6.
Claim of Step 5(3): x1 ∈ (cd+1, c0). This follows from Lemma 4.6 as well.

Since the construction gives a tree which is the connected hull of {c1, . . . , cSk+1
}, this

tree must indeed be T̃ . 2
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16. Combinatorial Biaccessibility

In this section and the next, we will discuss biaccessible points in Julia sets and in the
Mandelbrot set: these are landing points of at least two external rays. We will estimate the
Hausdorff dimension of the set of biaccessible points from above and below.

In this section, we work with a combinatorial definition of biaccessibility for itineraries and

kneading sequences and estimate their Hausdorff dimension. We also estimate the Hausdorff

dimension for the set of corresponding external angles. In Section 17, we will transfer these

results to the complex planes containing Julia sets and the Mandelbrot set, using the usual

topological definition of biaccessibility.

Definition of Combinatorial Biaccessibility. Let Σ = {0, 1}N∗ be equipped with
the metric d(x, x̃) =

∑
i≥1 |xi − x̃i|2−i. The binary expansion map b : Σ → S1 = R/Z

is given by b(x1x2 . . .) =
∑
xi2
−i; it is injective except for the countably many dyadic

rationals. We denote the Hausdorff dimension of subsets of Σ and of S1 by dimH ,
defining the Hausdorff dimension of Y ⊂ Σ by dimH(Y ) := dimH(b(Y )).

For any kneading sequence ν ∈ Σ? and x ∈ Σ, let

ρν,x(n) := min{k > n : xk 6= νk−n} . (9)

Obviously, ρν,ν = ρ for ρ as in Definition 2.2.

16.1. Definition (Biaccessible Itinerary)
An itinerary x ∈ Σ will be called biaccessible with respect to ν if there is a k ≥ 2 such
that

orbρν,x(1) ∩ orbρν,x(k) = ∅ . (10)

A kneading sequence ν will be called biaccessible if there is a k ≥ 2 such that

orbρ(1) ∩ orbρ(k) = ∅ . (11)

In particular, periodic and ?-periodic kneading sequences are biaccessible.

Remark. The lemma below explains why this rather abstract definition indeed cor-
responds to the geometric concept of biaccessibility. To prove it, we need an abstract
model of the Julia set (see Section 21), rather than just the Hubbard tree, because c1

is always an end point of the Hubbard tree, but it can have two arms in the Julia set,
for example for ν = 1011 where orbρ(1) ∩ orbρ(3) = ∅.

16.2. Lemma (Correspondence of Biaccessibility in Julia sets)
Let J be an abstract Julia set with kneading sequence ν. A point y ∈ J separates J
if and only if the itinerary x of y is biaccessible with respect to ν. More precisely, the
number of arms (also called the valency, [Pen1]) of y is equal to the number of disjoint
ρν,x-orbits.

Proof. We defined closest precritical points to y analogous to Definition 5.5 as the
points ηk such that f ◦k(ηk) = c1, and there is no precritical point of lower Step on
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the arc [y, ηk]. Their uniqueness follows as in Lemma 5.6, and the Step of the next
precritical point to y on the arc [y, ηk] equals ρν,x(k).

Therefore every disjoint ρν,x-orbit belongs to a disjoint arc ending in y, and hence
y has at least as many arms in J as there are disjoint ρν,x-orbits. Conversely, if G ⊂ J
is an arm of y, then it contains a precritical point. The precritical point η ∈ G of
lowest Step must be ηk for some k ≥ 1, and have its ρν,x-orbit disjoint from ρν,x-orbits
stemming from other arms of y. This proves the lemma. 2

The following observation follows directly from ρν,ν = ρ and from Proposition 7.9
on endpoints of the parameter tree.

16.3. Lemma (Correspondence of Biaccessibility in the Parameter Tree)
A kneading sequence is biaccessible if and only if it is not an endpoint of the parameter
tree. 2

Remark. For locally connected Julia sets and for points in the Mandelbrot set near
which M is locally connected (see the discussion in Section 17), geometric biaccessibil-
ity is equivalent to the symbolic version of Definition 16.1.

Abstract Lemmas on Hausdorff Dimension. The motor for the dimension esti-
mates will be the following elementary lemma.

16.4. Lemma (Hausdorff Dimension of Sample Sets)
Given v, u ≥ 1 with v < u, construct nested compact sets As ⊂ [0, 1] (for s ≥ 0) as
follows:

• A0 = [0, 1];
• Divide each of the (u− v)s intervals of As of length u−s into u equal intervals

and remove the closures of v of them, chosen arbitrarily. Then As+1 is the
union of the closures of the remaining (u − v)s+1 intervals of length u−(s+1)

each.

Let A = ∩sAs. Then dimH(A) =
log(u− v)

log u
.

Proof. Since As consists of (u− v)s intervals of length u−s, the box dimension of A

is log(u−v)
log u

. Therefore dimH(A) ≤ log(u−v)
log u

.

For the lower bound we use the measure µs on As which assigns mass (u− v)−s to
each of the (u−v)s intervals of As and refine it to a measure µ on A using Kolmogorov’s
extension theorem, [Ch]. For a point x ∈ A, let Is(x) be the interval of As containing
x. If B(x; ε) is the ε-ball around x, then the interval Is(x) is contained in the ball
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B(x; ε) for u−s < ε ≤ u−s+1. Therefore

lim inf
ε→0

log µ(B(x; ε))

log 2ε
≥ lim inf

s→∞

log µ(Is(x))

log 2u−s+1

= lim inf
s→∞

−s log(u− v)

(1− s) log u+ log 2

=
log(u− v)

log u
.

This is true for every x ∈ A. The theory of pointwise dimensions (see e.g. [Pes,
Theorem 3.1]) gives dimH(A) ≥ dimH(µ) ≥ log u−v

log u
. (This result can also be derived

from the Frostman lemma.) 2

16.5. Corollary (Hausdorff Dimension of Concatenations of Blocks)
For distinct blocks X1, . . . , Xk of 0s and 1s, none of which is a suffix of another, let

B =
{
x = W1W2 . . . : Wi ∈ {X1, . . . , Xk}

}
⊂ Σ.

Then dimH(B) ≥ log k

m log 2
for m = maxi |Xi|.

Proof. Extend each block Xi to a block X̃i of length m. Since no Xi is a suffix
of any other Xj, the resulting blocks X̃i are distinct. Then Lemma 16.4 immediately

gives that dimH(B̃) = log k/(m log 2) for B̃ = {x = W1W2 . . . : Wi ∈ {X̃1, . . . , X̃k}}.
Indeed, B̃ can be transformed into a subset of S1 using the binary extension map
b : Σ→ S1 that makes the shift on Σ commute with the angle doubling map on S1.

Now define h : Σ→ Σ by replacing every ‘non-overlapping’ occurrence of a block Xi

in x = x1x2x3 · · · ∈ Σ by the block X̃i and leaving the other coordinates xj untouched.
More precisely, we work from left to right: whenever we encounter a block Xj not
overlapping with an occurrence of some block Xi replaced previously, then we replace
it with X̃i. Then h maps B bijectively and continuously onto B̃, and the Lipschitz
constant of h is at most 1. Therefore dimH(B) ≥ dimH(B̃) = log k/(m log 2), as
required. 2

16.6. Lemma (No Increase of Hausdorff Dimension)
Let p be a polynomial and K > 0 and suppose that I : S1 → Σ is a map such that the
preimage I−1(C) of any n-cylinder consists of at most p(n) intervals of length ≤ K2−n.
Then dimH(I−1(Q)) ≤ dimH(Q) for any set Q ⊂ Σ.

Proof. Let ε > 0 be arbitrary and take any δ′′ > δ′ > δ = dimH(Q). Let N be
so large that Kδ′′p(n) < 2n(δ′′−δ′) for all n ≥ N . Let {Ui} be a cover of Q such that
diam(Ui) < 2−N for each i and

∑
i diam(Ui)

δ′ < ε. (Note that in the standard metric
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on Σ1, diam(U) = 2−|U | where |U | denotes the length of the cylinder.) Without loss
of generality we can assume that each Ui is a cylinder set of length ni ≥ N . Then
{I−1(Ui)}i defines a countable cover {Vj}j of I−1Q, each interval Vj has length at most
K2−ni , and∑

i

diam(Vi)
δ′′ =

∑
n≥N

∑
|Ui|=n

∑
Vi⊂I−1(Ui)

diam(Vi)
δ′′ ≤

∑
n≥N

∑
|Ui|=n

Kδ′′p(n)2−nδ
′′

≤
∑
n≥N

∑
|Ui|=n

Kδ′′p(n)2−n(δ′′−δ′)diam(Ui)
δ′

≤
∑
n≥N

∑
|Ui|=n

diam(Ui)
δ′ < ε.

Since this is true for every ε > 0 and δ′ > δ, it follows that dimH(I−1(Q)) ≤ δ. 2

Dimension Estimates for Symbol Spaces. We will produce two pairs of bounds
for the Hausdorff dimension of biaccessible itineraries (and kneading sequences). The
first pair is very accurate if ν starts as 10000..., so for parameters near the tip of
the left antenna of the Mandelbrot set, where the Hausdorff dimension of biaccessible
angles is close to 1, as we will prove eventually in Corollary 17.11. At the tip of the
antenna (i.e., z 7→ z2 − 2) the Julia set is the interval [−2, 2] and all external angles
are biaccessible, except for ϑ = 0 and ϑ = 1/2.

The second pair works accurately for kneading sequences that are renormalizable
several time, and each next renormalization emerges from a direct bifurcation from the
previous hyperbolic component. It can be shown that the biaccessible angles of cer-
tain infinitely renormalizable Julia sets (such as the Feigenbaum map) have Hausdorff
dimension 0.

(1) For a kneading sequence ν = 1 · · · ∈ Σ1, but ν 6= 10, let

N := 1 + min{i > 1 : νi = 1}, (12)

so that N − 1 is the position of the second 1 in ν. Set

L1(N) :=

{
log(2bN/2c−1−1)

log 2bN/2c−1 if N ≥ 6,
1
2

if N = 5,
and U1(N) :=

log(2N − 1)

log 2N
.

(2) For a kneading sequence ν ∈ Σ1 with internal address 1→ S1 → S2 → . . . , let

κ := sup{k ≥ 1 : Sj is a multiple of Sj−1 for all 1 ≤ j ≤ k}. (13)

This is well-defined except for certain infinitely renormalizable kneading sequences,
and for such we can take κ to be an arbitrarily large integer. Define

L2(κ) :=
1

Sκ+1

and U2(κ) :=

√
7

2Sκ
for Sκ ≥ 4. (14)
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We will argue that the Hausdorff dimensions of sets of biaccessible itineraries,
kneading sequences and eventually biaccessible external angles fall in the interval

I(N, κ) :=
[

max{L1(N), L2(κ)} , min{U1(N), U2(κ)}
]
. (15)

16.7. Lemma (Dimension of Biaccessible Itineraries and Kneadings)
(1) For any kneading sequence ν, the Hausdorff dimension of biaccessible itineraries
with respect to ν is in I(N(ν), κ(ν)).
(2) The Hausdorff dimension of biaccessible kneading sequences ν is in I(N(ν), κ(ν)).

Proof. Let

Σk =
{
x ∈ Σ : k = min{i : orbρν,x(1) ∩ orbρν,x(i) = ∅}

}
.

Upper bound U1(N): We will prove that dimH(Σk) ≤ log(2N−1)
log 2N

with N = N(ν) for

any ν by showing that every n-cylinder contains at least one n + N -cylinder which is
disjoint from Σk.

Choose an integer n > k. We write cylinder sets as Ce1...en = {x ∈ Σ : x1 . . . xn =
e1 . . . en}. By increasing n if necessary, we can assume that Ce1...en is such that ρ(i) ≤
n for i = 1, 2, . . . , N . Take a := max{i ≤ n : i ∈ orbρν,x(1)} and b := max{i ≤
n : i ∈ orbρν,x(k)}. Then clearly ρν,x(a) > n and ρν,x(b) > n, and also a, b ≥ N + 1.
Suppose that Ce1...en ∩ Σk 6= ∅; then a 6= b. Let wa = νn−a+1 . . . νn−a+N and wb =
νn−b+1 . . . νn−b+N . Recall that ρν,x(a) finds the first difference between xa+1xa+2 . . .
and ν1ν2 . . . . Then ρν,x(a) ≤ n+N unless x starts with e1 . . . enwa, and similarly for b.

Our task is the following: given ν, n and e1 . . . en, we want to find at least one
n+N -cylinder in Ce1...en which is disjoint from Σk.

Let 0 . . . 0 and 01 . . . 0 be the two words of length N which contain no 1, except
possibly at the second position. The following three cases are easy to check:

• Case 1: wa 6= 0 . . . 0 and wb 6= 0 . . . 0. We claim that the cylinder Ce1...en0...0 is
disjoint from Σk. Indeed, for x ∈ Ce1...en0...0, we get ρν,x(a) ∈ {n+1, . . . , n+N},
and after that orbρν,x(a) increases in steps of 1 until it reaches n + N , hence
n + N ∈ orbρν,x(a) ⊂ orbρν,x(1). Similarly, n + N ∈ orbρν,x(k), which proves
the claim.
• Case 2: wa = 0 . . . 0 and wb = 1 . . . . This time, we claim that Ce1...en01...0 is

disjoint from Σk: for x ∈ Ce1...en01...0, we have ρν,x(a) = n + 2, and after that,
orbρν,x(a) increases in steps of 1 up to n+N , so again n+N ∈ orbρν,x(a). This
time, ρν,x(b) = n+1 and ρν,x(ρν,x(b)) = n+N , so n+N ∈ orbρν,x(1)∩orbρν,x(k).
• Case 3: wa = 0 . . . 0 and wb = 0 . . . . Now the entire N + 1-cylinder Ce1...en1

is disjoint from Σk: for x ∈ Ce1...en1, we have ρ(a) = n+ 1 = ρ(b).

By interchanging the roles of wa and wb one can see that these three cases cover all
possibilities. Hence each n-cylinder contains at least one n+N -cylinder that is disjoint
from Σk. By Lemma 16.4, Σk is contained in a Cantor set of Hausdorff dimension
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log(2N−1)
log 2N

. The upper bound in the lemma follows by taking the union over all Σk.

Upper bound U2(κ): By the definition of κ, we can write Sj = pjSj−1 for 1 ≤ j ≤ κ,
and

ν1 . . . νSj = (ν1 . . . νSj−1
)pj−1(ν1 . . . ν

′
Sj−1

),

where ν ′i = 1 if νi = 0 and vice versa. Every n < Sκ can be written uniquely as

n =
κ−1∑
j=0

ajSj, 0 ≤ aj < pj.

If ρ(n) < Sκ+1, then

ρ(n) = n+ aSh for h ≥ min{j : aj 6= 0} and some 0 < a ≤ ph. (16)

Now if x ∈ Σk, then we can enumerate the entries of these orbits as 1 = u0 < u1 < . . .
and k = v0 < v1 < . . . . If us < vt < us+1 and vt − us < Sκ, then we can define
h = h(s, t) as in (16) and conclude that ρ(vt) ≥ us + Sκ+1, or ρν,x(vt) = vt + atSh for
some at ≥ 1. This means in the former case, that xus+1 . . . xus+Sκ+1−1 = ν1 . . . νSκ+1−1,
and reduces the number of possible biaccessible us+Sκ+1−1-subcylinders of the cylinder
starting with x1 . . . xus to only one. In the latter case, we have two cases:

• vt+1 > us+1, but then ρν,x(us) − us = min{Sj : Sj + us > vt}. In this case
h(t, s+ 1) = h(s, t), and we say that the roles of u and v switch.
• vt+1 < us+1, and then ρν,x(vt) − us = min{Sj : Sj + us > vt}. In this case
h(s, t+ 1) > h(s, t).

The analogous reasoning applies when vs < ut < vs+1. This means that the function
h(s, t) is non-decreasing, until it reaches the value κ. It can stay constant for a while,
but there is only one way of doing this, namely by switching the role of u and v at
every step. Again, this reduces the number of possible subcylinders of the cylinder
starting with x1 . . . xus to only one.

To illustrate this, let us give an example:

ν = 101011101010100 . . .

with κ = 3 and internal address 1→ 2→ 6→ 12→ 15→ . . . , and

x = 1︸︷︷︸
u0=1

v0,h=0︷︸︸︷
1

v1,h=1︷︸︸︷
0 1 0 1

v2,h=2︷︸︸︷
1 1 0 1 0 1 1︸︷︷︸

u1,h=2

1 0 1 0 1

v3,h=2︷︸︸︷
1 . . .

We see that h(u, v) stays constant if the roles of u and v switch, and increases otherwise.
Furthermore, two consecutive switches of roles takes Sh(u,v)+1 digits.

We can code the consecutive switches and non-switches by integers lj ≥ 0: each lj
indicates the the number of switches where h(u, v) remains constant at j. If lj = 0,
it means that h(u, v) increases from below j to above j. There are r ≥ 1 occurrences
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of h(u, v) ≥ κ before h(u, v) drops below κ again. Let mj ≥ Sκ, 1 ≤ j ≤ r, denote
the distances between the remaining switches before h(u, v) drops below κ again. (If
r = 0, then there are no such mjs.) Thus the whole loop from h(u, v) = 0 to the last
h(u, v) ≥ κ takes at least

∑κ
j=0 ljSj +

∑r
j=1 mj digits. Let us introduce a second index

i to indicate the loopnumber. Then the pair (li,j)
n, κ
i=1,j=0, (mi,j)

n, ri
i=1,j=1 encodes a cylinder

set in Σk going through n loops, and the cylinder length is at least k+
∑n,κ

i=1,j=0 li,jSj +∑n,ri
i=1,j=1 li,jmi,j.

Let δ = U2(κ). The cylinders encoded by (li,j)
n, κ
i=1,j=0, (mi,j)

n, ri
i=1,j=1 form a cover of

Σk with diameter < 2−(k+nSκ). Its δ-dimensional Hausdorff measure is bounded by∑
2−δ

∑n,κ
i=1,j=0 li,jSj ·

∑
2−δ

∑n,∞,ri
i=1,ri=1,j=1mi,j ,

where the first main sum runs over all combinations of n(κ + 1) positive integers li,j
and the second main sum over all combinations of integers mi,j ≥ Sκ. Using geometric
series, the estimate

∑∞
l=0 2−lα ≤ 1 +

∫∞
0

2−xαdx = 1 + 1
α log 2

, and changing the order of

product and sum, we can rewrite this quantity as

n∏
i=1

 κ∏
j=0

∞∑
li,j=0

2−δli,jSj ·
∞∑
ri=1

ri∏
j=1

∞∑
mi,j=Sκ

2−δmi,j


≤

n∏
i=1

(
κ∏
j=0

(
1 +

1

δSj log 2

)
·
∞∑
ri=1

(
2−δSκ

1− 2−δ

)ri )
. (17)

Next observe that Sj ≥ 2j for 0 ≤ j ≤ κ, and hence
∏κ

j=0(1 + 1
δSj log 2

) ≤ 22/δ. The

second factor is another geometric series, and can be computed as

∞∑
ri=1

(
2−δSκ

1− 2−δ

)ri
= 2−δSκ−log(1−2−δ−2−δSκ )/ log 2.

For Sκ ≥ 4 we can estimate − log(1− 2−δ − 2−δSκ)/ log 2 ≤ 3/(2δ)− ε for some ε > 0.

Therefore expression (17) is bounded by 2n(7/(2δ)−δSκ−ε), and since δ =
√

7/2Sκ, the
exponent n(7/(2δ)− Sκδ − ε) = −εn < 0. Therefore the limit as n → ∞ is zero, and
dimH(Σ) ≤ U2(κ).

Remark. The estimate U2(κ) is not sharp. For example, if Sκ = 4, we can take and

δ = 0.91 < 0.935 · · · =
√

7/8, and still find that 2/δ+δSκ−log(1−2−δ−2−δSκ)/ log 2 ≈
−0.0748 is negative. If Sκ = 3, then ν = 110 . . . and U1(N) = U1(3) = log 7/ log 8 ≈
0.936 gives a better upper bound. On the other hand, given any ε > 0, we can take
δ =

√
(2 + ε)/Sκ as upper bound provided Sκ is sufficiently large.

Lower bound L1(N): First assume that N = N(ν) ≥ 6. Observe that the head of
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ν = 100 . . . 01 . . . contains N − 3 zeroes in a row. Take M = bN/2c − 1, and let

B = {x = W1W2 · · · ∈ Σ : Wi is an M -block 6= 00 . . . 0}.
In particular, no x ∈ B containsN−3 consecutive symbols 0. It follows that ρν,x(i)−i <
N for all i ≥ 1, and that every x ∈ B allows at least two disjoint ρν,x-orbits. The
Hausdorff dimension of B is log(2bN/2c−1− 1)/ log 2bN/2c−1 according to Corollary 16.5.

Now let us treat the case N = 5, so ν = 1001 . . . . In this case, we take

B = {x = W1W2 · · · ∈ Σ : Wi = 11 of 10 for i ≥ 2}.
The every x ∈ B allows two disjoint ρν,x-orbits. The Hausdorff dimension of B is
log(2n)/ log 4n = 1

2
according to Corollary 16.5. This proves lower bound L1(N).

Remark. The same idea gives lower bounds for other heads of kneading sequences:

ν = 10110 · · · : Taking Wi = 1111 or 1010 gives dimH(B) =
1

4
.

ν = 10100 · · · : Taking Wi = 11111 or 11010 gives dimH(B) =
1

5
.

ν = 101111 · · · : Taking Wi = 101110 or 111010 gives dimH(B) =
1

6
.

Incidentally, for the latter two examples, these bounds equal the respective bounds
L2(κ) below. The bound 1

4
for ν = 10110 . . . is better than L2(κ) = 1

5
.

Lower bound L2(κ): Write ν = ν1ν2 . . . and define V = ν1ν2 . . . νSκ−1ν
′
Sκ

and V̂ =
ν1ν2 . . . νSκ+1−1ν

′
Sκ+1

, where ν ′i = 1 if νi = 0 and vice versa. Let

B = {x = W1W2 · · · ∈ Σ : Wi = V or V̂ }.
Corollary 16.5 gives that dimH(B) ≥ 1

Sκ+1
as claimed, so it suffices to show that

each x ∈ B allows two disjoint ρν,x-orbits. By construction of x ∈ B, ρ◦iν,x(Sκ) =
|W1W2 . . .Wi| for all i ≥ 0. We will show that ρν,x-orbit of Sκ−1 is disjoint from this.
Note that V is the concatenation of Sκ/Sκ−1 blocks ν1ν2 . . . νSk−1

. Therefore, for any
integer a, 1 ≤ a < Sκ/Sκ−1,

ρν,V V (aSκ−1) = ρν,V V̂ (aSκ−1) = Sκ + aSκ−1

where we extended the definition of ρν,x to the case where x is a finite block. Also

ρν,V̂ V (aSκ−1) = ρν,V̂ V̂ (aSκ−1) = Sκ.

Let n = Sκ+1−Sκ, so we can write V̂ = VW for W = ν1 . . . νn. Furthermore W = V iX
for some i ≥ 0 and m := |X| < Sκ. We can use (16) to compute ρXV,XV (m) = aSh for
some h ≤ κ− 1 and 1 ≤ a ≤ Sh+1/Sh. If h = κ− 1, then X is the concatenation of at
most pκ − 1 blocks ν1 . . . νSκ−1 and in this case we readily find

ρν,V̂ V (Sκ) = ρν,V̂ V̂ (Sκ) = Sκ + aSκ−1.
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If h ≤ κ− 2, then

ρν,V̂ V (Sκ) = ρν,V̂ V̂ (Sκ) = Sκ + ρ(n) = Sκ+1 + (ρ(n)− n) = Sκ+1 + (ρ(m)−m).

Since ρ(m) ≤ Sκ−1, Lemma 20.1 gives that Sκ−1 ∈ orbρ(ρ(m) − m), and therefore
Sκ+1 + Sκ−1 belongs to the ρν,V̂ V -orbit (and to the ρν,V̂ V -orbit) of Sκ.

Combining these facts, we derive that the ρν,x-orbit of Sκ−1 contains |W1 . . .Wi|+
aiSκ−1 for each i and some 1 ≤ ai < pκ, and hence is disjoint from the ρν,x-orbit of Sκ.

A remark to make: The proof for both lower bounds involves the construction of sets
of itineraries x such that {σ◦n(x) : n ∈ N} is bounded away from ν, and hence these
sequences belong to points in a hyperbolic set X in the Julia set. It can be expected
that (similar to repelling periodic points) all dynamical rays with impressions intersecting
X actually land at points in X. Dierk, do you think this is indeed proved
somewhere??? Therefore the lower bounds are valid irrespective of whether the Julia
set is locally connected or not.

Estimates for kneading sequences: Now for the second statement, we repeat the
proof with

ΣN,κ,k =

{
ν ∈ Σ :

N(ν) = N, κ(ν) = κ,

k = min{i : orbρ(1) ∩ orbρ(i) = ∅}

}
. (18)

For ν ∈ ΣN,κ,k, instead of comparing subwords of ν with a fixed itinerary, we compare
subwords of ν with ν itself. In the above arguments, only a comparison with ν1 . . . νM
is of importance for M = max{N,Sκ+1}.

If M = N , then the sequences ν ∈ ΣN,κ,k are contained in two N -cylinders defined
by 10 . . . 010 and 10 . . . 011. We can extend ν arbitrarily with blocks as in the proof
of L1(N) without violating Admissibility Condition 5.1. Thus for each cylinder the
estimate by L1(N) and U1(N) goes through without further changes.

If M = Sκ+1 and then the initial block ν1 . . . νSk+1
satisfies the admissibility con-

dition. We can extend ν arbitrarily with blocks ν1 . . . ν
′
Sκ

and ν1 . . . ν
′
Sκ+1

without
compromising admissibility. Therefore the lower bound L2(κ) follows. The proof for
the upper bound U2(κ) goes through as well. 2

Dimension Estimates for External Angles. Next we investigate how these di-
mension estimates transfer to subsets of the circle with the angle doubling map g(x) =
2x mod 1 acting on it.

16.8. Lemma (Itinerary Map does not Increase Hausdorff Dimension)
For every external angle ϑ ∈ S1, the map Iϑ : S1 → Σ from Definition 2.1 assigning to
external angles their itineraries with respect to ϑ has the property that dimH(I−1

ϑ (Q)) ≤
dimH(Q) for any set Q ⊂ Σ.
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Proof. The arcs A0 = [ϑ
2
, ϑ+1

2
) and A1 = [ϑ+1

2
, ϑ

2
) form the partition of S1 which

yields itineraries, except that A0 and A1 are half-open, while they are supposed to be
open in Definition 2.1. Only countably many angles ϕ ∈ S1 are affected by the differing
definition, so this has no effect on the Hausdorff dimension. The two sets A0 and A1

correspond to the two 1-cylinders C0 and C1 of Σ.
Let g : S1 → S1 be the angle doubling map. We claim that for every n-cylinder C

(with n ≥ 1), I−1
ϑ (C) consists of at most n half-open intervals of total length 2−n, and

g◦(n−1) : I−1
ϑ (C) is a bijection onto either A0 or A1. Indeed, for n = 1 this is clear. For

the inductive step observe that for every half-open interval A, ϑ /∈ A ⊂ S1, containing
its lower boundary point, g−1(A) ∩ Ai is exactly one half-open interval with half the
length. If ϑ ∈ A, then g−1(A)∩Ai is the union of two half-open intervals which together
have half the length of A. Now the result follows from Lemma 16.6. 2

Remark. Note that the above proof shows that for any ϑ, Iϑ transforms Lebesgue
measure into the (1

2
, 1

2
)-product measure µ on Σ.

16.9. Theorem (Hausdorff Dimension of Biaccessible Angles)
For every external angle ϑ ∈ S1 \ {1/2}, the set of external angles ϕ ∈ S1 with bi-
accessible itineraries has Hausdorff dimension in I(N, κ), where N = N(ν(ϑ)) and
κ = κ(ν(ϑ)) are as in (12) and (13) respectively. In particular, the set of external
angles with biaccessible itineraries has Hausdorff dimension less than 1. 2

Proof. The upper bound of the dimension follows immediately from Lemmas 16.7
and 16.8.

For the lower bound, observe that if C is any cylinder set of length n, then by the
proof of Lemma 16.8, I−1

ϑ (C) consists of at most n intervals of total length 2−n. At
least one of these intervals must have length 2−n/n.

Let B ⊂ Σ be the subset of biaccessible itineraries indicated in the proof of Lem-
ma 16.7 and let δ be its Hausdorff dimension. Take 0 < δ′′ < δ′ < δ and K > 0
arbitrary. Then there exists n so large that

• ( 1
n
2−n)δ

′′
> 2−δ

′n;

•
∑

i(2
−|Ci|)δ

′
> 2K, where {Ci} is a cover of B with cylinder sets each of length

n. Since the upper box dimension of B equals its Hausdorff dimension (see
Lemma 16.4), it is no restriction to give all cylinders in this cover the same
length.

For each Ci, let Ai be an interval in I−1
ϑ (Ci) of length ≥ 2−n/n. Let {Vj}j be any open

cover of I−1
ϑ (B) with intervals of length < 2−n/(2n). For each i, let Vi = {Vj : Vj ⊂ Ai},
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so
∑

Vj∈Vi |Vj|
δ′′ > 1

2
|Ai|δ

′′
. Therefore∑

j

|Vj|δ
′′ ≥

∑
i

∑
Vj∈Vi

|Vj|δ
′′ ≥ 1

2

∑
i

|Ai|δ
′′

≥ 1

2

∑
i

(
1

|Ci|
2−|Ci|)δ

′′ ≥ 1

2

∑
i

2−δ
′|Ci| > K.

Since K and δ′′ < δ′ < δ are arbitrary, we get dimH(I−1
ϑ (B)) ≥ δ. This proves the

lemma. 2

The results given so far are on a purely combinatorial level. In Section 17 we
translate them into statements about topological biaccessibility of points in Julia sets;
see especially Corollary 17.8: for every c ∈M \ {−2}, the set of biaccessible points has
harmonic measure zero and the corresponding angles have Hausdorff dimension less
than 1.

We now turn to the discussion of (combinatorial) parameter space.

16.10. Lemma (Hausdorff Dim. of Admissible Biaccessible Kneadings)
The set of admissible biaccessible kneading sequences ν with N(ν) = N and κ(ν) = κ
has Hausdorff dimension in I(N, κ).

Proof. Lemma 16.7 estimates the Hausdorff dimension of the set of biaccessible
kneading sequences ν with N(ν) = N , admissible or not. This gives the upper bound
in the claim.

For the lower bound, take any n-cylinder C intersecting ΣN,κ,k (as in (18)) with
n > ρ(k) > max{N,Sκ+1}. Assume also that no ν ∈ C gives rise to an evil m-periodic
point for any m ≤ k.

We claim that all kneading sequences of C ∩ ΣN,κ,k are admissible. Indeed, if this
is false and C ∩ ΣN,κ,k contains a kneading sequence ν ′ which fails the admissibility
condition for some period m, then we may replace ν ′ by a ?-periodic kneading sequence
ν which differs from ν after position ρ(m), and ν fails the admissibility condition as
well. Let T be the Hubbard tree for ν and let z be the characteristic periodic point
of the evil orbit of period m. Clearly, m > k. By the admissibility condition and
Lemma 20.1, ρ(m) ∈ orbρ(1), hence ρ(m) /∈ orbρ(k). (Indeed, if ρ(m) = qm + r for
r ∈ {1, . . . ,m} then the admissibility condition implies that m ∈ orbρ(r) \ orbρ(1).
Then Lemma 20.1 implies that orbρ(r) and orbρ(1) intersect at the latest at ρ(m).) By
Lemma 5.9, there is a closest precritical point ζρ(m) ∈ [z, c1].

If there is a closest precritical point ζk ∈ T , then ζρ(m) /∈ [ζk, c1] by Lemma 5.7
because ρ(m) /∈ orbρ(k), hence ζk is in the same global arm of z as c1; call this arm
G. By Lemma 4.6, f ◦i(G) 63 0 for 0 ≤ i < m, which is a contradiction to the fact that
k < m. If there is no ζk in T , one can extend the Hubbard tree as in Theorem 20.12 as
to contain ζk. Then ζk must be in an extension of G, but Lemma 4.6 shows that for the
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local arm in G, its first m forward images are local arms pointing away from the critical
point, and this is again a contradiction. Therefore, all of C ∩ΣN,κ,k is admissible. This
shows that the Hausdorff dimension of the admissible kneading sequences is at least
dimH(ΣN,κ,k ∩ C) ∈ I(N, κ). 2

Let I : S1 → Σ be the map that assigns the kneading sequence to an external
parameter angle. In order to investigate how Hausdorff dimension behaves under I−1,
we need the following result.

16.11. Lemma (Upper Bound for Number of Embeddings)
A Hubbard tree in which the critical orbit is periodic with period n has less than n
embeddings into the plane which respect the circular order of the local arms at every
branch point.

Proof. Let 1 → S1 → . . . → Sk be the internal address of the tree with Sk = n.
We may suppose that all branch points are tame (or there would be no embedding
at all, see Proposition 4.10). By Proposition 5.19, the periods of all branch points
appear on the internal address. Let p0, . . . , pk−1 be the tame characteristic periodic
points of periods S0, . . . , Sk−1 (compare Proposition 6.8). Let their numbers of arms
be q0, . . . , qk−1; according to Proposition 5.19 they satisfy

Si+1 =

{
(qi − 1)Si + ri if Si ∈ orbρ(ri)
(qi − 2)Si + ri if Si /∈ orbρ(ri)

where the ri are uniquely defined by the condition 1 ≤ ri ≤ Si.
Since only branch points contribute to the number of embeddings, let us write

i(0), i(1), . . . , i(l) for the indices of pi that are branch points. Obviously k > i(l).

By Corollary 4.11, there are precisely a :=
∏l

s=0 ϕ(qi(s)) dynamically compatible
embeddings of the Hubbard tree into the plane. Here ϕ(q) is the Euler function counting
the integers 1 ≤ i < q that are coprime to q; it gives the number of transitive order
preserving permutations on q points on the circle. Clearly a ≤ (qi(0)−1)

∏l
s=1(qi(s)−1).

We will show that a < Sk.
The arc [pi(t), c1] contains the closest precritical point ζSi(t)+1

, and f ◦(qi(t)−2)Si(t) maps

it to a precritical point ζt of Step(ζt) = Si(t)+1 − (qi(t) − 2)Si(t). Lemma 4.6 implies

that the arm G1 of pi(t) containing c1 homeomorphically survives f ◦(qi(t)−2)Si(t) and ζt
lies in a different arm of pi(t) as the critical point. However, ζt and ζSi(t−1)+1

lie in the

same global arm of pi(t−1), which homeomorphically survives another (qi(t−1)−2)Si(t−1)

iterates. Inductively repeating this argument gives

Si(t)+1 > (qi(t) − 2)Si(t) + (qi(t−1) − 2)Si(t−1) + · · ·+ (qi(0) − 2)Si(0).

Choose u1 = Si(1), u0 = u1/(qi(0) − 2) and

ut+1 := (qi(t) − 2)ut + (qi(t−1) − 2)ut−1 + · · ·+ (qi(0) − 2)u0 .
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Then by induction ut+1 = (qi(t) − 1)ut, and therefore

ut+1 = (qi(t) − 1)ut = u1

t∏
s=1

(qi(s) − 1).

Hence Sk ≥ Si(l)+1 > ul+1 = Si(1)

∏l
s=1(qi(s)−1). It is easily checked that Si(1) ≥ qi(0)−1.

Therefore Sk > a as asserted. 2

16.12. Lemma (Kneading Map does not Increase Hausdorff Dimension)
Let I : S1 → Σ be the map assigning the kneading sequence to an external angle in
parameter space. Then dimH(I−1(Q)) ≤ dimH(Q) for any set Q ⊂ Σ.

Proof. We claim that for every n-cylinder C ⊂ Σ, I−1(C) consists of at most 1
2
n(n+1)

arcs of length ≤ 1
2n−1

. Indeed, if α is such that the n-th entry In(α) = ?, say that

2n−1α = m+α
2

for some m ≥ 1, then for α′ = α + 1
2n−1

we have 2n−1α′ = m+1+α′

2
.

Therefore every component of I−1(C) must be contained in an arc (α, α + 1
2n−1

) for

some α ∈ S1. This shows that I−1 is Lipschitz on each branch.
Let T be a Hubbard tree with a periodic critical point; say the period is m = Sk.

The external angles of T depend on the specific embedding of T in the plane; by
Lemma 16.11 there are at most m different embeddings. Each embedding of T comes
with two external angles, see Algorithm 13.6. (Note that only trees with strictly
preperiodic critical points can have more than two external angles.) So there are
at most 2m external angles realizing the kneading sequence ν1 . . . νm−1?. Each arc in
I−1(ν1 . . . νn) has two boundary points having kneading sequences ν1 . . . νm−1? for some
m ≤ n. Therefore the total number of arcs is bounded by

∑n
m=1m = 1

2
n(n+ 1). This

proves the claim. Now use Lemma 16.6 to finish the proof. 2

16.13. Theorem (Hausdorff Dimension of Biaccessible Parameter Angles)
The set of external angles α for which I(α) is a biaccessible kneading sequence with
N(I(α)) = N and κ(I(α)) = κ has Hausdorff dimension in I(N, κ).

In particular, this implies that the harmonic measure of the biaccessible points in
the boundary of the Mandelbrot set is 0: in Corollary 17.11, we transfer our dimension
estimates to the set of external angles of biaccessible parameters in the Mandelbrot
set; this gives a much stronger result than just zero harmonic measure.

Proof. The upper bound follows immediately from Lemmas 16.7 and 16.12. For the
lower bound, take k > M := max{N,Sκ+1 and a cylinder set C = Ce1...en intersecting
ΣN,κ,k. Let us pick C so that n ∈ orbρ(i) for each i ≤M , and that no ν ∈ C gives rise
to an evil period m with ρ(m) ≤ n.

Using Lemma 16.7, we are able to find a subset B ⊂ C of Hausdorff dimension
δ = max{L1(N), L2(κ)}. Moreover, for all ν ∈ B, ri := ρ(i) − i ≤ M for all i ≥ 1.



Section 16, Version of July 27, 2011 219

Therefore n ∈ orbρ(ri), so it follows (see Propositions 5.13 and 5.19) that every ν ∈ C
corresponds to an admissible Hubbard tree T , whose periodic branch points have period
≤ M . By Corollary 4.11, T has a bounded number of embeddings, hence the map
I : I−1(B)→ B is bounded-to-one.

A second property of B ⊂ C is that if C̃ = Ce1...em is any subcylinder intersecting B,
then all four subcylinders Ce1...emem+1em+2 satisfy Admissibility Condition 5.1. Therefore

the single arc A := I−1(C̃) is divided into four pieces by points of the form k
2m+1−1

or
k

2m+2−1
(where k is an integer), and |A| > 1

2n+2−1
. It follows that the map I restricted to

I−1(B) is Lipschitz on each of its branches. Therefore, the set of biaccessible external
angles contains a Cantor set I−1(B) of Hausdorff dimension δ. 2

We call a kneading sequence n-renormalizable if the internal address associated to it
contains the entry n, and every further entry is divisible by n. Such internal addresses
correspond to n-renormalizable dynamics; compare Section 10. We call an external an-
gle n-renormalizable if its kneading sequence is n-renormalizable. A kneading sequence
or an external angle is infinitely renormalizable if it is n-renormalizable for infinitely
many values of n. The following lemma is well known, see [Ma].

16.14. Lemma (Hausdorff Dimension of Renormalizable Angles)
For any n ≥ 2, the Hausdorff dimension of the n-renormalizable kneading sequences
and of n-renormalizable external angles is at most 1/n. The Hausdorff dimension of
infinitely renormalizable kneading sequences and external angles is 0.

Proof. If a kneading sequence is n-renormalizable, then the associated internal ad-
dress contains after entry n only entries which are divisible by n. If the kneading
sequence is divided in blocks of length n, then any block can differ from the first one
only at the last position. Since ν1 is always 1 and the n-th entry must be such that n
occurs in the internal address, there are at most 2n−2 · 2k−1 possibilities for the first kn
entries of n-renormalizable kneading sequences. Therefore the set of n-renormalizable
kneading sequences has Hausdorff dimension at most (log 2)/ log(2n) = 1/n. Infinitely
renormalizable kneading sequences are n-renormalizable for arbitrarily large n, and
their Hausdorff dimension is 0.

The statement about external angles follows from Lemma 16.12. 2
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17. Topological Biaccessibility

In this section, we will transfer the combinatorial results about (combinatorial) biacces-

sibility from Section 16 to actual results about the topology of Mandelbrot and Julia sets,

providing estimates about the Hausdorff dimension of external angles of rays landing at biac-

cessible points. This involves discussions about whether certain external rays land and if so,

if they land together whenever the combinatorics predicts that. The only possible obstacle

is lack of local connectivity.

We will distinguish “combinatorial biaccessibility” of an itinerary or kneading se-
quence (in the sense of Definition 16.1) from “topological biaccessibility” of a point in
the sense below.

17.1. Definition (Accessible and Biaccessible)
Let K ⊂ C be compact, connected and full (i.e. C \K is connected). A point z ∈ K is
accessible if there is a curve γ : [0, 1]→ C such that γ(0) = z, γ(1) =∞ and γ(t) /∈ K
for t > 0. The point z is (topologically) biaccessible if there are two such curves which
are not homotopic within C \K.

Remark. A point z ∈ ∂K is accessible if and only if an external ray lands at z, and
it is biaccessible if and only if at least two external rays land at z. This is Lindelöf’s
Theorem; see Ahlfors [Ah1, Theorem 3.5].

The impression of an external ray R(ϑ) is the set

I(ϑ) := K ∩
⋂
ε>0

⋃
ϑ′∈[ϑ−ε,ϑ+ε]

R(ϑ′) . (19)

Equivalently, the impression of the ray R(ϑ) is the set of all possible subsequential
limits lim Φ−1(rne

2πiϑn) with rn ↘ 1 and ϑn → ϑ.
If the impression of a ray consists of a single point, then this implies that the ray

lands. If a ray lands, then its impression contains the landing point (but may be larger).
Compare the discussion in [Pom, Pet, Sch1, Sch3].

17.2. Proposition (Non-Biaccessibility in Julia Sets)
Suppose that for a quadratic polynomial pc, the dynamic ray Rc(ϑ) lands at the critical
value. Let ν be the kneading sequence of ϑ. For an angle ϕ ∈ S1 not on the backward
orbit of ϑ, let x be the itinerary of ϕ with respect to ϑ. If x is not combinatorially
biaccessible with respect to ν, then for every ϕ′ ∈ S1 with ϕ′ 6= ϕ the impressions I(ϕ)
and I(ϕ′) are disjoint.
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17.3. Lemma (Dynamic Rays Accumulates at Critical Value)
Every parameter c ∈ M \ {−2} without irrationally indifferent periodic orbit has an
angle ϑ ∈ S1 \ {1/2} which satisfies at least one of the following:

• the dynamic ray Rc(ϑ) lands at the critical value;
• the critical value is in the impression of the dynamic ray Rc(ϑ), and there is

a sequence of dynamic ray pairs Pc(ϑn, ϑ
′
n) with ϑn → ϑ, ϑ′n → ϑ;

• the critical value is in the impression of the dynamic ray Rc(ϑ), and there are

an angle ϑ′ and two sequences of dynamic ray pairs Pc(ϑn, ϑ
′
n), Pc(ϑ̃n, ϑ̃

′
n) with

ϑn < ϑ < ϑ̃n < ϑ̃′n < ϑ′ < ϑ′n for all n, so that ϑn, ϑ̃n → ϑ and ϑ′n, ϑ̃
′
n → ϑ′ (in

other words, both sequences of approximating ray pairs converge to a possible
ray pair Pc(ϑ, ϑ

′), even though we do not claim that this latter ray pair exists);
• there is an attracting or parabolic periodic orbit and Rc(ϑ) lands at the bound-

ary of the Fatou component containing the critical value.

Proof. If pc has an attracting or parabolic orbit, then infinitely many dynamic rays
land at the Fatou component containing the critical value, and the result is clear. Since
the case of irrationally indifferent orbits is excluded, we may assume that all periodic
orbits are repelling and there are no bounded Fatou components. In particular, the
critical value is in the Julia set.

Let the internal address of c be 1 → S1 → S2 . . . . Then there is a sequence
of parameter rays P (ϑk, ϑ

′
k) with period Sk separating c from P (ϑk−1, ϑ

′
k−1). If we

suppose ϑk < ϑ′k), then there are limiting angles α, α′ with ϑk ↗ α and ϑ′k ↘ α′. By
the Correspondence Theorem 9.5, there are dynamic ray pairs Pc(ϑk, ϑ

′
k) separating

the critical value from P
To prove that ϑ 6= 1/2 unless c = −2, suppose first that both fixed points of pc are

repelling. One of them, called β, is the landing point of Rc(0); the other one is called α
and is the landing point of at q ≥ 2 periodic dynamic rays; the characteristic ray pair
separates the critical value from β. Then q preperiodic rays land at −α, and continued
pull-backs of these rays along the branch of p−1

c fixing β shows that the impression of
Rc(0) is the point β alone. Similarly, the impression of Rc(1/2) is the point −β alone.
Therefore, the only case when the critical value is in the impression Rc(1/2) is when
c = −β, so pc(c) is the β fixed point, and this happens only for c = −2. In the case
that pc has an attracting or parabolic fixed point, the Fatou component containing the
critical value is the landing point of infinitely many dynamic rays. The last case is that
pc has an irrationally indifferent fixed point, and in this case we have nothing to prove.

2

17.4. Lemma (No Wandering Triangles in Julia Sets)
Suppose a polynomial pc has three sequences of ray pairs Pc(αn, α

′
n), Pc(βn, β

′
n), Pc(γn, γ

′
n)

so that each Pc(αn, α
′
n) separates Pc(αn−1, α

′
n−1) from Pc(αn+1, α

′
n+1) and from all

Pc(βk, β
′
k), Pc(γk, γ

′
k), and similarly for the other two sequences. ????
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17.5. Proposition (Non-Biaccessibility in Julia Sets)
Consider a quadratic polynomial pc without irrationally indifferent periodic orbits so
that c ∈ M. Let ϑ be an angle as in Lemma 17.3. Let ν be the kneading sequence
associated to ϑ (as in Definition 2.1). For an angle ϕ ∈ S1 not on the backward orbit of
ϑ, let x be the itinerary of ϕ with respect to ϑ. If x is not combinatorially biaccessible
with respect to ν, then for every ϕ′ ∈ S1 with ϕ′ 6= ϕ the impressions I(ϕ) and I(ϕ′)
are disjoint.

Proof. Suppose first that the dynamic ray Rc(ϑ) lands at the critical value. Then
p−1
c (Rc(ϑ)) consists of two rays which land at the critical point 0. Let P1 be the ray

pair formed by these two rays and their landing point; it cuts C into two parts. Then
p−1
c (P1) consists of two ray pairs, p−1

c (p−1
c (P1)) consists of four ray pairs etc., and all

these ray pairs are disjoint. Let Pn be the union of all the 2n−1 ray pairs consisting
of rays which map to Rc(ϑ) after exactly n steps. For a ray pair P ⊂ Pn, we set
Step(P ) := n.

Two external angles ϕ, ϕ′ have the same initial N entries in their itineraries with
respect to ν if and only if the rays Rc(ϕ) and Rc(ϕ

′) are in the same connected com-

ponent of C \
⋃N
n=1Pn; if they are not, then the position of the first difference in their

itineraries equals the lowest n such that a ray pair in Pn separates Rc(ϕ) and Rc(ϕ
′).

We construct a sequence of ray pairs Pk as follows: as above P1 is the ray pair
landing at the critical point, and Pk+1 is the unique ray pair which separates Pk from
Rc(ϕ) such that Step(Pk+1) is least possible. We claim that the sequence Step(Pk)
equals orbρν,x(1). Indeed, both sequences start with Step(P1) = 1. For the inductive
step, note that Step(Pk+1) records the least number of iterations when Pk and Rc(ϕ)
are mapped to different sides of P1; by construction, this happens after as many it-
erations as the itineraries of Rc(ϕ) (which is x) and Pk coincide, and this is exactly
ρν,x(Step(Pk)).

For k ≥ 1, let wk ∈ (0, 1/2] be the difference of external angles of the two rays in
Pk; then clearly wk > wk+1 > 0 for all k, so wk ↘ w∞ for some w∞ ≥ 0.

If w∞ = 0, then every ray Rc(ϕ
′) with ϕ′ 6= 0 is separated from Rc(ϕ) by some ray

pair Pk, and the impressions of Rc(ϕ) and Rc(ϕ
′) can intersect at most at the landing

point of Pk; however, this landing point is separated from the impression of Rc(ϕ) by
Pk+1, so Rc(ϕ) and Rc(ϕ

′) have disjoint impressions and the claim follows.
Therefore, all we need to show is that w∞ > 0 implies that x is combinatorially

biaccessible with respect to ν. Indeed, if w∞ > 0, then there is a lowest integer s > 0 for
which there is a ray pair P ′1 ⊂ Ps that is separated from 0 by all Pk. As above, construct
a sequence (P ′k) of ray pairs such that P ′k+1 is the unique ray pair which separates P ′k
from Rc(ϕ) such that Step(P ′k+1) is least possible. All P ′k are on the same side of all
Pl as Rc(ϕ). If s := Step(P ′1), then as above the sequence Step(P ′k) equals orbρν,x(s),
and indeed orbρν,x(s) ∩ orbρν,x(1) = ∅, so x is combinatorially biaccessible as claimed.
This finishes the proof if Rc(ϑ) lands at c.
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Now suppose the critical value is in the accumulation set of Rc(ϑ) and there is a
sequence of periodic dynamic ray pairs Pc(ϑn, ϑ

′
n) so that ϑn → ϑ and ϑ′n → ϑ. Then

all Pc(ϑn, ϑ
′
n) separate the critical value from the origin and there are two sequences of

periodic or preperiodic ray pairs Pc(ϑn/2, (ϑ
′
n + 1)/2) and Pc((ϑn + 1)/2, ϑ′n/2) whose

angles converge to ϑ/2 and (ϑ+1)/2. If any two angles ϕ, ϕ′ not on the backwards orbit
of ϑ have different initial entries in their itineraries with respect to ν, then they are in
different components of S1 \{ϑ/2, (ϑ+1)/2}, and then Rc(ϕ) and Rc(ϕ

′) are separated
by a dynamic ray pair Pc(ϑn/2, (ϑ

′
n + 1)/2) (as well as by Pc((ϑn + 1)/2, ϑ′n/2)), for

sufficiently large n. It follows again that Rc(ϕ) and Rc(ϕ
′) have disjoint impressions.

If the itineraries of ϕ and ϕ′ differ in the n-th position, then an inductive argument
shows that Rc(ϕ) and Rc(ϕ

′) are separated by a ray pair on the backwards orbit of
Pc(ϑn/2, (ϑ

′
n + 1)/2) (and of Pc((ϑn + 1)/2, ϑ′n/2)) for some n, and the same conclusion

holds.
The next case we consider is that the critical value is in the accumulation set

of Rc(ϑ) and there are two sequences of periodic dynamic ray pairs Pc(ϑn, ϑ
′
n) and

Pc(ϑ̃n, ϑ̃
′
n) with ϑn < ϑ < ϑ̃n < ϑ̃′n < ϑ′ < ϑ′n for all n so that ϑn, ϑ̃n → ϑ and ϑ′n, ϑ̃

′
n →

ϑ. Then there are four sequences of periodic or preperiodic ray pairs Pc(ϑn/2, (ϑ
′
n +

1)/2), Pc((ϑn+1)/2, ϑ′n/2), Pc(ϑ̃n/2, (ϑ̃
′
n+1)/2) and Pc((ϑ̃n+1)/2, ϑ̃′n/2) whose angles

converge to ϑ/2 and (ϑ + 1)/2. As before, we claim that if ϕ and ϕ′ have different
itineraries with respect to ϑ, then Rc(ϕ) and Rc(ϕ

′) have disjoint impressions. If the
itineraries of two angles ϕ, ϕ′ differ in the first position, then the rays Rc(ϕ) and Rc(ϕ

′)
are separated by infinitely many ray pairs from our sequences, and the impressions are
again disjoint. If the itineraries differ at a later position, then the inductive argument
proceeds as above.

If the dynamic ray Rc(ϑ) lands at the boundary of the Fatou component containing
the critical value, then the two dynamic rays Rc(ϑ/2) and Rc((ϑ + 1)/2 land at the
Fatou component containing the critical point, and the landing points of both rays can
be connected within this Fatou component by a curve; the reasoning is similar as in
the first case.

This finishes the proof of the proposition. 2

We now prove that biaccessible points of all quadratic Julia sets Jc with c 6= −2 have
harmonic measure zero. In fact, we prove the stronger statement that the associated
external angles have Hausdorff dimension less than 1.

For the statement of the following theorem, recall from Section 11 that every c ∈M

has an associated internal address, which is a (finite or infinite) strictly increasing
sequence of integers starting with 1. The parameter c = −2 is a Misiurewicz-Thurston
parameter (the leftmost parameter of M ∩ R) with the unique internal address 1 →
2 → 3 → 4 . . . that contains all positive integers, and every c 6= −2 has a different
internal address.
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17.6. Theorem (Biaccessibility in Julia Sets and Hausdorff Dimension)
For every c ∈M \ {−2}, there is a set Ac ⊂ S1 of Hausdorff dimension less than 1 so
that for all ϕ ∈ S1 \Ac, the impression of Rc(ϕ) is disjoint from any other impression
Rc(ϕ

′) with ϕ′ 6= ϕ. In particular, biaccessible points must have external angles in Ac.
More precisely, let N be such that N − 1 is the first positive integer that does not

occur in the internal address of c ∈M\{−2}. Then the external angles of rays landing
at biaccessible points of Jc have Hausdorff dimension in I(N), where I(N) is defined
as in Equation (15).

Proof. Suppose that pc does not have an irrationally indifferent periodic orbit. By
Proposition 17.5, there is an angle ϑ ∈ S1 \{1/2} so that every angle ϕ ∈ S1 not on the
backward orbit of ϑ has the property that the impression I(ϕ) is disjoint from I(ϕ′)
for all ϕ′ 6= ϕ provided that the itinerary of ϕ with respect to ϑ is not combinatorially
biaccessible. If there is a ray pair Pc(ϕ, ϕ

′), then either ϕ must be one of the countably
many angles on the backwards orbit of ϑ, or ϕ is combinatorially biaccessible. By
Theorem 16.9, the set of angles ϕ which are combinatorially biaccessible has Hausdorff
dimension in I(N). This proves the upper bound on the Hausdorff dimension if there
is no irrationally indifferent orbit.

If pc has an irrationally indifferent orbit, then there is a hyperbolic component W
with c ∈ ∂M. Let c0 be the center of W . Then the claim is true (with the same value
of N) for pc0 . If there is a ray pair Pc(ϕ, ϕ;′ ) for pc but not for c0, then the landing
point of Pc(ϕ, ϕ

′) cannot be repelling (or the ray pair would persist in a parameter
space neighborhood of c by Lemma 9.4, hence it would have to exist throughout W ),
so the landing point must be on the irrationally indifferent orbit. This orbit must be
in the Julia sets, so it must be a Cremer point. It follows from a result of Bullett and
Sentenac [BuS] see Theorem 26.2 that the Hausdorff dimension of rays landing at a
Cremer point (if any) is zero.

For the lower bound, suppose first that the critical value of pc is the landing point of
a dynamic ray Rc(ϑ) with ϑ 6= 1/2. Then by Theorem 16.9 there is a set of angles Ac of
Hausdorff dimension in I(N) so that all angles in Ac are combinatorially biaccessible.
We will show that enough of these angles have the property that the corresponding rays
are part of ray pairs. We continue notation and ideas from the proof of Proposition 17.5.
If an angle ϕ ∈ S1 not on the backwards orbit of ϑ is biaccessible, then there are two
sequences of ray pairs Pk and P ′k with angles on the backwards orbit of ϑ and with
the following properties: every Pk separates Pk−1 from all P ′l and from Rc(ϕ), and
every P ′l separates P ′l−1 from all Pk and from Rc(ϕ). It follows that the angles in Pk
and in P ′l converge: if Pk = Pc(αk, α

′
k) and P ′l = (βl, β

′
l), then αk → α, α′k → α′ and

α < βl < β′l < α′, hence α′ 6= α. Similarly βl → β, β′l → β′ 6= β.
We claim that α = β and α′ = β′.
again that pc does not have an irrationally indifferent periodic orbit and let ϑ ∈

S1 \ {1/2} be an angle as in Proposition 17.5.
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There is a converse at least for locally connected Julia sets.

17.7. Corollary (Biaccessibility in Locally Connected Julia Sets)
Suppose the Julia set of a quadratic polynomial pc is locally connected and the dynamic
ray Rc(ϑ) lands at the critical value. Let ν be the kneading sequence of ϑ, let ϕ ∈ S1 be
an angle not on the backwards orbit of ϑ, and let x be the itinerary of ϕ with respect
to ϑ. Then x is combinatorially biaccessible with respect to ν if and only if the landing
point of Rc(ϕ) is topologically biaccessible.

Sketch. If the critical value is in the Julia set, then local connectivity implies that
there is a dynamic ray that lands at the critical value. If not, the critical point is
within a bounded Fatou component, and this component must be part of an attracting
or parabolic cycle and there are dynamic rays landing on the boundary of every Fatou
component.

If the landing point of Rc(ϕ) is biaccessible, then biaccessibility of x is the content
of Proposition 17.2. For the converse, the reasoning is similar as for Lemma 17.10
below and is thus omitted. Write more about this? 2

For polynomials fc, one of several equivalent ways of defining harmonic measure
(Brolin measure) ωc of a subset B ⊂ Jc is by putting [Pom]

ωc(B) = Leb{ϑ ∈ S1 : Rc(ϑ) lands at a point in B} .
Here Leb is Lebesgue measure on the circle. It follows from results of Fatou [Hm] or
Riesz & Riesz [RR] (compare also [Mi1]) that the rays at Lebesgue-a.e. angles land.

17.8. Corollary (Biaccessibility and Dimension for Julia Sets)
For every c ∈M\{−2} so that the Julia set Jc is locally connected and the critical value
is the landing point of a dynamic ray, the biaccessible points in Jc have zero harmonic
measure and the associated external angles have Hausdorff dimension less than 1.

More precisely, the internal address of c within M has an associated kneading se-
quence ν 6= 10, and there is an N ≥ 3 so that the second 1 in ν occurs at position
N − 1. Then the external angles of rays landing at biaccessible points have Hausdorff
dimension in I(N), where I(N) is defined as in Equation (15).

Proof. The internal address of c is defined in Algorithm 11.3 using periodic parameter
ray pairs. If this address is 1→ 2→ 3→ 4→ . . . , then no periodic parameter ray pair
separates c from the landing point c′ of the parameter ray R(1/2) (this is the leftmost
“antenna tip” of M at c′ = −2). But c′ is a Misiurewicz-Thurston parameter, so by
Theorem 9.21 we must have c′ = c.

In all other cases, the kneading sequence associated to the internal address of c has
at least two entries 1, and N is well-defined. The dynamic ray at angle 1/2 always lands
at the preimage of a fixed point, and for c 6= −2 this is not the critical value. Therefore,
for c 6= −2, the critical value is the landing point of a ray other than Rc(1/2).
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By Theorem 16.9, the set of external angles with biaccessible itineraries has Haus-
dorff dimension in I(N). By Corollary 17.7, an external angle ϕ has biaccessible
itinerary if and only if the landing point of Rc(ϕ) is topologically biaccessible, and this
proves the claim. 2

Related results have been proven by Smirnov, by Zakeri and by Zdunik [Sm1,
Za3, Zd]. Zakeri shows that the set of biaccessible points has zero Brolin measure for
polynomial Julia sets of arbitrary degrees provided they are locally connected. Smirnov
and Zdunik independently prove the same statement with the assumption of “locally
conneced” weakened to “connected”. It is plausible that the Hausdorff dimension of
external angles with biaccessible landing points is always positive for all parameters
in M in the wake of a primitive component of period greater than 1 (for parameters
in hyperbolic components that arise by a finite chain of bifurcations from the main
cardioid, there are only countably many ray pairs altogether).

What about loc conn Siegel disks in the previous corollary? We are also losing some
cases in the step from 15.2 to 15.4. And we should include a proof of 15.3.

Now we turn to parameter space and relate combinatorial biaccessibility to topo-
logical biaccessibility for boundary points of the Mandelbrot set. As for Julia sets, we
will use ray pairs, i.e., pairs of external rays which land at the same point. For Julia
sets, such ray pairs were easy to obtain by pulling back a single ray pair which lands
at the critical point. For the Mandelbrot set, we use the Douady-Hubbard theory of
parameter rays at periodic external angles: all such parameter rays for any given period
land in pairs (Theorem 9.1). If the kneading sequences of two angles ϑ and ϑ′ (not
necessarily periodic) first differ at their n-th entries and neither ϑ nor ϑ′ have period
n, then the parameter rays R(ϑ) and R(ϑ′) are separated by a parameter ray pair of
period n (Lemma 11.2). In particular, if R(ϑ) and R(ϑ′) land at a common point, then
ϑ and ϑ′ have identical kneading sequences.

17.9. Proposition (Non-Biaccessibility in the Mandelbrot Set)
Suppose an angle ϑ ∈ S1 is such that its associated kneading sequence ν is an endpoint of
the parameter tree (in the sense of Definition 7.8). Then for every ϑ′ ∈ S1 with ϑ′ 6= ϑ,
the impressions of the parameter rays R(ϑ) and R(ϑ′) are disjoint; in particular, these
two parameter rays do not land at the same point. It follows that no point in the
impression of R(ϑ) is biaccessible.

Proof. Only non-periodic kneading sequences can be endpoints of the parameter
tree, so the internal address of ν is infinite, say 1→ S1 → . . .→ Sk → . . . . For s ≥ 1,
let again νs be the ?-periodic kneading sequences of period s which coincide with ν for
s − 1 entries. By Corollary 7.7, νs < ν if and only if s occurs on the internal address
of ν. Note that ν is admissible, hence all νs < ν are admissible too (Lemma 7.3).

In Algorithm 11.3, the internal address of R(ϑ) within the Mandelbrot set is re-
cursively defined as the sequence of periods Sk such that there is a parameter ray pair
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P (ϑk, ϑ
′
k) of period Sk which separates R(ϑ) from P (ϑk−1, ϑ

′
k−1) so that Sk is least

possible; the recursion starts with the ray pair P (ϑ0, ϑ
′
0) with ϑ0 = 0, ϑ′0 = 1 and

S0 = 1.
By Proposition 11.6, the internal address of R(ϑ) thus defined coincides with the

internal address of the kneading sequence associated to ϑ. By construction, {ϑk, ϑ′k}
separates 0 from {ϑk+1, ϑ

′
k+1} (within S1), hence ϑk < ϑk+1 < ϑ < ϑk+1 < ϑ′k for all k.

It follows that the two sequences (ϑk) and (ϑ′k) converge monotonically to two limits
ϑ∞, ϑ

′
∞ with ϑ∞ ≤ ϑ ≤ ϑ′∞.

If ϑ∞ = ϑ = ϑ′∞, then we are through: given ϑ′ 6= ϑ, then there is an index k such
that ϑ′ /∈ (ϑk, ϑ

′
k), so the impressions of R(ϑ) and R(ϑ′) can intersect at most at the

landing point of P (ϑk, ϑ
′
k), but this landing point is separated from R(ϑ) by the ray

pair P (ϑk+1, ϑ
′
k+1). Therefore, the impressions of R(ϑ) and R(ϑ′) are disjoint.

It remains to show that ϑ∞ = ϑ′∞ whenever ν is an endpoint of the parameter
tree (that hypothesis has not been used yet). For every k, the kneading sequences
associated to ϑk and ϑ′k are both equal to νSk (Lemma 11.2).

If ϑ∞ < ϑ′∞, then there is a ray pair P (ϕ, ϕ′) at periodic angles ϕ < ϕ′ with
{ϕ, ϕ′} ⊂ (ϑ∞, ϑ

′
∞) ⊂ (ϑk, ϑ

′
k). Let νϕ be the common kneading sequence of ϕ and ϕ′.

By Proposition 11.6, νϕ > νSk for all k, hence νϕ > ν by Definition 7.1. But then ν
violates Definition 7.8 of endpoints of the parameter tree. 2

We have a converse if the ray R(ϑ) lands and the topology of the Mandelbrot set is
sufficiently well-behaved near the landing point. The concept of fibers from Section 9.4
helps to give a precise condition.

17.10. Lemma (Biaccessibility and Fiber in the Mandelbrot set)
For a parameter ray R(ϑ), suppose that the fiber containing its impression consists of a
single parameter c and suppose that c is not on the boundary of a hyperbolic component.
Then the kneading sequence of ϑ is combinatorially biaccessible if and only if c is the
landing point of at least two parameter rays (which is equivalent to biaccessibility of c).

Proof. Let ν be the kneading sequence of ϑ. If c is the landing point of two parameter
rays, then c is clearly topologically biaccessible. If c is topologically biaccessible, then
by Proposition 17.9, ν cannot be an endpoint of the parameter tree, so it must be
combinatorially biaccessible.

We only need to prove that if ν is combinatorially biaccessible, then c is the landing
point of at least two parameter rays. Let 1→ . . .→ Sk → . . . be the internal address
of c; it is infinite by Corollary 11.8. Let P (ϑk, ϑ

′
k) be the corresponding sequence

of parameter ray pairs of period Sk from Algorithm 11.3. Then for all k, we have
ϑk < ϑk+1 < ϑ′k+1 < ϑ′k as usual, so there are two monotone limits ϑk ↗ ϑ∞ and
ϑ′k ↘ ϑ′∞. We claim that ϑ′∞ 6= ϑ∞.

For every k, let νSk be the kneading sequence of ϑk and ϑ′k. Then every νSk coincides
with ν for Sk − 1 entries. Since ν is not an endpoint of the parameter tree, there is an
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admissible ?-periodic kneading sequence ν∗ > ν. By Definition 7.1, this means ν∗ > νSk

for all k. Among all periodic external angles with kneading sequence ν∗, there is one,
say ϕ, with ϑ−k < ϕ < ϑ+

k for every k (Proposition 11.21). Since the ray pairs P (ϑk, ϑ
′
k)

are nested, and ϕ is part of a ray pair (ϕ, ϕ′) (possibly after switching ϕ and ϕ′), it
follows that ϑ∞ ≤ ϕ < ϕ′ ≤ ϑ′∞ and hence ϑ′ 6= ϑ.

The construction of internal addresses assures that the parameter rays R(ϑ∞) or
R(ϑ′) cannot be separated from R(ϑ) by a periodic parameter ray pair (possibly, ϑ ∈
{ϑ∞, ϑ′∞}); therefore, all three rays have their impressions in the same fiber. Since this
fiber equals {c} by hypothesis, the parameter rays R(ϑ∞) and R(ϑ′∞) land at c. 2

17.11. Corollary (Biaccessibility and Dimension for the Mandelbrot Set)
The set of biaccessible parameters in the Mandelbrot set has harmonic measure zero.
Stronger yet, for every closed interval I ⊂ S1\{1/2}, the set of external angles ϑ ∈ I so
that the parameter ray R(ϑ) lands at a biaccessible parameter has Hausdorff dimension
strictly between 0 and 1; if I contains 1/2, then the corresponding set of angles has
Hausdorff dimension 1.

Proof. For N ≥ 3, let IN ⊂ S1 be the set of external angles whose kneading sequences
start with 1, followed by N − 3 entries 0 and then either 1 or ?. Then

⋃
N IN =

S1 \ {0, 1/2} (we remarked after Equation (15) that the only angle generating ν = 10

is ϑ = 1/2).
By Proposition 17.9, the parameter ray R(ϑ) can land at a biaccessible point c ∈M

only if the kneading sequence ν of ϑ is not an endpoint of the parameter tree. By
Lemma ??, this means that ν is not biaccessible. By Theorem 16.13, the set of such
angles in IN has Hausdorff dimension less than 1, and the upper bound less than 1 is
uniform for bounded N . Therefore, the Hausdorff dimension of the set of biaccessible
angles in

⋃
N≤M IN is still less than 1 for every finite M , and the Lebesgue measure of

these angles in
⋃
N≥3 IN is still zero. Now I3 = (0, 1/3] ∪ [2/3, 1) and the IN exhaust

S1\{0, 1/2} so that for every ε > 0, the set S1\({0} ∪ (1/2− ε, 1/2 + ε)) is contained in
finitely many IN . This shows that every compact interval I ⊂ S1\{1/2} is contained in
finitely many IN union {0}, so the angles ϑ ∈ I for which R(ϑ) lands at a biaccessible
parameter have Hausdorff dimension less than 1. This finishes the claim about the
upper bound.

For the lower bound, consider any particular set IN . Let JN ⊂ IN be the set of
angles with biaccessible kneading sequences. By Theorem 16.13, JN has Hausdorff
dimension in IN where the lower bound tends to 1 as N → ∞. The set of external
angles which generate periodic kneading sequences has Hausdorff dimension 0 by ei-
ther Bullett and Sentenac or Sec 14 . The set of external angles which are infinitely
renormalizable also has Hausdorff dimension 0 by Lemma 16.14. The remaining angles
in JN satisfy the same estimates on Hausdorff dimension, and the corresponding rays
land at parameters with trivial fibers by Corollary ??; by Corollary 11.8, the landing
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points are not on the boundaries of hyperbolic components. Therefore, Lemma 17.10
shows that the landing points are biaccessible. This takes care of the lower bound. 2

The previous discussion specificallly excluded periodic kneading sequences. Their
relation to biaccessibility is particularly simple.

17.12. Lemma (Biaccessibility for Periodic Sequences)
A parameter ray R(ϑ) lands on the boundary of a hyperbolic component if and only if
the kneading sequence of ϑ is periodic (with or without ?).

If the kneading sequence ν associated to ϑ is ?-periodic, then there is always another
angle ϑ′ so that R(ϑ) and R(ϑ′) form a parameter ray pair. If ν is periodic but not
?-periodic, then R(ϑ) lands, but is never part of a ray pair.

Proof. If a parameter ray lands on the boundary of a hyperbolic component, then its
kneading sequence is periodic by Corollary 11.8. Conversely, if ϑ generates a periodic
kneading sequence ν, then the internal address associated to ν is finite by Lemma 14.6,
and R(ϑ) lands on the boundary of a hyperbolic component again by Corollary 11.8.

If ν is ?-periodic, then we are simply saying that parameter rays at periodic angles
land in pairs; see Theorem 9.1. If ν is periodic but not ?-periodic, then the ray R(ϑ)
lands at the boundary of a hyperbolic component of M. It follows from Corollary 9.16
that no other ray lands together with R(ϑ). 2
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18. Measure of Admissible Kneading Sequences

The main result of this section is that the admissible kneading sequences in Σ1 form a

Cantor set for which the 1
2 -12 product measure is positive.

We defined admissibility of ?-periodic and preperiodic kneading sequences in terms
of non-existence of evil orbits in the associated Hubbard trees (Definition 4.9). In The-
orem 5.2 we showed that this is equivalent to the combinatorial admissibility condition
from Definition 5.1, and we used this condition to define admissibility for kneading se-
quences which are neither ?-periodic nor preperiodic. In Corollary 14.2 we showed that
this admissibility condition for a kneading sequence ν is equivalent to the existence of
an external angle which generates ν in the sense of Definition 2.1 (except for certain
periodic kneading sequences without ?). Recall that Σ1 is the space of all 0-1-sequences
starting with 1. We equip Σ1 with the product topology and the 1

2
-1

2
-product measure

µ, normalized so that µ(Σ1) = 1. The main result of this section is to show that
admissible kneading sequence have positive measure in Σ1.

18.1. Definition (n-Admissible Cylinders and Kneading Sequences)
Let E ⊂ Σ1 be the set of all sequences which satisfy the Admissibility Condition 5.1
for every m (the set of admissible kneading sequences). For n ≥ 1, a finite word
ν1 . . . νn with νi ∈ {0, 1} and ν1 = 1 is called an admissible n-word if there is a ν ∈ E
which begins with ν1 . . . νn. An admissible n-cylinder is the collection of sequences in Σ1

which share an given admissible n-word. Finally, let En be the union of the admissible
n-cylinders; this is the set of n-admissible kneading sequences.

The following facts will be used repeatedly: whether or not ν ∈ Σ1 fails the ad-
missibility condition for period m depends only on the first ρν(m) entries in ν, so if ν
fails the condition for period m, then an entire ρν(m)-cylinder is non-admissible. Thus
E = ∩n≥1En is a decreasing intersection of sets which are simultaneously open and
compact.

18.2. Lemma (Admissible Kneading Sequences Form Cantor Set)
The set E ⊂ Σ1 of admissible kneading sequences forms a Cantor set. Hence E is
measurable with respect to µ. Moreover, Σ1 \ E is dense in Σ1.

Proof. Any violation of the admissibility condition for period m discards an entire
cylinder subset of Σ1. The set of non-admissible kneading sequences is a union of such
cylinder sets and hence open. As a closed subset of the compact set Σ1, the set E is
compact. Clearly, E is totally disconnected because Σ1 ⊃ E is.

Now we show that E contains no isolated points. Fix an admissible ν ∈ E. If
the internal address of ν is infinite, then we approximate ν from below: ν > νk for
all ?-periodic sequences νk corresponding to finite truncations of the internal address
as in Definition 7.1. All νk and A(νk) are admissible by Lemmas 7.3 and 6.11, and
A(νk)→ ν in the topology of E as k →∞.
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The other case is that ν has finite internal address; suppose that n is the last
entry. Then we approximate ν from above. By Proposition 5.16, ν is periodic with
exact period n. Let ν∗ be the ?-periodic kneading sequence of period n with the same
internal address as ν; then ν = A(ν∗) and ν∗ is admissible by Lemma 6.11. Choose
an integer s ≥ 2 and let ν ′∗ be the ?-periodic kneading sequence of period sn which
coincides with ν for sn−1 entries. The internal address of ν ′∗ is that of ν∗, extended by
the last entry sn. Hence by Lemma 6.10, ν ′∗ is admissible. Then A(ν ′∗) is admissible,
again by Lemma 6.11. As s → ∞, the sequence A(ν ′∗) converges to ν, and ν is non-
isolated.

Finally, non-admissible sequences are dense in Σ1 because any finite word can be
continued into a non-admissible one (compare Example 5.3). 2

18.3. Corollary (Admissible Periodic Sequences)
Let Rk be the number of admissible periodic kneading sequences of period k in Σ1. Then

lim
k→∞

Rk

2k−1
= µ(E) .

Proof. We have µ(Ek) = Rk2
−(k−1) (Lemma 14.9) and µ(E) = limk µ(Ek). 2

18.4. Theorem (Admissible Kneading Sequences Have Positive Measure)
The set of admissible kneading sequences has positive measure: µ(E) > 0.

Proof. Fix n1 := 100, and define a sequence of integers {ni}i≥1 so that ni+1 is the
largest integer less than 3

2
ni for which ni+1 − ni is divisible by 2i (this gives 100, 148,

220, 324, 484,. . . ). Let mi := (ni+1 − ni)/2. Then one can check that (1.45)i < mi.
Clearly, ni+1 <

3
2
ni < ni + 3

4
ni−1 < ni + ni−1 and mi < ni/4.

Let F1 be some cylinder of length n1 containing an admissible sequence so that no
block of 40 consecutive 0′s appears among the first n1 entries. For i ≥ 1, define

Fi+1 :=


ν ∈ Fi : every k ≤ ni+mi has an s ∈ orbρν (k)∩orbρν (1)

with ni +mi ≤ s ≤ ni+1,
and the entries ni, ni + 1, . . . , ni+1 − 1 in ν do
not contain a block of bni/8c zeroes


For every ν ∈ Fi+1, every k ≤ ni + mi satisfies ρν(k) ≤ ni+1, so every Fi+1 is a
union of cylinder sets of length ni+1. Note that the second condition for Fi+1 implies
that the first i entries in any ν ∈ Fi do not contain a contiguous block of bi/4c
zeroes. Indeed, in order to find the longest block of consecutive zeroes among the first
i entries in ν, find the largest j such that 5

4
nj < i. There may be consecutive zeroes at

positions nj+1 − bnj/8c+ 1, . . . , nj+1 − 1, followed immediately by zeroes at nj+1, . . . ,
nj+1 +bnj+1/8c−2, yielding a total of bnj/8c+bnj+1/8c−2 ≤ b5nj/16c−1 ≤ bi/4c−1
consecutive zeroes (and they may not even be finished by position i).
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The two main steps in the proof are E ⊃ ∩iFi and µ(Fi+1) ≥ ciµ(Fi) for numbers
ci > 0 with

∏
i ci > 0, from which the conclusion will follow.

(1) By induction over i ≥ 1, we show that all ν ∈ ∩jFj are ni-admissible for all
i. They are n1-admissible by hypothesis. Suppose ν ∈ ∩jFj is ni-admissible but not
ni+1-admissible; then ν fails the Admissibility Condition 5.1 for some period m with
ni < ρ(m) ≤ ni+1. Let r ∈ {1, 2, . . . ,m} be congruent to ρ(m) modulo m.

If m ≤ ni−1 + mi−1, then by definition of Fi−1, there is an s ∈ orbρ(m) ∩ orbρ(1)
with s ≤ ni; since m /∈ orbρ(1), we have ρ(m) ≤ s ≤ ni, which is a contradiction.
Hence m > ni−1 +mi−1.

If r ≥ ni−1 +mi−1, then ρ(m) ≥ m+ r > 2ni−1 + 2mi−1 = ni +ni−1 > ni+1, again a
contradiction. Thus r < ni−1 +mi−1, and there is an s ∈ orbρ(r)∩orbρ(1) with s ≤ ni.
By the admissibility condition, m ∈ orbρ(r) and m /∈ orbρ(1), hence s > m. Thus
s ∈ orbρ(m) and ρ(m) ≤ s ≤ ni in contradiction to ni-admissibility of ν. This final
contradiction shows that E ⊃ ∩iFi as claimed.

(2) Given ν and an integer r, let Jν(r) = {k ≤ r : ρ(k) > r}. Obviously, Jν(r)
depends only on the first r entries of ν. We claim that for all i ≥ 1,

if ν ∈ Fi and ni +mi ≤ r < ni+1 then #Jν(r) < i/2 + 150 . (20)

Indeed, if k ∈ Jν(r), then νk+1 . . . νr = ν1 . . . νr−k. Suppose that r − k > n2. Then
there is a unique j ≥ 1 with nj+2 ≥ r− k > nj+1, and r < ni+1 implies j < i. Since all
k′ ∈ {1, 2, . . . , nj +mj} have ρ(k′) ≤ nj+1 < r− k by definition of Fi+1, it follows that
all k′ ∈ {k + 1, k + 2, . . . , k + nj +mj} have ρ(k′) ≤ k + nj+1 < r, hence k′ /∈ Jν(r).

We turn this into an inductive argument: write Jν(r) = {k1, k2, k3, . . . , kS} with
ks < ks+1 for all s. Let js be so that njs+2 ≥ r−ks > njs+1. Then k(s+1) > ks+njs+mjs ,
hence

nj(s+1)+1 < r − k(s+1) < r − ks − njs −mjs ≤ njs+2 − njs −mjs

= njs + 2mjs + 2mjs+1 − njs −mjs = mjs + 2mjs+1

< njs/4 + njs+1/2 < njs ,

so js+1 + 1 < js or js+1 ≤ js − 2. Therefore, after at most i/2 turns of this argument
we are left with elements ks ∈ Jν(r) with r − ks ≤ n2 or ks ≥ r − n2, and there are at
most n2 + 1 of those. It follows #Jν(r) ≤ i/2 + n2 + 1 < i/2 + 150 as claimed.

(3) Now we show that µ(Fi+1) is not too small compared to µ(Fi). Suppose i ≥ 40,
which implies blog2(i/2 + 150)c+ 1 ≤ bi/4c. Let C be any ni +mi-cylinder in Fi and
pick ν ∈ C. Divide the integer interval [ni + mi + 1, ni+1] into mi/i blocks B1, B2, . . .
of length i. By Equation (20), #Jν(ni + mi) < i/2 + 150, and there are 2i different
possibilities for B1 which extend C. We claim that at least 2i/2 of them are barriers
in the sense that for all k ∈ Jν(ni + mi), we have ni + mi + 2bi/4c ∈ orbρ(k). This is
useful in view of the first condition of the definition of Fi. To construct these barriers,
divide B1 into three subblocks: the first two of length bi/4c each, the last of length
i− 2bi/4c ≥ i/2.
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In the second subblock, every entry is 0. The third subblock is filled arbitrarily
with 0 and 1, for which there are at least 2i/2 possibilities. The first subblock needs
more care.

In the first subblock of B1, choose the first entry (at position ni +mi + 1) so that
ni + mi + 1 ∈ orbρ(k) for at least half of the elements k ∈ Jν(ni + mi); choose the
second entry so that ni + mi + 2 ∈ orbρ(k) for at least half of the remaining elements
in Jν(ni + mi), and so on. The first blog2(i/2 + 150)c + 1 entries in B1 suffice so
that for every k ∈ Jν(ni + mi), orbρ(k) contains at least one of these positions. Since
blog2(i/2 + 150)c+ 1 ≤ bi/4c, we have used only positions within the first subblock of
B1. Fill the remaining entries within the first subblock of B1 arbitrarily.

Since the first i entries of ν do not contain a contiguous block of bi/4c zeroes, it
follows that the orbit of every k ∈ Jν(ni + mi) visits an entry in the second subblock
of B1, and orbρ(k) contains the last position in the second subblock of B1, which is
ni +mi + 2bi/4c ∈ orbρ(k).

An analogous construction can be repeated for all the other blocks B2, B3,. . . .
Suppose that at least a single block Bj has a barrier as above. Then the construction
yields ni+1-cylinders which satisfy the first condition for Fi+1: for k ≤ ni + mi, we
either have ρ(k) ≤ ni + mi and we consider ρ(k) instead of k, or k ∈ Jν(ni + mi) and
orbν(k) visits ni+mi+2bi/4c+(j−1)i; therefore, ni+mi+2bi/4c+(j−1)i ∈ orbν(k)
for every k ≤ ni +mi + 2bi/4c, in particular for k = 1.

Given the ni +mi-cylinder C, there are 2i continuations into ni +mi + i-cylinders
in Fi+1, and at least 2i/2 of them have a barrier in B1 as constructed above, so at most
a relative proportion of 1 − 2−i/2 has no barrier within B1. The same bound for the
relative proportions holds for B2, B3, . . . . We find that the proportion of ni+1-cylinders
in C with no barrier at any block Bj for j = 1, . . . ,mi/i is (1 − 2−i/2)mi/i. We have
mi > (1.45)i > 2i/2, so mi2

−i/2 > αi with α > 1. Therefore

(1− 2−i/2)mi/i <
(
exp(−2−i/2)

)mi/i
= exp

(
−2−i/2

mi

i

)
< exp(−αi/i) < i/αi,

and the relative proportion of ni+1-cylinders in Fi+1 satisfying the first condition is at
least 1− i/αi.

We still have to take care of the second condition for Fi+1. Among the 22mi con-
tinuations from any ni-cylinder into an ni+1-cylinder, there are 22mi−bni/8c which have
bni/8c contiguous entries 0 beginning at any given position ni, ni+1, . . . , ni+1−bni/8c,
and less than 2mi2

2mi−bni/8c which have bni/8c contiguous 0’s between entries ni and
ni+1 − 1 (inclusively). The proportion of ni+1-cylinders in Fi which do not contain
bni/8c consecutive 0’s is thus at least 1− 2mi2

−bni/8c < 1− 1
2
ni2
−bni/8c.
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Therefore

µ(Fi+1) ≥
[
1−

(
1− 2−i/2

)mi/i] [
1− 1

2
ni2
−bni/8c

]
µ(Fi)

>

[
1− i

αi

] [
1− ni

2 · 2bni/8c
]
µ(Fi)

for i ≥ 40. Since
∑

i i/α
i <∞ and

∑
i ni/2

bni/8c <∞, it follows

µ(E) ≥ µ

(⋂
i

Fi

)
≥ µ(F40)

∏
i≥40

[
1− i

αi

] [
1− ni

2 · 2bni/8c
]
> 0

because F40 contains at least one cylinder set. This proves the theorem. 2

Numerical computations (shown in Table 1) suggest that about 80 percent of Σ1 is
admissible. Unfortunately, the convergence is too slow to make precise estimates for
µ(E).
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n non-admis. total fraction
6 1 32 0.031250
7 2 64 0.031250
8 7 128 0.054688
9 17 256 0.066406

10 44 512 0.085938
11 96 1 024 0.093750
12 221 2 048 0.107910
13 473 4 096 0.115479
14 1 028 8 192 0.125488
15 2 160 16 384 0.131836
16 4 544 32 768 0.138672
17 9 408 65 536 0.143555
18 19 488 131 072 0.148682
19 39 984 262 144 0.152527
20 81 963 524 288 0.156332
21 167 138 1 048 576 0.159395
22 340 393 2 097 152 0.162312
23 691 104 4 194 304 0.164772
24 1 401 610 8 388 608 0.167085
25 2 836 989 16 777 216 0.169098
26 5 737 023 33 554 432 0.170977
27 11 586 451 67 108 864 0.172652
28 23 382 085 134 217 728 0.174210
29 47 143 911 268 43 5456 0.175625
30 94 995 724 536 870 912 0.176943
31 191 292 387 1 073 741 824 0.178155
32 385 016 428 2 147 483 648 0.179287

Table 1. The number of non-admissible cylinders of length n, among
all the 2n−1 cylinders in Σ1 of this length, for n = 6, 7, . . . , 32. Examples:
for n = 6, the 25 total cylinders of length 6 are the binary words of
length 6 starting with 1, and the only non-admissible cylinder is 101100
(the only non-admissible ?-periodic sequence is 10110?, but the cylinder
101 101 is admissible). For n = 7, the two non-admissible cylinders are
the two continuations of 101100; for n = 8, we have four continuations,
as well as the new cylinders 1001 1000, 1101 1100 and 1011 1100: in the
sense of Proposition 6.7, these sequences branch off from the admissible
subtree at the kneading sequences 100?, 110? and 1011? of periods 4, 4
and 5(!).
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19. Typical Critical Points

A point z ∈ J is typical with respect to harmonic measure ω and a continuous function

ϕ, if it satisfies Birkhoff’s Ergodic Theorem. In this section we show that for almost every

external parameter angle, the critical value is typical. As a corollary we derive that for almost

every external parameter angle fc is a Collet-Eckmann map, and the critical value has the

typical Lyapunov exponent.

Given an ergodic measure preserving transformation (X, f,B, µ) a point x ∈ X is
called typical if it satisfies Birkhoff’s Ergodic Theorem, i.e., given an L1(µ) function ϕ,

lim
n→∞

1

n

n∑
i=0

ϕ(f ◦i(x)) =

∫
ϕdµ.

In this section we will discuss whether the critical value of fc is a typical point with
respect to harmonic measure ωc on the Julia set Jc. By definition, ωc is isomorphic to
Lebesgue measure on S1. However, for our discussion we need the connection between
ωc and 1

2
-1

2
-product measure µ on Σ. Denote the harmonic measure on ∂M by ω.

19.1. Theorem (Typical Critical Values)
Let ϕ : C → R be continuous. For ω-a.e. c ∈ ∂M, the critical value c is a ϕ-typical
point with respect to harmonic measure ωc on the Julia set Jc.

Proof. Let G = {c ∈ ∂M : Jc is locally connected}. This excludes some external
angles for which f has an indifferent periodic point, or is infinitely renormalizable
[HY, Ly2], but at most a set of Hausdorff dimension 0 (see Lemma 16.14). Thus
ω(G) = 1. For each c ∈ G, we can define ϕc : Σ → R by ϕc(x) = ϕ(z) where z
is the unique point in Jc such that the itinerary of z equals x. It is clear that ϕc is
continuous. Take any n-cylinder set C ⊂ Σ. The set of external angles with itinerary
in C is the union of at most n intervals of total length 2−n = µ(C), see the proof of
Lemma 16.8. Since also all external angles with the same itinerary land at the same
point,

∫
Σ
ϕc dµ =

∫
Jc
ϕdωc. Suppose by contradiction that the theorem is false. Then

there exists a compact set G0 ⊂ G with ω(G0) > 0 and ε0 > 0 such that for every
c ∈ G0

lim sup
n

∣∣∣∣∣ 1n
n−1∑
i=0

ϕc ◦ σ◦i(ν)−
∫

Σ

ϕc dµ

∣∣∣∣∣ > ε0. (21)

Let M = sup |ϕc| and find a partition P of Σ into cylinder sets C such that

|sup{ϕc(x) : x ∈ C} − inf{ϕc(x) : x ∈ C}| ≤ ε0

2

for all C ∈ P and c ∈ G0. Denote the visit frequency of ν to C by

Vn(C) =
1

n
#{0 ≤ i < n : σ◦i(ν) ∈ C} .
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Obviously, for each C and n ≥ 1, there exists

uC(n) ∈ [inf{ϕc(x) : x ∈ C}, sup{ϕc(x) : x ∈ C}]

such that 1
n

∑n−1
i=0 (1IC · ϕc) ◦ σ◦i(ν) = VC(n)uC(n). We claim that for at least one of

the cylinders C,

lim sup
n
|VC(n)− µ(C)| > ηC :=

ε0

2M
µ(C).

Indeed, if this were not the case, then for all sufficiently large n,∣∣∣∣∣ 1n
n−1∑
i=0

ϕc ◦ σ◦i(ν)−
∫

Σ

ϕc dµ

∣∣∣∣∣ =
∑
C∈P

∣∣∣∣∣ 1n
n−1∑
i=0

(1IC · ϕc) ◦ σ◦i(ν)−
∫
C

ϕc dµ

∣∣∣∣∣
≤

∑
C∈P

|VC(n)− µ(C)|uC(n) +
∑
C∈P

ε0

2
µ(C)

≤
∑
C∈P

ηCuC(n) +
ε0

2
≤ ε0.

This contradicts (21) proving the claim. So let us take an integer t so large that ηC >
1
t
.

Without loss of generality we can assume that

1

n
#
{

0 ≤ i < n : σ◦i(ν) ∈ C
}
< 2−|C| − 1

t
(22)

infinitely often. Here |C| denotes the length of the cylinder, so 2−|C| = µ(C). It is
more convenient to iterate σ◦|C|; (22) implies that there exists 0 ≤ k < |C| such that

1

n
#
{

0 ≤ i < n : σ◦i|C|+k(ν) ∈ C
}
< 2−|C| − 1

t

infinitely often. Write

UC,n,m,k = {ν ∈ Σ : #
{

0 ≤ i < n : σ◦i|C|+k(ν) ∈ C} = m
}
.

Then UC,n,m,k consists of
(
n
m

)
intervals of length (2−|C|)m(1−2−|C|)n−m. Writing ε = m

n
and using Stirling’s formula, we obtain(

n

m

)[
2−|C|m(1− 2−|C|)n−m

]r ≤ (2−|C|)εnr(1− 2−|C|)(1−ε)nr

εεn(1− ε)(1−ε)n .

This tends to 0 exponentially as n→∞ for all

r > r?(ε, |C|) :=
ε log ε+ (1− ε) log(1− ε)

ε log 2−|C| + (1− ε) log(1− 2−|C|)
.
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The function r? is increasing in ε for 0 ≤ ε < 2−|C| and therefore

n(2−|C|− 1
t
)∑

m=0

(
n

m

)[
2−|C|m(1− 2−|C|)n−m

]r
≤ m

(
n

m

) [
2−|C|m(1− 2−|C|)n−m

]r∣∣∣
m=[n(2−|C|− 1

t
)]

also tends to 0 exponentially for r > r?(2
−|C| − 1

t
, |C|). In particular

∑
n≥N

n(2−|C|− 1
t
)∑

m=0

(
n

m

)[
2−|C|m(1− 2−|C|)n−m

]r
tends to 0 as N →∞ for these values of r. Hence the set

UC,t,k =

{
ν ∈ Σ :

1

n
#{0 ≤ i < n : σ◦i|C|+kν ∈ C} < 2−|C| − 1

t
infinitely often

}
,

being contained in ⋂
N

⋃
n≥N

⋃
0≤m<n(2−|C|− 1

t
)

UC,n,m,k ,

has Hausdorff dimension at most r?(2
−|C|− 1

t
, |C|) < 1 for any cylinder C, 0 ≤ k < |C|

and t > 0. By Lemma 16.12, the non-typical external angles are contained in the

countable union ∪C ∪|C|k=0 ∪∞t=1I
−1(UC,t,k) of sets of Hausdorff dimension < 1. 2

Remark. Part of the argument in this proof are related to results proven by Barreira
and Schmeling [BaS]. The next result was proven earlier by Graczyk and Świa̧tek

[GSw]. Smirnov [Sm2] also showed, using a combinatorial characterization of the
Collet-Eckmann property, that the non-Collet-Eckmann external angles have Hausdorff
dimension 0. We apply Theorem 19.1 to an L1(ωc)-function ϕ instead of a continuous
function, and make sure that ϕ is integrable for all measures ωc under consideration.

19.2. Corollary (Collet-Eckmann Maps)
For ω-a.e. c ∈ ∂M, fc satisfies the Collet-Eckmann condition, i.e., there exist K > 0
and λ > 1 (depending on c) such that

|(f ◦nc )′(c)| ≥ Kλn for all n.

In fact, we show slightly more, namely that for ω-a.e. c ∈ ∂M, the Lyapunov exponent
of c equals

∫
log |f ′c| dωc > 0.

Proof. Let ϕ = log |f ′c| = log 2|z| and hωc be the measure theoretic entropy. Since
harmonic measure maximizes entropy, hωc = log 2. The variational principle (see e.g.
[Wa]) implies that the pressure Pt = P (−t log |f ′c|), taken at t = 1, is an upper bound
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for −
∫
ϕdωc ≤ hωc −

∫
log |f ′c| dωc. Since Pt is decreasing (and strictly decreasing in

a neighborhood of 0), we obtain P1 < P0 = htop(fc|Jc) = log 2, the topological entropy
of the map. Take 0 < ε < log 2− P1. Note that |z| ≤ 2 for all z ∈ Jc and c ∈ ∂M. For
each fc-invariant measure µ and c ∈ ∂M, we find∫

|ϕ| dµ ≤ −
∫

log 2|z| dµ+ 2

∫
|z|> 1

2

log 2|z| dµ ≤ P1 + 4 log 2 ≤ 5 log 2.

Hence ϕ ∈ L1(µ) uniformly over all invariant measures µ and c ∈ ∂M. Let Gn be the
set of all c ∈ ∂M such that for all fc-invariant probability measures µ,∫

|z|< 1
n

ϕdµ > −ε. (23)

Obviously ∂M = ∪nGn. For any n ≥ 1 and c ∈ Gn,

lim inf
k

1

k

∑
i∈{1,...k},|f◦i(0)|< 1

n

ϕ(f ◦ic (0)) > −ε. (24)

Indeed, otherwise there exists a subsequence {kj} along which (24) fails. Take a weak

limit µ of 1
kj

∑kj
i=1 δf◦ic (0), where δz is the Dirac measure at z. Then µ is fc-invariant

and
∫
|z|< 1

n
ϕdµ ≤ −ε. This contradicts (23). Let ϕL = max{ϕ,−L} and take L so

large that ϕ(z) = ϕL(z) for |z| > 1
n
. Then Theorem 19.1 shows that for ω-a.e. c ∈ Gn,

lim inf
k

1

k
log |(fkc )′(c)| = lim

k

1

k

k∑
i=1

ϕ(f ◦ic (c))

≥ lim
k

1

k

k∑
i=1

ϕL(f ◦ic (c)) + lim inf
k

1

k

∑
i∈{1,...k},|f◦i(0)|< 1

n

ϕ(f ◦ic (0))

≥
∫
ϕL dωc − ε

≥
∫
ϕdωc − ε ≥ hωc − P1 − ε > 0.

By taking the union over all Gn, we see that fc is Collet-Eckmann for ω-a.e. c. Since
ε is arbitrary, we actually find lim infk

1
k

log |(fkc )′(c)| ≥
∫
ϕdωc. The other inequality

lim supk
1
k

log |(fkc )′(c)| ≤
∫
ϕdωc is proven similarly. 2
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20. Existence of Hubbard Trees

In this section we prove the existence of Hubbard trees for ?-periodic and preperiodic

kneading sequences. First we give two technical lemmas on the structure of ρ-orbits which

will be used to predict the position of certain marked points in the tree. The proof of the

Existence Theorem uses the triod map from Definition 3.14 extensively. Starting with the

set {?ν, ν, σ(ν), . . .} we use the triod map to find the branch points and therefore all marked

points (represented by itineraries) of the tree. Further triod arguments then determine how

to connect marked points by edges, and allow for verifying the properties of the dynamics on

the tree.

The purpose of this section is to prove the following result which was announced in
Section 3.

3.10. Theorem (Existence and Uniqueness of Hubbard Trees)
Every ?-periodic or preperiodic kneading sequence is realized by a Hubbard tree; this
tree is unique (up to equivalence).

The following technical lemma on the behavior of ρ-orbits for arbitrary kneading
sequences establishes a combinatorial result which will imply that the critical value is
an endpoint of the Hubbard tree1.

20.1. Lemma (Critical Value is Endpoint (Combinatorial Version))
Let ν ∈ Σ? be arbitrary. Then for each k ∈ N∗ such that ρ(k)− k <∞, there exists an
i with ρ◦i(ρ(k) − k) ≤ ρ(k) such that ρ◦i(ρ(k) − k) ∈ orbρ(1). In particular, if ν fails
Admissibility Condition 5.1 at k, then ρ(k) ∈ orbρ(1).

Proof. If ν is ?-periodic, say of period N , then m := ρ(k) − k is either infinite
or at most N (depending on whether or not k is divisible by N). In the finite case,
N ∈ orbρ(m) ∩ orbρ(1) inevitably. Therefore we only need to consider ν ∈ Σ1. We
argue by induction on m, using the induction hypothesis IH[m]:

IH[m]: For every ν ∈ Σ1 and corresponding ρ-function for which
there exists a k such that ρ(k) − k = m, the orbits orbρ(1) and
orbρ(m) intersect at the latest at ρ(k).

Remark. IH[m] does not imply that orbρ(1)∩ orbρ(m) contains ρ(k), not even if k is
minimal such that ρ(k)− k = m. For example, if

ν = 1011001101101 . . .

1Using the interpretation of the ρ-function as cutting times in the Hubbard tree, orbρ(1) finds
the sequence of closest precritical points in [0, c1] while orbρ(ρ(k) − k) finds the sequence of closest
precritical points between the critical value c1 and the postcritical point ck. The lemma can be
interpreted as saying that within the Hubbard tree, the arcs from c1 to the critical point and to any
other postcritical point ck intersect, so c1 is an endpoint of the tree.
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with m = 6 and k = 7, then m ∈ orbρ(1), but ρ(m) > k > m.
The induction hypothesis is trivially true for m = 1. So assume that IH[m′] holds

for all m′ < m. Take ν ∈ Σ1 arbitrary and k minimal such that ρ(k) − k = m. If no
such k exists, then IH[m] is true for this ν by default. Let m0 ∈ orbρ(m) be maximal
such that m0 ≤ ρ(k); thus ρ(m0) > ρ(k). We distinguish two cases:

Case I: m0 < ρ(k). If m0 ≤ k, then ρ(m0) > ρ(k) implies m0 < k and

ν1 . . . νk−m0+1 . . . νρ(k)−m0 = νm0+1 . . . νk+1 . . . νρ(k) ,

hence ρ(k−m0)− (k−m0) = ρ(k)− k = m, contradicting minimality of k. Therefore
k < m0 < ρ(k). Since ρ(m0) > ρ(k) and

νk+1 . . . νm0+1 . . . νρ(k) = ν1 . . . νm0−k+1 . . . ν
′
m

(where ν ′m is the opposite symbol of νm), we have ρ(m0 − k) = m. Consider ν̃ :=
ν1 . . . νm0−1ν

′
m0
νm0+1 . . . (with arbitrary continuation) with associated function ρ̃. Then

ρ̃(k) = m0.
(i) If m0 = m, then the fact that ρ(m0 − k) = m implies ρ̃(m0 − k) > m0, so

ρ̃(k) /∈ orbρ̃(m0 − k).
(ii) If m0 > m, then ρ̃(k) = m0 /∈ orbρ̃(m), and ρ̃(m0 − k) = ρ(m0 − k) = m < m0

again implies ρ̃(k) /∈ orbρ̃(m0 − k).
So in both cases ρ̃(k) /∈ orbρ̃(m0 − k). Now ρ̃(k)− k = m0 − k < ρ(k)− k = m, so

by the induction hypothesis IH[m0 − k], orbρ̃(1) and orbρ̃(m0 − k) meet at or before
ρ̃(k); since ρ̃(k) /∈ orbρ̃(m0 − k), they meet before ρ̃(k) = m0.

As a result, also orbρ(1) and orbρ(m0 − k) meet before m0 < ρ(k), and since
ρ(m0 − k) = m, it follows that orbρ(1) and orbρ(m) meet before ρ(k).

Case II: m0 = ρ(k). In this case ρ(k) ∈ orbρ(m). Let n0 ∈ orbρ(1) be maximal
such that n0 ≤ ρ(k), hence ρ(n0) > ρ(k). If n0 = ρ(k) there is nothing to prove, so
assume that n0 < ρ(k) < ρ(n0). As in Case I (by minimality of k), we only need to
consider the case that k < n0 < ρ(k) < ρ(n0). Since νk+1 . . . νρ(k) = ν1 . . . ν

′
m, we have

ρ(n0 − k) = m (similarly as above). Set ν̃ := ν1 . . . ν
′
n0
. . . with associated function ρ̃.

Then ρ̃(k) = n0 < ρ(k) and by IH[n0 − k], orbρ̃(1) and orbρ̃(n0 − k) meet at the latest
at ρ̃(k) = n0.

(i) If m < n0, then ρ̃(n0 − k) = ρ(n0 − k) = m, so orbρ̃(1) and orbρ̃(m) meet at
the latest at n0. But n0 /∈ orbρ̃(1), so in fact orbρ̃(1) and orbρ̃(m) meet before n0. But
then orbρ(1) and orbρ(m) also meet before n0 < ρ(k).

(ii) If m = n0, then orbρ(1) and orbρ(m) obviously meet at n0 < ρ(k).
(iii) The case m > n0 is impossible: We have ρ(k) − k = m > n0 > k, so ρ(k) >

2k. Since ρ(n0) > ρ(k) = m + k > n0 + k, we find that νk+1 . . . νn0+1 . . . νρ(k)−1 =
ν1 . . . νn0−k+1 . . . νρ(k)−k−1, hence ρ(n0 − k) ≥ ρ(k) − k > n0. For the sequence ν̃ this
means that ρ̃(n0 − k) = n0, while n0 /∈ orbρ̃(1). Therefore orbρ̃(1) and orbρ̃(n0 − k) do
not meet at or before n0; since ρ̃(k)− k = n0 − k, this contradicts IH[n0 − k].
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This completes Case II and proves that orbρ(1) and orbρ(m) intersect at the latest
at ρ(k), where k is minimal with the property that ρ(k) − k = m. For an arbitrary k
with ρ(k)− k = m, let k′ minimal with this property. Then the two orbits meet at the
latest at ρ(k′) = m + k′ ≤ m + k = ρ(k), so the statement holds for arbitrary k. This
proves IH[m].

To prove the lemma for ν ∈ Σ1 and arbitrary k, set m := ρ(k)− k. Then orbρ(m)
and orbρ(1) meet at the latest at ρ(k). This proves the first statement.

Now for the second statement, assume that k′ is the largest multiple of k less than
ρ(k), so ρ(k′) = ρ(k). Since k failing the admissibility means that k ∈ orbρ(ρ(k′)− k′)
but k /∈ orbρ(1), the second statement is an immediate consequence. 2

The following combinatorial lemma will be used to locate the images of certain
closest precritical points in Hubbard trees.

20.2. Lemma (Combinatorics of ρ-Orbits)
Let ν ∈ Σ1 (not containing a ?) and let m belong to the internal address of ν.

(1) If s is such that s < m < ρ(s), then orbρ(ρ(m− s)− (m− s)) 3 m.
(2) If ρ(m) > 2m, then for every s ∈ {1, . . . ,m}, either m or 2m belongs to

orbρ(s).
(3) If ρ(m) =∞, then m is the exact period of ν.

Proof. Let ν = ν1ν2 . . . be the kneading sequence. Using Lemma 20.1 we prove two
claims.

Claim 1: If k ≥ 1 and l ∈ orbρ(k) ∩ orbρ(1) \ {k}, then l ∈ orbρ(ρ(k)− k).
Assume by contradiction that l /∈ orbρ(ρ(k) − k). Consider ν̃ = ν1 . . . νl and let ρ̃

be the corresponding ρ-function. Note that ρ(k) = ρ̃(k) because l ≥ ρ(k). We have
l = max orbρ̃(1), but l /∈ orbρ̃(ρ(k)− k). This contradicts Lemma 20.1.

Claim 2: If k < m < ρ(k) and m′ ∈ orbρ(1) is such that ρ(m′) = m, then
m′ ∈ orbρ(m− k).

Consider ν̃ = ν1 . . . νm′ . Then m′ = max orbρ̃(1) and ρ̃(k) = m (this follows directly
from ρ(k) > m and ρ(m′) = m). Therefore Lemma 20.1 implies that m′ ∈ orbρ̃(m−k),
and Claim 2 is proved.

To prove the first assertion, let m′ be as in Claim 2. We have m′ ∈ orbρ(m − s).
Hence m = ρ(m′) ≥ ρ(m− s). By Claim 1, m ∈ orbρ(ρ(m− s)− (m− s)).

Now we prove the second assertion. If m ∈ orbρ(s) there is nothing to prove. Hence
we may assume without loss of generality that s < m < ρ(s).

Assume first that ρ(s) <∞. Assertion (1) implies ρ(m− s)− (m− s) ≤ m, hence
ρ(m− s) ≤ 2m− s < ρ(m)− s. If ρ(s) ≥ ρ(m), then

ν1 . . . νm−sνm−s+1 . . . νρ(m)−s−1 = νs+1 . . . νmνm+1 . . . νρ(m)−1

= νs+1 . . . νmν1 . . . νρ(m)−m−1 ,
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hence ρ(m − s) ≥ ρ(m) − s, a contradiction. Hence ρ(m) > ρ(s) and, similarly as
above,

νs+1 . . . νmν1 . . . νρ(s)−m = νs+1 . . . νmνm+1 . . . νρ(s)

= ν1 . . . νm−sνm−s+1 . . . ν
′
ρ(s)−s ,

where ν ′j denotes the opposite symbol of νj. Therefore ρ(m − s) = ρ(s) − s. By
Assertion (1), m ∈ orbρ(ρ(m− s)− (m− s)) = orbρ(ρ(s)−m). (Note that this implies
ρ(s) ≤ 2m.) Since ν = ν1 . . . νmν1 . . . νm . . . , we then have 2m ∈ orbρ(ρ(s)) as claimed
(we simply start m entries later).

If ρ(s) = ∞, we first change the entry νk for some k > 2m. Then still ρ(m) > 2m
and ρ(s) = k > 2m, and we can use the above argument.

For the third assertion, consider ν̃ = ν1 . . . νmν1 . . . νmν
′
1 . . . with ρ-function ρ̃. Then

ρ̃(m) = 2m + 1 > 2m. If s < m is the exact period of ν, then ρ(s) = ∞ and
ρ̃(s) = 2m+ 1. Therefore m, 2m /∈ orbρ̃(s), contradicting the second assertion. 2

20.3. Lemma (ν is Always Endpoint)
Fix a sequence ν ∈ Σ?. If the triod [σ◦k(ν), σ◦l(ν), ν] (with k, l ≥ 1) can be iterated
infinitely often, then the sequence ν will be chopped off eventually. If the stop case is
reached, the initial ? does not occur in the last sequence. Hence ν cannot be an interior
point of such a triod.

Proof. Suppose the triod can be iterated infinitely often but ν is never chopped off.
By the definition of the ρ-function, σ◦k(ν) differs from ν differ at entry ρ(k), so one of
the two is chopped off at step ρ(k)−k. If the third sequence is chopped off, then we are
done, so we may assume that it is the first sequence which is chopped off. Therefore,

ϕ◦(ρ(k)−k)
(
[σ◦k(ν), σ◦l(ν), ν]

)
= [ν, ··, σ◦(ρ(k)−k)(ν)]

(the second entry depends on whether or not σ◦l(ν) has been chopped off in the mean-
time). The next time that the first and third sequences differ is at iterate ρ(ρ(k)− k),
and again we may assume the first sequence is chopped off, yielding

ϕ◦ρ(ρ(k)−k)
(
[σ◦k(ν), σ◦l(ν), ν]

)
= [ν, ··, σ◦ρ(ρ(k)−k)(ν)] ,

and in general the first sequence is chopped off at steps in orbρ(ρ(k)− k).
Similarly, the second sequence is chopped off at iteration steps in orbρ(ρ(l) − l).

By Lemma 20.1, there is an iteration step s ∈ orbρ(ρ(k) − k) ∩ orbρ(ρ(l) − l). Take
s minimal with this property. At this step, the first and second sequences both differ
from the third, so in this step the sequence ν must be chopped off (or the stop case is
reached, but this is excluded by hypothesis). This settles the first claim.

For the second claim, the stop case can be reached only if ν is ?-periodic, say of
period n. We can assume by Lemma 5.10 that 1 ≤ k < l < n. By Lemma 20.1,
orbρ(ρ(k) − k) and orbρ(ρ(l) − l) intersect orbρ(1) at an entry s ≤ max{ρ(k), ρ(l)},
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and since ν is ?-periodic, max{ρ(k), ρ(l)} ≤ n. The above argument implies that ν is
chopped off at some iterate s′ ≤ s. If s′ = n, then ρ(k) = n or ρ(l) = n. If ρ(l) ≥ n,
then the stop case is reached after n − l iterates of ϕ, and the ? is in the second
sequence. If ρ(k) ≥ n, then the stop case is reached after n − k iterates of ϕ, and
the ? is in the first sequence. Finally, if s < n, then the triod after s iterates will be
ϕ◦s([σ◦k(ν), σ◦l(ν), ν]) = [σ◦k

′
(ν), σ◦l

′
(ν), ν] for some k′, l′ ≤ n, and we can repeat the

argument. 2

Constructing a Hubbard Tree. We will now begin to construct a Hubbard tree:
we define a finite set of vertices and connect them by edges, and then we endow this
tree with a continuous map which satisfies all the hypotheses of a Hubbard tree from
Definition 3.2. For the rest of this section, we fix a ?-periodic or preperiodic sequence
ν and set

S(ν) = {?ν, ν, σ(ν), σ◦2(ν), . . . }.
Clearly, σ(S(ν)) ⊂ S(ν) and S(ν) ∩ {0ν, 1ν} = ∅.

In order to introduce the other marked points of the Hubbard tree, we need to
analyze the behavior of the triod map of Definition 3.13 in more detail.

Branch Points b(s, t, u). Fix a ?-periodic or preperiodic ν. Take s, t, u ∈ S(ν) ∪
{0, 1}N∗ and consider the triod [s, t, u]. If each of these sequences is chopped off in-
finitely often under iteration of ϕ, then [s, t, u] is called a branched triod, and it has
a “branch point” called b(s, t, u): that is the sequence which is defined by majority
vote of the three sequences in each iteration step. More precisely, the n-th entry of
this sequence is defined by majority vote among the first entries in ϕ◦(n−1)([s, t, u]).
Clearly, b(s, t, u) ∈ {0, 1}N∗ . If s, t, u are (pre)periodic, then b(s, t, u) is necessarily
(pre)periodic too. Moreover, b(s, t, u) differs from all sequences s, t, and u: otherwise,
if say b(s, t, u) = s, then because of the majority construction, the first sequence in the
triod [s, t, u] always coincides with at least one other sequence, so it is never chopped
off, contrary to our assumption.

Types of Triods. Based on Equation (1) in Definition 3.13, we can distinguish five
types of triods:

(1) The triod can be iterated indefinitely so that all three sequences are chopped off
infinitely often (this implies all three sequences remain distinct under iteration
and the stop case is never reached); in this case we call the triod branched.
The sequence b(s, t, u) ∈ {0, 1}N∗ obtained by majority vote is the branch
point of the triod.

(2) The triod can either be iterated indefinitely and precisely two sequences are
chopped off infinitely often whereas the remaining sequence is never chopped,
or the iteration reaches the stop case so that the sequence that lands on ?
at the stop case has never been chopped off before; in this case we call the
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triod flat. The sequence which reaches the ? in the stop case or which is never
chopped off is called the middle point of the flat triod.

(3) Not all three sequences remain distinct during the iteration, i.e., two or three
sequences become identical at some iterate of ϕ; in this case we say that the
triod has collapsing sequences. Note that collapsing sequences means that one
of these sequences must have been equal to 0ν or 1ν the iterate before collaps-
ing. Note also that if ϕ can be iterated indefinitely, but only one sequence ever
gets chopped off infinitely often, then the remaining sequences must collapse.

(4) The iteration of ϕ reaches the stop case so that the ? is in a sequence that
was chopped off before.

(5) The iteration of ϕ can be carried on forever without collapsing, and some
sequence is chopped off at least once, but not infinitely often.

For us, the most important cases are the first two because we will show in Lemma 20.4
that (3)–(5) do not occur when s, t, u are distinct and are equal to forward shifts of
the kneading sequence ν.

Note that all five cases are mutually distinct and cover all possible cases: if two
or three sequences collapse, then the stop case cannot be reached and at most one
sequence can be chopped off infinitely often, and we are exactly in case (3). Otherwise,
there is no collapsing. If we can iterate forever without collapsing, then either some
sequence is chopped off a positive finite number of times and we are exactly in case
(5); or every sequence is chopped off either infinitely many times or not at all, and the
number of chopped sequences must be 2 or 3, so we are in cases (2) or (1). The last
possibility is that the stop case is reached; depending on whether the sequence landing
on ? had or had not been chopped off before, we are in case (4) or (2).

20.4. Lemma (If All Three Sequences are Chopped)
Let ν ∈ Σ? be ?-periodic or preperiodic. If [σ◦k(ν), σ◦l(ν), σ◦m(ν)] is such that each
of the three sequences is chopped off at least once, then each sequence is chopped off
infinitely often, and the triod can be iterated forever without reaching the stop case.

Proof. First note that σ◦s(ν) 6= 0ν or 1ν for all s. Therefore the triod can be iterated
until the stop case is reached, if ever.

Suppose the first chopping occurs after s iterations, and it is the third sequence
which is chopped off. The resulting triod is [σ◦(k+s)(ν), σ◦(l+s)(ν), ν]. By Lemma 20.3,
the stop case is never reached with the ? at the third position.

By assumption, there are iteration times when the first and second sequences are
chopped off, and it follows similarly that the stop case can never be reached with the
? at any position. The triod can thus be iterated infinitely often.

If there is a last iterate ϕ◦s([σ◦k(ν), σ◦l(ν), σ◦m(ν)]) in which the third sequence
is chopped off, then this iterate has the form [σ◦k

′
(ν), σ◦l

′
(ν), ν], and this contradicts
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Lemma 20.3. Therefore, during the iteration of the triod, all sequences are chopped
off infinitely often. 2

The Structure of Triods in S(ν). Every triod in S(ν) is either flat or branched:
no triod can collapse, and it follows from Lemma 20.3 that every sequence which gets
chopped off once will never be the center of a flat triod when the stop case is reached.
Therefore if a triod cannot be iterated forever then it reaches the stop case and is flat.
If a triod can be iterated forever, then at least two sequences get chopped off infinitely
often, and if all three sequences get chopped off at least once, then by Lemma 20.4 the
triod is branched.

20.5. Lemma (Branch Points of Branched Triods)
Fix a ?-periodic or preperiodic ν. Suppose that s, t, u ∈ S(ν) ∪ {0, 1}N∗ are such that
[s, t, u] is a branched triod; set v := b(s, t, u). If σ◦k(w) /∈ {0ν, 1ν} for all w ∈ {s, t, u, v}
and all k ≥ 0, then [s, t, v], [s, u, v] and [t, u, v] are flat with v in the middle.

Proof. By assumption, the triod map can be iterated forever on [s, t, u]. If the
iteration stops for [s, t, v] after finitely many steps, then either the iteration reaches
one of the sequences 0ν and 1ν (which is excluded by hypothesis), or the stop case
in (1) is reached; but since v ∈ {0, 1}N∗ is constructed by majority vote among the
sequences s, t, u, this can never occur. The majority vote also assures that v can never
be chopped off along the iteration, so [s, t, v] is flat with v in the middle. The reasoning
for the other two sequences [s, u, v] and [t, u, v] is the same. 2

Vertices (Marked Points) of the Tree. Set

V := S(ν) ∪
⋃

[s,t,u]

{b(s, t, u)},

where the union runs over all branched triods [s, t, u] with vertices in S(ν), so their
branch points b(s, t, u) are well-defined. The set V is σ-invariant because S(ν) is and
σ(b(s, t, u)) equals b(ϕ([s, t, u])).

The Triod Map Can Be Iterated. Triods consisting of vertices in V can be branched
and flat (types (1) and (2)). In order for ϕ to be well-defined, we need to ensure that
types (3)–(5) do not occur. In addition, we want to know that for s, t, u ∈ V , the triod
map can only result in elements of V . This is the contents of the following lemma.

20.6. Lemma (V is Closed under Taking Triods)
For each triple of different sequences s, t, u ∈ V , b(s, t, v) ∈ V . In particular, no triod
[s, t, u] is of type (3)–(5).

Proof. Take s, t, u ∈ V arbitrary but distinct. Let us first show that V ∩{0ν, 1ν} = ∅,
so [s, t, u] is not of type (3). To see why this is true, suppose that 0ν ∈ V (the
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case 1ν ∈ V is analogous). Since 0ν /∈ S(ν), this implies that 0ν = b(s, t, u) for a
branched triod [s, t, u] with s, t, u ∈ S(ν). We may suppose that s1 = t1 = 0 and
u1 ∈ {0, ?, 1}. If u1 = 0, then ϕ([s, t, u]) = [σ(s), σ(t), σ(u)] is a triod with vertices in
S(ν) and σ(b(s, t, u)) = ν in the middle. This contradicts the fact that ν is an endpoint
(Lemma 20.3). If u1 ∈ {?, 1}, then ϕ([s, t, u]) = [σ(s), σ(t), ν] is a triod with middle
point ν. This contradicts that ν is an endpoint (Lemma 20.3) once more. As a result,
every triod in V can be iterated forever without sequences collapsing, unless the stop

case is reached.

The next step is to find s′, t′, u′ ∈ S(ν) such that b(s′, t′, u′) = b(s, t, u), showing that
b(s, t, u) ∈ V . As s, t, u are taken distinct, at least two of them are chopped off under
iteration of ϕ. Assume that s is chopped off first and t second. If s ∈ S(ν), then put
s′ = s; otherwise, s = b(s1, s2, s3) for some s1, s2, s3 ∈ S(ν). We iterate the triod map
ϕ on [s, t, u], and keep track what happens to [s1, s2, s3].

• As long as [s, t, u] has unanimous vote (i.e., s1 = t1 = u1), we refrain from
making a selection among s1, s2, s3 and take ϕ([s1, s2, s3]) for the next iterate.
• If s has minority vote (i.e., s1 6= t1 = u1), then select s′ = sk for any k = 1, 2, 3

such that sk shares vote with s. We have ϕ([s, t, u]) = ϕ([s′, t, u]).

We iterate this algorithm until s has reached minority vote, which by the choice of s
must happen eventually. It follows that b(s, t, u) = b(s′, t, u).

Now we repeat the argument with [s′, t, u]. If t ∈ S(ν) then let t′ = t; otherwise
t = b(t1, t2, t3) for some t1, t2, t3 ∈ S(ν).

• As long as [s′, t, u] has unanimous vote, we refrain from making a selection
among t1, t2, t3 and take ϕ([t1, t2, t3]) for the next iterate.
• If t has two-to-one majority vote (i.e., s′i 6= ti = ui), disqualify the tk (if any)

with tki = s′i from being selected. As both tk and s′ will be replaced by ν by
the action of ϕ, tk and s′ will take the same vote ever after, so no other tk

′
can

later share minority vote with s′.
• If t has minority vote eventually, then select t′ = tk

′
for an undisqualified

k′ = 1, 2, 3 such that t and tk
′

share vote. We have ϕ([s′, t′, u]) = ϕ([s′, t, u]).

We iterate this algorithm until t has reached minority vote, which by the choice of t
must happen eventually. It follows that b(s, t, u) = b(s′, t′, u).

Finally we turn to u. If u ∈ S(ν) then take u′ = u. Otherwise u = b(u1, u2, u3)
for some u1, u2, u3 ∈ S(ν). If u is never chopped off, then [s′, t′, u] is flat with u in the
middle, and no new branch point is created. If u is chopped off eventually, then we
follow an algorithm as before.

• As long as [s′, t′, u] has unanimous vote we refrain from making a selection
among u1, u2, u3 and take ϕ([u1, u2, u3]) for the next iterate.
• If s′ has minority vote, disqualify the uk (if any) voting with s′ from being

selected. As both uk and s′ will be replaced by ν by the action of ϕ, uk and
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s′ will take the same vote ever after, so no other uk
′

can later share minority
vote with s′.
• If t′ has minority vote, disqualify the uk

′
(if any) voting with t′ from being

selected. Note that k 6= k′ because uk shares vote with s′. As both uk
′

and t′

will be replaced by ν by the action of ϕ, tk
′

and t′ will take the same vote ever
after.
• If u has minority vote eventually, let u′ be the remaining undisqualified uk

′′

which shares vote with u.

In this way we obtain s′, t′, u′ ∈ S(ν) such that b(s, t, u) = b(s′, t′, u′).

Since [s, t, u] behaves as [s′, t′, u′] under ϕ and whenever s, t or u is chopped off, this
sequence is replaced by ν just as s′, t′ or u′ is replaced by ν, it follows from Lemma 20.4
that if all three sequences s, t, u are chopped off once, they will be chopped off infinitely
often. If one sequence, say s, is never chopped off, and another sequence, say t is
chopped a finite number of times only, some iterate ϕ◦k([s, t, u]) takes the form [σ◦k, ν, ũ]
form some ũ ∈ V . In this triod, σ◦k and ν are never chopped off, so they are equal.
But this contradicts that 0ν, 1ν /∈ V . This proves that [s, t, u] is not of type (5).

Finally, to prove that [s, t, u] is not of type (4), assume by contradiction that the first
sequence is chopped off, and later on reaches the stop case with the ? in that sequence.
Since [s′, t′, u′] has the same behavior under ϕ, it would reach stop case with the ? in
the first sequence as well. This contradicts Lemma 20.3. 2

Vertices Along Arcs. For sequences s, t ∈ V , set

E(s, t) := {u ∈ V : the triod [s, t, u] is flat with u in the middle} ∪ {s, t} .
We call s and t adjacent if E(s, t) = {s, t}. If u, u′ ∈ E(s, t)\{s} are different sequences,
then at least one of u and u′ must be chopped off the triod [s, u, u′] under iteration of ϕ.
We write u � u′ if u′ is chopped off, and u′ � u otherwise. If [s, u, u′] reaches the stop

case with u in the middle, then we write u � u′ as well. (It follows from Lemma 20.8
item (1) below that the sequence u or u′ which is not chopped off, is indeed the middle
point of the flat triod [s, u, u′].) By convention we take s � u for all u ∈ E(s, t) \ {s}.

20.7. Lemma (� is Transitive and Linear)
The order � is a transitive and linear on E(s, t).

Proof. For unity of exposition, we will say that u is chopped off from [s, u, u′] by ϕ
also if [s, t, u] reaches the stop case with another sequence than u in the middle. As
we will not iterate ϕ further in this proof once the order of sequences in [s, t, u] has
been established, this abuse of terminology is inconsequential.

Suppose that u, u′, u′′ ∈ E(s, t) \ {s} with u � u′ and u′ � u′′, say u′′ is chopped
off from [s, u′, u′′] at iterate l and u′ is chopped off from [s, u, u′] at iterate k. Iterate ϕ
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on the triod [s, u, u′′]; as long as the second or third sequence is not chopped off from
[s, u, u′′], the chopping off of the first sequence happens at exactly the same times as
for [s, u, u′] and [s, u′, u′′]. So let us wait until one of u and u′′ is chopped off. Assume
by contradiction that u is chopped off first; by the choice of k, this can only happen at
an iterate ≥ k. Since ui = u′i for i < k, our assumption implies that also u′i = u′′i . By
definition of k, the first entries of the first and second sequence of ϕ◦k([s, u, u′]) agree,
but the first entry of the third sequence (namely u′k) is different. Since u′ is the middle
point of [s, u′, u′′], u′k = u′′k. But this means that u′′ is chopped off from [s, u, u′′] at this
iterate, and we have a contradiction.

This shows that u � u′′; hence the order � is indeed transitive. This shows that the
set E(s, t) is linearly ordered by �, with maximal sequence s and minimal sequence t.

Note that E(t, s) is the same set of vertices, but the ordering goes in the other
direction. 2

20.8. Lemma (Properties of �)

(1) If u, u′ ∈ E(s, t) are such that s � u � u′, then [s, u, u′] is a flat triod with u
as middle point.

(2) If s, t, u, v are such that u ∈ E(s, v) and t ∈ E(s, u), then t ∈ E(s, v) and
t � u in the E(s, v)-order.

(3) If s, t, u are different sequences in V and E(s, u) and E(t, u) intersect only in
u, then u is the middle point of the flat triod [s, t, u].

(4) For all v ∈ V , there exists s ∈ S(ν) such that v ∈ E(s, ?ν).

Proof. In this proof, we will iterate triods [u, u′, u′′] with sequences in V \ S(ν). We
have seen in Lemma 20.6 that such a triod is not of type (3)–(5). We always have that
u, u′, u′′ ∈ E(s, t) for some s, t ∈ S(ν), say u � u′ � u′′ in the E(s, t)-order. Therefore
iterating ϕ on [u, u′, u′′] mimics iterating ϕ on [s, u′, t], and once u and u′′ are chopped
off, the two triods become identical. Therefore [u, u′, u′′] is flat.

(1) Let k be the first iterate that u′ is chopped off from [s, u, u′]. At this iterate,
ϕ◦k([s, u, u′]) = ϕ◦k([s, u, t]), and because u is the middle point of [s, u, t], u will never
be chopped off neither from [s, u, t] nor from [s, u, u′].

(2) Let l be the first time that u is chopped off from the triod [s, t, u]. The most
work goes in proving that t ∈ E(s, v). Suppose by contradiction that at some iterate
k, the second sequence of [s, t, v] is chopped off under iteration of ϕ. There are three
cases:

• If k > l. Then ϕ◦l([s, t, u]) = ϕ◦l([s, t, v]), and since t is the middle point of
[s, t, u], it will not be chopped off at all.
• k = l. Then the first and second sequence of ϕ◦k−1([s, t, u]) start with the same

symbol, the first and second sequence of ϕ◦k−1([s, t, v]) start with different
symbols. Yet for both triods, these first symbols are the same, so we have a
contradiction.
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• k < l. Then the first and third sequence of ϕ◦k−1([s, t, v]) start with the same
symbol, but the first symbol of the second sequence is different. Also the first
symbols of the second and third sequence of ϕ◦k−1([s, t, u]) are the same. This
implies that the first symbols of the first and third sequence of ϕ◦k−1([s, u, v])
agree, but disagree from the first symbol of the second sequence. But this
implies that u is chopped off from [s, u, v], contradicting our assumption.

This shows that t is never chopped off from [s, t, v], hence t ∈ E(s, v). Since t is the
middle point of [s, t, u], u will be chopped off before t is, so t � u in the E(s, v) order.

(3) We iterate the triod [s, t, u]. If the triod is branched, then by Lemma 20.5, the
branch point v = b(s, t, u) belongs to both E(s, u) ∩ E(t, u). If [s, t, u] is flat, with s
in the middle, then s ∈ E(s, u) ∩ E(t, u). If [s, t, u] is flat, with t in the middle, then
t ∈ E(s, u) ∩ E(t, u). So in all three cases, E(s, u) ∩ E(t, u) contains more than one
point. The remaining possibility is that u is the middle point of [s, t, u].

(4) This is trivial if v ∈ S(ν), so assume that v = b(s, t, u) ∈ V \ S(ν) for some
s, t, u ∈ S(ν). By Lemma 20.5, v ∈ E(s, t)∩E(t, u)∩E(u, s). If ?ν equals one of s, t, u,
any other sequence of s, t, u fulfills the assertion. So we can assume that s, t, u have a
common first entry. If t ∈ E(s, ?ν), then by item (2) applied to the quadruple s, v, t, ?ν,
also v ∈ E(s, ?ν) and we are finished. Similarly, if s ∈ E(t, ?ν), then v ∈ E(t, ?ν) and
again we are finished. The remaining case is that [s, t, ?ν] is a branched triod, say
v′ = b(s, t, ?ν). If v = v′, then we are finished again. If v � v′ in the E(s, t)-order,
then v ∈ E(s, ?ν) by item (2) applied to the quadruple s, v, v′, ?ν. Similarly, if v′ � v,
then v ∈ E(t, ?ν). This proves item (4). 2

Edges of the Tree. For any s ∈ V , let E(?ν, s) =: {s0, s1, , . . . , sk−1, sk} be as above,
in decreasing E(?ν, s)-order, with s0 = ?ν and sk = s. Then attach edges [si, si+1]
between the vertices si and si+1 to the tree, for i = 0, 1, . . . , k − 1. Take the union of
such edges for all s ∈ V , omitting repetitions (so that every pair of vertices in V is
joined by at most one edge).

20.9. Proposition (The Union of Edges is a Tree)
The union T of edges is a tree, and every endpoint of T belongs to S(ν).

Proof. Since V is finite, T is finite. By construction, each s ∈ S(ν) is connected to
?ν, and hence T connects all s ∈ S(ν). If v ∈ V \ S(ν), then by Lemma 20.8 item (4),
v ∈ E(s, ?ν) for some s ∈ S(ν). Therefore T is connected.

Let us prove that T contains no loops. Since we constructed T by attaching strings
of edges E(?ν, s), T can only have a loop if the following occurs:

There are s, s′ ∈ S(ν) such that t ∈ E(?ν, s) ∩ E(?ν, s′), but there is
u ∈ E(?ν, s) \ E(?ν, s′) such that ?ν � u � t in the E(?ν, s)-order.

We show that the above cannot happen. Indeed, by Lemma 20.8 item (1), u is the
middle point in the flat triod [?ν, u, t]. Therefore u ∈ E(?ν, t). Next apply Lemma 20.8
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item (2) to the quadruple ?ν, u, t, s′ to conclude that u ∈ E(?ν, s′), but this contradicts
that u ∈ E(?ν, s) \ E(?ν, s′). Hence T contains no loop.

Finally, each v ∈ V \ S(ν) is obtained as a branch point of a branched triod, and
therefore cannot be an endpoint. Hence all the endpoints of T belong to S(ν). 2

20.10. Lemma (Components of the Tree)
There are at most two edges in T with ?ν as endpoint, and T \ {?ν} consist of at most
two trees: the sequences starting with 0 form one tree, and the sequences starting with
1 form the other.

Proof. If ?ν has the endpoint of at least three edges, then there are s, t, u ∈ S(ν)
such that E(?ν, s), E(?ν, t) and E(?ν, u) are pairwise disjoint, except for the common
endpoint ?ν. At least two, say s and t, share the first symbol. Therefore ϕ([s, t, u]) =
[σ(s), σ(t), σ(u)] or [σ(s), σ(t), ν]. Furthermore, σ(E(?ν, s)) = E(ν, σ(s)) is disjoint
from σ(E(?ν, t)) = E(ν, σ(t)), except for the common endpoint ν. Lemma 20.8 item
(4) states that ν is the middle point of [σ(s), σ(t), ν], but this contradicts Lemma 20.3.
Therefore ?ν has at most two arms, and T \ {?ν} consists of at most two components,
each of which is connected and contain no loops.

For the last statement, recall that E(?ν, s) \ {?ν, s} contains all sequences in v ∈ V
that are the middle point of a flat triod [?ν, v, s]. Applying ϕ to it does not result in
the stop case, so s and v share the first symbol. Therefore the components of T \{?ν}
are ∪s∈S(ν),s1=0E(?ν, s} \ {?ν} and ∪s∈S(ν),s1=1E(?ν, s} \ {?ν}, and all the sequences in
one component have the same the first symbol. 2

Dynamics of the Tree. In order to define a map f : T → T , set f(s) := σ(s) for
s ∈ V . For any edge [s, t] between vertices s, t ∈ V , define the map f |[s,t] : [s, t] →
[f(s), f(t)] ⊂ T to be an orientation preserving homeomorphism. Since T is a tree, the
map f |[s,t] is unique up to homotopy.

20.11. Lemma (Dynamics Locally Injective)
For every connected subtree T ′ ⊂ T such that ?ν does not disconnect T ′, the restriction
of f to T ′ is injective.

Proof. Since T and T ′ are connected trees, the fact that f(x) = f(y) for x, y ∈ T ′
would imply that f was not locally injective on every point in [x, y] ⊂ T ′. It therefore
suffices to prove that f is locally injective for every x ∈ T ′ \ {?ν}.

By construction, f is locally injective on every interior point of every edge. It thus
suffices to show that f is locally injective at every vertex s 6= ?ν. If this was not
the case, then there would be vertices t, u ∈ T ′ such that [s, t] and [s, u] were disjoint
except for the common endpoint s, while [f(s), f(t)] and [f(s), f(u)] had more points
in common than f(s). But Lemma 20.8 item (3) implies that the triod [s, t, u] is flat
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with s in the middle, and the triod [f(s), f(t), f(u)] = ϕ([s, t, u]) is flat with f(s) in
the middle, so f(s) ∈ [f(t), f(u)]. This is a contradiction. 2

We are now ready to prove Theorem 3.10.

Proof. We start with the existence proof. Set c0 := ?ν (the critical point) and ck :=
σ◦k(?ν) (the critical orbit). Construct a tree T with dynamics as in Proposition 20.9.
We check the six properties of a Hubbard tree:

(1) The map f is clearly continuous on T , and it is surjective on S(ν) \ {?ν}. If

ν = 1k? for some k, then f permutes (and hence is surjective on) S(ν), whereas if
ν = 1k0 . . . , then ?ν is obviously the middle point of the triod (ν, ?ν, σ◦k(ν)), and
hence not an endpoint. By Proposition 20.9, this means that f is surjective on the set
of endpoints of T , hence surjective onto all of T .

(2) In T \ {c0}, any two vertices whose itineraries start with the same entry are in
the same connected component by construction of T . Therefore, T \ {c0} consists of
at most two connected components, and f is injective on each of the by Lemma 20.11.
Therefore, each point in T has at most two preimages.

(3) It follows from Lemma 20.11 that f is locally injective at every s ∈ T \ {c0}.
It is continuous by definition, hence a local homeomorphism everywhere except at the
critical point.

(4) It has been shown in Proposition 20.9 that every endpoint of T is in S(ν), i.e.,
on the critical orbit.

(5) The critical point is obviously periodic or preperiodic because ν is.
Before proving that the last condition, it is worthwhile to interpret the sequences

in V as itineraries. By Lemma 20.10, T \ {c0} consists of at most two connected
components such that two sequences s, t ∈ V \ {?ν} are in the same component if
and only if their initial entries coincide. Therefore, every vertex s ∈ V (which is a
sequence in {0, 1, ?}) encodes the itinerary of its own dynamics with respect to the
usual partition of T induced by removing ?ν.

(6) Expansivity is now trivial: marked points are in V , and these are distinguished
by their itineraries. If the itineraries of s and t first differ in the k-th position, then
the arc [f ◦k(s), f ◦k(t)] contains the critical point ?ν.

Uniqueness has already been proved in Proposition 3.15. 2

Proof of Corollary 3.11. The uniqueness is proven in Corollary ??. For the
existence, we start by building the Hubbard tree (T, f) for ν, and then add points from

V̂ and arcs where necessary in an inductive procedure. We describe this procedure in
detail, using points on the tree and their symbolic itinerary interchangeably.

For w ∈ V̂ , we iterate the triod map ϕ on [w, s, t] for all marked points s, t ∈ V , to
decide how to attach w to the tree. Recall that marked points s, t ∈ V are adjacent if
the arc E(s, t) = {s, t}. There are three possibilities:
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(a) There are adjacent s, t ∈ T such that [w, s, t] is flat with w in the middle. Put
w as a new marked point on the arc [s, t].

(b) We can find s ∈ V such that for all t ∈ V adjacent to s, the triod [w, s, t] is
flat with s in the middle. In this case, attach an arc [w, s] to s. (The points
w and s are adjacent, as long as we don’t have to add new marked point on
the open arc (w, s) later in the process.)

(c) If neither (a) nor (b) hold, then there is at least one pair of adjacent vertices
s, t ∈ V such that [w, s, t] is a branched triod. Let b := b(w, s, t). Note

that Lemma 20.3 no longer holds for V ∪ V̂ , and it can indeed happen that
b = b1b2 . . . bk0ν or b1b2 . . . bk1ν for some (possibly empty) word b1b2 . . . bk ∈
{0, 1}k. In this case, recode b to b1b2 . . . bk?ν and attach an arc [w, b1b2 . . . bk?ν]
to b1b2 . . . bk?ν. Put b on the arc [s, t] and attach an arc [w, b] to b. (The points
w and b are adjacent, as long as we don’t have to add new marked point on
the open arc (w, b) later in the process.)

Choose the next w′ ∈ V̂ and repeat the whole process with the tree with dynamics
and marked points created so far. After all of V̂ is treated, we check that the resulting
graph is indeed a proper extended Hubbard tree.

(i) (T̂ , f̂) is closed under taking triods, i.e., for any choice of marked points s, t, u ∈
T̂ , the branch point b(s, t, u) already exists in T̂ . This is the same proof as in
Lemma 20.6, but without the burden to verify that the sequences 0ν and 1ν do not
appear among the marked points. This is because in the construction of extended
Hubbard trees, we replace 0ν and 1ν with ?ν as under case (c) above. Note also that if

b = b(s, t, u) for some s, t, u ∈ V ∪ V̂ , then σ(b) = b(ϕ[s, t, u]), and the three sequence

of ϕ[s, t, u] belong to V ∪ V̂ as well. Therefore the set of marked points is σ-invariant.

(ii) T̂ has no loops. This is immediate because T has no loops, and only arcs are

attached to T in the process of creating T̂ . As each of these attached arcs has a point
in V̂ as endpoint, each endpoint of T̂ belongs to V ∪ V̂ .

(iii) We define the dynamics of f̂ on the (σ-invariant set of) marked points by

σ. This shows that f̂ is at most two-to-one on the marked points, and (since 0ν, 1ν

and ?ν are identified in case (c)) also that f̂ is expansive. An arc [s, t] between two
adjacent marked points will be mapped homeomorphically onto the arc [σ(s), σ(t)],

precise as explained above Lemma 20.11. Lemma 20.11 itself then shows that f̂ is
locally injective, and in fact that every point in T̂ has at most two preimages. This
verifies all the conditions of an extended Hubbard tree. 2

Remark. Since ν need not be an endpoint in an extended Hubbard tree, it can happen
that the critical point ?ν is a branch point. Figure 20.3 illustrates this for ν = 101

and the tree is extended to include sequences w = 1100 and β = 0. In fact, if ν
is ?-periodic, then c0 can get any number of arms. For example, if ν = 10?, then
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Figure 20.1. An example of an extended Hubbard tree where ?ν is a
branch point.

T = [c1, c2] is an arc and when V̂ = {σ◦i(w) : i ≥ 0} for

w = 110110110 . . . 110︸ ︷︷ ︸
110 repeated n times

0?ν,

then in the extended tree (T̂ , f̂), the critical point c0 has n+2 arms and c1 and c2 both
have n+ 1 arms, see Figure 20.2.
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Figure 20.2. The extended Hubbard tree for ν = 10? and V̂ =
{σ◦i(w) : i ≥ 0} with w = (110)n0?ν for n = 5. The Hubbard tree
is in bold lines.

Sometimes, we need to extend the Hubbard tree by finitely many additional periodic
or preperiodic points: for example, we need the existence of a second fixed point with
itinerary 0, in addition to the α fixed point with itinerary 1. The result is as follows.

20.12. Theorem (Existence of Extended Hubbard Trees)
Let ν be a ?-periodic or preperiodic kneading sequence, and let V0 be a finite set of
periodic or preperiodic itineraries none of which has a forward shift which equals 0ν
or 1ν. Then there is an extended Hubbard tree T ′ with a continuous map f : T ′ → T ′

with the following properties:

• there is a connected f -invariant subtree T ⊂ T ′ such that the restriction of f
to T is the Hubbard tree for ν;
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• the map f : T ′ → T ′ satisfies all axioms of a Hubbard tree, except that the
map need not be surjective onto T ′ and the endpoints need no longer be on the
critical orbit;
• all endpoints have finite orbits, and the expansivity condition is extended (be-

yond branch points and points on the critical orbit) to all endpoints and their
forward orbits;
• for every v ∈ V0, there is a point in T ′ with itinerary v.

This extended tree is unique (up to equivalence).

Sketch. The proof runs along the same lines as the proof for usual Hubbard trees,
except that the initial set S(ν) is replaced by a set

S0(ν) :=
{
?ν, ν, σ(ν), σ◦2(ν), . . .

}
∪
⋃
v∈V0

⋃
k≥0

{σ◦k(v)} .

Remark. Since ν need not be an endpoint in an extended Hubbard tree, it can happen
that the critical point ?ν is a branch point. Figure 20.3 illustrates this for ν = 101 and
the tree is extended to include sequences v = 1100 and β = 0.
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Figure 20.3. An example of an extended Hubbard tree where ?ν is a
branch point.

The current version of this section (Delft, 23 Sept 09) contains both the old version of
the existence proof of extended Hubbard trees (with just a sketch of the proof, and with
the proof number different from 3.11), and Henk’s new version of the proof, but still not
quite complete. This needs to be worked out.

There is also an algorithm at the beginning of Henk’s version that shows how to com-
pute the external angle from the Hubbard tree. That algorithm should of course appear
somewhere in the book, and it should presumably go (or be) in Section 13.
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21. Infinite Hubbard Trees and Abstract Julia Sets

We show how the (infinite) Hubbard tree of a non-periodic kneading sequence ν can be

obtained as a limit of the Hubbard trees of ?-periodic kneading sequences approximating ν.

Next we define abstract Julia sets, in analogy to Hubbard trees, and show that they can be

obtained as appropriate inverse limit spaces over Hubbard trees.

It is natural to think that if ν is a non-periodic kneading sequence, Algorithm 15.2
can be used as an infinite procedure to find the (infinite) Hubbard tree of ν. In this
section, we show that this is indeed true. In Proposition 21.3 we make precise how one
can interpret the limit. If ν is strictly preperiodic, even though the internal address is
infinite, then a sequence of Hubbard trees with increasing numbers of marked points
in the limit yields a finite Hubbard tree, as illustrated in Example 21.4.

21.1. Definition (Dendrite)
A topological space X is a dendrite if it is compact, metrizable, connected and locally
connected and if it contains no closed curves.

By this definition, the topological dimension of X is automatically 1 (unless X is
a point or empty).

21.2. Definition (Infinite Hubbard Tree or Hubbard Dendrite)
An infinite Hubbard tree or Hubbard dendrite is a tree or dendrite which satisfies all
the conditions of Definition 3.2, except for the finiteness of the critical orbit, and for
which each branch point has only finitely many arms.

The last requirement of this definition is not part of the standard definition of den-
drite in topology (see e.g. Kuratowski [Ku]), and we cannot make such a requirement
for abstract Julia sets below.

21.3. Proposition (Hubbard Tree of an Infinite Internal Address)
For any infinite internal address one can construct the corresponding Hubbard tree (or
dendrite) as an inverse limit space.

Proof. Obtaining a dendrite as an inverse limit space over a sequence of monotone
sequence of bonding maps is a common procedure in topology [Na]. We give the details
for our specific case. Assume that we have an infinite internal address 1→ S1 → S2 →
. . . with corresponding kneading sequence ν. Denote by (Tk, fk) the Hubbard tree for
each finite part 1 → S1 → . . . → Sk of the internal address. In Algorithm 15.2 we
saw how to construct (Tk+1, fk+1) from (Tk, fk). The tree Tk contains a characteristic
periodic point p1 with itinerary ν1 . . . νSk−1

. Let

Uk = {x ∈ Tk : f ◦ik (x) /∈ (p1, . . . , pSk−1
) for some i ≥ 0},

where (p1, . . . , pSk−1
) denotes the open connected hull of orb(p1). Write x ∼ y if x = y

or x and y belong to the closure of the same connected component of Uk. There is a
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one-to-one correspondence between Tk/ ∼ and Tk−1. Denote the resulting projection
by πk−1 : Tk → Tk−1. Build the inverse limit space

T∞ = (Tk, πk) = {x = x1x2 . . . : πk(xk+1) = xk ∈ Tk for all k ≥ 1},

equipped with product topology. Define f∞ : T∞ → T∞ by

f∞(x)k = lim
i→∞

πk ◦ . . . ◦ πi ◦ fi+1(xi+1).

This is well-defined because the sequence {πk◦. . .◦πi◦fi+1(xi+1)}i stabilizes. Note how-
ever that y = f∞(x) does not imply that fi(xi) = yi for every i ∈ N∗, as Example 21.4
below shows. For x ∈ T∞, define its kneading symbol as 0 if xi is on the 0-side of Ti for i sufficiently large,

? if x = (0, 0, 0, . . .) is the critical point,
1 if xi is on the 1-side of Ti for i sufficiently large.

Note that πi preserves the side of the tree, unless πi(x) = 0 and x 6= 0. Therefore
above definition is meaningful. The itinerary and kneading sequence are defined in the
usual way. We check that the above construction satisfies the following properties.

(i) T∞ is a tree or a dendrite.
(ii) f∞ : T∞ → T∞ is continuous, surjective and at most two-to-one.
(iii) f∞ has a single critical point (0, 0, 0, . . .) and is a local homeomorphism onto

its image elsewhere.
(iv) The kneading sequence of (T∞, f∞) is equal to ν.

(i) We first check the properties of dendrites, including the finiteness of arms at every
branch point.
• Compactness follows directly from Tychonov’s Theorem, and the metric

d(x, y) =
∞∑
k=1

2−kdk(xk, yk)

for arc-length metric dk on Tk is compatible with product topology.
• T∞ is one-dimensional. Let gk : T∞ → Tk, gk(x1x2 . . . ) = xk be the k-th projection;
in the product topology of T∞, gk is continuous. Observe that

g−1
k (y ∈ Tk) = {(π1 ◦ . . . ◦ πk−1(y), π2 ◦ . . . ◦ πk−1(y), . . . , πk−1(y), y, y, y, . . .)} (25)

is a singleton whenever y is not precritical in (Tk, fk). It is easily seen that

U := {g−1
N (U) : N ∈ N∗, UN open in TN and ∂U ∩ ∪if−iN (0) = ∅}.

is a basis of the product topology. Let x ∈ T∞ and U ′ = g−1
N (U) ∈ U be an open neigh-

borhood of x. Without loss of generality, ∂U consists of finitely many non-precritical
points in TN . By (25), ∂U ′ = g−1

N (∂U) consists of finitely many points as well. Hence
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∂U ′ is zero-dimensional. This proves that T∞ is one-dimensional (in the inductive di-
mension).
Let

T ∗∞ := {x ∈ T∞ : xn is not eventually constant}.
We claim that T ∗∞ contains no arc. Indeed, if [x, y] ⊂ T ∗∞ for distinct point x and y,
find N such that xN 6= yN . Take zN ∈ [xN , yN ] ⊂ TN non-precritical. As gN([x, y]) is
connected and compact, it contains the arc [xN , yN ]. But then g−1

N (zN) ∩ [x, y] 6= ∅,
which contradicts (25).
• T∞ contains no closed curves. Indeed, assume by contradiction that T∞ contains
distinct points x and y and arcs L and L′ connecting x and y such that L and L′

have disjoint interiors. Find N such that xN 6= yN and take zN ∈ (xN , yN) ⊂ TN
non-precritical. Then g−1

N (zN) intersects both L and L′, contradicting (25).
• Each branch point in T∞ has only finitely many arms. There are no branch points
in T ∗∞. Indeed, suppose that [x, y, z] forms a non-degenerate triod in T∞. Find N such
that xN , yN and zN are all distinct and form a non-degenerate triod in TN . Let wN be
its branch point. As 0 ∈ TN is not a branch point, wN is not precritical. Therefore
g−1
N (wN) consists of a single point w ∈ T∞ \ T ∗∞ which is the branch point of [x, y, z].

This shows that T∞ has at most countably many branch points, each of which have
only finitely many arms.
• T∞ is arc-connected and (hence) locally connected. Let x, y ∈ T∞ be arbitrary.
Construct recursively homeomorphic parametrizations γi : [0, 1] → [xi, yi] ⊂ Ti such
that supt |γ−1

i ◦ πi ◦ γi+1(t)− t| ≤ 2−i. Define

γ : [0, 1]→ T∞, γ(t)k = lim
i
πk ◦ · · · ◦ πi−1 ◦ γi(t).

By construction, γ−1
k ◦ πk ◦ · · · ◦ πi−1 ◦ γi converges uniformly on [0, 1] for each k.

Therefore, the limits

γ(t)k = γk(lim
i
γ−1
k ◦ πk ◦ · · · ◦ πi−1 ◦ γi(t))

exist and depend continuously on t ∈ [0, 1]. Obviously γ(t)k = πk ◦ γ(t)k+1 for all k,
and γ(0) = x and γ(1) = y. Hence γ parametrizes an arc connecting x and y. Let
x ∈ T∞ be arbitrary and U ∈ U be a neighborhood of x. The above construction shows
that U is arc-connected as well. Thus T∞ is locally connected.
(ii) The continuity properties of f∞ are easily decided by means of the basis U . By
(25) it follows that for each U ′ = g−1

N (U) ∈ U , we have f−1
∞ (U ′) = g−1

N (f−1
N (U)) ∈ U .

Thus f∞ is continuous.
(iii) Similarly, if U ′ = g−1

N (U) ∈ U and 0 /∈ U , then f∞(U ′) = g−1
N (fN(U)) ∈ U ,

showing that f∞ is a local homeomorphism on T∞ \ {0}. Obviously f∞ is not one-
to-one at any neighborhood of {0}. If there are distinct point x, y and z such that
f∞(x) = f∞(y) = f∞(z), then we can find N ∈ N∗ and arbitrarily small pairwise
disjoint neighborhoods U(xN) 3 xN , U(yN) 3 yN , U(zN) 3 zN such that fN(U(xN)) ∩



Section 21, Version of July 27, 2011 261

r
c1

r
p1

r
−p0

?
c5 = 0
r
p0

r
c4

r
p3

r
c3

r
p2

r
c2

T4

6

π3

�
�
�� 6

@
@
@I66

r
c1

r
p1

r
−p0

?
c4 = 0
r
p0

r
c3

r
p2

r
c2

T3

6

π2

�
�
�� 6

@
@
@I6

r
c1

r
p1

r
−p0

?
c3 = 0
r
p0

r
c2

T2

6

π1

�
�
�� 6

@
@
@I

r
c1

?
c2 = 0

T1

Figure 21.1. Construction of the Hubbard Tree with 1→ 2→ 3→ . . .

fN(U(yN))∩ fN(U(zN)) 6= ∅. This contradicts that fN is at most two-to-one. Thus f∞
is at most two-to-one as well.
(iv) Finally, because πn preserves the symbol of points (except when πn(x) = 0 ∈ Tn),
the symbols of cn ∈ Tk are the same whenever Sk > n. This shows that ν(f∞) coincides
with ν(fk) up to entry Sk − 1. Therefore ν(f∞) = limk→∞ ν(fk). 2

21.4. Example (Finite Tree with Infinite Internal Address) Figure 21.1 shows
the construction for the internal address 1 → 2 → 3 → 4 → . . . The thick lines
indicate some of the components of Uk which are squeezed to points by πk−1 (so c2 and
c3 ∈ Tk always belong to the same component of Uk). The map f∞ on T∞ is conjugate
to z 7→ z2 − 2 on [−1, 1]. Observe that (c2, c2, c2, . . .) is a fixed point of f∞, while
fi(c2) = c3 6= c2 for each i.

A Hubbard tree in the sense of Douady & Hubbard (Definition 3.4) is a subset
of the Julia set J . One can obtain the Julia set from the Hubbard tree by taking
all full preimages and then taking the closure. In the remainder of this section, we
will use an inverse limit construction to do the same for the Hubbard tree (finite or
infinite) constructed in Algorithm 15.2 and Proposition 21.3. Thus we obtain a locally
connected model for the Julia set. Note that the construction is purely topological;
it does not depend on an embedding of the Hubbard tree into the plane. Another
approach to construct Julia sets was given in [BL].
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21.5. Definition (Abstract Julia Set)
An abstract Julia set (J, f) is a dendrite J with a mapping f and a distinguished point
0, the critical point such that

(1) f : J → J is continuous and surjective;
(2) every point in J \ {f(0)} has exactly two inverse images under f ;
(3) near every point other than the critical point, the map f is a local homeomor-

phism onto its image;
(4) (expansivity) if z and z′, z 6= z′ are branch points or points on the critical

orbit, then there is an n ≥ 0 such that f ◦n([z, z′]) contains the critical point.

Note that we do not require that the critical orbit be finite, nor that branch points have
only finitely many arms. As we will in Example 21.8, if 0 is periodic, then every point
on orbf (0) has infinitely many arms in J . The connected hull T of orbf (0) in J is the
Hubbard tree (or dendrite) and c1 is always an endpoint of T . This implies that 0 has
only two arms in T , and from this it follows that each branch point has in fact finitely
many arms in T . The characterizing difference with the Hubbard tree (or dendrite) is
that f : J → J is two-to-one everywhere, except at the critical value, which has only
one preimage. We can equip (J, f) with symbolic dynamics in the usual way: Since f
is two-to-one, J \ {0} has an even number of components (in general more than two,
because the critical value is not assumed to be an endpoint of J). The component of
J \ {0} containing the critical value obtains the symbol 1. Give the other components
symbols in such a way that if z 6= z′ and f(z) = f(z′), then {e1(z), e1(z′)} = {0, 1}.

21.6. Algorithm (Hubbard Tree to Abstract Julia Set)
The abstract Julia set can be modeled as inverse limit space over the Hubbard tree.
First we introduce some notation: If 0 6= x ∈ T then −x 6= x is the point such that

f(−x) = f(x). Obviously x and −x have different symbols in the symbolic dynamics.
For completeness, −0 = 0. The point −x need not exist in T ; in this case we can
extend T in the obvious way as to include −x. (Once the abstract Julia set (J, f) is
constructed, it will be clear that −x exists for every x ∈ J .) Let (J1, f) = (T ∪−T, f).
Suppose (Ji, f) is constructed. Take any point x ∈ Ji such that f(x) has more arms
than x (take also x = 0, if c1 has more than half the arms at 0). Add a decoration at
x which is homeomorphic to the missing (set of) arm(s) at f(x) and extend f to this
decoration in the obvious way. The symbol of this decoration is the same as the symbol
of x. If x = 0, then we add a pair of such decorations, one with symbol 0 and the other
with symbol 1. (If we consider Ji as embedded in the plane, then we can also embed
these decorations in such a way that f preserves the cyclic order of the (old and new)
arms at x.) The result of all these additions is called (Ji+1, f). Obviously, Ji ⊂ Ji+1

and there is a natural projection πi : Ji+1 → Ji defined as πi(z) = z if z ∈ Ji and
πi(z) = x if z lies in a decoration attached to x ∈ Ji. Finally build the inverse limit

J = (Ji, πi) = {(z1, z2, . . . ) : Ji 3 zi = πi(zi+1) for all i ≥ 1},
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with the product topology. Define f : J → J as f((z1, z2, . . . )) = (f(z1), f(z2), . . . ).
Note that zi 7→ (π1 ◦ . . . ◦ πi−1(zi), πi−1(zi), zi, zi, . . .) gives an embedding of Ji into J .

21.7. Lemma (Properties of Abstract Julia Sets)
The inverse limit space J is a dendrite, and if z separates J , then f ◦n(z) ∈ T for some
n ≥ 0. In particular, each branch point in J is either preperiodic or precritical.

Proof. The proof proceeds analogously to Proposition 21.3. Observe that the dec-
orations of Ji+1 \ Ji are always attached to (preimages of) marked points of Ji, i.e.,
points on the critical orbit or branch points. It follows by induction that endpoints of
Ji+1 are in the same grand orbit of the critical point. Therefore

U := {g−1
N (U) : N ∈ N∗, U open in JN and ∂U ∩ ∪i,j≥0f

−i
N (f ◦jN (0)) = ∅}

(where gN : J → JN is the N -th projection) is a convenient basis of the product
topology of J . The proof of Proposition 21.3 now applies to show that J is a dendrite,
and that J \ J∗ contains no arcs for J∗ := {z ∈ J : zi is not eventually constant}.
The set T ∗ := {z ∈ J : zn ∈ T for all n} is the embedded version of T in J . Since the
decorations of Ji+1 \ Ji of Ji do not separate Ji, a point z separates J only if z /∈ J∗.
But then f ◦n(z) ∈ T ∗ for some n ≥ 0. If z is a branch point, then f ◦n

′
(z) is a branch

point in T for some n′ ≥ n. This follows because f ◦n(z) ∈ T is a branch point in J ,
and “branch point decorations” of T are attached to 0 or preimages of branch points.

2

21.8. Example (Julia Sets with Branch Points with Infinitely Many Arms)
Figure 21.2 illustrates the procedure for the case that ν = 10?, so 0 has period three.
Every third step in the construction gives extra arms to 0, so that in the limit, 0 (as
well as all its preimages) has infinitely many arms. It provides a topological model of
the Julia set with its period three Siegel disks squeezed to points with infinitely many
arms.
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Figure 21.2. Inverse limit construction of the abstract Julia set with
kneading sequence ν = 10?. Arrows indicate the action of πk; not all are
drawn as not to clutter the figure. Thick lines indicate the parts of
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22. Symbolic Dynamics of Unicritical Polynomials

In this section we extend the discussions of Section 3–8 to the unicritical setting. In fact,

the statements and arguments of these sections carry over to the unicritical situation with

only little modification. We give a summary of the most important results for unicritical

Hubbard trees, kneading sequences and the parameter tree of degree d > 1 and outline their

proofs; for more details we refer to [Kaf1]. We stick to the reasoning of the quadratic case

as closely as possible, while in [Kaf1] sometimes slightly different approaches were taken.

This section is structured the following way: we first introduce unicritical Hubbard
trees and kneading sequences of degree d ≥ 2 and show that these concepts are equiv-
alent. Then we investigate the dynamical properties of Hubbard trees more closely.
As in the quadratic case (Sections 6 and 7), the obtained results give structure to the
parameter tree of degree d, i.e. to the space of kneading sequences of degree d.

22.1. Hubbard Trees and Kneading Sequences of Degree d. Hubbard trees
and kneading sequences of degree d > 2 are defined analogously to the quadratic case.
Note however that unlike quadratic Hubbard trees, Hubbard trees of degree d > 2 do
not come with a partition that is unique in a natural way.

22.1. Definition (Hubbard Tree of Degree d)
A Hubbard tree of degree d is a triple T := (T, f,P)d consisting of a tree T , a map
f : T → T with a distinguished point c0, the critical point and a partition P of T that
satisfy the following conditions:

(1) f : T → T is continuous and surjective;
(2) every point in T has at most d inverse images under f ;
(3) at every point other than c0, the map f is a local homeomorphism onto its

image;
(4) all endpoints of T are on the critical orbit;
(5) the critical point c0 is periodic or preperiodic;
(6) (Expansivity) if x 6= y are branch points or points on the critical orbit, then

there is an n ≥ 0 such that c0 ∈ f ◦n([x, y]);
(7) P = {{c0}, T0, . . . , Td−1}, where each Ti is either a connected component of

T \ {c0} or empty, and the indices are such that f(c0) 6∈ T0.

Note that according to this definition the triple ({c0}, id, {{c0}})d is also a Hubbard
tree. As in the quadratic case, we exclude this trivial Hubbard tree in some statements
if it provides a silly counterexample.

We call a point p ∈ T a marked point if it is either a branch point or a point on the
critical orbit. The marked points are exactly the vertices of the Hubbard tree.

Remark. A Hubbard tree T as defined above should actually be called a unicritical
Hubbard tree because it contains only one critical point. In general, a Hubbard tree in
the sense of [DH1] which is generated by a degree d polynomial can have up to d− 1
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pairwise distinct critical points. For convenience, we drop the term “unicritical” in this
section because we only consider Hubbard trees with exactly one critical point.

22.2. Definition (Kneading Sequence of Degree d)
Let us define

Σd := {0, . . . , d− 1}N∗

Σ+
d := {ν ∈ Σd : the first entry in ν is unequal 0},

Σ?
d := Σ+

d ∪ {all ?-periodic sequences},
Σ??
d := {ν ∈ Σ+

d : ν is non-periodic} ∪ {all ?-periodic sequences}.
A kneading sequence of degree d is an element of the set Σ?

d.

We define the ρ-function just as in the quadratic setting.

22.3. Definition (ρ-Function (Unicritical Case))
For a sequence ν ∈ Σ?

d, define

ρν : N∗ → N∗ ∪ {∞}, ρν(n) = inf{k > n : νk 6= νk−n}.
We usually write ρ instead of ρν. For k ≥ 1, we call

orbρ(k) := k → ρ(k)→ ρ◦2(k)→ ρ◦3(k)→ . . .

the ρ-orbit of k. We call orbρ(1) the ρ-orbit of the kneading sequence ν. If there
is a k such that ρ◦k+1(1) = ∞, then we say that the ρ-orbit of ν is finite and write
1→ ρ(1)→ . . .→ ρ◦k(1). As a result, the orbit orbρ(1) is a finite or infinite sequence
that never contains ∞.

The kneading sequences of a Hubbard tree is the itinerary of its critical value c1 :=
f(c0). (The itinerary of a point p ∈ T is defined analogously to Definition 3.5, and
hence an element of {0, . . . , d − 1, ?}N∗ .) Thus every Hubbard tree generates a ?-
periodic or preperiodic kneading sequence in a natural way. Note that the kneading
sequence ? belongs to the trivial Hubbard tree ({c0}, id, {{c0}})d. In the remainder
of this section, we will give a short outline of the proof that every ?- and preperiodic
kneading sequences in Σ??

d is realized by a Hubbard tree of degree d. Indeed, there
is a bijection between the set of ?- or preperiodic kneading sequences and the set of
Hubbard trees of degree d up to the following equivalence relation.

Let (T, f,P)d and (T ′, f ′,P ′)d be two Hubbard trees of degree d and let V, V ′ be
the set of their marked points. (T, f,P)d and (T ′, f ′,P ′)d are equivalent if there is a
bijection between V and V ′ which is respected by the dynamics such that for all v ∈ V ,
v ∈ Ti ⊂ T if and only if ϕ(v) ∈ T ′i ⊂ T ′, and such that adjacent edges stay adjacent
under ϕ.

22.4. Theorem (Existence and Uniqueness of Hubbard Trees)
Every ?-periodic or preperiodic kneading sequence is realized by a Hubbard tree; this
tree is unique (up to equivalence).
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The remainder of the subsection is devoted to prove this theorem. We proceed just
as in the quadratic case and consider the set S(ν) = {?ν, ν, σ(ν), σ◦2(ν), . . .} for any ?-
or preperiodic kneading sequence ν . We extend this set to V (ν) =

⋃
[s,t,u] b(s, t, u) ∪

S(ν), which gives rise to the set of vertices of the yet to be constructed Hubbard tree.
Here the union runs over all branched (formal) triods [s, t, u] generated by S(ν), and
b(s, t, u) denotes the branch sequence of the branched triod [s, t, u] (for a definition
see page ??). Using the triod map, we determine the relative location of any three
elements s, t, u ∈ V (ν), that is, whether they form a flat or a branched (formal) triod.
We join the points in V (ν) accordingly by straight lines. This yields a topological tree
and by the method we constructed this tree, it follows that it is indeed a Hubbard tree.
Let us discuss the construction in more detail.

22.5. Definition (Formal Triod)
Any triple of pairwise different sequences s, t, u ∈ S(ν) ∪ {0, 1}N∗ is called a formal
triod [s, t, u].

22.6. Definition (The Formal Triod Map)
If s, t, u are pairwise different such that iν 6∈ {s, t, u} for all i = 0, . . . , d − 1, then we
define the formal triod map as follows:

ϕ([s, t, u]) :=


[σ(s), σ(t), σ(u)] if s1 = t1 = u1;
stop if s1, t1, u1 are pairwise distinct;
[σ(s), σ(t), ν] if s1 = t1 6= u1 ;
[σ(s), ν, σ(u)] if s1 = u1 6= t1 ;
[ν, σ(t), σ(u)] if t1 = u1 6= s1 .

(26)

A triod [s, t, u] can be iterated until time k if for all 0 ≤ i < k, ϕ◦i([s, t, u]) 6= stop

and the three obtained sequences are pairwise distinct. The triod [s, t, u] can be iterated
infinitely often if it can be iterated until time k for all k ∈ N.

We say that [s, t, u] is flat if exactly one of the following holds:

• [s, t, u] can be iterated under ϕ infinitely often such that exactly one sequence
is never chopped off;
• there is an iterate k such that ϕ◦k([s, t, u]) = stop and one of the sequences

starts with the symbol ?. We call this event a stop with ?.

The triod [s, t, u] is branched if exactly one of the following holds:

• [s, t, u] can be iterated under ϕ infinitely often such that each sequence is
chopped off once;
• there is an iterate k such that ϕ◦k([s, t, u]) = stop and none of the sequences

starts with the symbol ?. We call this event a stop without ?.
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Unicritical versions of the combinatorial Lemmas 20.1 and 20.3 imply that each
[s, t, u] ∈ V (ν) is either a flat or branched triod. The proofs of these lemmas carry over
to the unicritical case. 2

The major difference to the quadratic setting is that now also branched triods may
reach stop. Therefore, Lemma 20.4 reads as follows. The reasoning of the quadratic
case carries over, yet one has to keep in mind that now a stop without ? might occur.

22.7. Lemma (Branched Triods, Unicritical Case)
Let ν ∈ Σ?

d be ?-periodic or preperiodic. If [σ◦k(ν), σ◦l(ν), σ◦m(ν)] is such that each of
the three sequences is chopped off at least once, then either each sequence is chopped
off infinitely often or eventually, a stop without ? occurs. 2

22.8. Lemma (Branch Points of Branched Triods)
Fix a ?-periodic or preperiodic ν. Suppose that s, t, u ∈ S(ν) ∪ {0, 1}N∗ are such that
[s, t, u] is a branched triod; set v := b(s, t, u). If σ◦k(w) /∈ {0ν, 1ν} for all w ∈ {s, t, u, v}
and all k ≥ 0, then [s, t, v], [s, u, v] and [t, u, v] are flat with v in the middle.

Proof. By assumption, the triod map can either be iterated forever for [s, t, u] or a
stop without ? occurs, say at time n. In the second case, the triod [s, t, v] is mapped
to stop after n or less iterations. If it is mapped to stop after exactly n steps, then the
image of v equals ?ν and the images of s, t start with different symbols in {0, . . . , d−1}
because ν = b(s, t, u). It follows that [s, t, v] is a flat triod. If the iteration of [s, t, v]
stops before a stop is reached in [s, t, u], say at time k, then either the iteration reaches
one of the sequences 0ν and 1ν (which is excluded by hypothesis), or [s, t, v] is mapped
to stop; but since the first k entries v ∈ {0, 1}N∗ are constructed by majority vote
among the sequences s, t, u, this is not possible. The majority vote also assures that v
never can be chopped off before time k and for higher iteration steps this is guaranteed
by (the unicritical version of) Lemma 20.3, so that [s, t, v] is flat with v in the middle.
The reasoning for the other two sequences [s, u, v] and [t, u, v] is the same. 2

The remaining statements and proofs of Section 20 carry over literally. Note how-
ever that the role of 0ν, 1ν is now played by the d sequences iν, where i = 0, . . . , d− 1:

In Lemma 20.6, it is essential to determine for any given time which sequence forms
a minority vote. While in the quadratic case there was just one possible symbol for this
vote, in the unicritical case of degree d we have d− 1 options that all yield a minority

2In the proof of Lemma 20.1, the behavior of ν under the ρ-map is compared with the modified
sequence ν̃. For any quadratic kneading sequence ν, ν̃ is defined in a unique way by specifying a
position m and taking the opposite symbol there. In the unicritical case, we have d − 2 choices for
this symbol at position m. So we have to pay more attention when defining the sequences ν̃ in the
different parts of the proof. In particular, we have to choose ν′m = νρ(k), and furthermore in Case
1, ν′m0

= νρ(k) if m0 = m and ν′m0
= νρ(m1)−m1

if m0 > m, where m1 ∈ orbρ(ρ(k) − k) such that

ρ(m1) = m0. In Case 2, we choose ν′n0
= νρ(n1)−n1

, where n1 ∈ orbρ(1) such that ρ(n1) = n0.
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vote. However, for the argument it is only important to know whether a minority vote
occurs or not, the specific symbol does not matter.

Lemmas 20.7–20.11 deal with flat triods. We only have a slightly differing statement
for Lemma 20.10:

22.9. Lemma (Components of the Tree of Degree d)
There are at most d edges in T with ?ν as endpoint, and T \ {?ν} consist of at most d
connected components: for each i ∈ {0, . . . , d − 1}, the sequences starting with i form
a subtree of T .

Proof. To prove the corresponding Lemma in the quadratic case, we showed that
there are no two edges E(?ν, s), E(?ν, t) which intersect only in ?ν such that s and t
start with the same symbol. Since now d symbols are at our disposal, the arguments
of the quadratic setting prove the lemma. 2

To finish the proof of Theorem 22.4, we have to show that two Hubbard trees which
generate the same kneading sequence are equivalent. For this it is enough to determine
the relative location of any three points on the critical orbit. As in the quadratic case,
the type of a triod [cj, ck, cl] (flat or branched) can be determined by iterating it under
the triod map. The behavior under this iteration is completely given by the itineraries
of the points cj, ck, cl. So the relative location is completely encoded in the itineraries
of the points on the critical orbit and thus in the kneading sequence of the Hubbard
tree.

22.2. Dynamical Properties of Hubbard Trees. In this section we summarize
the most important properties of Hubbard trees of degree d focusing on their periodic
orbits. It turns out that the behavior is widely the same as in the quadratic case. This
is due to the following equivalence which is the basis for all proofs in Sections 3 and 4.
Let x, y be two distinct points in a Hubbard tree T and τx, τy their itineraries. Then

τ1(x) = τ1(y) or c0 ∈ {x, y} ⇐⇒ c0 6∈ (x, y) ⇐⇒ f |[x,y] is injective.

If x, y are contained on the same orbit, then the first equivalence says that the ρ-map
can be used to find precritical points in [x, y], see e.g. the proof of Lemma 4.8.

From the definition of Hubbard trees of degree d, it follows immediately that the
critical value c1 is an endpoint, that f(c1) 6= c1, and that each branch point is periodic
or preperiodic. Unlike in the quadratic case, now a branch point might very well be
precritical. If c1 ∈ Ti, then the subtree Ti contains a unique fixed point, which is
usually called the α-fixed point. It lies in (c0, c1).

By the above equivalence and the definition of the subtrees Ti, we have that for any
itinerary τ , the set Tτ consisting of all points with itinerary τ is connected. If a periodic
itinerary τ is realized by some point p ∈ T , then Tτ contains also a periodic point p′
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such that the exact period of τ and p coincide. This is Lemma 3.9; its statement is very
useful to find periodic points in a Hubbard tree, e.g. in the proof of Proposition 22.14.

The next important step to determine the behavior of subsets of T under f is the
existence of characteristic points. For a definition, we refer to Definition 4.2. Just as in
the quadratic case, any periodic orbit of a Hubbard tree of degree d has a characteristic
point with one exception: if c0 is preperiodic and p has the same itinerary as a endpoint
of T , then orb(p) need not have a characteristic point.

As a consequence we derive the main result of our investigation of the dynamical
plane, which provides a classification of the behavior of global and local arms at periodic
points.

22.10. Proposition (Behavior of Global/Local Arms)
Let z be the characteristic point of periodic orbit of exact period n which is disjoint
from orb(c0). If G is a global arm of z and L is its associated local arm, then either
c0 6∈ f ◦i(G) for all i = 0, . . . , n or f ◦n maps L to the local arm of z pointing to c0 or
c1.

The map f ◦n permutes all local arms at z transitively or it fixes the local arm
pointing to c0 and permutes the remaining local arms transitively. 2

22.3. Admissibility. Let us turn to the question which (equivalence classes of)
Hubbard trees and, equivalently, which kneading sequences are realized by unicritical
polynomials.

By Proposition 22.10, there are exactly two types of periodic branch points which
are disjoint from the critical cycle, namely branch points with none of their local arms
fixed under the first return map and those which have exactly one local arm that is
fixed under the first return map. We call a periodic branch point b 6∈ orb(c0) with one
fixed local arm evil.

Topological admissibility. If a Hubbard tree T of degree d contains no evil branch
point, then we can turn it into a Hubbard tree in the sense of [Poi] 23.1 by defining
an angle function for each marked point of T . Therefore, each equivalence class of
Hubbard trees without evil branch points contains a representative which is generated
by some unicritical polynomials of degree d.

Combinatorial admissibility. Just as in the quadratic case, one can read off from
the itinerary of a periodic point disjoint from orb(c0) whether one of its local arms is
fixed under the first return dynamics or not. Indeed, if z is a characteristic point of
exact period n and itinerary τ , then n is contained in the ρ-orbit of τ if and only if
none of its local arms are fixed. This is Lemma 5.17 for quadratic sequences. The proof
carries over to the unicritical case because it only uses that τ1(x) 6= τ1(y) if and only
if c0 6∈ [x, y], and thus the fact that the ρ-map can be used to locate precritical points.
This is the basic properties for all proofs in Section 5. Thus the statements of this
section extend to the unicritical setting, where the term “internal address” has to be
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replaced by “ρ-orbit of ν”. For the estimates on the number of arms of periodic points,
we again need the technical Lemma 20.2, whose statement and proof are literally the
same in the quadratic setting. As main result in this subsection, we have the following
statement.

22.11. Theorem (Thm:AdmissibilityAlex)
A Hubbard tree of degree d contains an evil branch point of exact period m if and only
if its associated kneading sequence fails the Admissibility Condition 5.1 for the integer
m. 2

Remark. If ν is a ?-periodic kneading sequence of exact period n, then replacing each
? consistently by some symbol i ∈ {0, . . . , d − 1} yields d distinct periodic kneading
sequence, exactly one of which does not contain n in its ρ-orbit. This sequence is called
lower kneading sequence of ν and denoted by A(ν). The remaining d − 1 sequences
are all upper kneading sequences of ν and denoted by Ai(ν), where i it the symbol
replacing ?. Whenever we talk about some Ai(ν), we assume that the i is chosen such
that Ai(ν) exists.

The statements of Section 5 involving lower and upper kneading sequence also hold
in the unicritical setting.

22.4. The Parameter Planes. In the remainder of this section we investigate the
structure of the sets Σ??

d and Σ?
d. All statement of Section 6 and 7 together with their

proofs carry over to the unicritical setting if one adapts the statements accordingly:
instead of the internal address one has to consider the ρ-orbit of ν, and the role of A(ν)
is played by the d− 1 sequences Ai(ν).

As in the quadratic case, we define a relation < on Σ??
d and Σ?

d and show that it is
a partial order. The set Σ??

d together with the partial order < is called the parameter
tree of degree d. The following observation guarantees that < is not reflexive; it is also
needed to transfer some of the reasoning of Section 6 and 7 to the unicritical setting.

22.12. Lemma (Unique Characteristic Point for ν) Let (T, f,P)d be a Hubbard
tree and ν ∈ Σ?

d be ?-periodic. Suppose that T has a characteristic point y with τ(y) =
Ai(ν). Then T does not contain a characteristic points z such that τ(z) ∈ {Aj(ν), ν}
for any j 6= i.

Proof. We assume by way of contradiction that there is a characteristic point z with
τ(z) ∈ {Aj(ν), ν}. Without loss of generality we can assume that z ∈ ]y, c1] and that
the exact period n of z coincides with the one of its itinerary, and thus with the one of
ν. The precritical point ξ ∈ ]y, z] with smallest step has step(ξ) = n (if z = c1, then
ξ = c1). Hence, f ◦n(Ly(c1)) = Ly(c1). This implies that the local arm at z pointing
towards c0 must also be fixed under f ◦n. Therefore τ(y) = A(ν) because the exact
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periods of z and τ(z) coincide (this is Lemma 5.17 which also holds for the unicritical
case). But this contradicts our hypothesis. 2

22.13. Definition (Order for Unicritical Kneading Sequences)
Let ν and ν ′ be two ?-periodic kneading sequences. We say that ν > ν ′ if the Hubbard
tree for ν contains a characteristic periodic point with itinerary Ai(ν ′) for some i ∈
{0, . . . , d− 1}.

For all non-periodic sequences ν ∈ Σ?
d, we set ν > νk for all k, where the truncated

sequences νk are defined the same way as in the beginning of Section 7 for quadratic
sequences. If a ?-periodic kneading sequence ν ′ has ν ′ > νk for all k, then we say that
ν ′ > ν. We extend this relation to the set Σ??

d by taking the transitive hull.
One can further extend < to a relation on all of Σ?

d: if ν = Ai(ν?) for a ?-periodic
sequence ν∗, then we define ν > ν?, and ν compares to all sequences ν ′ 6= ν? just
as ν? does. If ν = A(ν?), then ν < ν?, and ν < ν ′ if the kneading sequence ν ′ is
non-admissible and the associated Hubbard tree has an evil branch point with itinerary
A(ν?); for all other kneading sequences ν ′, ν compares to ν ′ just as ν? does.

We are going to show that the relation < is a partial order on the set Σ?
d. Let us

first focus on ?-periodic kneading sequences:
Lemma 22.12 implies that ν 6> ν. Transitivity follows by item (a) of the orbit forcing

Lemma for Hubbard trees of degree d below. For all other sequences in Σ?
d, transitivity

is built into the definition. Observe also that the extensions of < are compatible with
the partial order defined in each previous step; in particular, they do not add any new
relations to the set on which < has already been defined.

22.14. Proposition (Orbit forcing)

Let (T, f,P)d and (T̃ , f̃ , P̃)d be two Hubbard trees with ?-periodic kneading sequences
ν and ν̃.

(a) Let p ∈ T, p̃ ∈ T̃ be two periodic characteristic points of exact period n such
that τi(p) = τi(p̃) for all i < n (p = c1 or p̃ = c̃1 is allowed). If z ∈ (c0, p) ⊂ T

is a characteristic point, then there is a characteristic point z̃ ∈ (c̃0, p̃) ⊂ T̃
such that z and z̃ have the same itinerary, the same type and the same number
of arms.

(b) Suppose that p ∈ T is a periodic non-precritical point of exact period n and
itinerary Ai(ν̃). Let b ∈ T be the point where the arc containing p branches

off from [0, c1], i.e., [0, b] = [0, c1] ∩ [0, p] (b = p is allowed). Denote by T̃ the
Hubbard tree associated to ν̃. If z ∈ ]0, b[ is a characteristic point, then there

is a characteristic point z̃ in T̃ such that z and z̃ have the same itinerary and
are of the same type. Moreover, if z is chosen so that (z, b) contains a further
characteristic point, then z and z̃ also have the same number of arms.

2
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The proof of the above proposition works the same way as in the quadratic case.
Again the crucial ingredient is that for two points x, y disjoint from the critical orbit,
we have that τ1(x) = τ1(y) if and only if c0 6∈ [x, y] if and only if f |[x,y] is injective. The
same holds true for the following lemma, which is needed in the proof of the Branch
Theorem 22.16 to show that for any two not comparable kneading sequences ν, ν̃, there
is indeed a maximal sequence which forms their branch point.

22.15. Lemma (Not Forced Characteristic Points)
Suppose that in the situation of Proposition 22.14, item (b), the characteristic point z
is contained in (b, c1] and that either there is a characteristic point in [b, z) or b is the

limit of characteristic periodic points. Then z is not forced in the Hubbard tree T̃ , i.e.,

T̃ contains no characteristic point z̃ such that the itinerary τ(z̃) of z̃ equals Aj(ν) for
some j, where ν is ?-periodic such that τ(z) = Ai(ν) for some i. 2

Let us summarize the results on the structure of Σ?
d:

• ν > ? for any kneading sequence ν ∈ Σ?
d.

• If ν is ?-periodic of exact period n then
(1) Ai(ν) 6> Aj(ν) for all i, j ∈ {0, . . . , d− 1}
(2) Ai(ν) > A(ν) for every i
(3) There is no element of Σ?

d between A(ν) and ν, between ν and Aj(ν), and

between Aj(ν) and A−1
qn (Aj(ν)) = (ν1 . . . νn−1j)q−1ν1 . . . νn−1?.

If we define a kneading sequence ν ∈ Σ??
d to be admissible if ν does not violate the

Admissibility Condition 5.1 for any m ∈ N, then we get the following two statement
for the space (Σ??

d , <):

• If ν is admissible then any ν ′ < ν is also admissible.
• If ν is not admissible then there is a unique admissible ?-periodic kneading

sequence µ such that µ 6< ν but for any µ′ < µ, we have that µ′ < ν.

Our main result on the parameter level shows that the sets Σ??
d and Σ?

d have the
structure of a tree.

22.16. Theorem (Branch Theorem for Σ??
d )

Let ν, ν̃ ∈ Σ??
d . Then there is a unique kneading sequence µ such that exactly one of

the following cases holds:

(1) [?, ν] ∩ [?, ν̃] = [?, µ], where µ is either ?-periodic or preperiodic.
(2) [?, ν] ∩ [?, ν̃] = [?, µ] \ {µ}, where µ is a ?-periodic such that the exact period

of µ and A(µ) coincide. 2
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Missing picture here!

Figure 22.1. An illustration of the local structure of Σ?
d as given by

Theorem 22.17. Pictured is a neighborhood of a ?-periodic sequence ν.
AtAi(ν) the sequencesA−1

qn (Ai(ν)) branch off and atA(ν), the sequences

A−1
qn (A(ν)). In the picture, the first ones are denoted by Bq

i , the latter

ones by B
q
.

22.17. Theorem (Branch Theorem for Σ?
d)

Let ν, ν̃ ∈ Σ?
d. Then [?, ν] ∩ [?, ν̃] = [?, µ], where µ ∈ {ν, ν̃} is possible. Moreover, µ is

either preperiodic or µ ∈ {µ?Ai(µ?),A(µ?)}3 for some ?-periodic sequence µ?. 2

3This is different to the quadratic case where the branch point cannot be ?-periodic. This reflects
that in the Multibrot sets, branching might occur within a hyperbolic component W , namely if the
sequences ν, ν̃ lie in the wakes of different sectors of W .



B. Further Work and Other Languages

There are various descriptions of quadratic Julia sets, studied by many authors.
In this appedix, we summarize work of several authors that initiated these various
descriptions, and draw parallels with the main text and sometimes add results ourselves.
Sometimes we alter the notation from the original papers in order to be consistent with
the main text.

275
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23. Hubbard Trees and the Orsay Notes

23.1. The Orsay Notes. Douady, Hubbard, Posdronasvili

23.2. Poirier’s Approach to Hubbard Trees. The work of Douady and Hub-
bard [DH1] shows that the filled-in Julia set of any postcritically finite polynomial
contains a special topological tree, its Hubbard tree. This Hubbard tree is the minimal
graph in the filled-in Julia set which connects all points on the critical orbits, where
edges within any Fatou component U correspond to inner rays of U . Note that this
graph sometimes is referred to as the regulated convex hull of all points on the critical
orbits. Thus, the Hubbard trees in [DH1] are defined in a less abstract way than in
Definition 3. If all critical points are strictly preperiodic then Douady and Hubbard
show that the Hubbard tree determines the polynomial completely. AK: The first part
of this paragraph is about the Orsay notes. This part could either be extended or deleted
depending on where and how the section about the Orsay notes is going to appear.

Motivated by this result, Poirier introduces abstract Hubbard trees as topological
trees with dynamics meeting certain properties which mimic the dynamic behavior of
Hubbard trees of polynomials. The fundamental idea of his approach is similar to our
definition of Hubbard trees in Section 3. However, Hubbard trees in the sense of Poirier
and Definition 3.1 are not equivalent.

Starting out with a topological tree T , Poirier adds step by step further properties
to get a more and more special tree, yielding in the end a tree with dynamics that is
realizable as Hubbard tree of some postcritically finite polynomial.

23.1. Definition (Poirier’s Abstract Hubbard Trees and Hubbard Forests)
A tree T with vertex set V is a Hubbard tree in the sense of Poirier if the following
properties are satisfied.

• There is a map τ : V → V on the set of vertices V of T which can be extended
to all of T such that τ restricted to any edge is a homeomorphism.
• There is a local degree function δ : V → Z such that d = 1 +

∑
v∈V (δ(v)− 1)

and d > 1.
• There is an angle function ∠(e, e′) which assigns a rational angle to any pair

of edges incident at a common vertex v. The function ∠ is skew-symmetric
(i.e., ∠(e, e′) = −∠(e′, e)) and it assigns the angle 0 if and only if e = e′;
furthermore, ∠(e, e′′) = ∠(e, e′) + ∠(e′, e′′) for three edges incident at a vertex
v and ∠(τ(e), τ(e′)) = δ(v) · ∠(e, e′). Also ∠ induces a cyclic order on the
edges incident at common vertex.
• (Expansiveness) For any adjacent Julia vertices v, v′ there is an m such that

the arc from τ ◦m(v) to τ ◦m(v′) contains a further vertex.
• If v is a Julia vertex where m edges meet at then the angle function at v has

values in {i/m : i ∈ N}.
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HB: What is a Julia vertex. It is explained below when you already have a Julia set, and that
seems a bit circular for the present exposition. I think the last bullet point needs rewriting.

The main result of [Poi2] states that, indeed, any abstract Hubbard tree can be real-
ized by some polynomial. Furthermore, any postcritically finite polynomial is uniquely
determined by its Hubbard tree.

23.2. Theorem (Realizability of Abstract Hubbard Trees)
Any abstract Hubbard tree is realized by a postcritically finite polynomial which is
unique up to affine conjugation.

The proof of Theorem 23.2 is based on critical portraits studied in [Poi1]. In
fact, each abstract Hubbard tree gives rise to a unique critical portrait, which is ad-
missible and thus is realized by a unique postcritically finite polynomial (up to affine
conjugation).

Poirier also observes that for any Hubbard tree T of a polynomial, the number of
rays landing at a periodic Julia vertex v, i.e., a vertex of T that lies in the Julia set of
the corresponding polynomial, equals the number of edges of T incident at v, a result
which is essentially due to Douady and Hubbard.

In [Poi3] Poirier considers maps f : C∪ → C∪ from a finite disjoint union C∪ of
copies of C to itself such that the restriction f : Cu → Cu′ to any of these copies is a
complex postcritically finite polynomial of degree at least two. The filled-in Julia set
Kf is by definition the set of all points in C∪ whose orbits remain bounded, the Julia
set Jf is the boundary of Kf .

For each copy Cu, Poirier defines a regulated tree Tu by taking the regulated convex
hull of the postcritical set contained in Cu. This construction is analogous to the
definition of Hubbard trees for postcritically finite polynomials [DH1].

23.3. Definition (Hubbard Forests)
An abstract Hubbard forest is an (in general not connected) graph H together with
a function ϕ from the set of vertices V of H to itself, a degree function d : V → N∗
and an angle function ∠v(e, e

′) which is defined for edges incident at a common vertex
v and which takes values in R/Z. The graph and the specified functions must meet
analogous requirements as specified for abstract Hubbard trees as in Definition 23.1.

Two Hubbard forests are isomorphic if they are isomorphic as graphs such that the
additional properties which turn them into Hubbard forests are preserved.

23.4. Theorem (Realizability of Hubbard Forests)
If f : C∪ → C∪ is a postcritically finite proper holomorphic map and M is a finite
forward invariant set containing all critical points of f , then the regulated hull of M
can be given the structure of a Hubbard forest in a natural way.

Conversely, every abstract Hubbard forest is isomorphic to one constructed in this
way. It is unique up to component-wise affine conjugation.
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24. Laminations

Thurston [Th] developed the theory of (quadratic) laminations of which the study of qua-

dratic Julia sets is just one, but for us most important, application. Every quadratic dendrite

Julia set is the quotient space of some quadratic lamination, and Thurston’s Nonwandering

Triangle Theorem implies that the only branchpoint in the Julia set are pre(periodic) or

(pre)critical. The question whether the same result is true in higher order lamination was

answered in the negative by Blokh and Oversteegen, [BO], after partial results by Blokh and

Levin [BL] and Kiwi [Ki1]. The contributions of Kiwi also touches on the theory of portraits

and puzzles, see further sections. In this section, we also discuss Keller’s axiomatic approach

to laminations (Julia and Mandelbrot equivalences) from [Ke].

24.1. Thurston Laminations. Recall that D denotes the complex unit disk.

24.1. Definition (Quadratic Lamination)
A quadratic lamination is a decomposition of D into leaves and gaps as follows:

• A leaf spanned by two angles ϑ, ϑ′ ∈ S1 is a geodesic in D connecting the
boundary points ϑ and ϑ′;
• a gap is a component of the complement of all leaves in D;

subject to the following conditions:

gap boundaries: for every gap, the set of angles in S1 on its boundary is totally
disconnected;

lamination unlinked: no two leaves intersect within D;
forward invariance: for every leaf (ϑ, ϑ′), there is a leaf (2ϑ, 2ϑ′) (the image

leaf) unless 2ϑ′ = 2ϑ;
backwards invariance: for every leaf (ϑ, ϑ′), there are two leaves (ϑ1, ϑ

′
1) and

(ϑ2, ϑ
′
2) (the preimage leaves) so that ϑ = 2ϑ1 = 2ϑ2 and ϑ′ = 2ϑ′1 = 2ϑ′2;

lamination closed: the set of leaves is closed: if (ϑn, ϑ
′
n) is a sequence of leaves

so that ϑn → ϑ and ϑ′n → ϑ′, then (ϑ, ϑ′) is also a leaf.

The diameter or length of a leaf or gap is the length of the shortest interval on
S1 containing the boundary points in S1 of the leaf or gap (normalized so that the
diameter of S1 is 1). The set of boundary points in S1 of any gap may be finite (at
least three points), countable or uncountable. The metric on D defining the geodesic
leaves is usually taken to be the hyperbolic metric in the Poincaré model, but the
Euclidean metric works just as well (it yields the same leaves as the hyperbolic metric
in the Klein model). A critical leaf is a leaf of diameter 1/2; by the unlinking property,
a critical leaf is necessarily unique (it need not exist). If one exists, then all other leaves
have diameter strictly less than 1/2, and every gap (if any) has diameter at most 1/2.
A precritical leaf of k steps is a leaf (α, β) so that (2k−1α, 2k−1β) is a critical leaf.
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24.2. Lemma (Lamination From Non-Periodic Angle)
For every non-periodic angle ϑ, there is a unique minimal quadratic lamination which
contains the leaf (ϑ/2, (ϑ+ 1)/2).

Proof. Consider a leaf (α, β). Then exactly one of (α/2, β/2) and (α/2, (β + 1)/2)
intersects the critical leaf; the other one must be a leaf by backwards invariance, and
there must be a second preimage leaf containing the angle (α+ 1)/2. The same applies
to these two preimage leaves, and so on. The choice is always unique unless α = 2kϑ
or β = 2k

′
ϑ for some k, k′ ≥ 0.

The critical leaf (ϑ/2, (ϑ + 1)/2) has exactly 2k precritical leaves of k + 1 steps.
Their construction is uniquely possible because ϑ is non-periodic. This cannot destroy
the unlink property: the construction assures that no preimage leaf is linked with the
critical leaf, and if two non-critical leaves are linked, they are both contained in the
same complementary component of the critical leaf, and then their image leaves are
also linked.

Countable repetition of taking preimages yields a collection of leaves which is un-
linked and forward and backward invariant. It also satisfies the condition on gap
boundaries because for every single leaf, the backwards orbit has endpoints that are
dense in S1.

Finally, we take the closure of the set of all leaves. This yields a quadratic lamination
as specified, and every quadratic lamination containing the leaf (ϑ/2, (ϑ + 1)/2) must
contain all leaves of this lamination. 2
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HB: I suspect that this part, including the lemma below and its proof, is not meant to
go in here.

We construct a quadratic lamination with a periodic gap bounded by infinitely
many leaves (this gap models a Siegel disk). For every k, we define gaps Vk as follows:
let Ik,j be the collection of complementary intervals of Sk, and let their endpoints be
ϑk,j and ϑ′k,j. Introduce leaves (ϑk,j, ϑ

′
k,j) for all j. These leaves bound a unique gap

Vk, and ∂Vk ∩ S1 = Sk. The critical leaf (ϑ/2, (ϑ + 1)/2) is disjoint from all leaves
Vk: by construction, it does not disconnect any set Sk. Similarly, no precritical leaf
can disconnect any Sk (the precritical leaves up steps up to m separate the regions of
points in S1 with identical first m entries in the itineraries). For the same reason, the
precritical leaves of steps up to n separate the sets Sk from each other, and hence they
separate the gaps Vk. As a result, the gaps Vk are disjoint. By Lemma 14.4, one gap has
a critical leaf on its boundary, and this critical leaf cannot intersect ((ϑ/2, (ϑ+ 1)/2),
so this gap must have the leaf (ϑ/2, (ϑ + 1)/2) on its boundary. The image gap then
has ϑ on its boundary, so ϑ is a limit point on the orbit of ϕ and, as above, the itinerary
of ϑ is a periodic shift of τ . 2

24.3. Lemma (Only Upper Periodic Sequences are Generated)
If a non-periodic angle ϑ has a periodic itinerary (with respect to the partition generated
by any angle), then the itinerary is an upper sequence (its internal address is finite and
ends with the exact period).

The only claim that remains to show is that τ is an upper sequence.
We continue the construction of preimage leaves from Lemma 24.2. Suppose ϑ is

not periodic. Then for every m ≥ 0, the 2m precritical leaves of m+ 1 steps disconnect
D into 2m + 1 domains with the following property: external angles on the boundary
of the same domain have the same initial m entries in their itineraries, and conversely:
any two angles on the boundary of the same domain have itineraries that coincide
for m entries (excluding angles on the backwards orbit of ϑ). Since the itineraries
on the boundary of different gaps Vk and V ′k differ within the initial n entries, they
are separated by a precritical leaf of at most n steps. This proves that leaves on the
boundary of gaps do not intersect with each other or with precritical leaves.

As in Lemma 24.2, we continue to add preimages of all leaves countably often. This
satisfies backwards invariance, it preserves the unlink property, and it satisfies the gap
condition. Forward invariance is clear by construction, using that Sk+1 = 2Sk: angle
doubling sends every boundary leaf of Vk to a boundary leaf of Vk+1. Finally, we take
the closure of all leaves.

Every Vk is still a gap in this lamination: no precritical leaf can disconnect a Vk (all
points in Vk have identical itineraries), and no preimage leaf of some Vk′ can disconnect
Vk (the Vk are unlinked, and hence their preimages are unlinked too).
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The sequence of gaps Vk is periodic with period n. By Lemma 14.4, we can renumber
the Vk cyclically so that every Vk (with k ∈ {1, 2, . . . , n}) has a boundary leaf which
is precritical of n+ 1− k steps; in particular, a boundary leaf of Vn is the critical leaf,
and ϑ ∈ ∂V1. We claim that for V1, the longest leaf is precritical with n steps.

For every k, let `k ≥ `′k be the diameters of the two longest complementary intervals:
clearly `k ≤ 1/2, and `′k < `k because Vk contains infinitely many boundary points.

If `k ≤ 1/4, then `k+1 = 2`k and `′k+1 = 2`′k. If `k > 1/4, then also `′k ≥ 1/4
(otherwise, the gap Vk+1 would contain the critical leaf); in this case, `k ∈ (1/4, 1/2]
and all other boundary leaves of Vk combined have length `k − `′k ≤ 1/4, so each
individual boundary leaf of Vk (other than the two longest ones) has diameter less than
1/4.

The two longest leaves in V0 = Vn have lengths 1/4 ≤ `′0 < `0 = 1/2, and their
images are one leaf with length 1− 2`′0 and a single point. Let b1 be the longest leaf of
V1; it has diameter `1 = 1−2`′0: the boundary of V0 is contained in two short intervals,
and their images under doubling meet at ϑ with combined length 1 − 2`′0. Therefore,
b1 is the image of the second longest leaf of V0.

After n − 1 iterations, b1 maps to a boundary leaf of Vn = V0. If, during this
iteration, an intermediate leaf ever had length less than `1, then in the step before the
first time, the length had to be greater than `′0, and the only candidate is the critical
leaf. Since this does not happen, the leaf 2n−1b1 is a boundary leaf of Vn of length at
least `1. We claim that this is the critical leaf.

All boundary leaves of V0, except the longest two, have combined lengths `1/2, so
they cannot be 2n−1b1. Therefore, if 2n−1b1 is not the critical leaf, then it is the second
longest leaf, which is thus periodic with period n. Exclude this case!

Therefore, the longest leaf of V1 is precritical with n steps as claimed. We define the
internal address of ϑ in this context as the sequence S1, S2, . . . , Sk of strictly increasing
integers so that there is a sequence of precritical leaves ai of Si steps separating V1 from
ai−1 (where a1 is the critical leaf of S1 = 1 step), so that there is no precritical leaf of
less than Si steps between ai and V1. This sequence clearly terminates with the entry n
for the leaf b1. It remains to show that the internal address of ϑ in this context equals
the internal address of the kneading sequence ν(ϑ) associated to ϑ. This resembles the
proof from Proposition 6.8 that the internal address of ν equals the internal address
by closest precritical points. One possibility is to slightly perturb ϑ so as to become
preperiodic.

What if ϑ is periodic?
HB: Keller’s text does cover periodic ϑ. How should we use that?

24.2. No Wandering Gaps for Quadratic Laminations. HB: any precursor to
Penrose’s proof of no wandering gaps in unicritical case?
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24.3. Wandering gaps. Thurston introduced laminations of degree d > 1 as a
tool to study polynomial dynamics [Th]. Recall from Section 24.1 that a lamination is
a special equivalence relation on the circle S1 which is σd-invariant, where σd : S1 → S1

is the multiplication of angles by d. For n > 2, an n-gon (or n-gap) is an equivalence
class containing n points. It is called wandering if all its σd-images are n-gons and their
convex hulls (taken within the unit disk) are pairwise disjoint. One central observation
of Thurston for quadratic laminations, see Section 24.1, is that there are no wandering
n-gons. For a long time, one of the major questions concerning lamination had been
whether this result also holds true for higher degree laminations. After a series of papers
on upper bounds for the number of such wandering n-gons, Blokh and Oversteegen
showed in 2004 that for any degree d ≥ 3, there exist uncountably many laminations
with wandering triangles , that is, wandering 3-gons [BO]. Let us first point out some
of the result obtained on upper bounds.

In his thesis [Ki1], Kiwi showed that for any polynomial p with connected Julia set
and any z ∈ C with infinite orbit, there are at most δ + 1 rays landing at z, where δ
is the number of distinct critical values of p. Moreover, if z is any point with infinite
forward orbit, then the number of rays landing at z is at most 2d.

Since external rays of a polynomial with connected Julia set give rise to a Thurston
lamination, Kiwi’s results are directly related to the study of wandering n-gons. Follow-
ing Goldberg and Milnor [GM], his proofs are based on orbit portraits and the study of
angular sizes of the sectors spanned by external rays defining the orbit portrait under
consideration.

A similar result is the following inequality, due to Bloh and Levin [BL], relating
the number of points in wandering gaps to the degree of the lamination. We give some
more details on this paper in Section 24.4 below. Note that an equivalence class g of
the lamination is called critical if σd|g is not injective.

24.4. Theorem (Upper Bound on Wandering n-gons)
If Γ 6= ∅ is a collection of equivalence classes g with #(g) > 2 which are neither
preperiodic nor precritical and belong to pairwise disjoint orbits, then∑

g∈Γ

(#(g)− 2) ≤ k∼ − 1 ≤ d− 2.

Here d is the degree of the lamination and k∼ is the maximal number of critical equiv-
alence classes h belonging to pairwise disjoint orbits such that σd(h) is a single point
with infinite σ-orbit.

Furthermore, #(g′) ≤ 2d for any non(pre)periodic equivalence class g′.

After these results on an upper bound for the number of wandering triangles, Blokh
and Oversteegen [BO] prove the existence of laminations of degree d with wandering
triangles by explicitly constructing such a lamination for degree 3. They pick two



Section 24, Version of July 27, 2011 283

critical leaves together with their preimages and one triangle T and then add iteratively
all forward images of T . This defines a map on a subset of the circle which can be
extended to a σ3-invariant lamination. Their construction leaves enough choices to yield
uncountably many laminations with wandering triangles. Further results on wandering
gaps were obtained by Childers, [Ch].

24.4. Blokh and Levin’s Growing Trees. Blokh and Levin provide a new ap-
proach to the problem of wandering gaps by their study of growing trees.

24.5. Definition (Growing Trees)
Let T be a tree contained in a topological space X, let f : X → X be a continuous

map and set T∞ :=
⋃∞
i=0 f

◦i(T ). Assume that

(i) f(T ) ∩ T 6= ∅;
(ii) Tn :=

⋃n
i=0 f

◦i(T ) is a tree for all n;
(iii) the set Cf of all critical points in T is finite and f |T∞\Cf is locally injective.

Then the sequence T0 ⊂ T1 ⊂ · · · , as well as the set T∞, is called a growing tree.

Following Douady [D3], they consider the quotient space J = S1/ ∼ under the
equivalence relation ∼ given by a lamination, and define within this space a growing
tree. Indeed, if β and −β = γ1 are the fixed point (with external angle 0) and its preim-
age on J , or more generally for a degree d lamination, σ−1

d (β) \ {β} = {γ1, . . . , γd−1},
they take the initial tree T = T0 := ∪i[γi, β] ⊂ J . For quadratic laminations, this
gives T1 = [−β, β] ∪ [β, c1], T2 = [−β, β] ∪ [β, c1] ∪ [β, c2], etc. For finite critical or-
bits, T∞ = [−β, β] ∪ Hubbard tree, but the theory treats more general cases as well,
including what we called Hubbard dendrite in Section 21.

24.6. Example (The Growing Tree for the Golden Ratio Siegel Disk)
Page 86 of [BL] gives the description of the growing tree associated to the polynomial
f(z) = z2 +e2πiγz for the golden ratio γ = 1

2
(
√

5−1). This polynomial has a Siegel disk
with rotation number γ. The growing tree T∞ becomes a star centered at the α-fixed
point with countably many arms that are rotated by angle γ under the dynamics, see
Figure 24.1.

A growing tree is called strongly recurrent if for every m ∈ N and x ∈ Tm which is
not an endpoint of Tm, there is k ≥ 0 such that f ◦k(x) ∈ T0. For strongly recurrent
growing trees, ever local arm at every point x ∈ T∞ will intersect T0 infinitely often
under iteration of f . Note that the tree in Example 24.6 is not strongly recurrent.
We quote part of Proposition 2.7 from [BL] which is instrumental in the proof of the
non-existence of wandering continua:

24.7. Proposition (Continua Map into T0 Infinitely Often)
If M ⊂ J is a non-singleton continuum or M = {x} has at least two external angles,
then there is i ≥ 0 such that f ◦i(M) ∩ T0 6= ∅. More specifically:
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Figure 24.1. Towards the growing tree for a Julia set with a golden
ratio Siegel disk. Depicted is T6 and T0 = [−β, β ] .

(a) if M is a non-singleton continuum, then f ◦i(M)∩ T0 6= ∅ infinitely often, and
∪i≥0f

−i(T0) is dense in M ;
(b) if M = {x} is not a preimage of a critical point or of β, then f ◦i(x) ∈ T0 \{β}

infinitely often if and only if x has at least two external angles.

Given two trees T ⊂ T ′, any endpoint of a component of T ′ \ T that is not con-
tained in T ′ is called outer endpoint . Blokh and Levin give estimates on the num-
ber oen(Tn+1, Tn) of newly generated outer endpoints at any step n and show that
limn→∞ oen(Tn+1, Tn) =: oen(T∞) exists. This number is then related to the number
of arms at certain branch points in Tm and T∞. Moreover, they give an upper bound
for oen(T∞), from which an upper bound for the number of vertices with infinite orbit
in T∞ is derived. This ultimately leads to the proof of Theorem 24.4.

24.5. Rational and Real Laminations. HB: This subsection should maybe come
later, in the chapter on Portraits

Closely related to the work of Thurston on quadratic lamination is the sequence of
papers by Kiwi on rational and real laminations [Ki2, Ki3, Ki4]. These combinatorial
objects comprise the landing pattern of external rays of complex polynomials.

In an expository account [Ki2], Kiwi characterizes the equivalence relation on Q/Z
that are generated by the landing pattern of external rays of polynomials with con-
nected Julia set.

24.8. Definition (Rational Lamination)
Let f : C → C be a polynomial with connected Julia set J(f). Then the rational
lamination of f , λQ(f), is the equivalence relation on Q/Z given by s ∼ t if and only
if the external rays at angle s and t land at the same point z ∈ J(f).

A formal rational lamination is an equivalence relation λQ on Q/Z that meets the
following five requirements:

(1) λQ is closed in Q/Z×Q/Z;
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(2) each equivalence class is finite;
(3) if A is an equivalence class so is d · A;
(4) for any equivalence class A, the map A 7→ d · A is consecutive preserving;
(5) equivalence classes are pairwise unlinked.

24.9. Theorem (Existence of Rational Lamination)
The rational lamination λQ(f) of any polynomial f with connected Julia set has the
five properties of a formal rational lamination given in Definition 24.8.

Conversely, for any formal rational lamination λQ there is a complex polynomial
with connected Julia set such that λQ = λQ(f).

To prove that every formal rational lamination is realized by some polynomial,
Kiwi extends λQ to an equivalence relation λR on the circle R/Z and, later on, λR to
an equivalence relation λC on the complex plane. More precisely, λR is the smallest
equivalence relation on the circle that contains λQ, and as such, λR inherits the prop-
erties of λQ stated in Definition 24.8. Any equivalence class on the circle S1 = R/Z
meeting these five properties is a Real lamination of degree d. Note that there are Real
laminations that are not the extension of any formal rational lamination.

A thorough investigation of λ-unlinked classes and gaps is the basis for constructing
a branched covering Pλ : C −→ C, called topological realization of λ, that realizes the
lamination λ. For any (rational or Real) lamination λ, two points s, t are in the same
λ-unlinked class if for all λ-classes A, {s, t} and A are disjoint and {s, t} is contained in
the same connected component of (R/Z) \A (i.e., they are unlinked). For any λ-class
A, let Convex(A) denote the Euclidean convex hull of A in the closed unit disk D.
Then any component of D\Convex(A) is called a gap. (Note that this definition differs
from [Th].) HB: And from Definition 24.1?

To finish the proof of Theorem 24.9, Kiwi relies on the characterization of critical
portraits in the postcritically finite setting [BFH, Poi]. He extends the notion of criti-
cal portraits to branched covers and shows that there is a sequence of admissible critical
portraits Θn (admissible in the sense of Poirier, see Definition 23.1) that converge in
some sense to the critical marking of Pλ. By work of Poirier, there are postcritically
finite polynomials fn with critical portrait Θn. It remains to show that the fn converge
to f and f , indeed, generates the lamination λ.

In [Ki3], Kiwi focuses on polynomials with connected Julia set whose periodic
points are all repelling and describes how they are arranged in the shift locus accord-
ing to their real lamination. He shows that each critical portrait Θ as introduced in
[BFH], see Section 25.1, generates an equivalence relation on the circle which is the
real lamination of a polynomial with all periodic points repelling and connected Julia
set under the assumption that Θ has aperiodic kneading .

A critical portrait Θ has aperiodic kneading if none of the angles forming Θ has
periodic itinerary with respect to the partition induced by Θ on the circle.
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The Real lamination λ(f) of a polynomial f with connected Julia set and without
irrationally neutral cycles is an equivalence class on the circle such that s ∼ t if the
prime end impression of s and t are not disjoint. Observe that λ(f) is a closed equiva-
lence relation, each class is finite, distinct classes are pairwise unlinked, and if d is the
degree of f , then multiplication by d preserves classes and is consecutive preserving
restricted to any class. A degree d Real lamination is an equivalence relation on the
circle meeting these five properties.

The visible shift locus Svisd is the set of polynomials f of degree d in the shift locus
such that for each critical point c of f , either exactly k external radii land at c, where
k is the local degree of c, or f(c) lies on an external radius. Observe that the notion
of external radii generalizes the idea of external rays to disconnected Julia sets. If the
Julia set Jf is connected, then the Böttcher coordinate at ∞ extends to a conformal
isomorphism ϕf of the whole basin of infinity Ωf . However, if Jf is disconnected, then
the Böttcher coordinate extends only to a subset Ω∗f . The image Uf := ϕf (Ω

∗
f ) is a

starlike domain around infinity. The external radius at angle t is the ϕf -preimage of
the largest part of {re2πit : r ∈ (1,∞)} that is contained in Uf . Thus, an external
radius either terminates at a point z (at which the gradient flow of the Green function
equals 0) or is in fact an external ray.

Kiwi extends the notion of impression to parameter space: he defines the impression
of a critical portrait Θ to be the set of polynomials f such that there is a sequence
of polynomials fn ∈ Svisd and Θ(fn) converges to Θ. Let λ(Θ) denote the equivalence
relation on the circle induces by the critical portrait Θ. With these definitions the
main result of [Ki3] reads as follows.

24.10. Theorem (Critical Portraits, Real Lamination)
Let f be a polynomial of degree d contained in the impression of the critical portrait Θ.
If Θ has aperiodic kneading then all cycles of f are repelling and λ(f) = λ(Θ). If Θ
has periodic kneading then at least one cycle of f is non-repelling.

In [Ki4], Kiwi investigates fibers and laminations associated to polynomials without
any irrationally neutral cycle which have connected Julia sets.

For such polynomials, he defines fibers as follows (which generalizes the definition of
[Sch3] to disconnected Julia sets): let Jfin(f) be the set of all periodic and preperiodic
points in J(f) which are not in the grand orbit of a Cremer point. The fiber of a point
ζ ∈ J(f) is the set of points ξ that lie in the same connected components of J(f) \ Z
for all finite subsets Z ⊂ Jfin(f) \ {ζ, ξ}.

Let d be the degree of f and Σf be backward orbit under σd : t 7→ d · t of the set of
argument of external radii that terminate at critical points of f . Then Sf denotes the
topological space obtained from the circle R/Z = S1 by replacing each point t ∈ S1∩Σf

by two points t− < t+ together with the local order topology. Given a polynomial f
without neutral cycles and connected Julia set, the impression of t ∈ S1 = R/Z is
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the set of points z ∈ Jf such that there is a sequence of zn converging to z such that
ϕf (zn)→ e2πit, where ϕf is the (extended) Böttcher coordinate of the basin of ∞.

The lamination of a polynomial without neutral cycles is given by an equivalence
relation ∼ on the circle S1, where s ∼ t if there are finitely many elements s1 =
s, . . . , sn = t of the circle such that the impression of si and si+1 intersect for all
i = 1, . . . , n− 1.

The main results in [Ki4] read as follows.
HB: In the below theorems I changed δJ into ∂J . Same for ∂U , which I assume is the

Siegel disk of just a bounded Fatou component. Fiber(ζ) = {ζ} was changed into “the
fiber of ζ, as it was not defined anyway.

24.11. Theorem (Triviality of Fibers)
Let p : C → C be a polynomial with no irrational neutral cycle. Then, if ζ ∈ ∂J is
preperiodic or periodic then its fiber is the singleton {ζ}.

Given a lamination λ, a rotation curve is a simple closed curve in S1/λ that is
periodic under the action on S1/λ induced by multiplication by d.

24.12. Theorem (Realizability of Real Laminations)
An equivalence relation λ on the circle S1 is the lamination of a polynomial f without
irrationally neutral cycles and with connected Julia set J(f) if and only if λ is a real
lamination such that if γ ∈ S1/λ is a rotation curve then the return map is not a
homeomorphism.

HB: this part needs better explanation. A picture would also be very helpful.
To prove Theorem 24.11, Kiwi follows theory of puzzles introduced Branner-Hubbard

[BH] and Yoccoz [HY], see Section 27. He shows the theorem for polynomials whose
periodic Fatou components are all fixed by defining puzzle pieces of depth n as con-
nected components of the complement of a graph Γn. At each level n, the graph Γn is
obtained by putting together graphs for each Fatou component U of f .

The graph for an attracting fixed point z consists of (i) a Jordan curve β winding
around z within the basin of attraction, (ii) closed arcs connecting the preimages in
∂U of some boundary fixed point of U to β, (iii) the parts of the external rays landing
at these preimages points up some equipotential line and (iv) this equipotential line.
The definition for parabolic fixed points is similar. The corresponding graphs of level
n are obtained by pull backs of the original graphs.

For the basin of ∞, the graph at level n consists of the set Zn = {z ∈ Jf :
f ◦n(z)is periodic of period at most n and the landing point of at least 2 rays} together
with the external rays landing at points in Zn and the equipotential line at height d−n.

To prove the “if”-direction of Theorem 24.12, Kiwi shows that the laminations
generated by f and a branched covering obtained via collapsing fibers of f are identical
and that the latter one meets all requirements of a Real lamination.
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For the “only if”-direction, Kiwi follows the proof of Theorem 24.9. He first shows
that there is a unique (up to topological conjugacy) branched covering Pλ, the topo-
logical realization of λ, which generates λ and is obtained by extending the equivalence
relation λ to the complex plane. Again there is a sequence of admissible critical por-
traits Θn, realized by the postcritically finite polynomials fn, that converge to the
critical marking of Pλ (we refer to [Ki4, Def. 6.23] for the definition of this conver-
gence), and the fn converge to f which, indeed, generates the lamination λ.

24.6. Keller’s Approach: Julia Equivalences. Keller [Ke] takes an axiomatic
approach to laminations, identifying them as equivalence relations of S1 = R/Z satis-
fying certain axioms.

24.13. Definition (Julia Equivalence)
A Julia equivalence is an equivalence relation ≈ such that

(a) ≈ is completely invariant;
(b) if α1 ≈ α2 then α1 + 1

2
≈ α2 + 1

2
;

(c) ≈ is unlinked (also called planar) in the sense of HB: Still needs reference ;
(d) ≈ is non-degenerate (or non-periodic) in the sense that there is no β ∈ S1 and

n ∈ N∗ such that 2nβ ≈ β ≈ β + 1
2
.

The diameter of the equivalence relation is diam((≈) = sup{d(β1, β2) : β1 ≈ β2},
where d(x, y) is the length of the shortest arc in S1 connecting x and y. We call α ∈ S1

a main point of ≈ if there are β1 ≈ β2 such that diam(≈) = d(β1, β2) and α = 2β1.
The equivalence relation with main point α is denoted by ≈α.

We have seen from Lemma 24.2 that if α is not periodic under the angle doubling
map, then there is a Thurston lamination with diagonal leaf (α

2
, α+1

2
), and this lami-

nation has main point α. If α is periodic, then the construction of Lemma 24.2 cannot
be carried out, and one of the aims of [Ke] is to obtain a sensible equivalence relation
also in this case.

Degeneracy (i.e., the failure of condition (d) of Definition 24.13) also occurs if the
external angle α corresponds to a Siegel disk. In this case, α is a non-periodic main
point, but its equivalence class is periodic. Chapters 2.3.1 and 3.2.4 of [Ke] explains
the connection of symbolic dynamics of this case with Sturmian sequences, see also
Section 26.1.

With these special cases in mind, we state the following theorem characterizing
Julia equivalences. (This is Theorem 1.8 in [Ke], and Chapter 2 culminates in its
proof.)

24.14. Theorem (Characterization of Julia Equivalences)
Each α ∈ S1 is the main point of a unique Julia equivalence. (However, a Julia
equivalence can have more than one main point.)

Conversely, if ≈ is an equivalence relation of on S1 satisfying conditions (a)-(c) of
Definition 24.13, then the following are equivalent:
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• Each ≈-equivalence class is finite;
• There is α ∈ S1 such that ≈ = ≈α;
• The equivalence ≈ is a Julia equivalence (i.e., it also satisfies condition (d) of

Definition 24.13).

In particular, ≈ = ≈α for each main point of ≈.

As an analogue of Julia equivalences ≈α (which lead to abstract Julia sets as quo-
tient spaces S1/ ≈α), a single “Mandelbrot” equivalence ∼ is introduced to provide an
abstract Mandelbrot set S1/ ∼. This quotient space is in the spirit of the pinched disk
model of the Mandelbrot set.

24.15. Definition (Equivalence Relation for the Abstract Mandelbrot Set)
In the “Mandelbrot” equivalence, α ∼ β if and only if ≈α = ≈β.

In terms of parameter rays, but modulo local connectivity of M, α ∼ β if and only
if the external parameter rays Rα and Rβ land at the same point. Let eα(β) denote
the itinerary of β with respect to the partition given by {α

2
, α+1

2
}. Then the following

properties are derived in [Ke, Theorem 3.1].

24.16. Theorem (Properties of the “Mandelbrot” Equivalence)
a) The equivalence classes of ∼ restricted to the periodic angles under the angle

doubling map consists of exactly two points, except for α = 0 which is only equivalent
to itself 1.

b) The following are equivalent:

(i) α ∼ γ;
(ii) α ≈α γ and γ ≈γ α;

(iii) eα(α) ' eα(γ) and eα(γ) ' eγ(γ), where we write x ' y for two itineraries x
and y if xi = yi or xi = ? or yi = ? for all i ∈ N∗;

(iv) eβ(α) = eβ(γ) for all β between α and γ;
(v) α ≈β γ for all β between α and γ.

Conditions (iv) and (v) refer to the limbs in the Mandelbrot set emerging from the
equivalence class of α, and Keller continues to describe these limbs and its hyperbolic
components in symbolic terms. Also symbolic characterizations of visible hyperbolic
components are given, in the sense of Definition ??, HB: need reference to Def. of
Visible i.e., hyperbolic component W ′ is visible from W if the path connecting W and
W ′ contains no hyperbolic component of lower period. Tuning and renormalization are
discussed at length, in terms both of symbolic dynamics and of equivalences, leading to
a characterization of the kneading sequence present in little copies of the Mandelbrot
set in itself.

A further topic is the Translation Principle How is the Translation Principle dealt with
in Lau and Schleicher? see also part on Kauko which expresses the similarities between

1This corresponds to external angles of the roots of hyperbolic components in M.
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different limbs in the abstract Mandelbrot set. Given a hyperbolic component W of
period m, the visible tree Vis p

q
(W ) at angle p

q
is a set of visible hyperbolic components

within the p
q
-wake of W . Two visible trees Vis p1

q1

(W ) and Vis p2
q2

(W ) are translation

equivalent if there is a bijection between them that extends homeomorphically to the
plane and that increases the periods of the hyperbolic components of Vis p1

q1

(W ) by

(q2−q1)m. The Translation Principle does hot hold in general, see the counter-example
below Example 5.3, but the following partial version is valid.

24.17. Theorem (Partial Translation Principle)
For each hyperbolic component W , each visible tree Vis p

q
(W ), except possibly the one

with angle 1
2
, is translation equivalent to either Vis 1

3
(W ) or Vis 2

3
(W ).

In term of internal addresses, the following conclusion is drawn:

24.18. Corollary (Partial Translation Principle for Internal Addresses)
Given an admissible internal address 1 → S1 → . . . → Sk and 0 ≤ r < Sk, if q ≥ 2 is
such that 1 → S1 → . . . → Sk → qSk + r is admissible, then 1 → S1 → . . . → Sk →
q′Sk + r is admissible for all q′ ≥ 2.
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25. Portraits

Portraits refers to sets of external angles whose dynamical rays land a special points in

the Julia set; thus we have critical portraits and fixed point portraits. This section discusses

various approaches taken in the literature. In addition, to determining the properties of the

Julia set from their portraits, the question whether every abstract portrait can be realized

by a complex polynomial is central in this area.

25.1. Bielefeld, Fisher and Hubbard’s Approach to Critical Portraits.
Building upon the thesis of Fisher [Fi], Bielefeld, Fisher and Hubbard show in [BFH]
that any polynomial p with all critical points preperiodic is characterized by its critical
marking . Bielefeld, Fisher and Hubbard define marked polynomials {p,Rϑ1 , . . . , Rϑn}
as follows: given a polynomial p, one adds for each critical point ci the angle ϑi ∈
R/Z = S1 of some external ray Rϑi that lands at the critical value p(ci). Thus in
general, a polynomial p generates several marked polynomials. The set Pd is the
set of all marked polynomials of degree d with all critical points strictly preperiodic.
The critical marking (sometimes also called critical portrait , compare Section 25.2 and
[Poi]) for a marked polynomial {p,Rϑ1 , . . . , Rϑn} is its image under the map PA from
Pd into a finite collection of sets of angles Θi:

PA({p,Rϑ1 , . . . , Rϑn}) = (Θ1, . . . ,Θn),

where Θi consists of the angles of the preimage rays of Rϑi landing at ci. Here PA
stands for preangle. If ϑ ∈ S1 and σd : S1 → S1, ϑ 7→ dϑ, then any subset of m−1

d (ϑ)
that contains at least two elements is a d-preangle of ϑ. Thus, PA maps a critically
marked polynomial to a finite collection of preangles.

A PPDFA (that is a preperiodic polynomial determining family of angles) of degree
d is a finite collection Θ of d-preangles Θi of rational angles which meet the following
conditions:

• for all i, all angles in Θi are rational;
•
∑

(#(Θi)− 1) = d− 1;
• for any i 6= j, Θi,Θj are unlinked;
• for all i, there is no ϑ ∈ Θi which is periodic;
• for any i 6= j, Θi 6∼Θ Θj

2.

Indeed, a PPDFA is a formal critical portrait which is the candidate critical portrait
for some polynomial p with all critical points preperiodic. The set of all PPDFAs of
degree d is denoted by Ad.

Theorem II and Theorem III of [BFH] prove that there is a bijection between the
sets Pd and Ad and that there is a necessary and sufficient condition for two PPDFAs
determining the same polynomial.

2We refer to [BFH, Def. 2.7] for a definition of this equivalence relation.
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25.1. Theorem (PA is Bijective)
The map PA : Pd → Ad is a bijection.
{Θ1, . . . ,Θn} and {Θ′1, . . . ,Θ′n} determine the same polynomial if and only if the

Θ′n can be renumbered such that Θ1 ∼Θ Θ′1, . . . , Θn ∼Θ Θ′n.

25.2. Poirier’s Approach to Critical Portraits. In [Poi1] Poirier extends
[BFH] to the set of all postcritically finite polynomials. Thus, critical points are
now allowed to be periodic or map onto other periodic critical points. A more careful
definition of marked polynomials allows to extend this concept to postcritically finite
polynomials with one or more periodic critical points.

Let U be a Fatou component of the polynomial p and z ∈ ∂U . Let us denote the
rays within the unbounded Fatou component that land at z by Rϑ1 , . . . Rϑk . These
rays partition C into k regions. If the rays are labeled counterclockwise such that U is
contained in the region bounded by Rϑ1 and Rϑ2 , then ϑ1 is called the (left) supporting
argument and ϑ2 the (right) supporting argument of U . A critically marked polynomial
is the triple (p,F ,J ), where p is postcritically finite and F = {Fk}mk=1,J = {Jk}nk=1

are collections of subsets of Q/Z each of which is associated to one critical point of p
as follows.

Periodic critical points: Let zF1 be an n-periodic critical point contained in a
Fatou component U of p and z ∈ ∂U be a fixed point of f ◦n. If ϑ is the left supporting
argument at z then F1 consists of the arguments of the preimage rays of p(Rϑ) that
land at z. The remaining sets Fk for periodic critical points zFk are constructed in an
analogous way, where restrictions apply if the critical cycle of zFk contains a critical
point zFi for which the set Fi has already been constructed.

Preperiodic critical points: The set Fk for a preperiodic critical point zFk that
maps onto a periodic critical point is obtained the following way: if zFk ∈ U and
f ◦n(zFk ) ∈ Un is the earliest iterate of zFk that is periodic, then let Rϑ be the left
supporting ray of Un. The set Fk consists of the arguments of the preimage rays in
p−n(Rϑ) that land at U .

For critical points zJk in the Julia set, the Jk are constructed similarly by taking
any ray landing at zJk .

Note that by construction, the number of elements contained in some Fk or Jk
corresponds to the local degree of p at the associated critical point.

25.2. Theorem (Critical Marking Determines Polynomial)
The tuple (F ,J ) determines the postcritically finite polynomial, that is, if p, q are
two postcritically finite polynomial with critical marking (p,F ,J ) and (q,F ,J ), then
p ≡ q.

If F = {Fk},J = {Jk} are finite families of sets of rational d-preangles (as de-
fined in the previous Subsection 25.1), then the tuple (F ,J ) is called an admis-
sible critical portrait of degree d if it meets certain requirements among them that
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d− 1 =
∑

k(#(Fk)− 1) +
∑

k(#(Jk)− 1) and that F ,J are unlinked and hierarchical
families [Poi1, Chapter 3].

25.3. Theorem (Admissible Critical Portraits Realized)
If (F ,J ) is an admissible critical portrait of degree d then there is a unique postcritically
finite polynomial p of degree d such that (p,F ,J ) is its critical marking.

Roughly, the proof goes as follows. One constructs a topological graph, a so-called
web, from the given collection of angles. Then one embeds the web into the plane.
(There are several possibilities which all yield Thurston equivalent maps.) Now one

defines a dynamics f on the web which extends to Ĉ as a branched covering. The final
step is to show that this map is actually a polynomial. Here Thurston’s characterization
for rational functions comes into play. By the work of Bielefeld, Fisher and Hubbard
[BFH], it is enough to show that there are no Levy cycles in order to finish the proof.
HB: A reference, within the book preferably, to Levy cycles is necessary

25.3. Fixed Point Portraits. A concept similar to critical portraits are fixed
point portraits studied by Goldberg and Milnor in [GM]. A fixed point portrait of a
polynomial p with connected Julia set is the collection of non-empty sets Θi consisting
of the angles of all external rays that land at the fixed point zi of p. Note that two
non-conjugate polynomials may share the same fixed point portrait. The sets Θi are
rational rotation sets of the circle, which are investigated in [Go] in detail. In the
following we give a short summary of the results in [GM].

If p is a polynomial of degree d then there are d− 1 fixed rays, which partition the
complex plane in, say, m regions Ui. (Note that n equals d−#{z : p(z) = z}|.) Each
Ui contains exactly one fixed point or virtual fixed points and at least one critical point.
The critical weight of Ui is the number of critical points in Ui, counting multiplicity,
and equals the number of fixed points in ∂Ui. Similarly, let Si be one of the sectors
in C generated by the rays defining Θi. The critical weight of Si equals the number
of fixed rays in Si and also the number of fixed points or virtual fixed points in Si.
These results form the basis of Goldberg’s and Milnor’s characterization of fixed point
portraits of polynomials.

More precisely, they show that given a collection of non-empty sets of rational
angles {Θ1, . . . ,Θd} which satisfy four properties is realized as a fixed point portrait of
some polynomial p of degree d (with connected Julia set). The polynomial p necessarily
has d pairwise distinct fixed points zi such that at each of them at least one external
ray is landing. In [?], HB: should this be [Poi4]? Poirier extends this result to any
collection of rational angles which satisfy the four properties specified in [GM].

To prove their realization theorem, Goldberg and Milnor link fixed point portraits
and critical portraits developed by Fisher [Fi]. They first show that the fixed point
portrait is uniquely determined by the critical portrait and then that the candidate
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fixed point portrait {Θ1, . . . ,Θd} generates a critical portrait which is realized by some
polynomial of degree d by [BFH].
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26. Circle Maps and Siegel Disks

The key observation in the analysis of the dynamics of Siegel disks U is that points on ∂U

are landing points of both internal and external rays. As a consequence, the corresponding

set of angles is both invariant under a rotation and the angle doubling map. Bullett and

Sentenac [BuS] obtain many results on the set of external angles associated to Siegel disks,

include very detailed number-theoretic properties.

26.1. Bullett and Sentenac. Suppose the Julia set of a quadratic polynomial
f : z 7→ z2 + c is locally connected and surrounds a Siegel disk U , say f(U) = U for
simplicity. The dynamics on a Siegel disk are conjugate to a rotation, say over an angle
2πα with α ∈ [0, 1] \Q, on the open unit disk D. Let ϕ : D→ U denote the conjugacy,
so f ◦ ϕ(z) = ϕ(e2πiα) and ϕ({re2πiη : r ∈ (0, 1)}) is called the internal ray of internal
angle η. The landing point of the internal ray limr→1 ϕ(re2πiη) exists and belongs to
∂U for every η. Conversely, every point on ∂U is the landing point of an internal rays
and also of at least one external ray (at least when the corresponding Julia set is locally
connected).

The set of external angles with rays landing at ∂U is invariant under the angle
doubling map g and the set of internal angles with internal rays landing on ∂U is
invariant under the rotation η 7→ η + α (in fact, this is the whole circle S1). Since the
f -images of landing points are the landing points of image rays, this raises the question
which sets of external angles are both invariant under the angle doubling map and a
version of rotation. This was one of the motivations that led Bullett and Sentenac to
write [BuS], drawing from ideas of Douady, e.g. [D4]. A key observation is that g|C
must preserve the circular order : if three distinct angles ϕ1, ϕ2, ϕ3 ∈ S1 are ordered in
counter-clockwise direction, then the image angles g(ϕ1), g(ϕ2), g(ϕ3) are distinct and
ordered in counter-clockwise direction as well.

26.1. Lemma (Orientation of Angle Doubling)
The angle doubling maps preserves the circular order of ϕ1, ϕ2, ϕ3 if and only if ϕ1, ϕ2, ϕ3

belong to a half-open semi-circle.

Proof. We follow Bullett and Sentenac [BuS, Lemma 1]. The “if”-direction is
trivial. For the “only if”-direction, first observed that if two angles, say ϕ1 and ϕ2

are diametrically opposite (i.e., ϕ3 = ϕ1 + 1
2
), then g(ϕ1) = g(ϕ3). Suppose that no

two angles are diametrically opposite and that ϕ1, ϕ2, ϕ3 do not belong to any semi-
circle. Then for one of the angles, say ϕ2, ϕ2 + 1

2
belongs to the shorter arc between

ϕ1 and ϕ3. Then ϕ1, ϕ2 + 1
2
, ϕ3 belong to a semi-circle, and have opposite order to

ϕ1, ϕ2, ϕ3. It follows that g(ϕ1), g(ϕ2), g(ϕ3) = g(ϕ1), g(ϕ2 + 1
2
), g(ϕ3) has the same

order as ϕ1, ϕ2 + 1
2
, ϕ3, which is opposite to ϕ1, ϕ2, ϕ3. 2
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We can crop the angle doubling map g to an order preserving circle map

gϑ(x) =

{
2x if x ∈ [ϑ

2
, ϑ+1

2
];

ϑ otherwise.

see Figure 26.1). The set of Cϑ of angles whose forward orbits avoid (ϑ+1
2
, ϑ

2
) has the

ϑ

ϑ
2

ϑ+1
2

�
�
�
�
��

�
�
��

gϑ(x) =

{
2x if x ∈ [ϑ

2
, ϑ+1

2
];

ϑ otherwise.

Figure 26.1. The cropped angle doubling map gϑ.

same behavior under g as under gϑ. To study the behavior of Cϑ the rotation number
is of interest. For the order preserving map gϑ, the rotation number

rϑ = lim
n→∞

Gn
ϑ(x)− x
n

is well-defined and independent of x. Here Gϑ : R → R is the lift of gϑ satisfying
Gϑ(x) = gϑ for x ∈ [0, 1) and Gϑ(x + 1) = Gϑ(x) + 1 for all x ∈ R. The rotation
number depends continuously and monotonically (because ϑ 7→ Gϑ is monotone) on ϑ,
see [ALM1, Chapter 3]. The first two main results from [BuS] are as follows:

26.2. Theorem (Structure of Cϑ)
Let rϑ be the rotation number of gϑ.

(a) If rϑ ∈ [0, 1] \ Q, then the set Cϑ is a Cantor set of upper box dimension 0,
consisting of the closure of any of its points.

(b) If rϑ ∈ [0, 1]∩Q, say rϑ = p
q

in reduced form, then Cϑ is a finite orbit of period
q.

The map r : ϑ 7→ rϑ is a Devil’s staircase. More precisely, r is continuous and non-
decreasing from [0, 1] onto itself such that r is locally constant whenever rϑ ∈ Q. The
set C = {ϑ ∈ [0, 1] : rϑ /∈ Q} has Hausdorff dimension 0.

Proof of the first part. Let In = g−n([ϑ
2
, ϑ+1

2
]) for n ≥ 0. Since rϑ /∈ Q, the

intervals In are pairwise disjoint and have length |In| = 2−(n+1). This already shows
that ∪n≥0In has Lebesgue measure

∑
n≥0 2−(n+1) = 1, so Leb(Cϑ) = 0. Let Gn be any

component of S1\∪k<nIk. If |Gn| > 2−n, then Leb(Gn\∪kIk) > 2−n−
∑

k≥n 2−k+1 = 0,
contradicting that Leb(Cϑ) = 0. Therefore Cϑ is covered by n intervals of length at
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most 2−n. Since n is arbitrary, it follows that Cϑ is totally disconnected, and has upper
box dimension limn→∞− logn

log 2−n
= 0.

The dynamics of gϑ : Cϑ → Cϑ is semiconjugate to the circle rotation over angle
rϑ. The semiconjugacy collapses the endpoints of each interval In, but is bijective
elesewhere. Since none of the Ins are adjacent (as rϑ /∈ Q), Cϑ has no isolated points
and thus is a Cantor set, and equal to the orbit closure of each of its points. 2

We can associate symbolic dynamics to gϑ using the partition [ϑ/2, ϑ] (with symbol 0)
and [ϑ, (1 + ϑ)/2] (with symbol 1). The resulting subshift is well-studied. Morse and
Hedlund [MH] were the first to study such sequences, calling them Sturmian. They
are balanced in the sense that the number of 0s in a subword of length n differs from
the number of 0s in another subword of length n by at most 1. Later studies tied
Sturmian sequences firmly to symbolic dynamics of rotations, but there is a wide range
of contexts in which Sturmian sequences emerge naturally. Since gϑ is semi-conjugate
to the rotation over rϑ and Lebesgue measure is the only invariant probability measure
of rotations, it follows immediately that

rϑ = lim
n→∞

1

n
{0 < i ≤ n : g◦iϑ (x) ∈ [ϑ/2, ϑ]}

for each x ∈ Cϑ. If ϑ is such that Cϑ is a cantor set, then this implies that rϑ =
limn→∞

1
n
{0 < i ≤ n : bi = 1} where 0.b1b2b3b4 . . . is the binary expansion of ϑ. This is

in fact the inverse of the staircase algorithm below, but there are more sophisticated
methods of finding (the continued fraction of) rϑ from gϑ-orbits.

Since the graph of the function ϑ 7→ rϑ is a Devil’s staircase, it does not have a
proper inverse. However, regardless of whether Cϑ is finite or a Cantor set, its convex
hull conv (Cϑ) can be determined algorithmically. We first give the main result:

26.3. Theorem (Further Structure of Cϑ)
Suppose that r ∈ (0, 1) is the rotation number of gϑ.

(a) If r ∈ Q, say r = p
q

in reduced form, then there are two unique adjacent points

0 < ϑ−r < ϑ+
r < 1 in Cϑ such that conv (Cϑ) = [ϑ+

r /2, (ϑ
−
r + 1)/2]. The length

of this interval is (2q−1 − 1)/(2q − 1).
(b) If r ∈ [0, 1] \ Q, then ϑ = ϑr is exactly the point such that conv (Cϑ) =

[ϑ/2, (ϑ+ 1)/2], and orbg(ϑ) is a dense subset of Cϑ.

For rotation numbers r < σ < r′ with σ ∈ Q and r, r′ ∈ [0, 1] \Q, we have ϑr < ϑ−σ <
ϑ+
σ < ϑr′.

26.4. Algorithm (Staircase Algorithm)

One algorithm to compute ϑ
(±)
r from r is as follows. Draw the line ` from the origin in

the plane R2 with slope r. Starting from the point (1, 0), draw a staircase taking unit
length steps to the right or vertically upwards, staying as close under ` as possible (and
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possibly touching `), see Figure 26.2. Encode the staircase by{
0 : a single step to the right;
1 : a single step to the right followed by a single step upwards.

If r /∈ Q, then the resulting 0-1-sequence is the binary expansion of ϑr. If r ∈ Q,
then the staircase will periodically touch `; the binary expansion of its code is ϑ+

r . The
staircase just below it (i.e., which avoids touching `) yields the binary expansion of ϑ−r .

HB: Relate this to the algorithms in section 13!?

26.5. Example (Two possibilities for Cϑ to have period 4)

r
0
r
0
r
1
rr0

r
0
r
0
r
1
r0
r r

0

��
���

���
���

���
��

r
1
rr1

rr1
rr0

r
1
rr1

rr1
r0
r r

1
rr

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 26.2. Staircases for r = 1
4

(left) and r = 3
4

(right). The symbols
indicate the code for the upper staircase (thick lines) to find ϑ+

r . The
thin lines indicate the lower staircase to find ϑ−r ; its code differs from the
code of the upper staircase by exactly two digits in every period.

If Cϑ is a periodic orbit of period 4, then r can take values 1
4

and 3
4
. For r = 1

4
, we

find the staircases in the left panel of Figure 26.2:

ϑ−1
4

= 0.0001 (binary) =
1

15
and ϑ+

1
4

= 0.0010 (binary) =
2

15
,

and Cϑ = { 1
15

= ϑ+
1
4

/2, 2
15
, 4

15
, 8

15
= (ϑ−1

4

+ 1)/2}.
For r = 3

4
, we find the staircases in the right panel of Figure 26.2:

ϑ−3
4

= 0.1101 (binary) =
13

15
and ϑ+

3
4

= 0.1110 (binary) =
14

15
,

and Cϑ = { 7
15

= ϑ+
3
4

/2, 11
15
, 13

15
, 14

15
= (ϑ−3

4

+ 1)/2}.
The third g-orbit of period 4 is {1

5
, 2

5
, 3

5
, 4

5
}; it is not contained in a semi-circle and

hence g does not preserve its circular order.
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If r /∈ Q, then one can establish number theoretic properties of ϑr. Recall that an
irrational x is of bounded type if the entries ai in its continued fraction expansion

x = [a0; a1, a2, a3, . . . ] := a0 +
1

a1 + 1
a2+ 1

a3+
1

...

, a0 ∈ Z, ai ∈ N∗ for i ≥ 1

form a bounded sequence. It is of constant type if {ai}i is eventually constant, and

x is noble if ai is eventually constant 1. Clearly, the golden ratio γ =
√

5−1
2

=
[0; 1, 1, 1, 1, . . . ] is noble.

An irrational x is Diophantine of order β ≥ 2 if there is c > 0 such that

|x− p

q
| ≥ c

qβ
for all p, q ∈ Z \ {0},

and Liouville if it is not Diophantine of any order. Whereas numbers of constant
type are known to be Diophantine of order 2, Roth’s Theorem [Ro] states that every
algebraic irrational is Diophantine of order β for every β > 2.

26.6. Theorem (Transcendence of ϑr)
Assume that the rotation number r = rϑ /∈ Q.

(a) If r is not of constant type, then ϑr is Liouville.
(b) If r is of constant type, but not noble, then ϑr not Diophantine of order 3.
(c) If r is noble, then ϑr not Diophantine of order 2 + γ − ε for the golden ratio

γ =
√

5−1
2

and every ε > 0.

It follows from Roth’s Theorem that ϑr is transcendental for every irrational r.

This theorem shows that the function ϑ 7→ rϑ is locally constant at every algebraic
number ϑ.

The set Cϑ can also be obtained by iterating the square root map Sqrtϑ : C → C,
z 7→

√
z, taking the branch of

√
z with argument ϑ/2 ≤

√
z ≤ (1 + ϑ)/2. Bullett and

Sentenac [BuS, Theorem 5] show that for each ϑ ∈ [0, 1], there is a unique attractor
Aϑ in the sense that Aϑ is a minimal closed set having a neighborhood Uϑ such that
Sqrtϑ(Uϑ) ⊂ Uϑ. This attractor belongs to {z ∈ C : |z| = 1} and Sqrtϑ preserves the
circular order on Aϑ. In fact, Aϑ is the set of unit vectors with arguments in Cϑ.

The itinerary described above should not be confused with the binary expansion
of ϑ. Binary expansions play a role in Douady tuning . Douady tuning [D4] expresses
external angles whose ray lands on the boundary of a smaller copy of the Mandelbrot
set ∂W in M by taking the corresponding angle on M and replacing the 0s and 1s in the
binary expansion by by periodic blocks d− and d+ of the pair of external angles whose
rays land at the root of W . First observe that if X ⊂ S1 is gn-invariant and contained
in an arc of length 2−n then gn preserves the circular order on A (cf. Lemma 26.1) but
the converse is not true. If A is a finite g-orbit, then it may occur that A does not
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have a single rotation number, but rather a sequence of rotation numbers as a result
of tuning.

26.7. Definition (Rotation Sequence)
A closed subset A ⊂ S1 has rotation sequence (ν1, ν2, . . . , νn), where νi ∈ Q ∩ [0, 1] for
i < n and νn ∈ [0, 1] if

• n = 1 and A has rotation number ν1 for g, or
• n > 1, ν1 = p1/q1 and A ⊂ I◦0 ∪ I◦1 ∪ · · · ∪ I◦q1−1 (with intervals Ik = g(Ik−1)

for 1 ≤ k ≤ q1 − 1), g maps A ∩ Ik bijectively to A ∩ Ik+1 mod q1 and g◦q1 acts
on A ∩ I0 with rotation sequence (ν2, . . . νn).

The main theorem (see [BuS, Theorem 7]) on this topic is:

26.8. Theorem (Existence of Sets with Rotation Sequences)
For each rotation sequence (ν1, . . . νn) there exists a unique minimal closed g-invariant
set A ∈ S1 with rotation sequence (ν1, . . . νn).

A partial proof is contained in Corollary 14.8. The rotation sequences of length two
are associated to hyperbolic components attached to (i.e., bifurcating from) the main
cardioid of the Mandelbrot set, in the sense that if c is chosen in the boundary of such
a hyperbolic component, and z 7→ z2 + c has a Siegel disk, then the dynamics on this
disk is described by a rotation sequence of length 2. Similarly, the rotation sequences of
length 3 are associated to hyperbolic components attached to hyperbolic components

of the previous kind. For example, if the rotation sequence is (1
2
, 1

3
, γ), where γ =

√
5−1
2

is the golden ratio, then the binary sequence of ϑ is obtained as follows. Start at the
end of the rotation sequence and write down the binary expansion of the number with
rotation number γ:

ϑγ = 0.7098034 · · · = 0.1011010110 . . . (binary).

The angle ϑ = 1
7

= 0.001 has rotation number 1
3
. Replace in the above sequence (after

the decimal point) every 0 by 001 and every 1 by 010 (i.e., 001 with the last two
symbols swapped) to obtain

ϑ( 1
3
,γ) = 0.010001010010001010001010010001 . . .

The angle ϑ 1
2

= 1
3

= 0.01. Replace in the above sequence (after the decimal point)

every 0 by 01 and every 1 by 10:

ϑ( 1
2
, 1
3
,γ) = 0.011001010110011001011001010110011001010110011001011001010110 . . .

This is the decimal expansion of the angle whose external ray lands at c ∈ ∂M in a
secondary hyperbolic component, in the 1

3
-wake of the period 2 hyperbolic component

in the 1
2
-wake of the main cardioid. The polynomial z 7→ z2 + c has a Siegel disk of

rotation number γ and period 6 = 3 · 2.
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Rotation sequences can be infinite, when expressing infinitely renormalizable maps.
For example (1

2
, 1

2
, 1

2
, 1

2
, . . . ) is related to the Morse sequence

01101001100101101001011001101001 . . . ,

and the angle ϑ with this binary expansion has a ray landing at the Feigenbaum
parameter, i.e., the limit parameter of the period doubling cascade along the real axis.
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27. Yoccoz Puzzles

Puzzles were developed by Branner and Hubbard’s and by Yoccoz to prove local connec-

tivity of Julia sets, and has since been taken up by many authors to address a much wider

range of questions. In this section we present puzzles and the corresponding critical tableaux.

This gives a symbolic description of the dynamics of Julia sets, alternative to the kneading

theory that is predominant in this book.

27.1. Puzzle pieces and (critical) tableaux. Puzzles were designed by Yoccoz
as a tool to prove local connectivity of, originally, quadratic Julia sets, but a paper
very influential on the development of puzzles was written by Branner and Hubbard
[BH] on cubic polynomials. By now, puzzles (and parapuzzles in parameters spaces)
are commonly used for various maps and purposes. In this section we focus on the com-
binatorial description of the dynamics emerging from puzzles, phrased in the language
of tableaux . The main early references are [BH, HY, Mi0].

27.1. Definition (Puzzles and Puzzles Pieces)
Take c ∈M and Gc : C \ Jc → (0,∞) be the corresponding Green function. Fix R > 0
and let

U0 := {z ∈ C : z ∈ Jc or Gc(z) < R}.
The fixed point α has q ≥ 2 external rays, say γ0, . . . , γq−1, landing on it. Let

Γ0 = ({α} ∪ γ0 ∪ · · · ∪ γq−1) ∩ U0.

The closures of the components of U0 \ Γ0 are the puzzle pieces of depth 0.
Continue inductively:

Un = p−1
c (Un−1) and Γn = p−1

c (Γn−1),

and the closures of the components of Un \ Γn are the puzzle pieces of depth n.

Obviously U0 ⊃ U1 ⊃ U2 ⊃ . . . and since pc(Γ0) ⊃ Γ0, it follows that the number
of puzzle pieces of depth n increases with n. Also Γ0 ∩ Jc = {α}, so Γn ∩ Jc consists
of all preimages of α of order less than n. Whenever x is not eventually mapped on α,
there is a nest of puzzle pieces X0(x) ⊃ X1(x) ⊃ · · · ⊃ Xk(x) ⊃ . . . , where Xk(x) is
the unique puzzle piece of depth k containing x. The impression of x is

I(x) = ∩k≥0Xk(x).

For non-renormalizable polynomials, this definition of impression I(x) has the same
outcome as the usage in Section 9. If pc is renormalizable, say of period N , then for
instance the critical impression I(0) contains the little Julia set J̃ of p◦Nc . In this case,
one could start the puzzle construction for J̃ . Observe that

pc(Xk(x)) = Xk−1(pc(x)) for all x ∈ Jc \ ∪n≥0p
−n
c (α).



Section 27, Version of July 27, 2011 303

I hope to steal a better picture somewhere sometime

Figure 27.1. The Yoccoz puzzle for the quadratic Fibonacci map with
internal address 1→ 2→ 3→ 5→ 8→ 13→ 21→ . . .

If I(x) = {x}, this means effectively that arbitrary small neighborhoods of x can be
mapped onto Jc by a branched covering map p◦nc : Xn(x)→ component of U0\Γ0, whose
covering degree can be determined from the number of puzzle pieces Xn−k(p

◦k
c (x)) that

contain the critical point. This is expressed by the following theorem, cf. Propositions
5.6 and 5.7 in [HY]:

27.2. Theorem (Impressions and Local Connectivity)
Take c ∈M.

(i) If pc is non-renormalizable, then I(x) = {x} for all x ∈ Jc \ ∪k≥0p
−k
c (α). In

this case Jc is locally connected.
(ii) If p = pc is renormalizable, say its renormalization is hybrid equivalent to p̃,

then the critical impression I(0) is homeomorphic to the Julia set of p̃, and
the same is true for the impressions of all x ∈ Jc that eventually map into
I(0). For all other points x ∈ Jc \ ∪k≥0p

−k
c (α), the impression I(x) = {x}.

Instrumental in the use of this theorem is the sequence of (possibly degenerate)
annuli An(x) = Xn(x) \Xn+1(x).

27.3. Lemma (Divergence of Moduli Sums)
If the series of moduli

∑∞
n=0 modAn(x) diverges, (where the modulus of a degenerate

annulus is 0), then diamXn(x)→ 0 as n→∞ and I(x) = {x}.

We will not prove this lemma, nor discuss its role in Theorem 27.2, but instead
present the notion of tableaux and critical tableaux. These were primarily designed to
determine for which annuli, pc : An(x)→ An−1(pc(x)) is a univalent maps, a branched
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covering or proper covering map (the off-critical, semi-critical and strictly critical case).
They also give a way to describe the combinatorial properties of Julia sets as a whole.
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Figure 27.2. An example of a marked grid (namely of the Fibonacci
map with internal address 1→ 2→ 3→ 5→ 8→ 13→ 21→ . . . ), with
| for strictly critical and • for semi-critical positions. The texts illustrate
tableau rules (b)-(e), and how to compute the Yoccoz’ τ -function.

27.4. Definition ((Critical) Tableaux and Marked Grids)
Fix c ∈M. The tableau T (x) is the two-dimensional array

T (x) := (Tn,k(x))n,k≥0 =
(
Xn(p◦kc x)

)
n,k≥0

.
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If x = 0, then we call T (0) the critical tableau. In the tableau T (x), position

(n, k) is called


off-critical if Tn,k(x) 63 0;

semi-critical if Tn,k(x) \ Tn+1,k(x) 3 0;

strictly critical if Tn+1,k(x) 3 0.

The position (n, k) is critical if it is semi-critical or strictly critical.
A marked grid is the two-dimensional array N2 = (n, k)n,k≥0 where is each (n, k)

is marked according to whether it is off-critical, semi-critical or strictly critical, see
Figure 27.2. The marked grid of the critical point is the critical marked grid.

Tableau rules. The marked grid of every quadratic polynomial satisfies the fol-
lowing rules, see Figure 27.2.

(a) Each column is either entirely critical, entirely off-critical, or has a unique
semi-critical position, above which all positions are strictly critical. Thus the
semi-critical depth scd(k) ∈ {−1, 0, 1, 2, 3, . . . ,∞} is uniquely determined as
the position (scd(k), k) at which the k-th column is semi-critical, with entirely
off-critical resp. entirely critical columns denoted as scd(k) = −1 resp. ∞.

(b) If (n, k) ∈ T (x) is critical, then (i, k + j) ∈ T (x) has the same nature as
(i, j) ∈ T (0) whenever i+ j < n.

(c) If (n, k) ∈ T (0) is strictly critical and (n + i, i) ∈ T (0) is off-critical for
0 < i < k, and if (n + k, l) ∈ T (x) is semi-critical, then (n, l + k) ∈ T (x) is
semi-critical as well.

(d) There are at most q − 1 consecutive columns in T (x) that are entirely off-
critical.

(e) The columns 1, . . . , q − 1 in the critical tableau T (0) are entirely off-critical.
(Rules (d) and (e) refer to the q−1 components of U0 \Γ0 that do not contain
the critical point, see Lemma 3.7.)

Whether pc is renormalizable or not can be read off from the tableau, using tableau
rule (b).

27.5. Lemma (Periodic Tableaux)
Suppose that c ∈M is such that pc has only repelling periodic points. If in the critical
tableau T (0), column k > 0 is entirely off-critical, then T (0) is periodic. In fact, if
k0 > 0 is the smallest such column number, then pc is renormalizable of period k0.

Since the ‘movement’ in the tableau is ‘north-east’ we can draw lines from position
(n, k) in this direction and count how many critical positions it intersects. If this
number is s, then the covering degree of p◦nc : Xn(x) → X0(p◦nc (x)) is 2s, and the
number of branching points is determined by the number of semi-critical intersections.
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This motivates the Yoccoz’ τ -function τ : N∗ → N for the critical tableau T (0):

τ(n) =

{
i if i < n is maximal such that (i, n− i) is critical;
0 if no such i < n exists.

Further investigations on the function τ lead to weights functions (wk)k∈N which are
used to determine the degree and number of branching points of p◦nc (Xn(0)) exactly,
see [HY]. This topic is beyond the scope of this introduction.

Yoccoz’ τ -function together with tableau rules (a) and (b) completely determine
the critical tableau. However, they do not completely determine pc, or even its internal
address, and, contrary to internal addresses, the lack of uniqueness of polynomials
with the same tableau is not reflecting certain symmetries in the Mandelbrot set. The
problem is that the semi-critical depth does not determine on which side of 0 forward
images ck land, as the following example shows.

27.6. Example (Multiple polynomials with the same critical tableau)
The kneading sequences ν = 10010 and ν̃ = 10110 have the same critical tableau with
semi-critical depth

scd(k) =


∞ if k = 0;
−1 if k = 1;

0 if k = 2;
2 if k ∈ 2N∗ + 3;
−1 if k ∈ 2N∗ + 4.

An algorithm how to derive the critical tableau from the internal address (or knead-
ing invariant) effectively has to our knowledge not been devised.

HB: What did Faught do in his thesis? Relevant for this section?
We conclude this section with the definition of persistent recurrence. It may be

clear that if c ∈ M is such that pc is non-renormalizable, has only repelling periodic
points and 0 is non-recurrent, then the critical tableau T (0) has bounded semi-critical
depth scd(k) for k ≥ 0, or equivalently, τ(n) is bounded.

27.7. Definition (Persistent Recurrence)
If a non-renormalizable quadratic polynomial pc has a recurrent critical point 0, then
it is called persistently recurrent if τ(n)→∞.

Equivalently, for every neighborhood U 3 0 there are only finitely many n such that
if V 3 c1 is the pull-back of U along the orbit c1, c2, . . . , cn−1, cn (which naturally only
applies if cn ∈ U), then p◦n−1

c : V → U is a univalent. This formulations extends to the
(infinitely) renormalizable case as well: infinitely renormalizable maps have persistently
recurrent critical points.

If 0 is persistently recurrent, then the critical omega-limit set ω(0) is a minimal
Cantor set. The property has been investigated for real parameters c in [Bru2, Section
3], where it was shown that the condition Sk−Sk−1 →∞ implies (but is not equivalent
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to) persistent recurrence of the critical point. For complex parameters, not even this
is true, as the next example demonstrates.

27.8. Example (Sk − Sk−1 →∞ does not imply minimality of ω(0))
The internal address

1→ 2→ 4→ 10→ 22→ . . .→ Sk → Sk+1 → . . .

with Sk+1 = 2Sk + 2 for k ≥ 2 does not yield a persistently recurrent critical point. In
fact, ω(0) 3 α (and therefore ω(0) is not even minimal), as can be seen from the fact
that the kneading sequence

ν = 101110 11111︸ ︷︷ ︸
five 1s

01110 1111111︸ ︷︷ ︸
seven 1s

011101111101110 111111111︸ ︷︷ ︸
nine 1s

0 . . .

contains arbitrarily long blocks of 1s.

27.2. Maybe here work by Petersen and Roesch?
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28. Iterated Monodromy Groups and Kneading Automata

HB: I didn’t understand too much of this section. It seems a good idea to illustrate it
with a good example, followed through the entire section

This is a powerful and rather new approach to study dynamical system uses methods
from group theory. Should we mention work by Grigorchuk, Pilgrim, ...HB: I suppose so, at
least the references In this section we give a short overview following [IMG], on iterated
monodromy groups and kneading automata, over their interdependence and how they
relate to kneading sequences of Definition 2.1 (compare also Proposition 11.6). We will
define the iterated monodromy group for coverings between spaces although it can be
defined more generally for orbispaces, too.

28.1. Definition (Iterated Monodromy Group)
LetM be an arcwise and locally arcwise connected space andM1 an arcwise connected
subspace of M. If f : M1 → M is a covering, then the iterated monodromy group
IMG(f) associated to f us given by

IMG(f) := π1(M)/
⋂
n>1

Kn,

where Kn is the kernel of the action π1(M) by the natural monodromy action on the
nth iterate f ◦n :Mn →M of f .

HB: Using the same symbol and font M as the Mandelbrot set seems confusing. The
action π1(M), should that be the fundamental group? Maybe rewrite that sentence. Mn

is not defined. The intersection
⋂
n>1Kn should be over n ≥ 1 maybe?

IMG(f) acts naturally on a rooted tree T , which is defined the following way: choose
any base point t ∈ M. Then the nth level of the tree is the set f−n(t) and a vertex
z ∈ f−n(t) is connected by an edge with f(z) ∈ f−n+1(t). The monodromy action of a
loop γ ∈ π1(M, t) starting and ending in t on the level f−n is the permutation on f−n

induced by the map

z 7→ γ(z),

where γ(z) is the end of the unique f ◦n-preimage of γ starting at z. This way, the
fundamental group π1(M, t) acts on the whole tree T . The action is called iterated
monodromy action of π1(M) and is independent from the choice of the base point t.

HB: I don’t understand this last sentence. Is t still the base point? I don’t see the
connection between the loop γ and the points in f−n(t).

Now let us turn to automata: we start out with some basic definitions. Let X be
a finite set, which will be called the alphabet in the following. Then

X? = {x1 · · ·xn : xi ∈ X, n ∈ N}

HB: You say N, so the empty word is included? Just to make sure.
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represents the set of all finite words over the alphabet X. The set X? is the vertex
set of a rooted tree in a natural way, i.e., two vertices are joined by an edge if and only
if they are of the form v and vx with v ∈ X? and x ∈ X. A map f : X? → X? is an
endomorphism of this rooted tree X? if f preserves the root and adjacency of vertices.

28.2. Definition (Automaton)
An automaton (A,X) over the alphabet X is given by

(1) its set of states A and
(2) a map τ : A×X → X × A.

If τ(q, x) = (y, p), then the projection to the two coordinates y(x, q) and p(x, q) are
called the output and transition function.

Usually the following two notations are used for the action of τ on (A×X):

q · x = y · p or equivalently y = q(x) and p = q|x.
The Moor diagram of (A,X) is the labeled directed graph so that its vertices are

identified with the states of the automaton and for any τ(x, q) = (y, p) there is an
directed edge (sometimes also called arrow) from q to p that is labeled by (y, x).

The dual Moor diagram of (A,X) is the labeled directed graph with the set of vertices
identified with the elements of the alphabet X. Its arrows are elements of A×X, where
an arrow (g, x) starts in x and ends in g(x) and is labeled by (g, g|x) ∈ A× A.

HB: What exactly are states?

Remark. Observe that an automaton can also process any word v ∈ Xn by processing
step by step the letters of v. That is, (A,X) induces an automaton (A,Xn) in a natural
way. The states of (A,X) act on X? in a natural way, or in other words, they induce
an endomorphism of the rooted tree.

Two automata (A,X), (B,X) can be composed so that the set of states of the
resulting automaton (A ·B,X) is the direct product of the states of the sets A, B.

The dual automaton (X ′, A′) of an automaton (A,X) is the automaton over the
alphabet A′ with states X ′ such that X,X ′ and A,A′ are bijective and such that for
(X ′, A′), x′ · q′ = y′ · p′ if and only if for (A,X), q · x = p · y.

An automaton is invertible if each of its states defines an invertible transformation
of X∗. If (A−1, X) is the inverse automaton of (A,X) then the set of states A−1 and
A are bijective and we have that g−1 · x = y · h−1 if and only if g · y = x · h.

Every automaton generates a group in the following way:

28.3. Definition (Group Generated by an Automaton)
Let (A,X) be an invertible automaton. Then the group generated by (A,X) is the group
〈A〉 of transformation generated by all states in A.

The iterated monodromy groups IMG(f) of postcritically finite polynomials can be
obtained as groups generated by special automata, so called kneading automata. Before
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we give a definition of these special automata, we introduce a method to picture a set
of permutations of a finite set X.

A multi-set T = {πi}i∈I is a map from a finite set of indices I into the set of per-
mutations of X. The cycle-diagram of T is an oriented two-dimensional CW-complex
whose 0-cells coincide with X and whose 2-cells are defined as follows: for any per-
mutation πi ∈ T and any cycle (x1, . . . , xm) in πi there is a polygon with vertices
x1, . . . , xm so that the order of the xi in the cycle is equal to the order of the vertices
of the oriented 2-cell. Moreover, different cells are only allowed to intersect at 0-cells.

28.4. Definition (Kneading Automaton)
A finite permutational automaton is called a kneading automaton if the following three
conditions hold:

(1) Every state g ∈ A has a unique incoming arrow, i.e., there is a unique (h, x) ∈
A×X such that g = h|x.

(2) For every cycle (x1, . . . , xm) of the action of any state g on X, there is at most
on letter xi such that the state g|xi is non-trivial.

(3) The multi-set of permutations defined by A on X is tree-like, that is it cycle-
diagram is connected and contractible.

Note that if (A,X) is a kneading automaton, so is (A,Xn) for any n. Could not
find definition of permutational automaton

Nekrashevych HB: needs a reference defines the kneading automaton for a postcrit-
ically finite polynomial f via its spider. HB: clearly we need a section on and reference to
spiders. Recall that the spider S of a topological polynomial p is a collection of disjoint
curves that connect each point in the postcritical set of f to infinity, see Section 13.
The critical portrait C associated to the spider S is the set {Xz : z is a critical point},
where Xz is the subset of elements in {f−1(γf(z)) : γf(z) ∈ S} that land at z. The
critical portrait partitions the complex plane into d sectors, where d equals the degree
of f . Let us label the sectors Sx by some index set X. HB: Is X the alphabet as before?

Then the kneading automaton KC,f of a topological polynomial f is the automa-
ton with states {gz : z is a postcritical point } ∪ {1} such that output and transition
function have the following properties. Let z be any postcritical point.

(1) Suppose first that y ∈ f−1(z) is not critical then gz · x = x · gy, where gy = 1
if y is not a postcritical point.

(2) If y ∈ f−1(z) is critical point let d′ be its degree. In this case, y is contained
in the boundary of d′ sectors Sx1 , . . . , Sxd′ .

If y is not a postcritical point then let α be the preimage loop around y of a
small loop around z and suppose that the d′ sectors Sxi are labeled according
to the cyclic order in which α intersects them. Set gz · xi = xi+1 · 1 for all
i = 1, . . . , d′.
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If y is a postcritical point then there is a path γy contained in the spider
S and we label the d′ sectors such that γy is adjacent to the sectors Sxd′ and
Sx1 . Set gz · xi = xi+1 · 1 for i = 1, . . . , d′ − 1 and gz · xd′ = x1 · gy.

KC,f meets the three requirements of Definition 28.4, and hence, is a kneading automa-
ton.

28.5. Definition (Planar Kneading Automaton)
A kneading automaton (A,X) with d = #(X) is planar if there exists a cyclic order
g1, . . . , gn of its set of non-trivial states such that for every letter x ∈ X, (g1 · · · gn)d|x
is a cyclic shift of the word g1 · · · gn.

28.6. Theorem (Realization of Planar Kneading Automaton I)
If C is the critical portrait of a topological polynomial f , then the associated kneading
automaton KC,f is planar.

Conversely, every planar kneading automaton (A,X) is realized by a topological
polynomial, i.e., there is a branched cover f : R2 → R2 such that (A,X) is isomorphic
to KC,f .

The obstruction for a topological polynomial to be Thurston equivalent to a post-
critically finite polynomial is the existence of a Levy cycle. The equivalent of a Levy
cycle in the language of kneading automaton (A,X) is that the set A of state of (A,X)
has bad isotropy groups. For an exact definition, we refer to [IMG, Section 6.9].

Thus, we get the following characterization of kneading automata:

28.7. Theorem (Realization of Planar Kneading Automaton II)
Let (A,X) be a kneading automaton. Then the following are equivalent:

(1) There exists a postcritically finite complex polynomial f with invariant spider
S and associated critical portrait C such that (A,X) is isomorphic to KC,f .

(2) (A,X) is planar and A does not have bad isotropy groups.

28.8. Corollary (Characterization of Iterated Monodromy Groups)
A group is isomorphic to the iterated monodromy group of a postcritically finite polyno-
mial if and only if it is isomorphic to a group generated by a planar kneading automaton
without bad isotropy groups.

For more information about the groups generated by the kneading automaton KC,f
of a postcritically finite quadratic polynomial, we refer to [IMG, Section 6.10].

Note that for a postcritically finite polynomial, the limit space JIMG(f) of the iter-
ated monodromy group is homeomorphic to the Julia set J(f) of f [IMG, Section 5.4].
On the other hand, the limit space of the group generated by (A,X) is approximated
by the dual Moor diagram of the automaton (A,Xn), see [IMG, Subsection 3.4.3].
Thus, the dual Moore diagrams approximate the Julia set of the given polynomial.

Finally, we link the concept of kneading sequences to kneading automata. Let
(A,X) be a kneading automaton over the binary alphabet {0, 1}. Then A contains
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only one active state b1 (i.e., only one state b1 such that b1 as a function on X is
non-trivial). By the definition of kneading automata, every non-trivial state has only
one incoming arrow and since b1 is the only active state, b1 can be reached from every
non-trivial state by running along the arrows. Thus, the states of (A,X) can be ordered
in a (pre-)periodic sequence b1, . . . , bn such that for every i > 1, either bi|0 equals bi−1

and bi|1 is trivial or vice versa.

28.9. Definition (Kneading Sequence of (A,X))
The kneading sequence of a kneading automaton (A,X) with X = {0, 1} is the sequence
of the labels of the arrows in the associated Moor diagram along the path (bi)

∞
i=1.

Observe that by definition, if KC,f is the kneading automaton of a postcritically
finite quadratic polynomial f , then the kneading sequence of KC,f coincides with the
kneading sequence of Definition 2.1.
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29. Maps of the Real Line

The symbolic description of real quadratic maps (i.e., on the interval) goes back further

than the complex counterpart. The term kneading theory was coined in this context. The

admissibility question has long been solved for such maps, and the literature on the (com-

binatorial) properties of interval maps is very extensive. Apart from real admissibility, we

describe in this section a few topics relating to topological entropy, patterns of periodic orbits,

orbit forcing and also Sharkovskiy’s Theorem.

29.1. Kneading Theory. If c1 ∈ R, fc1 : z 7→ z2 + c1 preserves the real line. The
real quadratic (or logistic) map fc1 is the prototype of a unimodal map, i.e., a real
map f with a single critical point, such that f is decreasing resp. increasing on the two
complementary domains of this critical point. As analog of the partition {T1, {0}, T0}
of the Hubbard tree, let us use the partition {(−∞, 0), {0}, (0,∞)}, with symbols 1, ?
and 0 respectively, to define symbolic dynamics. The itinerary e(x) of x ∈ R is defined
by

ei(x) =

 0 if f ◦(i−1)(x) > 0,
? if f ◦(i−1)(x) = 0,
1 if f ◦(i−1)(x) < 0.

The itinerary of the critical value c1 is the kneading sequence of fc1.

29.1. Definition (Real Admissibility)
A sequence ν is real admissible if there is c1 ∈ R such that ν is the kneading sequence
of fc1.

For instance, the sequences 0, ?, 1 and 1? are all admissible, as they are realized by
c1 = 0.5, c1 = 0, c1 = −0.5 and c1 = −1 respectively. All other admissible sequences
start with 10 and are assumed by some c1 ∈ [−2,−1). For these values of c1, the
interval [c1, c2] (where we write ck = f ◦k(0)) is forward invariant and contains 0; it
is called the core of the unimodal map. Note that if c1 ∈ R belongs to the interior
of the Mandelbrot set, then the above partition gives rise to itineraries and kneading
sequences that may be different from those that arise from the partition by external rays
landing at the root of the hyperbolic component containing c1, which were introduced
in Section 1 and were used throughout this text. The standard example, achieved for
c1 = −1.75, is the kneading sequence 101, which is real admissible, but does not appear
as complex kneading sequence as defined in Definition 3.5.

Real admissibility conditions go back to [MSS, DGP, MiT], and are based on the
parity-lexicographic order.
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29.2. Definition (Parity-Lexicographical Order)
Given e, ẽ ∈ Σ distinct, and n = min{i ≥ 1 : ei 6= ẽi}, the parity-lexicographical order
between a and b is given by

e <p ẽ if

{
en < ẽn and #{i < n : ei = 1} is even,

en > ẽn and #{i < n : ei = 1} is odd.

Here 0 < 1.

Remark. By setting 0 < ? < 1 we can extend <p to sequences in {0, ?, 1}N∗ with the
property that if em = ?, then σ◦m(e) = ν is a fixed kneading sequence ν ∈ Σ?. We call
this space of itineraries Σr.

Remark. Milnor and Thurston [MiT] use formal power series rather than symbolic
dynamics to phrase their kneading theory. This is a more involved, but for many
purposes very powerful method. Let T0 and T1 be formal unit vectors associated to
our symbols 1 and 0. Let for j ≥ 0

εj(x) =

 +1 if f ◦j(x) ∈ T0,
−1 if f ◦j(x) ∈ T1,

0 if f ◦j(x) = 0,

expressing the fact that f |T0 preserves and f |T1 reverses orientation. Then the product

ϑn(x) = ε0(x) · · · εn−1(x) ·
{
Tk if f ◦n(x) ∈ Tk for k = 0, 1,
1
2
(T0 + T1) if f ◦n(x) = 0

is a formal vector expressing both where f ◦n(x) is situated and whether f ◦n is locally
increasing, decreasing or has an extremum point at x. The vector-valued formal power
series

ϑ(x, t) =
∑
n≥0

ϑn(x)tn

is called the invariant coordinate of x.

29.3. Lemma (Coefficients of Kneading Coordinate Sum to One)
The sum of the coefficients of Tj, j = 1, 2, satisfy

2∑
j=1

(1− ε(Tj)t) · δj(ϑ(x, t)) = 1 (27)

for every point x. Here the Dirac delta (δi(Tj) = 1 if i = j and δi(Tj) = 0 otherwise)
is extended by linearity to vectors with Q[t]-valued coefficients.

29.4. Example (Kneading Coordinates of Fixed Points)
Before proving this lemma, let us see how this works out for the fixed points of f . The
orientation reversing fixed point α ∈ T1 has ϑ(α) = (1− t+ t2− t3 + . . . )T1, so formally
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(1 − ε(T1)t)δ1(ϑ(x)) = (1 + t)(1 − t + t2 − t3 . . . ) = 1, whereas δ0(ϑ(x)) = 0, because
T 0 doesn’t appear in ϑ(x).

For the orientation preserving fixed point β ∈ T0 it works similarly with indices and
signs reversed: ϑ(β) = (1 + t + t2 + t3 + . . . )T0, so (1 − ε(T0)t)δ0(ϑ(x)) = (1 − t)(1 +
t+ t2 + t3 . . . ) = 1.

Proof. We write
∑1

j=0(1 − ε(Tj)t)δj(ϑ(x, t)) as a double sum, and assume for sim-

plicity that orbf (x) 63 0:

1∑
j=0

∑
n≥0

(1− ε(Tj)t)δj(ϑn(x))tn

=
1∑
j=0

∑
n≥0

f◦n(x)∈Tj

(1 + ε(Tj)t)

(
n−1∏
k=0

εk(x)

)
tn

=
∑
n≥0

f◦n(x)∈T0

(
n−1∏
k=0

εk(x)

)
tn −

∑
n≥0

f◦n(x)∈T0

(
n∏
k=0

εk(x)

)
tn+1

+
∑
n≥0

f◦n(x)∈T1

(
n−1∏
k=0

εk(x)

)
tn −

∑
n≥0

f◦n(x)∈T1

(
n∏
k=0

εk(x)

)
tn+1.

Formally, all positive powers tn cancel, leaving only
∑

x∈T0 t
0+
∑

x∈T1 t
0 = 1. If f ◦n(x) =

0 for some n, then the mixed definition of ϑn(x) allows a similar proof. 2

The qualitative behavior of the entire interval map is given by the invariant coor-
dinate of the critical value. In this terminology, the kneading increment

ν(t) = lim
x↗0

ϑ(x, t)− lim
x↘0

ϑ(x, t)

is the object closest to our kneading sequence. 3 This formula obviously expresses the
change of kneading coordinate ϑ(x) as the point x moves across 0, but it can also be
used to express change of kneading coordinate ϑ(x) as the point x moves across z for
any precritical point z, say f ◦n(z) = 0 for some minimal n ≥ 0:

lim
x↗z

ϑ(x, t)− lim
x↘z

ϑ(x, t) = tnν(t).

3We changed the sign from the definition on page 483 of [MiT] because in our setup fc has a
minimum rather than a maximum at the critical point. The same construction, with d formal unit
vectors Tk, k = 0, 1. . . . , d}, can be carried out for a d − 1-modal interval map (i.e., with d critical
points, and also (although not covered in [MiT]) for piecewise continuous maps.
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Milnor and Thurston continue to define kneading matrices and kneading determinants
D(t) which in the unimodal case is equal to

D(t) = δ1(ν(t))− δ0(ν(t)) = 1 + ε1(c1)t+ ε1(c1)ε2(c1)t2 + . . . (28)

29.5. Corollary (Rational Kneading Determinant)
If the critical point 0 is periodic of period p, then the kneading determinant D(t) is a
polynomial of degree p− 1. If 0 attracted to a periodic orbit orb(x), then the kneading
determinant is rational:

D(t) =
P (t)

1± tp
,

where p is the period of x, P is a polynomial of degree < p and the sign ± is according
to whether f ◦p reverses resp. preserves orientation at x.

Proof. If f ◦p(0) = p, then εp = 0, so D(t) is truncated at the p − 1st term. If 0 is
attracted to a periodic attractor, rather than periodic itself, then 0is in the immediate
basin of some periodic point x. Writing ε0 = 1, we obtain ε0 · ε1 · · · εp−1 = εkp ·
εkp+1 · · · · εkp+p−1 = ±1 for all k, where the sign only depends on whether f ◦p preserves

or reverses orientation. Hence D(t) = P (t)
∑

k≥0(±t)k = P (t)
1∓tp for the polynomial

P (t) = 1 + ε1(c1)t+ ε1(c1)ε2(c1)t2 + · · ·+ ε1(c1)ε2(c1) · · · εp−1(c1)tp−1. 2

For an open interval J and n ≥ 0, let γn(J) be the number of precritical points z such
that n is indeed the minimal integer such that f ◦n(z) = 0, forming the formal power
series γ(J) =

∑
n≥0 γn(J)tn.

29.6. Lemma (Difference in Kneading Coordinates in Terms of γ)
For the interval J = (a, b), the difference

lim
x↗b

ϑ(x, t)− lim
x↘a

ϑ(x, t) = γ(J)ν(t).

If J = (−β, β), where β is the orientation preserving fixed point, is the entire interval,
then γ(J) = (1− t)−1D(t)−1.

Proof. The difference limx↗b ϑ(x, t)− limx↗b ϑ(x, t) is comprised of the increments of
all precritical points z. Each precritical point of order n gives a contribution of tnν(t),
and γ(J) counts how many order n precritical points there are, giving them weight tn.
So the first formula follows.

Since ϑ(β) = T0(1 + t+ t2 + . . . ) = 1
1−tT0 and ϑ(−β) = T1− T0(t+ t2 + t3 + . . . ) =

T1 − 1
1−tT0, we can use Dirac delta δ1 and formula (28) to simplify for J = (−β, β):

−1 = δ1(lim
x↗β

ϑ(x, t)− lim
x↘−β

ϑ(x, t)) = δ1(γ(J)ν(t)) = γ(J)(−1− t)D(t).

This gives γ(J) = (1− t)−1D(t)−1. 2
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A major result is that the reduced dynamical ζ-function4

ζ(t) = exp

(
∞∑
k=1

1

k
#{p : p is k-periodic} tk

)
of f : R→ R satisfies

ζ(t)−1 =

{
(1− t)D(t) if c is non-periodic;
(1− t)(1− tp)D(t) if c is periodic of period p.

One of the consequences is that the first zero of D(t) on [0, 1) is t0 = exp(−htop(fc))
provided fc has positive topological entropy htop(fc). This amounts to a result from
[DGP] which states that the slope λ of the tent-map Tλ(x) = min{λx, λ(1 − x)}
satisfies λ =

∑∞
j=0 εj(c1)λ−j.

29.2. Lap-numbers and Topological Entropy. Topological entropy was intro-
duced by Adler, Konheim, and McAndrew [AKM] in 1965, and made more accessible
by Bowen [Bow]. For real one-dimensional maps, the seminal paper is by Misiurewicz
and Szlenk [MSz] (see also [ALM1, Chapter 4] and [MiT, Section 6]). If f : X → X
is a piecewise monotone map on a real one-dimensional space (i.e., X is an interval, cir-
cle, tree, etc.), then we can define the lap-number l(f ◦n) of f ◦n as the cardinality of the
coarsest partition of X into connected subset Xi such that f ◦n|Xi is a homeomorphism
for each i. Note that f is called piecewise monotone if l(f) <∞.

29.7. Theorem (Topological Entropy of One-Dimensional Maps)
The topological entropy of a piecewise monotone one-dimensional map is given by the
exponential growth rates of lap-numbers as well as periodic points:

htop(f) = max

{
0, lim

n→∞

1

n
log l(f ◦n)

}
= max

{
0, lim sup

n→∞

1

n
log #{p : p is n-periodic }

}
.

Here n-periodic can be interpreted as exact period n or not; it makes no difference for
the exponential growth rate.

Given an interval map f , it is possible to find a conjugate map (cf. the minimal
Hubbard trees of Definition 8.5) which is piecewise affine with constant slope. This
result was first proven by Parry [Pa] for maps semiconjugate to β-transformations5

4where we count at most one k-periodic point in each lap of f◦k; if there two such orbits with the
period of one twice the period of the other (as is the case shortly after a period doubling bifurcation),
then only the orbit of the smaller period is counted. Note, however, that the period need not be
minimal: a k-periodic orbit also counts for 2k, 3k, . . .

5That is: x 7→ βx mod 1 for β > 1.



318 Section 29, Version of July 27, 2011

and for general piecewise monotone interval maps by Milnor and Thurston in [MiT,
Section 7].

29.8. Theorem (Semiconjugacy to Map with Constant Slope)
If f is a continuous piecewise monotone interval map with htop(f) > 0, then there is
an interval map g with constant slope ±s for s = ehtop(f) which is semiconjugate to f ,
i.e., g ◦ h = h ◦ f .

In fact, the result holds for more complicated graphs X as well, [BdC], but one
must be aware that the constant slope map g may act on a simpler graph than X. In
Theorem 30.6 Penrose gives a version for abstract Julia sets.

A precise formula for the lap-numbers was given in [MiT] in terms of the kneading
determinant. Write L(f |J) for the power series

∑
n≥1 l(f

◦n|J)tn−1.

29.9. Proposition (Formula for Lap-numbers)

Using the γ(J) of Lemma 29.6, we have L(f |J) = 1+γ(J)
1−t for every open interval J . For

the interval J = (−β, β), where β is the orientation preserving fixed point, we have
L(f |J) = 1

1−t + 1
(1−t)2D(t)

.

Proof. We rearrange the sum

(1− t)L(f |J) =
∑
n≥1

l(f ◦n|J)tn−1 −
∑
n≥1

l(f ◦n|J)tn

= l(f |J)t0 +
∑
n≥1

(
l(f ◦n+1|J)− l(f ◦n|J)

)
tn.

The factor l(f ◦n+1|J) − l(f ◦n|J) = γn(J) because it is exactly the precritical points
of order n that produce the laps of f ◦n+1 that were not laps of f ◦n yet. Since also

l(f |J) = 1 + γ0(J), we obtain L(f |J) = 1+γ(J)
1−t . Applied to J = (−β, β) and invoking

Lemma 29.6, this gives L(f |J) = 1
1−t + 1

(1−t)2D(t)
. 2

29.3. Real Admissibility.

29.10. Lemma (Itinerary Map Reverses Order)
The map e : R→ Σr is order reversing: x ≤ y implies e(y) ≤p e(x).

The proof is straightforward, see e.g. [CoE] or Milnor and Thruston, [MiT, Lemma
3.1], in whose formal power series approach this statement becomes: x 7→ ϑ(x, t) is
decreasing in x for all t > 0 sufficiently close to 0. The first characterization of which
sequences are real admissible appears in [DGP, MiT]:

29.11. Corollary (First Admissibility Condition)
If c1 ∈ [−2,−1] and ν is the kneading sequence of fc1, then

σ(ν) ≤p σ◦nν ≤p ν for all n ∈ N. (29)
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Proof. For c1 ∈ [−2,−1], the interval [c1, c2] is invariant. As c1 is the infimum and
c2 the supremum of this interval, the corollary follows directly from Lemma 29.10. 2

Cutting times in the real setting were introduced in the late 1970s by Hofbauer
[Ho]. They are given recursively by

S0 = 1, Sk+1 = ρ(Sk),

so the cutting times are exactly the entries of the internal address for a real map.
Hofbauer showed that the difference between subsequent cutting times (when finite)
is always a cutting time. (This follows easily from the fact the Hubbard tree T is an
arc [c1, c2]: since for each z ∈ T there is a unique k such that f(z) ∈ [ζk, ζk+1), the
itinerary e(z) must coincide with ν up to a cutting time.) Hence we can define the
kneading map Q : N∗ → N ∪ {∞} by

Sk = Sk−1 + SQ(k). (30)

If ρ(Sk) =∞, then Q is only defined on {1, . . . , k}. Based on the ρ-function and cutting
times several further admissibility conditions were formulated [Bru1, Ho, Pen1, Tb]
of which we mention two in the next theorem.

29.12. Theorem (Real Admissibility Theorem)
A sequence ν = 10 . . . is real admissible if and only if any (and therefore all) of the
following conditions is satisfied.

(a) σ(ν) ≤p σ◦nν ≤p ν for all n ∈ N.
(b) The kneading map is well-defined by (30) above, and

{Q(k + j)}j≥1 ≥lex {Q(Q◦2(k) + j)}j≥1 (31)

for all k ≥ 1, where ≥lex stands for the lexicographical order on sequences.
(c) If ρ(m) <∞, then ρ(m)−m is a cutting time.

Before proving this theorem, we prove Lemma 29.13 on properties of the parity
of symbols 1 of strings in real admissible kneading sequences, and Proposition 29.14
which relates real admissibility and admissibility as in Definition 5.1.

29.13. Lemma (Parity of 1s and Real Admissibility)
Let ν ∈ Σ? be such that ρ(m)−m is a cutting time whenever ρ(m) <∞. Write

ϑ(m) = #{0 < j ≤ m : νj = 1}.
Then the following properties hold.

(1) ϑ(Sk) is odd for every finite cutting time Sk.
(2) If ρ(m) <∞, then #{m < j ≤ ρ(m) : νj = 1} is even.
(3) If Sk ≤ m < Sk+1 and ϑ(m) is odd, then Sk+1 ∈ orbρ(m).
(4) Assume κ := min{i > 1 : νi = 1} exists. If ρ◦k(κ) ≤ m < ρ◦k+1(κ) and ϑ(m)

is even, then ρ◦k+1(κ) ∈ orbρ(m).
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Proof. (1) We prove the statement by induction on k. Since S0 = 1 and ν = 1 . . . ,
the statement holds for k = 0. Suppose it holds for all j ≤ k, then

ϑ(Sk+1) = ϑ(Sk) + #{Sk < j ≤ Sk+1 : νj = 1}
= ϑ(Sk) + #{0 < j ≤ SQ(k+1) : νj = 1} ± 1

= ϑ(Sk) + ϑ(SQ(k+1))± 1 is even.

This completes the induction.
(2) Since ρ(m)−m is a cutting time, say Sk, #{m < j ≤ ρ(m) : νj = 1} = ϑ(Sk)±1

is even.
(3) We proceed by induction on k again. Since ν1 . . . νS1 = 10 . . . 0, it is straight-

forward to check that the statement holds for k = 0, 1. Suppose that it holds for all
j ≤ k and assume that Sk ≤ m < Sk+1 and ϑ(m) is odd. Therefore ϑ(m − Sk) =
ϑ(m) − ϑ(Sk) is even, and by part (2), and the fact that m − Sk < SQ(k+1), we have
that SQ(k+1) /∈ orbρ(m− Sk). But νm+1 . . . νSk+1−1νSk+1

= νm−Sk+1 . . . νSQ(k+1)−1ν
′
SQ(k+1)

(where ν ′i denotes the opposite symbol of νi), so Sk+1 ∈ orbρ(m).
(4) The proof of this statement is analogous to the previous part. 2

29.14. Proposition (Hubbard Trees for Real Quadratic Maps)
Let ν be preperiodic or ?-periodic. Then the Hubbard tree of ν is an arc (and hence
without branch points) if and only if ν is real admissible (and in particular, the kneading
map Q is well-defined and (31) holds).

Remark. For ν ∈ Σ1 with infinite internal address S0 → S1 → S2 → . . . , we can
approximate the infinite Hubbard tree by the finite Hubbard trees T k associated to the
truncated internal addresses S0 → S1 → . . .→ Sk. The above proposition extends to:
ν is real admissible if and only if each of the T k is an arc.

Proof. The “if”-direction is obvious, because if f is real admissible, the Hubbard
tree is the arc [c1, c2]. To prove the “only if”-direction, assume that ν fails the real
admissibility condition, and that Sk+1 is the first cutting time where this becomes
apparent. Let T be the Hubbard tree associated to ν; we need to show that T contains
a periodic branch point. We divide the argument into three cases:

• If Sk+1 > 2Sk or orbρ(Sk+1 − Sk) 63 Sk then Proposition 5.19 supplies the
branch point.
• If Sl < Sk+1−Sk < Sl+1 for some l < k, and Sk ∈ orbρ(Sk+1−Sk), then ν fails

the admissibility condition of Definition 5.1 for period m := Sk + Sl. Indeed,
by part (2) of Lemma 29.13, ϑ(Sk+1 − Sk) is odd, and

#{Sk < j ≤ m : νj = 1} = ϑ(Sk+1 − Sk)− ϑ(Sl) is even.

Let r := (Sk+1 − Sk)− Sl, so ρ(m)−m = r and ϑ(r) is even too. As k + 1 is
minimal such that ν1 . . . νSk+1

fails Definition 5.1, orbρ(1) and orbρ(r) do not
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intersect before or at entry Sk. Let ν̃ = ν1 . . . νm−1ν
′
m . . . with corresponding

ρ-function ρ̃. Then ρ̃(Sk) = m, so m ∈ orbρ̃(1) and since ϑν̃(r) = ϑ(r) is
even, part (2) of Lemma 29.13 implies that m /∈ orbρ̃(r). But this means that
m ∈ orbρ(r), and m indeed fails Definition 5.1. Hence T must contain an evil
m-periodic branchpoint.
• Condition (31) fails, say Q(k+ j) < Q(Q◦2(k) + j) for some minimal k, j ≥ 1.

Let m = Sk − SQ◦2(k) (= Sk−1 + SQ(k)−1). Then

ρ(m) = m+ SQ◦2(k) + SQ◦2(k)+1 + · · ·+ SQ◦2(k)+j = Sk+j.

Because ϑ(m) = ϑ(Sk)− ϑ(SQ◦2(k)) is even, we have in this case that #{m <
j ≤ ρ(m) : νj = 1} is odd (which would incidentally violate part (2) of
Lemma 29.13). Take r = ρ(m) − m, then ϑ(r) is even. If r = m, then m
fails Definition 5.1, so assume that r < m. As in the previous part, take ν̃ =
ν1 . . . νm−1ν

′
m . . . with corresponding ρ-function ρ̃ and kneading map Q̃. Then

ρ̃(Sk−1) = Sk−1 + SQ(k)−1 = Sk−1 + SQ̃(k). Therefore #{0 < j ≤ m : ν̃j = 1} is

odd and m /∈ orbρ̃(r). This implies that m ∈ orbρ(r), so again m indeed fails
Definition 5.1, and T must have an evil m-periodic branchpoint.

This completes the proof. 2

Remark. If ν is real admissible and different from ? and 1?, then its Hubbard tree
can be extended to the arc [−β, β] ⊃ [c1, c2], where β is the β-fixed point with itinerary
e(β) = 0. If also ν 6= 10, then −β < c1 and we can define κ = min{i > 1 : νi = 1} and
there is a closest precritical point ζκ ∈ (−β, c1). By Lemma 5.7, there are sequences

ζκ < ζρ(κ) < ζρ◦2(κ) < · · · < c1 < · · · < ζρ◦2(1) < ζρ(1) < ζ1

and hence orbρ(1)∩ orbρ(κ) = ∅. Thunberg [Tb, Paper IV, Theorem 1] notes that this
property is equivalent to real admissibility. Thus ν = 10 · · · ∈ Σr is real admissible if
and only if ν = 10 or orbρ(1) ∩ orbρ(κ) = ∅ for κ = min{i > 1 : νi = 1}. One can
compare this to Penrose’s real admissibility results from [Pen1, Theorem 2.6.1], see
Section 30.1.

Let us now prove Theorem 29.12

Proof. We divide the proof into three steps. First we show that real admissibility
implies conditions (a)-(c). Then we use Proposition 29.14 to show that (b) implies real
admissibility. In the final step we prove the remaining implications.

Step 1: (a) The necessity of condition (a) is shown in Corollary 29.11.
(b) Formula (31) can be interpreted geometrically as c1+Sk ∈ [c1, c1+SQ◦2(k)

], see

Figure 29.1. To see this, notice that f ◦Sk−1 maps [ζSk−1
, c1] homeomorphically onto

[c1, c1+Sk−1
], and since Sk = Sk−1 + SQ(k), c1+Sk−1

∈ UQ(k) := [ζSQ(k)
, ζSQ(k)−1

). Take the

f ◦SQ(k)-image of this interval to find c1+Sk ∈ [c1, c1+SQ◦2(k)
]. Now c1+Sk ∈ UQ(k+1) and
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f ◦SQ(k)

c1 ζSQ(k)

c1+Sk−1

UQ(k) ζSQ(k)−1

c1

c1+Sk

c1+SQ◦2(k)

�
�
��� ?

A
A
AAU

Figure 29.1. The position of c1+Sk−1
in UQ(k) := [ζSQ(k)

, ζSQ(k)−1
) and

the image under fSQ(k) .

c1+SQ◦2(k)
∈ UQ(Q◦2(k)+1), so Q(k + 1) ≥ Q(Q◦2(k) + 1). If the inequality is strict, then

(31) holds. Otherwise, i.e., if Q(k+1) = Q(Q◦2(k)+1), then both c1+Sk and c1+SQ◦2(k)
∈

UQ(k+1) and we apply f ◦SQ(k+1) , which sends UQ(k+1) in an orientation preserving way
to [c1, c1+SQ◦2(k+1)

]. Therefore f ◦SQ(k+1)(c1+Sk) = (c1+Sk+1
) ≤ f ◦SQ(k+1)(c1+SQ◦2(k)

) =

c1+SQ◦2(k)+1
. This shows that Q(k+ 2) ≥ Q(Q◦2(k) + 2). If the inequality is strict, then

again (31) holds; otherwise both c1+Sk+1
and c1+SQ◦2(k)+1

∈ UQ(k+2) and we can apply

f ◦SQ(k+2) . Repeating the argument shows that (31) holds in any case.
(c) Condition (c) follows easily from the fact the Hubbard tree T is an arc [c1, c2]:

since for each z ∈ T there is a unique k such that f(z) ∈ [ζk, ζk+1), the itinerary e(z)
must coincide with ν up to a cutting time.

Step 2: Every (pre)periodic sequence ν ∈ Σ? comes with a Hubbard tree. If ν
satisfies (b), then according to Proposition 29.14, this tree is an arc. Hence ν is real
admissible.

Step 3: Finally we prove that (a) and (c) imply (b).
(a) ⇒ (b): First observe for ν ∈ Σ1 that if ρ(m) <∞, then

#{m < j ≤ ρ(m) : νj = 1} is odd if and only if σ◦m(ν) >p ν. (32)

From the special case

#{Sk < j ≤ Sk+1 : νj = 1} is odd if and only if σ◦m(ν) >p ν,

it is easy to derive that the map

{kneading maps , ≤lex } 7→ {Σ1, ≤p}

is order reversing. Suppose by contradiction that (31) fails at entry k. Let

Q̃(l) =

{
Q(l) if l ≤ Q◦2(k);
Q(k + (l −Q◦2(k)) if l > Q◦2(k).

Then Q̃ is the kneading map of σSk−SQ◦2(k)(ν) and Q̃ <lex Q. Therefore σSk−SQ◦2(k)(ν) >p

ν, contradicting (a).
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(c) ⇒ (a): Since ρ(m) − m is a cutting time, #{m < j ≤ ρ(m) : νj = 1} is
even by part (2) of Lemma 29.13. Hence σ◦m(ν) ≤p ν by (32). Since ν1 = 1, the
parity-lexicographical order implies that σ◦m+1(ν) ≥p σ(ν) for all m. 2

29.4. ∗-Products. Renormalization for unimodal maps has been described sym-
bolically by means of so-called ∗-products, see [DGP] and [CoE, page 72]. Suppose
that f is a renormalizable unimodal interval map, say it has periodic interval J 3 0
of period l and the itinerary of orbits in f(J) start with the block β = [β1 . . . βl−1 ·],6
and that the renormalization f ◦l|J is conjugate to a unimodal map f̃ with kneading
sequence ν̃. Then the kneading sequence ν of f has the form ν = β ∗p ν̃, where the
parity ∗-product ∗p is defined as

(β ∗p ν̃)j =

 βj mod l if l does not divide j;
ν̃j/l if l divides j and #{k < l : βk = 1} is even;
ν̃j/l if l divides j and #{k < l : βk = 1} is odd.

The parity of 1s in the block β determines whether the orientation of the map f ◦l|J
is reversed w.r.t. the orientation of original map f or not. For complex maps, ∗-
products are equally useful, but the orientation of the renormalized map makes no
sense. Therefore we use ∗-product without parity in the definition.

β ∗ ν̃ = β1β2 . . . βl−1ν1β1β2 . . . βl−1ν2β1β2 . . . βl−1ν3 . . . (33)

If ν can be written non-trivially in the form of a ∗-product, then we call ν composite
or factorizable. Clearly ν is a multiple ∗-product if f is multiply renormalizable. The
following terminology comes from [Pen1]: β = [β1 . . . βl−1 ·] is called atomic if β1 = β2 = · · · = βl−1;

a continent block if it is the ∗-product of finitely many atomic blocks;
an island block if β = α ∗ γ where α 6= [ · ] is not atomic.

Remark. The kneading sequence of the Feigenbaum map is an infinite continent
block, and the only such infinitely block in the quadratic case. For unicritical maps of
degree d ≥ 3, there are uncountably many different infinite continent blocks.

The next proposition is proved in [Pen1].

29.15. Proposition (Unique Decomposition of ∗-Products)
Every block β has a unique decomposition of the form β = α ∗ γ where α is an island
block and γ a continent block.

6We don’t specify the final symbol, since it is not the same for every point in f(J).
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29.5. Orbit Forcing and Entropy Forcing. Orbit forcing refers to the property
that any continuous map having a periodic orbit of some type must also have a periodic
orbit of another forced type. Theorem 6.2 is an example of this phenomenon, but
whereas in that theorem, maps come with their own Hubbard tree to act upon, orbit
forcing commonly applies to a fixed space X (an interval, circle, tree etc.) on which
the class of all continuous functions f : X → X is considered.

The starting point of orbit forcing is Sharkovskiy’s theorem [Sha1] (translated in
[Sha2] and alternative proofs given in e.g. [Št, ALM1, BGMY]):

29.16. Theorem (Sharkovskiy’s Theorem)
Consider the following Sharkovskiy ordering . on N∗:

3 . 5 . 7 . 9 . . . .

. . . . 2 · 3 . 2 · 5 . 2 · 7 . . . .

. . . . 4 · 3 . 4 · 5 . 4 · 7 . . . .
...

...

. . . . 2n · 3 . 2n · 5 . 2n · 7 . . . .
...

...

. . . . 64 . 32 . 16 . 8 . 4 . 2 . 1.

If f is a continuous map on [0, 1] or R, and f has a periodic point of period p, then f
has a periodic point of period q for every q with p . q.

Sharkovskiy’s Theorem achieved its reputation in the West only after the publica-
tion of Li and Yorke’s paper [LY], which showed that if a continuous map f : R→ R
has an orbit of period 3, then periodic orbits of every orbit must exist. This is a special
case of Theorem 29.16, but [LY] also introduced the notion what is now known as
Li-Yorke chaos .7

In addition to Theorem 29.16, Sharkovskiy’s paper includes further information on
the orbit pattern, i.e., the spacial order in which the periodic orbit is arranged in the
interval. On the interval this order can be expressed by a permutation. For example,
for a period 5 orbit which is spatially ordered, i.e., p1 < p2 < p3 < p4 < p5, the
permutation (15432) indicates that f(p1) = p5, f(p5) = p4, f(p4) = p3, f(p3) = p2

and f(p2) = p1. There are two more period 5 patterns: (15423) and (15324). Whereas
period 3 forces period 5, the (only existing) period 3 pattern (132) forces (15324), but
(15432) and (15423) force (132). This shows that pattern forcing is a more subtle
concept than period forcing. The monographs [MN] and [ALM1, Chapter 2] give
much more information about orbit and pattern forcing.

7This is the existence of an uncountable set of points such that for any two of them, say x and
y, lim infn |f◦n(x)− f◦n(y)| = 0 and lim supn |f◦n(x)− f◦n(y)| > 0. A pair of points (x, y) with this
property is called a Li-Yorke pair ; a set in which every pair is Li-Yorke is called scrambled
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A basic idea in orbit and entropy forcing are transition graphs and matrices . Let us
use the pattern (15423) to explain the idea. The vertices of the transition graph are the
interval Ii = (pi, pi+1) for i ∈ {1, 2, 3, 4}. We write Ii → Ij whenever f(Ii) ⊃ Ij, which
can be derived from the orbit of p1, see Figure 29.2. The associated transition matrix
A = (ai,j)

4
i,j=1 is defined by ai,j = 1 if Ii → Ij and ai,j = 0 otherwise. Each closed

p1 p2 p3 p4 p5
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A =


0 0 1 1
1 1 0 0
1 0 0 0
0 1 1 0



Figure 29.2. The transition graph and matrix of the pattern (15423).

path of length n in the graph represents a periodic orbit of period n. For example
I1 → I4 → I2 → I1 represents a period 3 orbit, and as we can insert as many I2s as
we like, we can get all periods n ≥ 3. Periods 1 and 2 are represented by I2 → I2 and
I1 → I3 → I1 respectively.

29.17. Definition (Entropy of a Pattern)
The entropy htop(P ) of a pattern P is max{0, log σ(A)}, where σ(A) is the spectral
radius of the transition matrix associated to P .

Entropy forcing is the property that any continuous map having a certain orbit
pattern P must have entropy htop(f) ≥ htop(P ). In fact, for interval maps f , htop(f) =
sup{htop(P ) : f has pattern P}, see Theorem 4.4.10 of [ALM1]. An important result
in this direction, proved in full in [MSz], is the following:

29.18. Theorem (Boundary of Entropy 0)
A continuous interval map f has htop(f) > 0 if and only if f has a periodic point of
period n 6= 2k.

The boundary of entropy 0 is therefore given by the type 2∞ maps , that is the maps
with periodic points of period 2k for each k ≥ 0, but no other periods. In the quadratic
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family, the Feigenbaum map is the representative of this. One result from [MiT] is the
following:

29.19. Proposition (Polynomial Growth of Lap-numbers)
The lap-number l(f ◦n) grows polynomially in n if and only if f has finitely many
periodic points.

For the Feigenbaum map, l(f ◦n) grows super-polynomially, but subexponentially,
see [BB, page 134] for the exact growth and [MiT, Table 1.5] for the kneading deter-
minant of this map. More results on the entropy forced by periods can be found in
[ALM1, Section 4.4].

The theory of period forcing, pattern forcing and entropy forcing has been ex-
tended to maps on trees. For example, generalizations of Sharkovskiy’s Theorem to
the n-od and more complicated trees were obtained in [ALM2, Bal1]. It is a nat-
ural step to focus this theory on Hubbard trees, and this is the content of [AF].
With respect to topological entropy, it is shown that a degree d Hubbard tree T
has entropy at most log d, with equality if and only if T equals the (abstract) Ju-
lia set. A lower bound for quadratic non-renormalizable Hubbard trees is given by
htop(f |T ) ≥ (log 2)/#{endpoints of T}. In fact, if the α-fixed point has q arms, then
htop(f |T ) ≥ (log 2)/(q − 1), so that there are non-renormalizable Hubbard trees with
entropy arbitrarily close to 0.

A further topic in [AF] is the effect of renormalization on the dynamics on the
Hubbard tree. To this end, recall from Definition 10.3 that a quadratic map is called
renormalizable of disjoint type if it is renormalizable, say of period n, and the images
of the little filled-in Julia sets K, f(K), . . . , f ◦(n−1)(K) are disjoint. It is shown that a
quadratic Misiurewicz polynomial is not renormalizable of disjoint type if and only if
f |T is topologically transitive, i.e., there is a dense orbit in T . Furthermore, f is not
renormalizable at all if and only if f |T is topologically mixing8, i.e., every iterate f ◦n,
n ≥ 1, has a dense orbit in T .

8This property is also called totally transitive.
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30. Maps on Dendrites

The dynamics on (quadratic) Julia sets has motivated various symbolic approaches other

than those discussed in this book. In this section, we discuss work from Chris Penrose’ thesis

[Pen1] on quotient spaces of the full shift, and Stewart Baldwin’s itinerary topology, which

is another way to convert the shift space into a continuum. We also discuss work by various

authors, including Bandt, Bousch and Solomyak, on a linear two-to-one iterated function

system with a fractal geometry quite distinct from quadratic Julia sets (and the Mandelbrot

set), but that does allow a comparable combinatorial approach.

30.1. Penrose’s Glueing Spaces. In his Ph.D. thesis [Pen1], Chris Penrose
takes a symbolic approach to Julia sets of unicritical polynomials f = fc1 : z 7→ zd + c1

of degree d, describing them as quotient spaces of Σd = {0, . . . , d − 1}N∗ (where Σd is
equipped with product topology). Let R be the image of a embedding γ : [0,∞)→ C
such that γ(0) = c1 and γ(t)→∞ as t→∞. Its d preimages meet at 0 and partition
C into d sectors Ci, i ∈ {0, . . . , d − 1}. (This is true also if c1 does not belong to
the Multibrot set Md, and since R is not necessarily an external ray, this procedure
can also be carried if c1 belong to the interior of the Multibrot set.) Assuming that
the forward images of R are pairwise disjoint, Penrose defines itineraries e(z) ∈ Σd for
z ∈ K(f), the filled-in Julia set, in a way that the wild card symbol ? associated to
the critical point is not needed. To this end, a relation SN between z ∈ C and e ∈ Σd

is defined by

(z, e) ∈ SN if f ◦n−1(z) ∈ Cen for all 1 ≤ n ≤ N,

and (z, e) ∈ S if (z, e) ∈ SN for all N ∈ N∗. Since this excludes points z that map onto
R for some iterate, the relation is extended to S ′ defined by

(z, e) ∈ S ′ if f ◦n−1(z) ∈ Cen for all n ∈ N∗,

i.e., (z, e) ∈ SN for all N ∈ N∗. Among the properties shown for the relation S ′ are
the following, cf. Theorem 1.3.4. in [Pen1].

30.1. Theorem (Coding by the Relation S ′)
Assume that f ◦n(R) ∩R = ∅ for all n ≥ 1. Then

• for every z ∈ K(f) there is e ∈ Σd such that (z, e) ∈ S ′;
• if (z, e) ∈ S and (z, ẽ) ∈ S ′, then e = ẽ;
• for all e ∈ Σd, there is z ∈ K(f) such that (z, e) ∈ S ′.

The equivalence relation on Σd given by e ∼ ẽ if there is z ∈ K(f) such that (z, e), (z, ẽ) ∈
S is a closed equivalence relation, and the coding map

e : K(f)→ Σd/ ∼
z 7→ [e(z)] such that (z, ẽ) ∈ S ′ for each ẽ ∈ [e(z)],

is continuous when Σd/ ∼ is equipped with the quotient topology.
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The kneading sequence of f with respect to R is the itinerary of c1, and if f ◦n(R)∩
R = ∅, then the equivalence class of the kneading sequence consists of a single sequence
ν. In this case the relation S ′ is easy to describe. If e, ẽ ∈ Σd, then e ∼ ẽ if e = ẽ or
there is n ∈ N∗ such that {

ej = ẽj if j < n;
ej = ẽj = νj−n if j > n.

(34)

If c1 ∈ K(f) and ν is nonrecurrent under the leftshift σ, then e : K(f) → Σd is a
homeomorphism, cf. [Pen1, Theorem 1.5.3.].

The main part of [Pen1] is concerned with the opposite direction: starting with
an equivalence relation ∼ on Σd, describe the topology and further properties of the
quotient space Σd/ ∼. The type of equivalence relation is more general than the one
from (34), and the resulting quotient space is called glueing space. It is explained in
Chapter 2 of [Pen1].

Let Cyln be the collection of n-cylinder sets in Σd, i.e., Ce1...en ∈ Cyln denotes the
set {ẽ ∈ Σd : ẽj = ej for 1 ≤ j ≤ n}.

30.2. Definition (Glueing Point Map and Glueing Space)
A glueing point map is a map

Γ : ∪n≥1Cyln → Σd such that Γ(C) ∈ C for all C ∈ Cyln, n ≥ 1.

Let ∼Γ be the minimal closed equivalence relation on Σd that for each Ce1...en−1 ∈ Cyln−1,
n ≥ 1, identifies all points Γ(Ce1...en−1j), j ∈ {0, . . . , d−1}. The quotient space Σd/ ∼Γ

is called the glueing space of Γ.

30.3. Example (Arcs as Glueing Spaces)
For d = 2 and {

Γ(Ce1...en−10) = e1 . . . en−101,

Γ(Ce1...en−11) = e1 . . . en−110,

for all n ≥ 1 and e1, . . . , en−1 ∈ {0, . . . , d−1}, the glueing procedure it the standard way
of factorizing the Cantor set Σ2 onto the unit interval via the map e 7→

∑
n≥1 en2−n.

Thus the glueing space Σd/ ∼Γ = [0, 1] in this case.
An interval as glueing space is also obtain by the glueing point map{

Γ′(Ce1...en−10) = e1 . . . en−1010,

Γ′(Ce1...en−11) = e1 . . . en−1110.

This corresponds to the equivalence relation in (34) when ν = 10 for the Chebyshev
polynomial f : z 7→ z2 − 2.

Thus the glueing point map Γ′ above is a special case of the map

Γν(Ce1...en−1j) = e1 . . . en−1jν for j ∈ {0, . . . , d− 1}
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based on an arbitrary (kneading) sequence ν. Most of the glueing space results in
[Pen1] concern this map Γν , but there are other possibilities. For instance, the glueing
point map (see Example 3 in [Pen1])

ΓΣd(Ce1...en) = e1 . . . en

for all n ≥ 1 and Ce1...en ∈ Cyln is associated to renormalizable Julia sets.
The main topological result of Chapter 2 (see Corollary 2.1.1, Proposition 2.3.7 and

Corollary 2.3.7 in [Pen1]) amounts to the existence of abstract Julia sets as dendrites.

30.4. Theorem (Glueing Spaces are Uniquely Arcwise Connected)
A glueing space ΣΓ := Σd/ ∼Γ is uniquely arcwise connected; for every x, y ∈ ΣΓ, there
is a unique arc Γ-arc(x, y) connecting x and y.

If Γ = Γν for some ν ∈ Σd, then we abbreviate Σν := Σd/ ∼Γν .
We will not discuss the details of the proof here, but an important tool is the branch

B[Ce1...ek ] of a k-cylinder which roughly describes the collection of r-cylinders for r ≤ k
that are accessible from Ce1...ek via the glueing relation, but not via other k-cylinders.
It reflects the component of ΣΓ\Ce1...ek−1

“on the side” of Ce1...ek . Also, for each e ∈ Σd,
a successor function on N∗ is introduced that in the special case that Γ = Γν coincides
with our ρν,x-function (see formula (9))

ρν,e(n) = min{j > n : ej 6= νj−n}.

The valency of e is the number of disjoint orbits under this successor map, and it is
shown to be equal to the number of components of ΣΓ \ [e], see Lemma 16.2. In [Pen2,
Theorem 4.2], it is shown that if e has valency at least 3, then e is (pre)periodic, so this
amounts to the Nonwandering Triangle Theorem for unicritical polynomials of degree
d. See Section 24.3 for results on the failure of the Nonwandering Triangle Theorem
failing for general laminations of degree d (i.e., with more than one critical gap).

Branches are also used to define the arc connecting x and z ∈ ΣΓ

Γ-arc(x, z) := {y ∈ ΣΓ : B[Cy1...yk ] ∩ {x, z} 6= ∅ for all n ∈ N∗}.

The internal address features as the orbit of 1 under the successor function of ν. It is not
interpreted geometrically as in e.g. Proposition 11.6, but it is used to prove the results
(in [Pen1, Theorem 2.5.3 and Corollary 2.5.3.1]) that appear as Lemmas 20.1 and
its conclusion that ν is an endpoint of the Hubbard tree or dendrite, cf. Lemma 20.3.
Hence all points σ◦n(ν), n ≥ 0 lie in the same component of ΣΓ\ν as the “critical point”
σ−1(ν), and the connected hull of {σ−1(ν), ν, σ(ν)σ◦2(ν), . . . } is a Hubbard tree or
dendrite. (Expansivity of σ is shown later on in Theorem 30.6 for “non-renormalizable”
sequence ν.)

It is shown that not every ν ∈ Σd is complex admissible; Penrose presents the same
simplest example ν = 101100 . . . as Example 5.3. Also real admissibility is defined as
σ◦2(ν) belonging to Γν-arc(ν, σ(ν))., and in [Pen1, Theorem 2.6.1.], this is shown to
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be equivalent to the existence of a 6= b ∈ {0, . . . , d− 1} such that ν ∈ Γν-arc(a, ab). In
the case d = 2 this reduces to: ν belongs to the arc connecting the β-fixed point and
its preimage.

Recall the terminology of ∗-products, atomic blocks and island blocks from Sec-
tion 29.4 If ν = β ∗ ν̃, where β = [β1 . . . βl−1·] is a block of length l, then one can define
a map

Hm : Σd → Σd, e 7→ σ◦m(β ∗ e) (35)

for 0 ≤ m < l.

30.5. Theorem (Small Julia Sets in Σν)
If ν = β ∗ ν for a nontrivial block β, then Σν contains sets Hm(Σν̃), m = 0, . . . , l − 1
which are copies of Σν̃ embedded in Σν and cyclically permuted by σ.

The sets Hm(Σν̃) are pairwise disjoint if β is an island block. If on the other hand
β is atomic, then all Hm(Σν̃) have a single common (fixed) point of intersection.

Chapter 5 of [Pen1] is devoted to a result that is a complex version of a result
by Milnor and Thurston [MiT] (after an earlier result by Parry [Pa]), namely that
interval maps f : I → I are semiconjugate to a piecewise linear map with slope ±s
where s = log htop(f), see Theorem 29.8. In this text, it is phrased somewhat differently
in terms of the existence of a metric which expands distances by a constant factor s.

30.6. Theorem (Affine metric on Glueing Space Σν)
If ν ∈ Σd is not the ∗-product of infinitely many atomic blocks, then there is a pseudo-
metric d 6≡ 0 on Σν and s > 1 such that

• d(σ(x), σ(y)) = sd(x, y) whenever x1 = y1;
• d(x, z) = d(x, y) + d(y, z) whenever z belongs to the arc connecting x and y.

The constant s is uniquely determined, and d is unique up to a multiplicative constant.
If ν is not of ∗-product form β ∗ ν̃ where β is an island block of length l > 1, then d
is a proper metric (i.e., d(x, y) > 0 whenever x 6= y), and the topology inherited from
d is the same as the quotient topology of Σν. Otherwise, d(x, y) = 0 implies that there
are 0 ≤ m < l and block e1 . . . en ∈ {0, . . . , d− 1}n and x̃, ỹ ∈ Σd such that

x = e1 . . . enHm(x̃) and y = e1 . . . enHm(ỹ),

where Hm is defined in (35).

An important interpretation of this theorem (not mentioned in [Pen1]) is that
s = htop(σ|T ), the topological entropy of the map restricted to the Hubbard tree T .
This follows because with respect to the metric d, σ is affine on each component of
T \ σ−1(ν) with constant expansion factor s, and self-maps f : T → T on trees with
constant slopes ±s have entropy htop(f |T ) = max{log s, 0}, see Theorem 29.8. The
same result holds by continuous approximation if ν has a Hubbard dendrite rather
than tree. Note however, that s 6= htop(σ|Σν ) = log d (which is the topological entropy
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of the shift on the abstract Julia set Σν) whenever ν 6= 10. Theorem 29.8 fails in general
for piecewise affine maps on dendrites, and in this case, the entropy is “carried” by the
endpoints of Σν (provided ν 6= 10), whereas all non-endpoints are eventually mapped
into the Hubbard dendrite T . It seems that the system (Σν , σ, d) can be represented
by a piecewise affine map (Aλ, qλ, d) as in (36) with λ = 1/s, see Section 30.3.

In the light of s being the topological entropy of the Hubbard dendrite, the following
results can be interpreted as continuity and monotonicity of entropy as function of the
kneading sequence ν.

30.7. Theorem (Entropy Depends Continuously and Monotonically on ν)
The map ν 7→ s(ν), where s is as in Theorem 30.6, is continuous. Furthermore, if
ν, ν̃ ∈ Σd are such that ν̃ ∈ Γν-arc(ν, ν1),9 then s(ν) ≥ s(ν̃).

The proof of Theorem 30.6 is based on a linear operator ϕν acting on the Banach
space of pseudo-metrics on Σν with supremum norm, as

(ϕνh)(x, y) =

{
h(σ(x), σ(y)) if x1 = y1,
h(σ(x), ν) + h(ν, σ(y)) if x1 6= y1.

It is shown that d is the eigenvector of ϕν corresponding to the leading eigenvalue s. It
is observed that this only depends on x, y ∈ {σ−1(ν), ν, σ(ν), σ◦2(ν), . . . }, and replacing
such x by the integer m such that x = σ◦m ◦ σ−1(ν), one can rewrite ϕν to an operator
Φν acting on `∞-functions on N× N:

(Φνh)(m− 1, n− 1) =

{
h(m,n) if νm = νn,
h(m, 0) + h(0, n) if νm 6= νn,

and m,n ≥ 1. Using infinite transition graphs and theory of infinite matrices (due to
Vere-Jones [V-J1, V-J2]), it is shown that Φν is quasi-compact, i.e., it has finitely
many eigenvalues of modulus s, each of finite multiplicity, and the rest of the spectrum
of Φν is contained in a disk of radius < s. A ∗-product structure of ν (i.e., renormal-
izability of (Σν , σ)) is reflected by the existence of multiple eigenvalues on the circle
{|z| = s}. For real admissible ν, these ideas are closely related to kneading matrices
from [MiT].

30.2. Baldwin’s Continuous Itinerary Functions. Let f : D → D be contin-
uous map on a dendrite D (see Definition 21.1), having a single critical point 0 where f
is not locally homeomorphic onto its image. We coded this point by ? and assume that
f(0) 6= 0. The components of D \{0} are labeled by symbols in {1, 2, . . . , d} according
to the order by which the critical orbit visits them. So denoting the component with
label n by Ln we have f(0) ∈ L1 and for n > 2, f ◦k(0) ∈ Ln only if there is l < k such
that f ◦l(0) ∈ Ln−1. Let us assume that f has the unique itinerary property, i.e., the
itinerary map i : D → ΣB := {?, 1, . . . , d}N∗ is injective.

9that is: ν̃ belongs to the arc connecting critical value ν with the α-fixed point



332 Section 30, Version of July 27, 2011

30.8. Example (A non-acceptable kneading sequence)
Not every Hubbard tree satisfies the unique itinerary property. For example, if ν =
10010? (or τ = i(0) = ?12212 in the coding convention of this section), then all points
in the open arc (c1, c4) have the same itinerary, see Figure 30.1. In the language of
Definition 30.9 below, τ is not acceptable, because σ◦3(τ)j = τj for every j, except
when j is a multiple of 3. But then either σ◦3(τ)j = ? or τj = ?.

uc1 uc4
?

0 = c6 uc3 uc5 uc2

Figure 30.1. The Hubbard tree of a non-acceptable kneading sequence
ν = 10010?

If the symbol space {?, 1, 2, . . . , d} has the discrete topology, then the itinerary
map is discontinuous. Baldwin’s idea is to make the itinerary map continuous by
giving the symbol space a new topology; namely the one generated by open sets
{1}, {2}, . . . , {d}, but not {?}. Thus the only open neighborhood of ? is the whole
symbol space {?, 1, . . . , d}. This topology is not Hausdorff, and neither is the prod-
uct topology on ΣB it generates. This topology is called the itinerary topology . For
example, ΣB is the only open neighborhood of ?.

But the itineraries obtained from points in the connected hull of orbf (0) (that is the
Hubbard tree or dendrite), or more generally, the itineraries of points in the abstract
Julia set, can generate a subset of ΣB that is Hausdorff. The combinatorial description
of such subsets are in terms of acceptibility conditions

30.9. Definition (Acceptable and τ-admissible sequences)
A sequence τ = ?ν ∈ ΣB is called acceptable if

• If τn = ?, then τn+j = τj for all j ∈ N∗;
• If σ◦k(τ) 6= τ for some k then there is j such that ? 6= (σ◦k(τ))j 6= τj 6= ?.

Denote the set of acceptable sequences in ΣB by Accd. Given an acceptable sequence τ ,
a sequence x = x0x1 · · · ∈ ΣB is called τ -admissible if

• If xn = ?, then σ◦n(x) = τ ;
• If σ◦k(τ) 6= τ for some k then there is j such that ? 6= (σ◦k(x))j 6= τj 6= ?.

The set of all τ -admissible sequences is denoted as Dτ .

The main result can now be summarized as follows:

30.10. Theorem (Dτ is a Dendrite)
If τ 6= ? is acceptable, then Dτ as subset of ΣB with inherited itinerary topology,
is a dendrite. In particular, it is Hausdorff, compact separable, metrizable, uniquely
arcwise connected, and locally connected. Furthermore, the shift σ : Dτ → Dτ is
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continuous and self-similar, i.e., for each symbol k 6= ?, the set {x ∈ Dτ : x0 = k} is
mapped homeomorphically onto Dτ by σ. Also, if X ⊂ Dτ is connected, then σ−1(X)
is connected if and only if it contains τ .

Consequently, if the itinerary τ = i(0) of the unique critical point of a dendrite map
f : D → D is acceptable, and all components Lk of D \ {0} map onto D \ {f(0)}, then
Dτ is a homeomorphic copy of D. Furthermore the itinerary map i conjugates (D, f)
and (Dτ , σ): σ ◦ i = i ◦ f . This leads to abstract Julia sets, provided ?ν is acceptable,
and the Hubbard trees (or Hubbard dendrites for non(pre)periodic kneading sequences
ν) is obtained by taking the connected hull of the critical orbit.

The sequence τ = ?12212 in Example 30.8 above corresponds to a renormalizable
Hubbard tree. Baldwin approaches renormalization (see Definition 10.3) in a combina-
torial way, namely via ∗-products. Given an n-periodic sequence x ∈ ΣB and another
sequence y ∈ ΣB, the ∗-product x ∗ y is a new sequence defined by (see (33))

(x ∗ y)j =

{
xj mod n if n does not divide j;
yj/n if n divides j.

Any sequence z that can be written non-trivially as a ∗-product is called composite.
Sequences can be multiply composite and even infinitely composite. For example, the
kneading sequence of the Feigenbaum map is the infinite ∗-product of 12 with itself.
Any sequence z = x ∗ y, where y = ?k or y = ?kkk . . . k for some k 6= ? is called a
tupling . Thus, the kneading sequence of the Feigenbaum map is an ∞-tupling. The
sequence in Example 30.8 is a tupling too, because τ = ?12212 = (?12) ∗ (?2).
Tuplings decide on acceptability, see Theorems 3.8 and 3.21 in [Bal2].

30.11. Theorem (Tuplings, Acceptability and Renormalization)
Take τ = ?ν ∈ ΣB \ {?}. Then

(1) τ is acceptable if and only if it is not a tupling;
(2) if τ is acceptable, then (Dτ , σ) is renormalizable if and only if τ is composite.

Further topics in [Bal2] include arc-transitivity of Dτ , the structure of the inverse
limit space over Dτ with the shift σ as bonding map, and the topological structure
of the parameter space Accd. It would go too far to mention any of the details, but
an appropriate ’Hausdorffication’ of Accd leads to another abstract approach to the
Multibrot set Md.

Another extension is the introduction of an infinite symbol space to express itineraries
in, see also [Bal3]. This allows the phase space to be a dendroid which may fail to be
locally connected, and allows branchpoints to have infinite order.

30.3. Pairs of Linear Maps. The nature of the set

Aλ :=

{∑
n≥0

anλ
n : an ∈ {0, 1}

}
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has been studied at least since Erdös [Er]. For λ ∈ D, the set Aλ plays the role of
quadratic Julia set, and is also self-similar in the sense that it is the limit set of the
iterated function systems (IFS) {

f0(z) = λz,

f1(z) = λz + 1,

that is, it is the unique non-empty compact set A such that A = f0(A) ∪ f1(A), see
[Hut, BaHa]. Note also that

A0 := f0(Aλ) =

{∑
n≥0

anλ
n : an ∈ {0, 1}, a0 = 0

}
and

A1 := f1(Aλ) =

{∑
n≥0

anλ
n : an ∈ {0, 1}, a0 = 1

}
.

Considering the λ-plane C as parameter space, there is the same dichotomy as for
quadratic maps z 7→ z2 + c: either Aλ is a Cantor set or Aλ is connected. Define the
analogue of the Mandelbrot set as

M× := {λ ∈ C : Aλ is connected},
see Figure 30.2. One can check that {|λ| ≥ 1√

2
} ⊂M× ⊂ {|λ| ≥ 1

2
}, so the interesting

part of the parameter space is the annulus {1
2
≤ |λ| < 1}. So from now on, assume

that λ belongs to this annulus and also λ /∈ R. The involutions λ 7→ −λ and λ 7→ λ
preserve M×, and the two antennae [1

2
, 1] and [−1,−1

2
] belong to M× as well. Hence

it suffices to consider the positive quadrant of the annulus, see Figure 30.2.
Bousch [Bou2] proved that M× is connected and locally connected, but M×, is not

self-similar. For example, ∂M× becomes smoother as arg λ increases to π/2. Further-
more, Bandt [Ban] proved that M× contains holes, see the zoom-in of Figure 30.2.

It is easy to see that λ ∈M× if and only if

Iλ := A0 ∩ A1 6= ∅.
Figure 30.3 depicts the set of interest to us:

M1 := {λ ∈ C : Iλ =: {cλ} is a singleton},
or equivalently M1 = {c ∈ C : Aλ is a dendrite}, as was proven in [BK]. If A0 ∩ A1

consists of exactly one point, then there is a sequence {an}n≥0, with a0 = 1 say, such
that cλ =

∑
n anλ

n =
∑

n(1− an)λn. Subtracting these sequences we get that

Fλ :=

{
g(z) =

∑
n≥0

bnz
n : bn ∈ {−1, 0, 1}, b0 ≥ 0, g(λ) = 0

}
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Figure 30.2. Left: The top-right quarter of the set M×, with λ ≥ 1√
2

in grey. Right: A zoom-in near λ = 0.59 + 0.25i shows that M× contains
holes. For this and the other figures in this section, we are indebted to
Christoph Bandt.

consists of exactly one function, say Fλ = {gλ}, and all the coefficients of gλ are ±1.

Remark. Incidentally, the set

M2 = {λ ∈ C : #Iλ = 2}
is of interest too. If λ ∈M2, then the set Aλ is still connected and one-dimensional, but
it contains infinitely many topological circles (comparable to the Sierpinski triangle),
see the right panel of Figure 30.4. In this case Fλ is a singleton too, but it has exactly
one zero coefficient.

If
∑

n anλ
n ∈ Aλ, also

∑
n(1− an)λn ∈ Aλ, so the involution

i : z 7→
∑
n

(1− an)λn =
1

1− λ
− z

preserves Aλ. This allows us to define dynamics on Aλ, which to some extent is the
inverse of the IFS {f0, f1}:

qλ(z) :=

{
f−1
0 (z) = z

λ
if z ∈ A0,

i ◦ f−1
1 (z) = 1−z

λ
+ 1

1−λ if z ∈ A1.
(36)

This map is 2-to-1, except at the single critical point cλ = 1
2(1−λ)

; at all other points

in Aλ, qλ is a local homeomorphism. It follows that (Aλ, qλ) satisfies all the axioms of
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Figure 30.3. Left: Quarters of the sets M×, in grey, and the set of
zeroes of power series with coefficients in {−1, 0, 1} superimposed in
black. This latter set contains M1, but as yet it is not known whether
they coincide. Right: Zoom-in for the region 0.57 ≤ Re λ ≤ 0.65 and
0.25 ≤ Im λ ≤ 0.33.

an abstract Julia set, and the connected hull of orb(cλ) in Aλ is the Hubbard tree or
Hubbard dendrite according to whether orb(cλ) is finite or infinite (and its connected
hull is indeed a dendrite and not a tree). The fixed points are α = 1

1−λ2 and β = 0
(which is always an endpoint of the dendrite Aλ).

Bandt [Ban] showed that M1 6= ∅; he gave algebraic parameters λ ∈M1 for which
cλ is strictly preperiodic. In fact, it was proved in [BR] that cλ is nonrecurrent for
every λ ∈ M1. Solomyak [Sol] showed that M1 is uncountable, and hence contains
transcendental parameters λ for which orb(cλ) is infinite. He also showed that for
strictly preperiodic parameters, Aλ at qλ(cλ) and M1 at λ are locally self-similar in
the sense of Tan Lei, [Ta1]. Together with Ilgar Eroglu and Steffen Rohde [ERS],
he showed that (Aλ, qλ) is quasi-conformally conjugate with (Jc, fc) where c is chosen
that qλ and fc have the same kneading sequence. However, since not every c ∈ ∂M
corresponds to some λ ∈M1, the question remains.

• For which c ∈M is there a λ ∈M1 such that (Aλ, qλ) and (Jc, fc) are conjugate
systems?

Further questions in this direction are

• What is the topology of M1? There are reasons to believe that M1 is (contained
in) a Cantor set.
• Do ‘most’ points λ ∈ ∂M× have a unique power series in Fλ, see [Sol]?
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Figure 30.4. Examples of sets Aλ when A0 ∩ A1 is a singleton (left:
λ ≈ 0.59 + 0.25i is the solution of 2λ3 − 2λ + 1 = 0), or consists of two
points (right: λ ≈ 0.62 + 0.18i is a solution of λ4 + λ3 − 2λ + 1 = 0).
Details on these examples can be found in [Ban].

In the rest of this section, we discuss the symbolic dynamics and combinatorics of
(Aλ, qλ) in more detail. If we assign the symbols 0, 1 and ? to A0 \ {cλ}, A1 \ {cλ}
and {cλ} respectively, we can define the itineraries and kneading invariant ν, in the
same way as for fc on the ordinary Julia set. Note also that qλ preserve cyclic orders of
branches at branchpoints, so Aλ cannot contain any evil branchpoints. It follows that
ν always satisfies the admissibility condition of Definition 5.1.

For z =
∑
anλ

n, let us denote how q acts on the sequence {an}n≥0 by Q:

Q({an}n≥0) =

{
{an+1}n≥0 (left shift) if a0 = 0,

{1− an+1}n≥0 (left shift with ‘flip’) if a0 = 1.
(37)

It follows that the itinerary e(z) = e0e1e2 ∈ Σ of z =
∑

n≥0 anλ
n satisfies

e0 = a0 and for n ≥ 1: en =

{
1 if an 6= an−1,

0 if an = an−1.

Conversely, an = 0 or 1 according to whether e0 . . . en contains an odd or even number
of 1s10. Thus we obtain the following commutative diagram: If {an}n≥0 corresponds to

10This relates to the two standard ways of expressing itineraries real unimodal maps: by recording
on which side of c the n-th image of z lies (as we do) or according to where f◦n is locally increasing
or decreasing, as is done in [MiT], see also [CoE]. The same difference we encounter for the itinerary
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z ∈ Aλ -
qλ

Aλ

? ?
e e is itinerary map

e(z) ∈ Σ -
σ

Σ

? ?
ϕ ϕ(e)n =

{
1 if #{i ≤ n : ei = 1} is odd}
0 if #{i ≤ n : ei = 1} is even}

{an}n≥0 ∈ Σ -
Q

Σ

the critical point, i.e., cλ =
∑

n≥0 anλ
n =

∑
n≥0(1− an)λn, we have the itinerary

?ν1ν2 · · · = e0(cλ)e1(cλ)e2(cλ) . . . ,where νn =

{
1 if an 6= an−1,

0 if an = an−1.

Let us relate this to the single function gλ(z) =
∑

n bnz
n =

∑
n anz

n −
∑

n(1 − an)zn

of Fλ. As bn = 2an − 1 ∈ {−1, 1}, we conclude that

b0 = 1 and bn = (−1)#{1≤i≤n : νi=1}. (38)

In other words, if {bn}n≥0 ∈ {−1, 1}N∗ with b0 = 1 is such that gλ(λ) =
∑

n≥0 bnλ
n = 0,

and
∑

n≥0 b̃nλ
n 6= 0 for all other sequence {b̃n}n≥0 ∈ {−1, 1}N∗ with b̃0 = 1, then Aλ is

a dendrite, and its kneading sequence is related to {bn}n≥0 by (38).
Solomyak [Sol] proved the following theorem:

30.12. Theorem (M1 is uncountable)
For every sequence {bn}n≥0 of the form

1,−1, 1, 1, 1,−1,−1,−1, 1, 1, 1,−1, . . . ,−1︸ ︷︷ ︸
r1

, 1, . . . , 1︸ ︷︷ ︸
r2

,−1, . . . ,−1︸ ︷︷ ︸
r3

, 1, . . . , 1︸ ︷︷ ︸
r4

, . . .

where each ri ∈ {3, 4}, the function gb(z) =
∑

n≥0 bnz
n has a zero λ with belongs to

M1, and every different sequence {bn}n≥0 has a different λ ∈M1.

Computing the kneading sequences of the maps qλ for λ as in this proposition, we
find that

νλ = 1100100100100 . . .

e(x) for a point x ∈ [0, 1] with respect to the tent map T (x) = min{2x, 2(1 − x)} and the dyadic
expansion of x. See [BB, Sections 12.2-12.5] for some further interesting applications.
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satisfies σ◦kνλ <lex νλ for all k ≥ 1 and lexicographical order <lex. Combining
Lemma 5.2011, and especially formula (3), with Proposition 5.19 and Lemma ?? we
can derive that

- the α-fixed point in Aλ has three arms;
- there are no other periodic branch points;
- the critical value qλ(cλ) is an endpoint of Aλ.

This suggests following questions for arbitrary λ ∈M1:

• Is qλ(cλ) always an endpoint of Aλ?
• Is there always exactly one cycle of periodic branchpoints in Aλ (on which all

other branchpoints are eventually mapped)?

11Eroglu, Rohde and Solomyak showed that the property σ◦kνλ <lex νλ for all k ≥ 1 implies
that ν is admissible, giving another proof of Lemma 5.20. Namely, if ϑ =

∑
n≥1 2−n(1 − νn), then

g◦k(ϑ) ∈ (ϑ, 12 ) ∪ ( 1
2 + ϑ, 1) ⊂ S1 for all k ≥ 1 for the angle doubling map g. In particular, ν is equal

to the itinerary of ϑ with respect to the partition {(ϑ2 ,
ϑ+1
2 ), (ϑ+1

2 , ϑ2 )} of S1. In other words, ν is the

itinerary of an external parameter angle ϑ.
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31. Trees and the Mandelbrot Set

As we have seen in the main text, not every abstract Hubbard tree is realized by a complex

polynomial. This gives rise to virtual parts of the Mandelbrot trees, for which a description

by internal address etc. is still possible. Work by Kauko specifies where these virtual limbs

branch off from the Mandelbrot (and Multibrot) set, and describes the similarities of virtual

and true limbs of the Mandelbrot set.

31.1. Kauko. HB: Definition Multibrot set, picture of visible trees? I’m
also not sure yet how to either include or refer to the appropriate parts of
the Lau & Schleicher paper.

In [Kau1, Kau2], Kauko is investigating the Multibrot sets by looking at their tree
structure from a combinatorial point of view. She continues the study of visible trees
of [LS], which is based on a partial order on hyperbolic components. A hyperbolic
component W1 is smaller than a hyperbolic component W2, written as W1 ≺ W2, if W2

is contained in the wake of W1 (see Subsection 9.2 for the definition of wakes). The
combinatorial arc [W1,W2] between W1 and W2 is the set of all hyperbolic components
W with W1 ≺ W ≺ W2 including W1 and W2. The wake W2 is called visible from W1

if none of the hyperbolic components in [W1,W2] has period less than W2. The set of
hyperbolic components visible from a base component W form a visible tree. The tree
starting at internal angle p/q of W is denoted by Tp/q. Two visible trees Tp/q, Tp′/q′ are
combinatorially equivalent if there is a homeomorphism between them such that each
element of Tp/q with period n is mapped to an element of Tp′/q′ with period (q′−q)k+n
for some k ∈ N. Note that the definitions as stated above refer to the Mandelbrot set,
for Multibrot sets of arbitrary degree d > 2, one has to replace the term “component”
by “sector”.

The main result in [Kau1] is that in general two visible trees of a given base
sector are not combinatorially equivalent, answering a long standing conjecture in the
negative. Kauko also gives a new proof of the weak translation principle in the quadratic
case, which says that if W is a hyperbolic component of period k and m is the smallest
period in its wake then the minimal period of components in any visible tree Tp/q is
(q − 2)k + m. Her proofs are based on calculating the widths of wakes of hyperbolic
components (see Subsection 9.2 and in particular Proposition 9.24 for a definition).

The paper [Kau2] is closely related to the investigation of kneading sequences of
Sections 5 to 8. Indeed, Kauko is studying formal kneading sequences and formal
addresses, where a formal kneading sequence is any infinite sequence (ai)i≥1 with ai ∈
{0, . . . , d−1} and a1 6= 0, and a formal address is a (finite or infinite) sequence n1(s1) 7→
n1(s1) 7→ . . . with n1 = 1, ni < ni+1 and si ∈ {1, . . . , d−1} for all i. Kauko determines
a class of kneading sequences that are not generated by any unicritical polynomial.
She calls these kneading sequences shadow components because they are bifurcation
sequences similar to the kneading sequences generated by satellite components in the
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Multibrot sets but not contained in there. In Section 22, we show that in fact all
non-realizable sequences are of this type.

Kauko defines a partial order on the set of all formal addresses which allows her to
extend the concept of visible trees to this abstract setting. Using the algorithm given
in Corollary 11.7 to determine the hyperbolic components of lowest period between
W1 ≺ W2, Kauko shows that in this abstract setting the translation principle holds
true, i.e., for any address any two visible trees T/̇q and T/̇q′

12 are combinatorially

equivalent.
The second part of the paper is devoted to estimate the width of wakes of hyperbolic

sectors. From these results she derives the following statements about the realization
of kneading sequences and formal addresses:

• If c1 . . . ck is the kneading sequence of an (existing) narrow hyperbolic compo-

nent W , then any sequence (c1 . . . ck)q−1b1 . . . bn for n ≤ k is realized above a
q-satellite of W .
• Every formal address with at most four entries is realized.
• Under the assumption that all non-existing kneading sequences are shadow

components, it holds true that for any strictly increasing sequence of integers
1 7→ n2 7→ . . ., there are integers si ∈ {1, 2} such that 1(s1) 7→ n2(s2) 7→ . . . is
realized as internal address in the Multibrot set M3 of degree 3.

12In the abstract setting, it does not make sense to consider different numerators to a given
denominator because they cannot be distinguished in terms of kneading sequences.





Bibliography

[Ah1] Lars Ahlfors: Conformal invariants. McGraw-Hill (1973).
[Ah2] Lars Ahlfors, Lectures on quasiconformal mappings, Van Nostrand (1987).
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fonctions, Preprint 1993. (Avaliable on http://topo.math.u-psud.fr/∼bousch/preprints/index.
html)

[Bow] Rufus Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math.
Soc. 181 (1973), 509–510.

[Bra] Bodil Branner, The Mandelbrot set, Proc. of Symp. Appl. Math 39 Chaos and Fractals: the
mathematics behind the computer graphics (1989), 75–105.

[BF] Bodil Branner, Nuria Fagella, Homeomorphisms between limbs of the Mandelbrot set, J. Geom.
Anal. 9 3 (1999), 327–390.

[BH] Bodil Branner, John Hubbard, The iteration of cubic polynomials. II. Patterns and parapat-
terns, Acta Math. 169 (1992), no. 3-4, 229–325.

[BB] Karen M. Brucks, Henk Bruin, Topics from one-dimensional dynamics, London Math. Soc.
Student texts 62 Cambridge University Press 2004.

[Bru1] Henk Bruin, Combinatorics of the kneading map, Internat. J. Bifur. Chaos Appl. Sci. Engrg.
5 (1995), 1339–1349.

[Bru2] Henk Bruin, Topological conditions for the existence of Cantor attractors, Trans. Amer. Math.
Soc. 350 (1998), 2229-2263.

[BuS] Shaun Bullett, Pierrette Sentenac, Ordered orbits of the shift, square roots, and the devil’s
staircase, Math. Proc. Cambridge Philos. Soc. 115 (1994), 451–481.

[Ch] Doug Childers, Wandering polygons and recurrent critical leaves, Ergod. Th. & Dynam. Sys-
tems 27 (2007), 87–107.

[CG] Lennart Carleson, Theodore Gamelin, Complex dynamics, Universitext: Tracts in Mathemat-
ics. Springer-Verlag, New York (1993).

[Ch] Kai Lai Chung, A course in probability theory, Harcourt, Brace & World, Inc., New York
(1968).

[CoE] Pierre Collet, Jean-Pierre Eckmann, Iterated maps on the interval as dynamical systems,
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32. Other Languages and Further Results

32.1. Still to do. Growing trees: Blokh/Levin: AK -¿ HB
Douady: algorithms: DS
Thurston’s theorem: DS
Atela: DS (also appendix of Goldberg/Milnor and appendix of [Mi2])
Maps on trees; Misiurewicz, Llibre, Alseda: HB (Paper von Nuria und Alseda?)
Im Anhang: jeweils Namen der Pioniere in den Titeln erwhnen oder nicht?
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HB: New are the sections on Keller, Penrose, pairs of linear maps, Yoccoz puzzles and
∗-products (this last one is really very tentative). The bit on real admissibility is rewritten.
For some reason I couldn’t gt some of the pictures on the right spot. I have the following
list of queries, wishes and things to do still:

• The single text needs to be split up into separate chapters.
• To be added: text on Thurston’s proof of No Nonwandering Triangles. Appar-

ently, it also holds for unicritical polynomials. Was that proved elsewhere, other
than/before Penrose in an unpublished 1994 preprint [Pen2]?
• To be added: Thurston’s approach to rational maps, Thurston obstructions, and

what Levy cycles are.
• To be added: section on Orsay notes, Posdronasvili.
• Where to put Kiwi’s work: in the section on Laminations or the one on Portraits?
• The little section on ∗-products needs to be expanded, I suppose. Are ∗-products

to used in Section 10 on renormalization? At any rate, I better wait for Section 10
to be finished before deciding what to do with the bit on ∗-products
• I included some more Milnor & Thurston type of kneading theory (i.e., the formal

power series approach), as it is, on the face of it, much such a powerful method.
Not sure if this is really restricted to interval maps, or if many of their results carry
over to Hubbard trees. So I put some remarks in, but it could always be ore, or
less...
• I find that the parts on the Partial Translation Principle (Kauko, Keller) should

have proper references to the Lau & Schleicher paper, or however Lau & Schleicher
is going to be covered in our book. Same for visibility. I’d be happy to hear your
opinion.
• Still need the picture for Yoccoz puzzles: I’d like the one of the puzzle for the

Fibonacci unimodal map, in [HY]. Can any of you make it?
• I’ve never seen Faught’s work on Yoccoz Tableaux, but maybe it needs to be

included in the current Section 27.1 on Tableaux.
• Should we be using Milnors notation for f ◦n for negative n, i.e., f ◦−n or so?

Currently we don’t.
• Was Penrose thesis 1990 or 1994? Our list of ref. says 1994 (probably correct),

but my copy says 1990, and so does the Math Genealogy Project
• Always in demand: more pictures. Especially the more technical bits from the

Portraits Section need some
• Who was the first to come with the non-admissible kneading sequence 101100 . . . ?

It’s in Penrose, Keller, Kauko, etc. Also in the Orsay notes???
• In Section 16 (on biaccessibility) I want a lemma added along the lines: If x = e(p)

is the itinerary of p, and the ρe-function admits n disjouint grant orbits in N∗, then
T \ {p} consists of exactly n components. This n is actually what Penrose calls
the valency.



354 Section 32, Version of July 27, 2011

• I wish, now that thre are so many subsections in this text, that subsection had a
different, somewhat more conspicuous format. Maybe Section should get a bigger
font, so that subsctions ca get the size of current section
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Symbol N used: 1 times.


