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Dunajski (DAMTP, Cambridge) Rational Curves July 2011 1 / 17



Geometry of plane conics

Five general points determine a conic (Appolonius of Perga 200BC)

Fourth jet at a point determines a conic (Halphen 1879)
y2 + αx2 + β xy + γ y + δ x + ε = 0. Differentiate five times

9(y(2))2y(5) − 45y(2)y(3)y(4) + 40(y(3))3 = 0.

GL(2) structure on M = SL(3)/SL(2). TcM = Sym4(C2).
Vectors=binary quartics a4λ

4 + a3λ
3 + a2λ

2 + a1λ + a0.

SL(2) ⊂ GL(5). Invariant I = 12a4a0 − 3a3a1 + (a2)2.
Rational parametrisation: x2 + y2 = 1.

x =
1− λ2

1 + λ2
, y =

2λ

1 + λ2
.

Conformal structure on M : V ∈ Γ(TM) is null iff I(V ) = 0.
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This talk

Can one define a G2 structure on a seven–dimensional family M of
rational curves?

Can one characterise the curves and the corresponding G2 structures
in terms of a 7th order ODE

y(7) = F (x, y, y′, . . . , y(6))

with M as its solution space?

Condtions on F?

General set up for ODEs of order (n + 1): GL(2, R) structures.
Vectors identified with homogeneous polynomials in two variables.
Works only for special ODEs: (n− 1) expressions constructed out of F
and its derivatives must vanish.
Examples from twistor theory/algebraic geometry.
Mixture of old and new: Classical invariant theory (Young, Sylvester),
algebraic geometry, twistor theory (Penrose, Hitchin).
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G2 structures and Fernandez–Gray types

G2 ⊂ SO(7), g = (e1)2 + · · ·+ (e7)2,

φ = e123 + e145 + e167 + e246 − e257 − e347 − e356.

dim M = 7, (M, g, φ).

dφ = τ0 ∗ φ +
3
4
τ1 ∧ φ + ∗τ3, d ∗ φ = τ1 ∧ ∗φ− τ2 ∧ φ,

where τ0 ∈ Λ0(M), τ1 = Λ1(M), τ2 = Λ2(M), τ3 ∈ Λ3(M) satisfy

τ2 ∧ φ = − ∗ τ2, τ3 ∧ φ = τ3 ∧ ∗φ = 0.

Conformal rescallings g → e2fg

φ→ e3fφ, τ0 → e−fτ0, τ1 → τ1+4df, τ2 → efτ2, τ3 → e2fτ3.

1 G2 holonomy τ0 = τ1 = τ2 = τ3 = 0. Implies g is Ricci flat.
2 Weak G2 holonomy τ1 = τ2 = τ3 = 0. Implies g is Einstein.
3 Closed G2 structure τ0 = τ1 = τ3 = 0.
4 Co–calibrated G2 structure τ1 = τ2 = 0.
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Binary sextics

Binary sextics V = C7.

V = a1λ6 + 6a2λ5 + 15a3λ4 + 20a4λ3 + 15a5λ2 + 6a6λ + a7,

Möbius action

t −→ t̃ =
αt + β

γt + δ

induces GL(2, C) ⊂ GL(7, C).
Invariant of weight 6

I(V ) = a1a7 − 6a2a6 + 15a3a5 − 10(a4)2,

I(V )→ (αδ − βγ)6I(V )

Index notation: A,B, . . . , C = 0, 1.
V = VABCDEF zAzBzCzDzEzF , I(V ) = VABCDEF V ABCDEF .

Raise with symplectic form (unique up to scale) εAB = ε[AB].

Transvectants (Grace, Young 1903), or two component spinors
(Penrose).
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Seven dimensions and G2 geometry

GL(2) structure on M ↔ binary sextic S with values in T ∗M .

V ∈ Γ(TM)→ V S.

Conformal structure g(V, V ) = I(V ).
Three–form φ(V,U, W ) = VABC

DEF UDEF
GHIWGHI

ABC .

Compatibility

g(V, V ) = 0←→ (V φ) ∧ (V φ) ∧ φ = 0.

GL(2) ⊂ (G2)C × C∗.

Really follows from Morozov’s theorem.
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GL(2, R) structures from ODEs.

Assume that the space of solutions M to the 7th order ODE

y(7) = F (x, y, y′, . . . , y(6))

has a GL(2, R) structure such that normals to surfaces y = y(x; t) in
M have root with multiplicity 6. Then F satisfies five
contact–invariant conditions W1[F ] = · · · = W5[F ] = 0.

x

y

t

t

t M

Lp

p
z

z

1

2

3T

Additional contact invariants: torsion of G2 structure
τ0 = . . . , τ1 = . . . , τ2 = . . . , τ3 = ∂2F/∂(y(6))2.
If τ0 = τ1 = τ2 = τ3 = 0 then g is conformally flat and y(7) = 0.
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Twistor Theory

Family of rational curves Lt parametrised by t ∈M . x→ (x, y(x; t))
with self–intersection number six in a complex surface Z. Normal
vector

δy =
6∑

α=1

δy

δtα
δtα

vanishes at zeroes of a 6th order polynomial. N(L) = O(6).

H1(L,N(L)) = 0. Kodaira Theory: TtM ∼= H0(Lt, N(Lt)).
Sections of O(6)→ CP1=homogeneous polynomials of degree 6.

GL(2) structure.

In practice: f(x, y, tα) = 0 with rational parametrisation
x = p(λ, tα), y = q(λ, tα). Polynomial in λ giving rise to a null vector
is given by ∑

α

∂f

∂tα
|{x=p,y=q}δtα.
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Three examples

1 Example 1.

Rational curve: cuspidial cubic. (Neil 1657).
7th order ODE: (Halphen 1879, Sylvester 1888, Wilczynski 1905).
Co–calibrated G2 structure on SU(2, 1)/U(1). (MD, Doubrov 2011).

2 Example 2.

Rational curve: Bihorn sextic.
7th order ODE: (Wilczynski).
Closed G2 structure (MD, Godliński 2010).

3 Example 3.

Rational curve: (MD, Sokolov 2010).
7th order ODE: (Noth 1904).
Weak G2 holonomy on SO(5)/SO(3) (Bryant 1987).
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Ex 1. Cocalibrated G2 from cuspidal cubics.

Irreducible plane cubics αx3 + βy3 + γxy2 + · · ·+ δ = 0.

Better:
PαβγZαZβZγ = 0, where Z1/Z3 = x,Z2/Z3 = y.

PSL(3) acts on CP9 Pαβγ → N δ
αN ε

βNφ
γPδεφ.

1 Smoth cubic y2 = x(x− 1)(x− c).

Genus one.

2 Nodal cubic y2 = x3 − x2.

Genus zero. X

3 Cuspidal cubic y2 = x3.

Genus zero. X

7D orbit M = PSL(3, C)/C∗.

[Z1, Z2, Z3]→ [aZ1, a4Z2, a−5Z3]

.

Dunajski (DAMTP, Cambridge) Rational Curves July 2011 10 / 17



Ex 1. Cocalibrated G2 from cuspidal cubics.

Irreducible plane cubics αx3 + βy3 + γxy2 + · · ·+ δ = 0. Better:
PαβγZαZβZγ = 0, where Z1/Z3 = x,Z2/Z3 = y.

PSL(3) acts on CP9 Pαβγ → N δ
αN ε

βNφ
γPδεφ.

1 Smoth cubic y2 = x(x− 1)(x− c).

Genus one.

2 Nodal cubic y2 = x3 − x2.

Genus zero. X

3 Cuspidal cubic y2 = x3.

Genus zero. X

7D orbit M = PSL(3, C)/C∗.

[Z1, Z2, Z3]→ [aZ1, a4Z2, a−5Z3]

.

Dunajski (DAMTP, Cambridge) Rational Curves July 2011 10 / 17



Ex 1. Cocalibrated G2 from cuspidal cubics.

Irreducible plane cubics αx3 + βy3 + γxy2 + · · ·+ δ = 0. Better:
PαβγZαZβZγ = 0, where Z1/Z3 = x,Z2/Z3 = y.

PSL(3) acts on CP9 Pαβγ → N δ
αN ε

βNφ
γPδεφ.

1 Smoth cubic y2 = x(x− 1)(x− c).

Genus one.

2 Nodal cubic y2 = x3 − x2.

Genus zero. X

3 Cuspidal cubic y2 = x3.

Genus zero. X

7D orbit M = PSL(3, C)/C∗.

[Z1, Z2, Z3]→ [aZ1, a4Z2, a−5Z3]

.

Dunajski (DAMTP, Cambridge) Rational Curves July 2011 10 / 17



Ex 1. Cocalibrated G2 from cuspidal cubics.

Irreducible plane cubics αx3 + βy3 + γxy2 + · · ·+ δ = 0. Better:
PαβγZαZβZγ = 0, where Z1/Z3 = x,Z2/Z3 = y.

PSL(3) acts on CP9 Pαβγ → N δ
αN ε

βNφ
γPδεφ.

1 Smoth cubic y2 = x(x− 1)(x− c).

Genus one.
2 Nodal cubic y2 = x3 − x2.

Genus zero. X

3 Cuspidal cubic y2 = x3.

Genus zero. X

7D orbit M = PSL(3, C)/C∗.

[Z1, Z2, Z3]→ [aZ1, a4Z2, a−5Z3]

.

Dunajski (DAMTP, Cambridge) Rational Curves July 2011 10 / 17



Ex 1. Cocalibrated G2 from cuspidal cubics.

Irreducible plane cubics αx3 + βy3 + γxy2 + · · ·+ δ = 0. Better:
PαβγZαZβZγ = 0, where Z1/Z3 = x,Z2/Z3 = y.

PSL(3) acts on CP9 Pαβγ → N δ
αN ε

βNφ
γPδεφ.

1 Smoth cubic y2 = x(x− 1)(x− c).

Genus one.

2 Nodal cubic y2 = x3 − x2.

Genus zero. X
3 Cuspidal cubic y2 = x3.

Genus zero. X

7D orbit M = PSL(3, C)/C∗.

[Z1, Z2, Z3]→ [aZ1, a4Z2, a−5Z3]

.

Dunajski (DAMTP, Cambridge) Rational Curves July 2011 10 / 17



Ex 1. Cocalibrated G2 from cuspidal cubics.

Irreducible plane cubics αx3 + βy3 + γxy2 + · · ·+ δ = 0. Better:
PαβγZαZβZγ = 0, where Z1/Z3 = x,Z2/Z3 = y.

PSL(3) acts on CP9 Pαβγ → N δ
αN ε

βNφ
γPδεφ.

1 Smoth cubic y2 = x(x− 1)(x− c).

Genus one.

2 Nodal cubic y2 = x3 − x2.

Genus zero. X

3 Cuspidal cubic y2 = x3.

Genus zero. X

7D orbit M = PSL(3, C)/C∗.

[Z1, Z2, Z3]→ [aZ1, a4Z2, a−5Z3]

.

Dunajski (DAMTP, Cambridge) Rational Curves July 2011 10 / 17



Ex 1. Cocalibrated G2 from cuspidal cubics.

Irreducible plane cubics αx3 + βy3 + γxy2 + · · ·+ δ = 0. Better:
PαβγZαZβZγ = 0, where Z1/Z3 = x,Z2/Z3 = y.

PSL(3) acts on CP9 Pαβγ → N δ
αN ε

βNφ
γPδεφ.

1 Smoth cubic y2 = x(x− 1)(x− c).

Genus one.

2 Nodal cubic y2 = x3 − x2.

Genus zero. X

3 Cuspidal cubic y2 = x3.

Genus zero. X

7D orbit M = PSL(3, C)/C∗. [Z1, Z2, Z3]→ [aZ1, a4Z2, a−5Z3].

Dunajski (DAMTP, Cambridge) Rational Curves July 2011 10 / 17



Ex 1. Cocalibrated G2 from cuspidal cubics.

Irreducible plane cubics αx3 + βy3 + γxy2 + · · ·+ δ = 0. Better:
PαβγZαZβZγ = 0, where Z1/Z3 = x,Z2/Z3 = y.

PSL(3) acts on CP9 Pαβγ → N δ
αN ε

βNφ
γPδεφ.

1 Smoth cubic y2 = x(x− 1)(x− c). Genus one.
2 Nodal cubic y2 = x3 − x2. Genus zero. X
3 Cuspidal cubic y2 = x3. Genus zero. X

7D orbit M = PSL(3, C)/C∗. [Z1, Z2, Z3]→ [aZ1, a4Z2, a−5Z3].

Dunajski (DAMTP, Cambridge) Rational Curves July 2011 10 / 17



Ex 1. Cocalibrated G2 from cuspidal cubics.

Set σ = N−1dN ∈ Λ1(SL(3, C))⊗ sl(3, C).

g = 2σ3
2 � σ2

3 +
1
2
σ3

1 � σ1
3 −

2
5
σ1

2 � σ2
1 −

1
40

(4σ1
1 − σ2

2)2.

Signature (3, 4) on M = SL(3, R)/R∗.

Signature (4, 3) on M = SU(3)/U(1). eiθ 0 0
0 e4iθ 0
0 0 e−5iθ

 , θ ∈ R Aloff–Wallach space N(1, 4).

Riemannian signature on M = SU(2, 1)/U(1).

X

Co–calibrated G2 structure dφ = λ ∗ φ + τ, d ∗ φ = 0.
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Ex 1. Cocalibrated G2 from cuspidal cubics.

Curves in projective geometry C ⊂ CP2 (Wilczynski 1905).

x→ [y1(x), y2(x), y3(x)],

Y ′′′ + 3p1(x)Y ′′ + 3p2(x)Y ′ + p3(x)Y = 0.

Laguerre–Forsyth form p1 = p2 = 0.

Projective curvature (Cartan ?)

κ =
(6p3p3

′′ − 7(p3
′)2)3

(p3)8
.

7th order ODE: κ(y, y
′
, . . . , y(7)) = (3973)/(2452), where κ is the

projective curvature.

Rational curves with constant projective curvature: xp = yq.
... only cuspidal cubics have non–singular contact lifts to P (T ∗CP2).
Agrees with the Wilczynski invariants.
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Example 2: Closed G2 from bihorn sextics.

(y + Q(x))2 + P (x)3 = 0, where

Q(x) = q0 + q1x + q2x
2 + q3x

3, P (x) = p3(x− p2)(x− p1).

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1

Two double points and one irregular quadruple point at ∞. g = 0.

x(λ) =
p1 + p2λ

2

λ2 + 1
, y(λ) = p3

3/2(p1 − p2)3
λ3

(λ2 + 1)3
−Q(x(λ)).

7th order ODE y(7) =
21
5

y(6)y(5)

y(4)
− 84

25
(y(5))3

(y(4))2
.

Closed Riemannian G2 structure - explicit but messy.
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Example 3: Weak G2 from submaximal ODE

Contact geometry: (x, y) ∈ Z, (x, y, z) ∈ P (TZ), contact form
ω = dy − zdx. Generators of contact transformations

XH = −(∂zH)∂x + (H − z∂zH)∂y + (∂xH + z∂yH)∂z,

where H = H(x, y, z). Now LXω = cω.

Lie 1: Maximal contact Lie algebra on Z = R2 is ten–dimensional
(isomorphic to sp(4)) and is generated by

1, x, x2, y, z, xz, x2z − 2xy, z2, 2yz − xz2, 4xyz − 4y2 − x2z2.

Lie 2: maximal dimension of the contact symmetry algebra of an
ODE of order n > 3 is (n + 4) with maximal symmetry occurring if
only if the ODE is contact equivalent to a trivial equation y(n) = 0.
7th order ODE with 10D contact symmetries (submaximal ODE)

10(y(3))3y(7) − 70(y(3))2y(4)y(6) − 49(y(3))2(y(5))2

+280(y(3))(y(4))2y(5) − 175(y(4))4 = 0, (Noth 1904).
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Example 3: Weak G2 from submaximal ODE

Rational curve y2 + x(x− 1)3 = 0 solves the ODE.

Integrate the contact transformations and apply to the
parametrization

x(λ) =
1

λ2 + 1
, y(λ) = − λ3

(λ2 + 1)2
.

Take a resultant to elliminate λ. General solution is a degree six
rational curve.

W1[F ] = W2[F ] = · · · = W5[F ] = 0.

How about G2 structure? Two real forms of Sp(4)/SL(2), one of
which is a Riemannian homogeneous space SO(5)/SO(3) (Bryant
1987).
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Example 3: Weak G2 from submaximal ODE

(
c4y + c1 + c2x + c3x

2
)3 + 3

(
c4y + c1 + c2x + c3x

2
)(

3 (c5x + c6)
4 − 6 (c5x + c6)

2 (1− c7x)2 − (1− c7x)4
)

+12 (c5x + c6)
(
3 (c5x + c6)

4 (1− c7x) + (1− c7x)5
)

= 0.

–1.2
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–0.8

–0.6

–0.4

–0.2

0
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0.4

–1 –0.5 0.5 1 1.5

Discriminant of this cubic (in y) is a 3rd power of a quartic with
equianharmonic cross–ratio.
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Outlook

Twistor theory of G2–structures.

Special structures - depending on functions of three variables. General
G2 structures depend on functions of six variables.

Twistor theory ‘wrong way round’: global properties of rational curves
characterised by local invariants.

Conformal structures from binary quantics:

Quadratic - double root.
Quadric - equianharmonic cross ratio.
Sextic (relevant in this talk) -??
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