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GEOMETRY OF PLANE CONICS

e Five general points determine a conic (Appolonius of Perga 200BC)
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GEOMETRY OF PLANE CONICS

e Five general points determine a conic (Appolonius of Perga 200BC)

e Fourth jet at a point determines a conic (Halphen 1879)
2 2 o . . . .
Yy +ar®+ G xy+vyy—+6x+e=0. Differentiate five times

g(y(Q))Zy(5) _ 45y(2)y(3)y(4) + 40(3/(3))3 —0.
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Yy +ar®+ G xy+vyy—+6x+e=0. Differentiate five times

g(y(Q))Zy(5) _ 45y(2)y(3)y(4) + 40(3/(3))3 —0.

o GL(2) structure on M = SL(3)/SL(2). T.M = Sym*(C?).
Vectors=binary quartics as\* + asA3 + as\® + a1\ + ao.
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g(y(Q))Zy(5) _ 45y(2)y(3)y(4) + 40(3/(3))3 —0.

o GL(2) structure on M = SL(3)/SL(2). T.M = Sym*(C?).
Vectors=binary quartics as\* + asA3 + as\® + a1\ + ao.
o SL(2) C GL(5). Invariant I = 12a4ag — 3aza; + (az)?.
o Rational parametrisation: 2% + y% = 1.
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o Conformal structure on M: V € I'(T'M) is null iff I(V) = 0.
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THIS TALK

@ Can one define a G9 structure on a seven—dimensional family M of
rational curves?
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o General set up for ODEs of order (n + 1): GL(2,R) structures.
Vectors identified with homogeneous polynomials in two variables.
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@ Can one characterise the curves and the corresponding G5 structures
in terms of a 7th order ODE

y D = F(z,y,9,...,99)

with M as its solution space? Condtions on F7?
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o Works only for special ODEs: (n — 1) expressions constructed out of F’
and its derivatives must vanish.
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THIS TALK

@ Can one define a G9 structure on a seven—dimensional family M of
rational curves?

@ Can one characterise the curves and the corresponding G5 structures
in terms of a 7th order ODE

y D = F(z,y,9,...,99)

with M as its solution space? Condtions on F'?

o General set up for ODEs of order (n + 1): GL(2,R) structures.
Vectors identified with homogeneous polynomials in two variables.

o Works only for special ODEs: (n — 1) expressions constructed out of F’
and its derivatives must vanish.

o Examples from twistor theory/algebraic geometry.

o Mixture of old and new: Classical invariant theory (Young, Sylvester),
algebraic geometry, twistor theory (Penrose, Hitchin).
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(G5 STRUCTURES AND FERNANDEZ-GRAY TYPES

o Gy C SO(T), g=(e")2++ ()2

¢ 123 145 167 246 257 347 356

+e ' +e —e —et —e
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(G5 STRUCTURES AND FERNANDEZ-GRAY TYPES

o Gy C SO(7), g=(e)?+--+ ()2
b= o123 4 o145 | (16T | (246 _ 257 _ 34T _ 356
=7

. (M, g,9).

3
dp=T9% ¢+ Tl/\qb+>k73, d*x =11 ANx¢p —To A\,

o dim M

where 79 € A°(M), 71 = AY(M), 72 = A2(M), 73 € A3(M) satisfy
ToNG=—x%Ty, T3ANP=1T13A%xp=0.
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dp=T9% ¢+ Tl/\qb+>k73, d*x =11 ANx¢p —To A\,

o dim M

where 79 € A°(M), 71 = AY(M), 72 = A2(M), 73 € A3(M) satisfy
ToNG=—x%Ty, T3ANP=1T13A%xp=0.
e Conformal rescallings g — e*f g

¢— o, m—e T, T ntddf, ™ —eln, ™o

@ G5 holonomy 79 = 73 = 79 = 73 = 0. Implies g is Ricci flat.
@ Weak G2 holonomy 71 = 75 = 73 = 0. Implies g is Einstein.
@ Closed G5 structure 79 = 71 = 73 = 0.

@ Co-—calibrated G5 structure 71 = 7 = 0.
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BINARY SEXTICS

e Binary sextics V = C7.

V = a' A% 4+ 6a®X° + 15a3A* + 20a* X3 4 15a°\? + 645X + a7
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BINARY SEXTICS

e Binary sextics V = C7.
V = a' A% 4+ 6a®X° + 15a3A* + 20a* X3 4 15a°\? + 645X + a7

@ Mobbius action
- at+p

t t=
- vt + 9

induces GL(2,C) Cc GL(7,C).
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V = a' A% 4+ 6a®X° + 15a3A* + 20a* X3 4 15a°\? + 645X + a7

@ Mobbius action
- at+p

t t=
- vt + 9

induces GL(2,C) Cc GL(7,C).
@ Invariant of weight 6

(V) = ata” — 6a%a% + 15a%a® — 10(a4)2,
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@ Invariant of weight 6
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BINARY SEXTICS

e Binary sextics V = C7.
V = a' A% 4+ 6a®X° + 15a3A* + 20a* X3 4 15a°\? + 645X + a7

Mobius action

- at+p
t—)t:
vt + 9

induces GL(2,C) Cc GL(7,C).
@ Invariant of weight 6

I(V) = a'a” — 6a%a® + 15a%a® — 10(a*)?, I(V) — (ad — B7)°1(V)

Index notation: A, B,...,C =0,1.
V = Vapcprrzd2B2C2P2E2F (V) = VapeprprVABCPEFR,
) cAB — [AB]

Raise with symplectic form (unique up to scale
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BINARY SEXTICS

e Binary sextics V = C7.
V = a' A% 4+ 6a®X° + 15a3A* + 20a* X3 4 15a°\? + 645X + a7

Mobius action

- at+p
t—)t:
vt + 9

induces GL(2,C) Cc GL(7,C).
Invariant of weight 6

I(V) = a'a” — 6a%a® + 15a%a® — 10(a*)?, I(V) — (ad — B7)°1(V)

Index notation: A, B,...,C =0,1.

V = Vapcprrzd2B2C2P2E2F (V) = VapeprprVABCPEFR,
e Raise with symplectic form (unique up to scale) e48 = ¢[AB].

e Transvectants (Grace, Young 1903), or two component spinors
(Penrose).
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SEVEN DIMENSIONS AND (G5 GEOMETRY

e GGL(2) structure on M « binary sextic S with values in T* M.

V eT(TM)— Vi8S,
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SEVEN DIMENSIONS AND (G5 GEOMETRY

e GGL(2) structure on M « binary sextic S with values in T* M.
V e(TM)— VIS,

e Conformal structure g(V, V) = I(V).
Three=form ¢(V, U, W) = VapcPEF Uppr ST T W ABC .

Compatibility

gV, V) =0e— (VI A(VIp) A ¢ =0.

o GL(2) C (G2)® x C*. Really follows from Morozov's theorem.
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GL(2,R) STRUCTURES FROM ODEs.

@ Assume that the space of solutions M to the 7th order ODE

yD = F(z,y,9,...,99)

has a GL(2,R) structure such that normals to surfaces y = y(z;t) in
M have root with multiplicity 6. Then F' satisfies five
contact—invariant conditions W1 [F| = --- = W5[F| = 0.

~ e M

N
\r
-\ \
T
G
¥
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GL(2,R) STRUCTURES FROM ODEs.

@ Assume that the space of solutions M to the 7th order ODE

yD = F(z,y,9,...,99)

has a GL(2,R) structure such that normals to surfaces y = y(z;t) in
M have root with multiplicity 6. Then F' satisfies five
contact—invariant conditions W1 [F| = --- = W5[F| = 0.

M

> L A=
[
= G
=
- T

e Additional contact invariants: torsion of Go structure
N=...,TI=...,T2=...,73=0%F/d(y9)2.
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GL(2,R) STRUCTURES FROM ODEs.

@ Assume that the space of solutions M to the 7th order ODE

yD = F(z,y,9,...,99)

has a GL(2,R) structure such that normals to surfaces y = y(z;t) in
M have root with multiplicity 6. Then F' satisfies five
contact—invariant conditions W1 [F| = --- = W5[F| = 0.

M

> B ta
.
= =
=
= s

e Additional contact invariants: torsion of Go structure
=371 = ...,72 =...,73 :82F/a(y(6))2
o If ) =7 =7 = 713 = 0 then g is conformally flat and y(7) = 0.
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TWISTOR THEORY

e Family of rational curves L; parametrised by t € M. =z — (z,y(x;t))
with self—intersection number six in a complex surface Z. Normal

5y—z 5'”575

vanishes at zeroes of a 6th order polynomial. N(L) = O(6).

vector

Jury 2011 8 /17
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vector
Sy = Z oy 57Ot
vanishes at zeroes of a 6th order polynomial. N(L) = O(6).

o HY(L,N(L)) = 0. Kodaira Theory: T,M = HO(Ly, N(Ly)).
o Sections of O(6) — CP'=homogeneous polynomials of degree 6.

Jury 2011 8 /17

Dunasskl (DAMTP, CAMBRIDGE) RATIONAL CURVES



TWISTOR THEORY

e Family of rational curves L; parametrised by t € M. =z — (z,y(x;t))
with self—intersection number six in a complex surface Z. Normal

vector
Sy = Z oy 57Ot

vanishes at zeroes of a 6th order polynomial. N(L) = O(6).

o HY(L,N(L)) = 0. Kodaira Theory: T,M = H(L;, N(Ly)).

o Sections of O(6) — CP'=homogeneous polynomials of degree 6.
GL(2) structure.

Dunasskl (DAMTP, CAMBRIDGE) RATIONAL CURVES Jury 2011 8 /17



TWISTOR THEORY

e Family of rational curves L; parametrised by t € M. =z — (z,y(x;t))
with self—intersection number six in a complex surface Z. Normal

vector
Sy = Z oy 57Ot

vanishes at zeroes of a 6th order polynomial. N(L) = O(6).
o HY(L,N(L)) = 0. Kodaira Theory: T,M = HO(Ly, N(Ly)).
o Sections of O(6) — CP'=homogeneous polynomials of degree 6.
GL(2) structure.
e In practice: f(z,y,ts) = 0 with rational parametrisation
=p(\ ta),y = q(\ ta). Polynomial in X giving rise to a null vector
is given by
of

875 |{a> =p,y= q}5ta'
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THREE EXAMPLES

Q@ Example 1.
o Rational curve: cuspidial cubic. (Neil 1657).
o 7th order ODE: (Halphen 1879, Sylvester 1888, Wilczynski 1905).
o Co—calibrated G structure on SU(2,1)/U(1). (MD, Doubrov 2011).
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e Rational curve: Bihorn sextic.

o 7th order ODE: (Wilczynski).

o Closed G4 structure (MD, Godlinski 2010).
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THREE EXAMPLES

Q@ Example 1.
o Rational curve: cuspidial cubic. (Neil 1657).
o 7th order ODE: (Halphen 1879, Sylvester 1888, Wilczynski 1905).
o Co—calibrated G structure on SU(2,1)/U(1). (MD, Doubrov 2011).
@ Example 2.
e Rational curve: Bihorn sextic.
o 7th order ODE: (Wilczynski).
o Closed G4 structure (MD, Godlinski 2010).
@ Example 3.
o Rational curve: (MD, Sokolov 2010).
o 7th order ODE: (Noth 1904).
o Weak G5 holonomy on SO(5)/SO(3) (Bryant 1987).
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

e Irreducible plane cubics ax? + By? +yay? +---+6 = 0.
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Pop 207827 =0, where Z' /23 = 2,22 /73 = y.
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Pop 207827 =0, where Z' /23 = 2,22 /73 = y.

o PSL(3) actson CPY Pz, — N° NN, Ps.s.
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Irreducible plane cubics ax? + By? + yay? + - + 6 = 0. Better:
Pop 207827 =0, where Z' /23 = 2,22 /73 = y.
o PSL(3) actson CPY Pz, — N° NN, Ps.s.
@ Smoth cubic y? = z(z — 1)(z — ¢).
@ Nodal cubic 3% = 2% — 22.
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o Irreducible plane cubics ax? + By? + yay? + - + 6 = 0. Better:
Pop 207827 =0, where Z' /23 = 2,22 /73 = y.
o PSL(3) actson CPY Pz, — N° NN, Ps.s.
@ Smoth cubic y? = z(z — 1)(z — ¢).
@ Nodal cubic 3% = 2% — 22.

@ Cuspidal cubic y? = z3.

7D orbit M = PSL(3,C)/C*.
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o Irreducible plane cubics ax? + By? + yay? + - + 6 = 0. Better:
Pop 207827 =0, where Z' /23 = 2,22 /73 = y.
o PSL(3) actson CPY Pz, — N° NN, Ps.s.
@ Smoth cubic y? = z(z — 1)(z — ¢).
@ Nodal cubic 3% = 2% — 22.

@ Cuspidal cubic y? = z3.

7D orbit M = PSL(3,C)/C*. [Z1, 22, 73] — [aZ",a*Z2, a5 Z5].
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Irreducible plane cubics ax? + By? + yay? + - + 6 = 0. Better:
Pop 207827 =0, where Z' /23 = 2,22 /73 = y.

o PSL(3) actson CPY Pz, — N° NN, Ps.s.
@ Smoth cubic y?> = x(x — 1)(x —¢).  Genus one.
@ Nodal cubic y? = 23 — 22, Genus zero.
@ Cuspidal cubic y? = 23. Genus zero. v

7D orbit M = PSL(3,C)/C*. [Z1, 22, 73] — [aZ",a*Z2, a5 Z5].

JuLy 2011 10 / 17
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Set o0 = N~1dN € A'(SL(3,C)) ® 5(3,C).

1 2 1
g=20" 0%+ 50'31 ®o'ly— 5012 ® 0% — 4*0(4011 —o%)2
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Set o0 = N~1dN € A'(SL(3,C)) ® 5(3,C).

1 2 1
g=20" 0%+ 50'31 ®o'ly— 5012 ® 0% — 4*0(4011 —o%)2

e Signature (3,4) on M = SL(3,R)/R*.

Dunasskl (DAMTP, CAMBRIDGE) RATIONAL CURVES Jury 2011 11 /17



Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Set o0 = N~1dN € A'(SL(3,C)) ® 5(3,C).
=203 00?5+ 1U?’ Ooly— 2012 ®o — i(4011 - 022)2
2 3 2 1 3 5 1 40 .

e Signature (3,4) on M = SL(3,R)/R*.
e Signature (4,3) on M = SU(3)/U(1).

e 0 0
0 &4 0 , 0 R Aloff-Wallach space N(1,4).
0 0 e
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Set o0 = N~1dN € A'(SL(3,C)) ® 5(3,C).
=203 00?5+ 1U?’ Ooly— 2012 ®o — i(4011 - 022)2
2 3 2 1 3 5 1 40 .

e Signature (3,4) on M = SL(3,R)/R*.
e Signature (4,3) on M = SU(3)/U(1).

e 0 0
0 &4 0 , 0 R Aloff-Wallach space N(1,4).
0 0 e

e Riemannian signature on M = SU(2,1)/U(1).
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Set o0 = N~1dN € A'(SL(3,C)) ® 5(3,C).
=203 00?5+ 1U?’ Ooly— 2012 ®o — i(4011 - 022)2
2 3 2 1 3 5 1 40 .

e Signature (3,4) on M = SL(3,R)/R*.
e Signature (4,3) on M = SU(3)/U(1).

e 0 0
0 &4 0 , 0 R Aloff-Wallach space N(1,4).
0 0 e

e Riemannian signature on M = SU(2,1)/U(1). v
o Co—calibrated Go structure dp =X x o+ 7, dx ¢ = 0.
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Curves in projective geometry C' C CP?  (Wilczynski 1905).

z = [y1(2), y2(2), ys(2)];
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Curves in projective geometry C' C CP?  (Wilczynski 1905).

r — [y1(x),y2(2),y3(x)], Y +3p1(x)Y” + 3p2(2)Y’ + p3(z)Y = 0.
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Curves in projective geometry C' C CP?  (Wilczynski 1905).
x — [y1(2), y2(2), y3(x)], V" 4+ 3p1(x)Y” + 3p2(2)Y’ + p3(2)Y = 0.

e Laguerre—Forsyth form p; = ps = 0.
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Curves in projective geometry C' C CP?  (Wilczynski 1905).
x — [y1(2), y2(2), y3(x)], V" 4+ 3p1(x)Y” + 3p2(2)Y’ + p3(2)Y = 0.

o Laguerre—Forsyth form p; = ps = 0.
e Projective curvature (Cartan 7)

(6psps” — 7(ps')?)?
(p3)® '
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

Curves in projective geometry C' C CP?  (Wilczynski 1905).

r — [y1(x),y2(2),y3(x)], Y +3p1(x)Y” + 3p2(2)Y’ + p3(z)Y = 0.

Laguerre—Forsyth form p; = ps = 0.

e Projective curvature (Cartan 7)

(6psps” — 7(ps')?)?
(p3)® '

o 7th order ODE: s(y,y ,...,y") = (3973)/(2*5%), where & is the
projective curvature.
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o Curves in projective geometry C' C CP?  (Wilczynski 1905).
x — [y1(2), y2(2), y3(x)], V" 4+ 3p1(x)Y” + 3p2(2)Y’ + p3(2)Y = 0.

o Laguerre—Forsyth form p; = ps = 0.
e Projective curvature (Cartan 7)

(6psps” — 7(ps')?)?
(p3)® '

o 7th order ODE: s(y,y ,...,y") = (3973)/(2*5%), where & is the
projective curvature.
e Rational curves with constant projective curvature: P = y9.
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Curves in projective geometry C' C CP?  (Wilczynski 1905).
x — [y1(2), y2(2), y3(x)], V" 4+ 3p1(x)Y” + 3p2(2)Y’ + p3(2)Y = 0.

o Laguerre—Forsyth form p; = ps = 0.
e Projective curvature (Cartan 7)

(6psps” — 7(ps')?)?
(p3)® '

o 7th order ODE: s(y,y ,...,y") = (3973)/(2*5%), where & is the
projective curvature.

e Rational curves with constant projective curvature: P = y9.
o ... only cuspidal cubics have non-singular contact lifts to P(T*CP?).
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Ex 1. COCALIBRATED (G5 FROM CUSPIDAL CUBICS.

o Curves in projective geometry C' C CP?  (Wilczynski 1905).
x — [y1(2), y2(2), y3(x)], V" 4+ 3p1(x)Y” + 3p2(2)Y’ + p3(2)Y = 0.

o Laguerre—Forsyth form p; = ps = 0.
e Projective curvature (Cartan 7)

(6psps” — 7(ps')?)?
(p3)® '

o 7th order ODE: s(y,y ,...,y") = (3973)/(2*5%), where & is the
projective curvature.
e Rational curves with constant projective curvature: P = y9.
o ... only cuspidal cubics have non-singular contact lifts to P(T*CP?).
o Agrees with the Wilczynski invariants.
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EXAMPLE 2: CLOSED (G5 FROM BIHORN SEXTICS.

o (y+ Q(x))% + P(x)® =0, where

Q(z) = g0 + q1z + 22* + q32°,  P(z) = p3(z — p2)(z — p1).
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EXAMPLE 2: CLOSED (G5 FROM BIHORN SEXTICS.

o (y+Q(x))*+ P(x)% =0, where

Q(z) = g0 + q1z + 22* + q32°,  P(z) = p3(z — p2)(z — p1).

e Two double points and one irregular quadruple point at co. g = 0.

)\3
m — Q(z(N)).

p1 + paX?
z(A) = ﬁa y(N) :P33/2(P1 — p2)°
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EXAMPLE 2: CLOSED (G5 FROM BIHORN SEXTICS.

o (y+Q(x))*+ P(x)% =0, where

Q(z) = g0 + q1z + 22* + q32°,  P(z) = p3(z — p2)(z — p1).

e Two double points and one irregular quadruple point at co. g = 0.
)\3
NZ+1)3

_ p1+paN?

o) = PPy = pa (1 - po)? Qz(N).

7th order ODE = — - —
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EXAMPLE 2: CLOSED (G5 FROM BIHORN SEXTICS.

o (y+Q(x))*+ P(x)% =0, where

Q(z) = g0 + q1z + 22* + q32°,  P(z) = p3(z — p2)(z — p1).

e Two double points and one irregular quadruple point at co. g = 0.
)\3
NZ+1)3

_ p1+paN?

o) = PPy = pa (1 - po)? Qz(N).

7th order ODE = — - —

@ Closed Riemannian G structure - explicit but messy.
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ExXAMPLE 3: WEAK (G5 FROM SUBMAXIMAL ODE

o Contact geometry: (z,y) € Z, (x,y,2) € P(T'Z), contact form
w = dy — zdx. Generators of contact transformations

Xg = —(0.H)0, + (H — 20,H)d, + (8, H + z0,H)0.,
where H = H(x,y,z). Now Lxw = cw.
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ExXAMPLE 3: WEAK (G5 FROM SUBMAXIMAL ODE

o Contact geometry: (z,y) € Z, (x,y,2) € P(T'Z), contact form
w = dy — zdx. Generators of contact transformations

Xg = —(0.H)0, + (H — 20,H)d, + (8, H + z0,H)0.,

where H = H(x,y,z). Now Lxw = cw.
o Lie 1: Maximal contact Lie algebra on Z = R? is ten—dimensional
(isomorphic to sp(4)) and is generated by

2 2.2

1,:c,x2,y, Z,x2,x°2 — 22y, 22, 2yz — x22, dxyz — 4y2 —xz%.
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ExXAMPLE 3: WEAK (G5 FROM SUBMAXIMAL ODE

o Contact geometry: (z,y) € Z, (x,y,2) € P(T'Z), contact form
w = dy — zdx. Generators of contact transformations

Xg = —(0.H)0, + (H — 20,H)d, + (8, H + z0,H)0.,

where H = H(x,y,z). Now Lxw = cw.
o Lie 1: Maximal contact Lie algebra on Z = R? is ten—dimensional
(isomorphic to sp(4)) and is generated by

2 2.2

1,:c,x2,y, Z,x2,x°2 — 22y, 22, 2yz — x22, dxyz — 4y2 —xz%.

@ Lie 2: maximal dimension of the contact symmetry algebra of an
ODE of order n > 3 is (n + 4) with maximal symmetry occurring if
only if the ODE is contact equivalent to a trivial equation (™ = 0.

DunaJskl (DAMTP, CAMBRIDGE) RATIONAL CURVES Jury 2011 14 /17



ExXAMPLE 3: WEAK (G5 FROM SUBMAXIMAL ODE

o Contact geometry: (z,y) € Z, (x,y,2) € P(T'Z), contact form
w = dy — zdx. Generators of contact transformations

Xg = —(0.H)0, + (H — 20,H)d, + (8, H + z0,H)0.,

where H = H(z,y,z). Now Lxw = cw.
o Lie 1: Maximal contact Lie algebra on Z = R? is ten—dimensional
(isomorphic to sp(4)) and is generated by

2 2.2

1,:c,x2,y, Z,x2,x°2 — 22y, 22, 2yz — mz2, dxyz — 4y2 —xz%.

@ Lie 2: maximal dimension of the contact symmetry algebra of an
ODE of order n > 3 is (n + 4) with maximal symmetry occurring if
only if the ODE is contact equivalent to a trivial equation (™ = 0.

e 7th order ODE with 10D contact symmetries (submaximal ODE)

10(y® Pyt — 70(y@)?y Wy ® — 49(y®))? (y)?
+280(y®) (y™)2y® —175(yW)* =0, (Noth 1904).
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ExXAMPLE 3: WEAK (G5 FROM SUBMAXIMAL ODE

o Rational curve y? + z(z — 1)3 = 0 solves the ODE.
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o Rational curve y? + z(z — 1)3 = 0 solves the ODE.

@ Integrate the contact transformations and apply to the
parametrization
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ExXAMPLE 3: WEAK (G5 FROM SUBMAXIMAL ODE

o Rational curve y? + z(z — 1)3 = 0 solves the ODE.

@ Integrate the contact transformations and apply to the
parametrization

1 A3
z(A) = X+l y(A) = —m'

e Take a resultant to elliminate A. General solution is a degree six
rational curve.
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ExXAMPLE 3: WEAK (G5 FROM SUBMAXIMAL ODE

Rational curve y? + x(x — 1)% = 0 solves the ODE.

Integrate the contact transformations and apply to the
parametrization

1 A3
z(A) = X+l y(A) = —m'

e Take a resultant to elliminate A. General solution is a degree six
rational curve.

WAF] = Wo[F] = - - = W5[F] = 0.
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ExXAMPLE 3: WEAK (G5 FROM SUBMAXIMAL ODE

o Rational curve y? + z(z — 1)3 = 0 solves the ODE.

@ Integrate the contact transformations and apply to the
parametrization

1 A3
z(A) = N1l y(A) = —m'

e Take a resultant to elliminate A. General solution is a degree six
rational curve.

o WW[F|=Wh|F]|=---=W;[F]=0.

e How about G2 structure? Two real forms of Sp(4)/SL(2), one of

which is a Riemannian homogeneous space SO(5)/S0O(3) (Bryant
1087).
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ExXAMPLE 3: WEAK (G5 FROM SUBMAXIMAL ODE

(cay + 1+ com + 03x2)3 +3 (cay + 1 + 2w + c32?)
(3 (esx +c6)* — 6 (524 c6)* (1 — eqz)® — (1 — 0733)4)

+12 (esz + c6) (3 (csz 4 c6)* (1 — erz) + (1 — C7x)5) =0.
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ExXAMPLE 3: WEAK (G5 FROM SUBMAXIMAL ODE

(cay + 1+ com + 03x2)3 +3 (cay + 1 + 2w + c32?)
(3 (esx +c6)* — 6 (524 c6)* (1 — eqz)® — (1 — 0733)4)

+12 (esz + c6) (3 (csz 4 c6)* (1 — erz) + (1 — C7x)5) =0.

Discriminant of this cubic (in y) is a 3rd power of a quartic with
equianharmonic cross—ratio.
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e Twistor theory of Go—structures.

o Special structures - depending on functions of three variables. General
(5 structures depend on functions of six variables.
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o Special structures - depending on functions of three variables. General
(5 structures depend on functions of six variables.
e Twistor theory ‘wrong way round’: global properties of rational curves
characterised by local invariants.
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OUTLOOK

e Twistor theory of Go—structures.
o Special structures - depending on functions of three variables. General
(5 structures depend on functions of six variables.
e Twistor theory ‘wrong way round’: global properties of rational curves
characterised by local invariants.
@ Conformal structures from binary quantics:
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OUTLOOK

e Twistor theory of Go—structures.
o Special structures - depending on functions of three variables. General
(5 structures depend on functions of six variables.
e Twistor theory ‘wrong way round’: global properties of rational curves
characterised by local invariants.
@ Conformal structures from binary quantics:
e Quadratic - double root.
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OUTLOOK

e Twistor theory of Go—structures.
o Special structures - depending on functions of three variables. General
(5 structures depend on functions of six variables.
e Twistor theory ‘wrong way round’: global properties of rational curves
characterised by local invariants.
@ Conformal structures from binary quantics:

e Quadratic - double root.
e Quadric - equianharmonic cross ratio.
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OUTLOOK

e Twistor theory of Go—structures.
o Special structures - depending on functions of three variables. General
(5 structures depend on functions of six variables.
e Twistor theory ‘wrong way round’: global properties of rational curves
characterised by local invariants.
@ Conformal structures from binary quantics:

e Quadratic - double root.
e Quadric - equianharmonic cross ratio.
o Sextic (relevant in this talk) -77?
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