G_2 -STRUCTURES AND TWISTOR THEORY

Maciej Dunajski

Department of Applied Mathematics and Theoretical Physics University of Cambridge

- Joint with Tod, Godliński, Sokolov, Doubrov.
- Bulids on Calyey, Sylvester, Penrose, Hitchin, Bryant,
 Bailey&Eastwood, Doubrov, Godliński&Nurowski, Kryński.

GEOMETRY OF PLANE CONICS

• Five general points determine a conic (Appolonius of Perga 200BC)

Geometry of plane conics

- Five general points determine a conic (Appolonius of Perga 200BC)
- Fourth jet at a point determines a conic (Halphen 1879) $y^2 + \alpha x^2 + \beta \ xy + \gamma \ y + \delta \ x + \epsilon = 0.$ Differentiate five times

$$9(y^{(2)})^2 y^{(5)} - 45y^{(2)} y^{(3)} y^{(4)} + 40(y^{(3)})^3 = 0.$$

Geometry of plane conics

- Five general points determine a conic (Appolonius of Perga 200BC)
- Fourth jet at a point determines a conic (Halphen 1879) $y^2 + \alpha x^2 + \beta \; xy + \gamma \; y + \delta \; x + \epsilon = 0.$ Differentiate five times

$$9(y^{(2)})^2 y^{(5)} - 45y^{(2)} y^{(3)} y^{(4)} + 40(y^{(3)})^3 = 0.$$

• GL(2) structure on M = SL(3)/SL(2). $T_cM = \operatorname{Sym}^4(\mathbb{C}^2)$. Vectors=binary quartics $a_4\lambda^4 + a_3\lambda^3 + a_2\lambda^2 + a_1\lambda + a_0$.

Geometry of plane conics

- Five general points determine a conic (Appolonius of Perga 200BC)
- Fourth jet at a point determines a conic (Halphen 1879) $y^2 + \alpha x^2 + \beta \ xy + \gamma \ y + \delta \ x + \epsilon = 0$. Differentiate five times

$$9(y^{(2)})^2 y^{(5)} - 45y^{(2)} y^{(3)} y^{(4)} + 40(y^{(3)})^3 = 0.$$

- GL(2) structure on M = SL(3)/SL(2). $T_cM = \operatorname{Sym}^4(\mathbb{C}^2)$. Vectors=binary quartics $a_4\lambda^4 + a_3\lambda^3 + a_2\lambda^2 + a_1\lambda + a_0$.
 - $SL(2) \subset GL(5)$. Invariant $I = 12a_4a_0 3a_3a_1 + (a_2)^2$.

GEOMETRY OF PLANE CONICS

- Five general points determine a conic (Appolonius of Perga 200BC)
- Fourth jet at a point determines a conic (Halphen 1879) $y^2 + \alpha x^2 + \beta \; xy + \gamma \; y + \delta \; x + \epsilon = 0.$ Differentiate five times

$$9(y^{(2)})^2 y^{(5)} - 45y^{(2)} y^{(3)} y^{(4)} + 40(y^{(3)})^3 = 0.$$

- GL(2) structure on M = SL(3)/SL(2). $T_cM = \operatorname{Sym}^4(\mathbb{C}^2)$. Vectors=binary quartics $a_4\lambda^4 + a_3\lambda^3 + a_2\lambda^2 + a_1\lambda + a_0$.
 - $SL(2) \subset GL(5)$. Invariant $I = 12a_4a_0 3a_3a_1 + (a_2)^2$.
 - Rational parametrisation: $x^2 + y^2 = 1$.

$$x = \frac{1 - \lambda^2}{1 + \lambda^2}, \quad y = \frac{2\lambda}{1 + \lambda^2}.$$

GEOMETRY OF PLANE CONICS

- Five general points determine a conic (Appolonius of Perga 200BC)
- Fourth jet at a point determines a conic (Halphen 1879) $y^2 + \alpha x^2 + \beta \; xy + \gamma \; y + \delta \; x + \epsilon = 0.$ Differentiate five times

$$9(y^{(2)})^2 y^{(5)} - 45y^{(2)} y^{(3)} y^{(4)} + 40(y^{(3)})^3 = 0.$$

- GL(2) structure on M = SL(3)/SL(2). $T_cM = \operatorname{Sym}^4(\mathbb{C}^2)$. Vectors=binary quartics $a_4\lambda^4 + a_3\lambda^3 + a_2\lambda^2 + a_1\lambda + a_0$.
 - $SL(2) \subset GL(5)$. Invariant $I = 12a_4a_0 3a_3a_1 + (a_2)^2$.
 - Rational parametrisation: $x^2 + y^2 = 1$.

$$x = \frac{1 - \lambda^2}{1 + \lambda^2}, \quad y = \frac{2\lambda}{1 + \lambda^2}.$$

• Conformal structure on M: $V \in \Gamma(TM)$ is null iff I(V) = 0.

ullet Can one define a G_2 structure on a seven-dimensional family M of rational curves?

- Can one define a G_2 structure on a seven–dimensional family M of rational curves?
- ullet Can one characterise the curves and the corresponding G_2 structures in terms of a 7th order ODE

$$y^{(7)} = F(x, y, y', \dots, y^{(6)})$$

with M as its solution space?

- Can one define a G_2 structure on a seven–dimensional family M of rational curves?
- ullet Can one characterise the curves and the corresponding G_2 structures in terms of a 7th order ODE

$$y^{(7)} = F(x, y, y', \dots, y^{(6)})$$

- Can one define a G_2 structure on a seven–dimensional family M of rational curves?
- ullet Can one characterise the curves and the corresponding G_2 structures in terms of a 7th order ODE

$$y^{(7)} = F(x, y, y', \dots, y^{(6)})$$

with M as its solution space? Condtions on F?

• General set up for ODEs of order (n+1): $GL(2,\mathbb{R})$ structures. Vectors identified with homogeneous polynomials in two variables.

- Can one define a G_2 structure on a seven–dimensional family M of rational curves?
- ullet Can one characterise the curves and the corresponding G_2 structures in terms of a 7th order ODE

$$y^{(7)} = F(x, y, y', \dots, y^{(6)})$$

- General set up for ODEs of order (n+1): $GL(2,\mathbb{R})$ structures. Vectors identified with homogeneous polynomials in two variables.
- ullet Works only for special ODEs: (n-1) expressions constructed out of F and its derivatives must vanish.

- Can one define a G_2 structure on a seven–dimensional family M of rational curves?
- ullet Can one characterise the curves and the corresponding G_2 structures in terms of a 7th order ODE

$$y^{(7)} = F(x, y, y', \dots, y^{(6)})$$

- General set up for ODEs of order (n+1): $GL(2,\mathbb{R})$ structures. Vectors identified with homogeneous polynomials in two variables.
- ullet Works only for special ODEs: (n-1) expressions constructed out of F and its derivatives must vanish.
- Examples from twistor theory/algebraic geometry.

- Can one define a G_2 structure on a seven–dimensional family M of rational curves?
- ullet Can one characterise the curves and the corresponding G_2 structures in terms of a 7th order ODE

$$y^{(7)} = F(x, y, y', \dots, y^{(6)})$$

- General set up for ODEs of order (n+1): $GL(2,\mathbb{R})$ structures. Vectors identified with homogeneous polynomials in two variables.
- Works only for special ODEs: (n-1) expressions constructed out of F and its derivatives must vanish.
- Examples from twistor theory/algebraic geometry.
- Mixture of *old* and *new*: Classical invariant theory (Young, Sylvester), algebraic geometry, twistor theory (Penrose, Hitchin).

•
$$G_2 \subset SO(7)$$
, $g = (e^1)^2 + \dots + (e^7)^2$,

$$\phi = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}.$$

•
$$G_2 \subset SO(7)$$
, $g = (e^1)^2 + \dots + (e^7)^2$,

$$\phi = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}.$$

• dim M = 7, (M, g, ϕ) .

$$d\phi = \tau_0 * \phi + \frac{3}{4}\tau_1 \wedge \phi + *\tau_3, \quad d * \phi = \tau_1 \wedge *\phi - \tau_2 \wedge \phi,$$

where $\tau_0 \in \Lambda^0(M), \tau_1 = \Lambda^1(M), \tau_2 = \Lambda^2(M), \tau_3 \in \Lambda^3(M)$ satisfy $\tau_2 \wedge \phi = - * \tau_2, \quad \tau_3 \wedge \phi = \tau_3 \wedge * \phi = 0.$

- $G_2 \subset SO(7)$, $g = (e^1)^2 + \dots + (e^7)^2$, $\phi = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}$.
- dim M = 7, (M, g, ϕ) .

$$d\phi = \tau_0 * \phi + \frac{3}{4}\tau_1 \wedge \phi + *\tau_3, \quad d * \phi = \tau_1 \wedge *\phi - \tau_2 \wedge \phi,$$

where $au_0\in \Lambda^0(M), au_1=\Lambda^1(M), au_2=\Lambda^2(M), au_3\in \Lambda^3(M)$ satisfy $au_2\wedge \phi=-* au_2, \quad au_3\wedge \phi= au_3\wedge *\phi=0.$

- ullet Conformal rescallings $g o e^{2f}g$
 - $\phi \to e^{3f}\phi$, $\tau_0 \to e^{-f}\tau_0$, $\tau_1 \to \tau_1 + 4df$, $\tau_2 \to e^f\tau_2$, $\tau_3 \to e^{2f}\tau_3$.
 - **①** G_2 holonomy $\tau_0=\tau_1=\tau_2=\tau_3=0$. Implies g is Ricci flat.

- $G_2 \subset SO(7)$, $g = (e^1)^2 + \dots + (e^7)^2$, $\phi = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}.$
- dim M = 7, (M, g, ϕ) .

$$d\phi = \tau_0 * \phi + \frac{3}{4}\tau_1 \wedge \phi + *\tau_3, \quad d * \phi = \tau_1 \wedge *\phi - \tau_2 \wedge \phi,$$

where $au_0\in\Lambda^0(M), au_1=\Lambda^1(M), au_2=\Lambda^2(M), au_3\in\Lambda^3(M)$ satisfy $au_2\wedge\phi=-* au_2, \quad au_3\wedge\phi= au_3\wedge*\phi=0.$

ullet Conformal rescallings $g o e^{2f}g$

$$\phi \to e^{3f}\phi$$
, $\tau_0 \to e^{-f}\tau_0$, $\tau_1 \to \tau_1 + 4df$, $\tau_2 \to e^f\tau_2$, $\tau_3 \to e^{2f}\tau_3$.

- **1** G_2 holonomy $\tau_0 = \tau_1 = \tau_2 = \tau_3 = 0$. Implies g is Ricci flat.
- **2** Weak G_2 holonomy $\tau_1 = \tau_2 = \tau_3 = 0$. Implies g is Einstein.

- $G_2 \subset SO(7)$, $g = (e^1)^2 + \dots + (e^7)^2$, $\phi = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}$.
- dim M = 7, (M, g, ϕ) .

$$d\phi = \tau_0 * \phi + \frac{3}{4}\tau_1 \wedge \phi + *\tau_3, \quad d * \phi = \tau_1 \wedge *\phi - \tau_2 \wedge \phi,$$

where $au_0\in \Lambda^0(M), au_1=\Lambda^1(M), au_2=\Lambda^2(M), au_3\in \Lambda^3(M)$ satisfy $au_2\wedge \phi=-* au_2, \quad au_3\wedge \phi= au_3\wedge *\phi=0.$

 \bullet Conformal rescallings $g \to e^{2f} g$

$$\phi \to e^{3f}\phi$$
, $\tau_0 \to e^{-f}\tau_0$, $\tau_1 \to \tau_1 + 4df$, $\tau_2 \to e^f\tau_2$, $\tau_3 \to e^{2f}\tau_3$.

- **1** G_2 holonomy $\tau_0 = \tau_1 = \tau_2 = \tau_3 = 0$. Implies g is Ricci flat.
- ② Weak G_2 holonomy $\tau_1 = \tau_2 = \tau_3 = 0$. Implies g is Einstein.
- **3** Closed G_2 structure $\tau_0 = \tau_1 = \tau_3 = 0$.

4 D > 4 D > 4 E > 4 E > 9 9 0

•
$$G_2 \subset SO(7)$$
, $g = (e^1)^2 + \dots + (e^7)^2$,

$$\phi = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}.$$

• dim M = 7, (M, g, ϕ) .

$$d\phi = \tau_0 * \phi + \frac{3}{4}\tau_1 \wedge \phi + *\tau_3, \quad d * \phi = \tau_1 \wedge *\phi - \tau_2 \wedge \phi,$$

where $au_0\in\Lambda^0(M), au_1=\Lambda^1(M), au_2=\Lambda^2(M), au_3\in\Lambda^3(M)$ satisfy $au_2\wedge\phi=-* au_2, \quad au_3\wedge\phi= au_3\wedge*\phi=0.$

ullet Conformal rescallings $g o e^{2f}g$

$$\phi \to e^{3f}\phi$$
, $\tau_0 \to e^{-f}\tau_0$, $\tau_1 \to \tau_1 + 4df$, $\tau_2 \to e^f\tau_2$, $\tau_3 \to e^{2f}\tau_3$.

- **1** G_2 holonomy $\tau_0 = \tau_1 = \tau_2 = \tau_3 = 0$. Implies g is Ricci flat.
- **2** Weak G_2 holonomy $\tau_1 = \tau_2 = \tau_3 = 0$. Implies g is Einstein.
- **3** Closed G_2 structure $\tau_0 = \tau_1 = \tau_3 = 0$.
- ① Co-calibrated G_2 structure $\tau_1 = \tau_2 = 0$.

• Binary sextics $\mathcal{V} = \mathbb{C}^7$.

$$V = a^{1}\lambda^{6} + 6a^{2}\lambda^{5} + 15a^{3}\lambda^{4} + 20a^{4}\lambda^{3} + 15a^{5}\lambda^{2} + 6a^{6}\lambda + a^{7},$$

• Binary sextics $\mathcal{V} = \mathbb{C}^7$.

$$V = a^{1}\lambda^{6} + 6a^{2}\lambda^{5} + 15a^{3}\lambda^{4} + 20a^{4}\lambda^{3} + 15a^{5}\lambda^{2} + 6a^{6}\lambda + a^{7},$$

Möbius action

$$t \longrightarrow \tilde{t} = \frac{\alpha t + \beta}{\gamma t + \delta}$$

induces $GL(2,\mathbb{C})\subset GL(7,\mathbb{C})$.

• Binary sextics $\mathcal{V} = \mathbb{C}^7$.

$$V = a^{1}\lambda^{6} + 6a^{2}\lambda^{5} + 15a^{3}\lambda^{4} + 20a^{4}\lambda^{3} + 15a^{5}\lambda^{2} + 6a^{6}\lambda + a^{7},$$

Möbius action

$$t \longrightarrow \tilde{t} = \frac{\alpha t + \beta}{\gamma t + \delta}$$

induces $GL(2,\mathbb{C})\subset GL(7,\mathbb{C})$.

Invariant of weight 6

$$I(V) = a^{1}a^{7} - 6a^{2}a^{6} + 15a^{3}a^{5} - 10(a^{4})^{2},$$

• Binary sextics $\mathcal{V} = \mathbb{C}^7$.

$$V = a^{1}\lambda^{6} + 6a^{2}\lambda^{5} + 15a^{3}\lambda^{4} + 20a^{4}\lambda^{3} + 15a^{5}\lambda^{2} + 6a^{6}\lambda + a^{7},$$

Möbius action

$$t \longrightarrow \tilde{t} = \frac{\alpha t + \beta}{\gamma t + \delta}$$

induces $GL(2,\mathbb{C})\subset GL(7,\mathbb{C})$.

Invariant of weight 6

$$I(V) = a^{1}a^{7} - 6a^{2}a^{6} + 15a^{3}a^{5} - 10(a^{4})^{2}, \ I(V) \to (\alpha\delta - \beta\gamma)^{6}I(V)$$

• Binary sextics $\mathcal{V} = \mathbb{C}^7$.

$$V = a^{1}\lambda^{6} + 6a^{2}\lambda^{5} + 15a^{3}\lambda^{4} + 20a^{4}\lambda^{3} + 15a^{5}\lambda^{2} + 6a^{6}\lambda + a^{7},$$

Möbius action

$$t \longrightarrow \tilde{t} = \frac{\alpha t + \beta}{\gamma t + \delta}$$

induces $GL(2,\mathbb{C})\subset GL(7,\mathbb{C})$.

Invariant of weight 6

$$I(V) = a^{1}a^{7} - 6a^{2}a^{6} + 15a^{3}a^{5} - 10(a^{4})^{2}, \ I(V) \to (\alpha\delta - \beta\gamma)^{6}I(V)$$

• Index notation: $A,B,\ldots,C=0,1$. $V=V_{ABCDEF}z^Az^Bz^Cz^Dz^Ez^F,\quad I(V)=V_{ABCDEF}V^{ABCDEF}.$

• Binary sextics $\mathcal{V} = \mathbb{C}^7$.

$$V = a^{1}\lambda^{6} + 6a^{2}\lambda^{5} + 15a^{3}\lambda^{4} + 20a^{4}\lambda^{3} + 15a^{5}\lambda^{2} + 6a^{6}\lambda + a^{7},$$

Möbius action

$$t \longrightarrow \tilde{t} = \frac{\alpha t + \beta}{\gamma t + \delta}$$

induces $GL(2,\mathbb{C})\subset GL(7,\mathbb{C})$.

Invariant of weight 6

$$I(V) = a^{1}a^{7} - 6a^{2}a^{6} + 15a^{3}a^{5} - 10(a^{4})^{2}, \ I(V) \to (\alpha\delta - \beta\gamma)^{6}I(V)$$

- Index notation: $A, B, \dots, C = 0, 1$. $V = V_{ABCDEF} z^A z^B z^C z^D z^E z^F, \quad I(V) = V_{ABCDEF} V^{ABCDEF}.$
- Raise with symplectic form (unique up to scale) $\varepsilon^{AB} = \varepsilon^{[AB]}$.

• Binary sextics $\mathcal{V} = \mathbb{C}^7$.

$$V = a^{1}\lambda^{6} + 6a^{2}\lambda^{5} + 15a^{3}\lambda^{4} + 20a^{4}\lambda^{3} + 15a^{5}\lambda^{2} + 6a^{6}\lambda + a^{7},$$

Möbius action

$$t \longrightarrow \tilde{t} = \frac{\alpha t + \beta}{\gamma t + \delta}$$

induces $GL(2,\mathbb{C})\subset GL(7,\mathbb{C})$.

Invariant of weight 6

$$I(V) = a^{1}a^{7} - 6a^{2}a^{6} + 15a^{3}a^{5} - 10(a^{4})^{2}, \ I(V) \to (\alpha\delta - \beta\gamma)^{6}I(V)$$

- Index notation: $A, B, \dots, C = 0, 1$. $V = V_{ABCDEF} z^A z^B z^C z^D z^E z^F, \quad I(V) = V_{ABCDEF} V^{ABCDEF}.$
- Raise with symplectic form (unique up to scale) $\varepsilon^{AB} = \varepsilon^{[AB]}$.
- Transvectants (Grace, Young 1903), or two component spinors (Penrose).

• GL(2) structure on $M \leftrightarrow \text{binary sextic } S$ with values in T^*M .

$$V \in \Gamma(TM) \to V \,\lrcorner\, S.$$

• GL(2) structure on $M \leftrightarrow \text{binary sextic } S$ with values in T^*M .

$$V \in \Gamma(TM) \to V \,\lrcorner\, S.$$

• Conformal structure g(V, V) = I(V).

• GL(2) structure on $M \leftrightarrow \text{binary sextic } S$ with values in T^*M .

$$V \in \Gamma(TM) \to V \,\lrcorner\, S.$$

- Conformal structure g(V, V) = I(V).
- Three–form $\phi(V,U,W) = V_{ABC}{}^{DEF}U_{DEF}{}^{GHI}W_{GHI}{}^{ABC}$.

• GL(2) structure on $M \leftrightarrow \text{binary sextic } S$ with values in T^*M .

$$V \in \Gamma(TM) \to V \,\lrcorner\, S.$$

- Conformal structure g(V, V) = I(V).
- Three-form $\phi(V, U, W) = V_{ABC}{}^{DEF} U_{DEF}{}^{GHI} W_{GHI}{}^{ABC}$.
- Compatibility

$$g(V,V) = 0 \longleftrightarrow (V \sqcup \phi) \land (V \sqcup \phi) \land \phi = 0.$$

• GL(2) structure on $M \leftrightarrow \text{binary sextic } S$ with values in T^*M .

$$V \in \Gamma(TM) \to V \,\lrcorner\, S.$$

- Conformal structure g(V, V) = I(V).
- Three-form $\phi(V, U, W) = V_{ABC}{}^{DEF} U_{DEF}{}^{GHI} W_{GHI}{}^{ABC}$.
- Compatibility

$$g(V,V) = 0 \longleftrightarrow (V \, \lrcorner \, \phi) \wedge (V \, \lrcorner \, \phi) \wedge \phi = 0.$$

• $GL(2) \subset (G_2)^{\mathbb{C}} \times \mathbb{C}^*$.

• GL(2) structure on $M \leftrightarrow \text{binary sextic } S$ with values in T^*M .

$$V \in \Gamma(TM) \to V \,\lrcorner\, S.$$

- Conformal structure g(V, V) = I(V).
- Three-form $\phi(V, U, W) = V_{ABC}{}^{DEF} U_{DEF}{}^{GHI} W_{GHI}{}^{ABC}$.
- Compatibility

$$g(V,V) = 0 \longleftrightarrow (V \, \lrcorner \, \phi) \wedge (V \, \lrcorner \, \phi) \wedge \phi = 0.$$

• $GL(2) \subset (G_2)^{\mathbb{C}} \times \mathbb{C}^*$. Really follows from Morozov's theorem.

$GL(2,\mathbb{R})$ STRUCTURES FROM ODES.

ullet Assume that the space of solutions M to the 7th order ODE

$$y^{(7)} = F(x, y, y', \dots, y^{(6)})$$

has a $GL(2,\mathbb{R})$ structure such that normals to surfaces y=y(x;t) in M have root with multiplicity 6. Then F satisfies five contact-invariant conditions $W_1[F]=\cdots=W_5[F]=0$.

$GL(2,\mathbb{R})$ STRUCTURES FROM ODES.

ullet Assume that the space of solutions M to the 7th order ODE

$$y^{(7)} = F(x, y, y', \dots, y^{(6)})$$

has a $GL(2,\mathbb{R})$ structure such that normals to surfaces y=y(x;t) in M have root with multiplicity 6. Then F satisfies five contact-invariant conditions $W_1[F]=\cdots=W_5[F]=0$.

• Additional contact invariants: torsion of G_2 structure $\tau_0 = \dots, \tau_1 = \dots, \tau_2 = \dots, \tau_3 = \partial^2 F / \partial (y^{(6)})^2$.

$GL(2,\mathbb{R})$ STRUCTURES FROM ODES.

ullet Assume that the space of solutions M to the 7th order ODE

$$y^{(7)} = F(x, y, y', \dots, y^{(6)})$$

has a $GL(2,\mathbb{R})$ structure such that normals to surfaces y=y(x;t) in M have root with multiplicity 6. Then F satisfies five contact-invariant conditions $W_1[F]=\cdots=W_5[F]=0$.

- Additional contact invariants: torsion of G_2 structure $\tau_0 = \dots, \tau_1 = \dots, \tau_2 = \dots, \tau_3 = \partial^2 F / \partial (y^{(6)})^2$.
- If $\tau_0=\tau_1=\tau_2=\tau_3=0$ then g is conformally flat and $y^{(7)}=0$.

• Family of rational curves L_t parametrised by $t \in M$. $x \to (x,y(x;t))$ with self-intersection number six in a complex surface Z. Normal vector

$$\delta y = \sum_{\alpha=1}^{6} \frac{\delta y}{\delta t_{\alpha}} \delta t_{\alpha}$$

• Family of rational curves L_t parametrised by $t \in M$. $x \to (x,y(x;t))$ with self-intersection number six in a complex surface Z. Normal vector

$$\delta y = \sum_{\alpha=1}^{6} \frac{\delta y}{\delta t_{\alpha}} \delta t_{\alpha}$$

vanishes at zeroes of a 6th order polynomial. $N(L) = \mathcal{O}(6)$.

• $H^1(L, N(L)) = 0$. Kodaira Theory: $T_t M \cong H^0(L_t, N(L_t))$.

• Family of rational curves L_t parametrised by $t \in M$. $x \to (x, y(x; t))$ with self-intersection number six in a complex surface Z. Normal vector

$$\delta y = \sum_{\alpha=1}^{6} \frac{\delta y}{\delta t_{\alpha}} \delta t_{\alpha}$$

- $H^1(L, N(L)) = 0$. Kodaira Theory: $T_t M \cong H^0(L_t, N(L_t))$.
- Sections of $\mathcal{O}(6) \to \mathbb{CP}^1$ =homogeneous polynomials of degree 6.

• Family of rational curves L_t parametrised by $t \in M$. $x \to (x, y(x; t))$ with self-intersection number six in a complex surface Z. Normal vector

$$\delta y = \sum_{\alpha=1}^{6} \frac{\delta y}{\delta t_{\alpha}} \delta t_{\alpha}$$

- $H^1(L, N(L)) = 0$. Kodaira Theory: $T_t M \cong H^0(L_t, N(L_t))$.
- Sections of $\mathcal{O}(6) \to \mathbb{CP}^1$ =homogeneous polynomials of degree 6. GL(2) structure.

• Family of rational curves L_t parametrised by $t \in M$. $x \to (x,y(x;t))$ with self-intersection number six in a complex surface Z. Normal vector

$$\delta y = \sum_{\alpha=1}^{6} \frac{\delta y}{\delta t_{\alpha}} \delta t_{\alpha}$$

- $H^1(L, N(L)) = 0$. Kodaira Theory: $T_t M \cong H^0(L_t, N(L_t))$.
- Sections of $\mathcal{O}(6) \to \mathbb{CP}^1$ =homogeneous polynomials of degree 6. GL(2) structure.
- In practice: $f(x,y,t_{\alpha})=0$ with rational parametrisation $x=p(\lambda,t_{\alpha}),y=q(\lambda,t_{\alpha}).$ Polynomial in λ giving rise to a null vector is given by

$$\sum_{\alpha} \frac{\partial f}{\partial t_{\alpha}} |_{\{x=p,y=q\}} \delta t_{\alpha}.$$

THREE EXAMPLES

- Example 1.
 - Rational curve: cuspidial cubic. (Neil 1657).
 - 7th order ODE: (Halphen 1879, Sylvester 1888, Wilczynski 1905).
 - Co-calibrated G_2 structure on SU(2,1)/U(1). (MD, Doubrov 2011).

THREE EXAMPLES

- Example 1.
 - Rational curve: cuspidial cubic. (Neil 1657).
 - 7th order ODE: (Halphen 1879, Sylvester 1888, Wilczynski 1905).
 - Co-calibrated G_2 structure on SU(2,1)/U(1). (MD, Doubrov 2011).
- Example 2.
 - Rational curve: Bihorn sextic.
 - 7th order ODE: (Wilczynski).
 - Closed G_2 structure (MD, Godliński 2010).

THREE EXAMPLES

- Example 1.
 - Rational curve: cuspidial cubic. (Neil 1657).
 - 7th order ODE: (Halphen 1879, Sylvester 1888, Wilczynski 1905).
 - Co-calibrated G_2 structure on SU(2,1)/U(1). (MD, Doubrov 2011).
- 2 Example 2.
 - Rational curve: Bihorn sextic.
 - 7th order ODE: (Wilczynski).
 - Closed G_2 structure (MD, Godliński 2010).
- Example 3.
 - Rational curve: (MD, Sokolov 2010).
 - 7th order ODE: (Noth 1904).
 - Weak G_2 holonomy on SO(5)/SO(3) (Bryant 1987).

• Irreducible plane cubics $\alpha x^3 + \beta y^3 + \gamma xy^2 + \cdots + \delta = 0$.

• Irreducible plane cubics $\alpha x^3 + \beta y^3 + \gamma x y^2 + \cdots + \delta = 0$. Better: $P_{\alpha\beta\gamma}Z^{\alpha}Z^{\beta}Z^{\gamma} = 0$, where $Z^1/Z^3 = x, Z^2/Z^3 = y$.

- Irreducible plane cubics $\alpha x^3 + \beta y^3 + \gamma x y^2 + \cdots + \delta = 0$. Better: $P_{\alpha\beta\gamma}Z^{\alpha}Z^{\beta}Z^{\gamma} = 0$, where $Z^1/Z^3 = x, Z^2/Z^3 = y$.
- PSL(3) acts on \mathbb{CP}^9 $P_{\alpha\beta\gamma} \to N^{\delta}{}_{\alpha}N^{\epsilon}{}_{\beta}N^{\phi}{}_{\gamma}P_{\delta\epsilon\phi}.$

- Irreducible plane cubics $\alpha x^3 + \beta y^3 + \gamma x y^2 + \cdots + \delta = 0$. Better: $P_{\alpha\beta\gamma}Z^{\alpha}Z^{\beta}Z^{\gamma} = 0$, where $Z^1/Z^3 = x, Z^2/Z^3 = y$.
- $\bullet \ PSL(3) \ \text{acts on} \ \mathbb{CP}^9 \quad \ P_{\alpha\beta\gamma} \to N^\delta{}_\alpha N^\epsilon{}_\beta N^\phi{}_\gamma P_{\delta\epsilon\phi}.$
 - **1** Smoth cubic $y^2 = x(x-1)(x-c)$.

- Irreducible plane cubics $\alpha x^3 + \beta y^3 + \gamma x y^2 + \dots + \delta = 0$. Better: $P_{\alpha\beta\gamma}Z^{\alpha}Z^{\beta}Z^{\gamma} = 0$, where $Z^1/Z^3 = x, Z^2/Z^3 = y$.
- $\bullet \ PSL(3) \ \text{acts on} \ \mathbb{CP}^9 \quad \ P_{\alpha\beta\gamma} \to N^\delta{}_\alpha N^\epsilon{}_\beta N^\phi{}_\gamma P_{\delta\epsilon\phi}.$
 - **1** Smoth cubic $y^2 = x(x-1)(x-c)$.

- Irreducible plane cubics $\alpha x^3 + \beta y^3 + \gamma x y^2 + \cdots + \delta = 0$. Better: $P_{\alpha\beta\gamma}Z^{\alpha}Z^{\beta}Z^{\gamma} = 0$, where $Z^1/Z^3 = x, Z^2/Z^3 = y$.
- $\bullet \ PSL(3) \ \text{acts on} \ \mathbb{CP}^9 \quad \ P_{\alpha\beta\gamma} \to N^\delta{}_\alpha N^\epsilon{}_\beta N^\phi{}_\gamma P_{\delta\epsilon\phi}.$
 - **1** Smoth cubic $y^2 = x(x-1)(x-c)$.
 - ② Nodal cubic $y^2 = x^3 x^2$.
 - **3** Cuspidal cubic $y^2 = x^3$. 7D orbit $M = PSL(3, \mathbb{C})/\mathbb{C}^*$.

- Irreducible plane cubics $\alpha x^3 + \beta y^3 + \gamma x y^2 + \cdots + \delta = 0$. Better: $P_{\alpha\beta\gamma}Z^{\alpha}Z^{\beta}Z^{\gamma} = 0$, where $Z^1/Z^3 = x, Z^2/Z^3 = y$.
- $\bullet \ PSL(3) \ \text{acts on} \ \mathbb{CP}^9 \quad \ P_{\alpha\beta\gamma} \to N^\delta{}_\alpha N^\epsilon{}_\beta N^\phi{}_\gamma P_{\delta\epsilon\phi}.$
 - **1** Smoth cubic $y^2 = x(x-1)(x-c)$.
 - ② Nodal cubic $y^2 = x^3 x^2$.
 - $\begin{array}{l} \textbf{ Ouspidal cubic } y^2=x^3. \\ \textbf{ 7D orbit } M=PSL(3,\mathbb{C})/\mathbb{C}^*. \ [Z^1,Z^2,Z^3] \rightarrow [aZ^1,a^4Z^2,a^{-5}Z^3]. \end{array}$

- Irreducible plane cubics $\alpha x^3 + \beta y^3 + \gamma x y^2 + \cdots + \delta = 0$. Better: $P_{\alpha\beta\gamma}Z^{\alpha}Z^{\beta}Z^{\gamma} = 0$, where $Z^1/Z^3 = x, Z^2/Z^3 = y$.
- PSL(3) acts on \mathbb{CP}^9 $P_{\alpha\beta\gamma} \to N^{\delta}{}_{\alpha}N^{\epsilon}{}_{\beta}N^{\phi}{}_{\gamma}P_{\delta\epsilon\phi}.$
 - **1** Smoth cubic $y^2 = x(x-1)(x-c)$. Genus one.
 - Nodal cubic $y^2 = x^3 x^2$. Genus zero. \checkmark
 - $\begin{array}{ll} \textbf{ Ouspidal cubic } y^2 = x^3. & \textbf{ Genus zero. } \checkmark \\ \textbf{ 7D orbit } M = PSL(3,\mathbb{C})/\mathbb{C}^*. & [Z^1,Z^2,Z^3] \rightarrow [aZ^1,a^4Z^2,a^{-5}Z^3]. \end{array}$

• Set $\sigma = N^{-1}dN \in \Lambda^1(SL(3,\mathbb{C})) \otimes \mathfrak{sl}(3,\mathbb{C}).$

$$g = 2\sigma^3{}_2 \odot \sigma^2{}_3 + \frac{1}{2}\sigma^3{}_1 \odot \sigma^1{}_3 - \frac{2}{5}\sigma^1{}_2 \odot \sigma^2{}_1 - \frac{1}{40}(4\sigma^1{}_1 - \sigma^2{}_2)^2.$$

• Set $\sigma = N^{-1}dN \in \Lambda^1(SL(3,\mathbb{C})) \otimes \mathfrak{sl}(3,\mathbb{C}).$

$$g = 2\sigma^3{}_2 \odot \sigma^2{}_3 + \frac{1}{2}\sigma^3{}_1 \odot \sigma^1{}_3 - \frac{2}{5}\sigma^1{}_2 \odot \sigma^2{}_1 - \frac{1}{40}(4\sigma^1{}_1 - \sigma^2{}_2)^2.$$

• Signature (3,4) on $M=SL(3,\mathbb{R})/\mathbb{R}^*$.

• Set $\sigma = N^{-1}dN \in \Lambda^1(SL(3,\mathbb{C})) \otimes \mathfrak{sl}(3,\mathbb{C}).$

$$g = 2\sigma^3{}_2 \odot \sigma^2{}_3 + \frac{1}{2}\sigma^3{}_1 \odot \sigma^1{}_3 - \frac{2}{5}\sigma^1{}_2 \odot \sigma^2{}_1 - \frac{1}{40}(4\sigma^1{}_1 - \sigma^2{}_2)^2.$$

- Signature (3,4) on $M = SL(3,\mathbb{R})/\mathbb{R}^*$.
- Signature (4,3) on M=SU(3)/U(1).

$$\left(\begin{array}{ccc} e^{i\theta} & 0 & 0 \\ 0 & e^{4i\theta} & 0 \\ 0 & 0 & e^{-5i\theta} \end{array}\right), \quad \theta \in \mathbb{R} \quad \mathsf{Aloff-Wallach\ space}\ N(1,4).$$

• Set $\sigma = N^{-1}dN \in \Lambda^1(SL(3,\mathbb{C})) \otimes \mathfrak{sl}(3,\mathbb{C}).$

$$g = 2\sigma^3{}_2 \odot \sigma^2{}_3 + \frac{1}{2}\sigma^3{}_1 \odot \sigma^1{}_3 - \frac{2}{5}\sigma^1{}_2 \odot \sigma^2{}_1 - \frac{1}{40}(4\sigma^1{}_1 - \sigma^2{}_2)^2.$$

- Signature (3,4) on $M = SL(3,\mathbb{R})/\mathbb{R}^*$.
- Signature (4,3) on M=SU(3)/U(1).

$$\left(\begin{array}{ccc} e^{i\theta} & 0 & 0 \\ 0 & e^{4i\theta} & 0 \\ 0 & 0 & e^{-5i\theta} \end{array} \right), \quad \theta \in \mathbb{R} \quad \text{Aloff-Wallach space } N(1,4).$$

• Riemannian signature on M = SU(2,1)/U(1).

• Set $\sigma = N^{-1}dN \in \Lambda^1(SL(3,\mathbb{C})) \otimes \mathfrak{sl}(3,\mathbb{C}).$

$$g = 2\sigma^3{}_2 \odot \sigma^2{}_3 + \frac{1}{2}\sigma^3{}_1 \odot \sigma^1{}_3 - \frac{2}{5}\sigma^1{}_2 \odot \sigma^2{}_1 - \frac{1}{40}(4\sigma^1{}_1 - \sigma^2{}_2)^2.$$

- Signature (3,4) on $M = SL(3,\mathbb{R})/\mathbb{R}^*$.
- $\bullet \ {\rm Signature} \ (4,3) \ {\rm on} \ M = SU(3)/U(1).$

$$\left(\begin{array}{ccc} e^{i\theta} & 0 & 0 \\ 0 & e^{4i\theta} & 0 \\ 0 & 0 & e^{-5i\theta} \end{array}\right), \quad \theta \in \mathbb{R} \quad \text{Aloff-Wallach space } N(1,4).$$

• Riemannian signature on M = SU(2,1)/U(1). \checkmark

• Set $\sigma = N^{-1}dN \in \Lambda^1(SL(3,\mathbb{C})) \otimes \mathfrak{sl}(3,\mathbb{C}).$

$$g = 2\sigma^3{}_2 \odot \sigma^2{}_3 + \frac{1}{2}\sigma^3{}_1 \odot \sigma^1{}_3 - \frac{2}{5}\sigma^1{}_2 \odot \sigma^2{}_1 - \frac{1}{40}(4\sigma^1{}_1 - \sigma^2{}_2)^2.$$

- Signature (3,4) on $M = SL(3,\mathbb{R})/\mathbb{R}^*$.
- $\bullet \ {\rm Signature} \ (4,3) \ {\rm on} \ M = SU(3)/U(1).$

$$\left(\begin{array}{ccc} e^{i\theta} & 0 & 0 \\ 0 & e^{4i\theta} & 0 \\ 0 & 0 & e^{-5i\theta} \end{array}\right), \quad \theta \in \mathbb{R} \quad \mathsf{Aloff-Wallach\ space}\ N(1,4).$$

- Riemannian signature on M = SU(2,1)/U(1). \checkmark
- Co-calibrated G_2 structure $d\phi = \lambda * \phi + \tau$, $d*\phi = 0$.

$$x \to [y_1(x), y_2(x), y_3(x)],$$

$$x \to [y_1(x), y_2(x), y_3(x)], \ Y''' + 3p_1(x)Y'' + 3p_2(x)Y' + p_3(x)Y = 0.$$

• Curves in projective geometry $C \subset \mathbb{CP}^2$ (Wilczynski 1905).

$$x \to [y_1(x), y_2(x), y_3(x)], \ Y''' + 3p_1(x)Y'' + 3p_2(x)Y' + p_3(x)Y = 0.$$

• Laguerre–Forsyth form $p_1 = p_2 = 0$.

$$x \to [y_1(x), y_2(x), y_3(x)], \ Y''' + 3p_1(x)Y'' + 3p_2(x)Y' + p_3(x)Y = 0.$$

- Laguerre–Forsyth form $p_1 = p_2 = 0$.
- Projective curvature (Cartan ?)

$$\kappa = \frac{(6p_3p_3'' - 7(p_3')^2)^3}{(p_3)^8}.$$

• Curves in projective geometry $C \subset \mathbb{CP}^2$ (Wilczynski 1905).

$$x \to [y_1(x), y_2(x), y_3(x)], \ Y''' + 3p_1(x)Y'' + 3p_2(x)Y' + p_3(x)Y = 0.$$

- Laguerre–Forsyth form $p_1 = p_2 = 0$.
- Projective curvature (Cartan ?)

$$\kappa = \frac{(6p_3p_3'' - 7(p_3')^2)^3}{(p_3)^8}.$$

• 7th order ODE: $\kappa(y,y',\dots,y^{(7)})=(3^97^3)/(2^45^2)$, where κ is the projective curvature.

$$x \to [y_1(x), y_2(x), y_3(x)], \ Y''' + 3p_1(x)Y'' + 3p_2(x)Y' + p_3(x)Y = 0.$$

- Laguerre–Forsyth form $p_1 = p_2 = 0$.
- Projective curvature (Cartan ?)

$$\kappa = \frac{(6p_3p_3'' - 7(p_3')^2)^3}{(p_3)^8}.$$

- 7th order ODE: $\kappa(y,y',\ldots,y^{(7)})=(3^97^3)/(2^45^2)$, where κ is the projective curvature.
 - Rational curves with constant projective curvature: $x^p = y^q$.

$$x \to [y_1(x), y_2(x), y_3(x)], \ Y''' + 3p_1(x)Y'' + 3p_2(x)Y' + p_3(x)Y = 0.$$

- Laguerre–Forsyth form $p_1 = p_2 = 0$.
- Projective curvature (Cartan ?)

$$\kappa = \frac{(6p_3p_3'' - 7(p_3')^2)^3}{(p_3)^8}.$$

- 7th order ODE: $\kappa(y,y',\ldots,y^{(7)})=(3^97^3)/(2^45^2)$, where κ is the projective curvature.
 - Rational curves with constant projective curvature: $x^p = y^q$.
 - ... only cuspidal cubics have non–singular contact lifts to $P(T^*\mathbb{CP}^2)$.

$$x \to [y_1(x), y_2(x), y_3(x)], \ Y''' + 3p_1(x)Y'' + 3p_2(x)Y' + p_3(x)Y = 0.$$

- Laguerre–Forsyth form $p_1 = p_2 = 0$.
- Projective curvature (Cartan ?)

$$\kappa = \frac{(6p_3p_3'' - 7(p_3')^2)^3}{(p_3)^8}.$$

- 7th order ODE: $\kappa(y,y^{'},\dots,y^{(7)})=(3^97^3)/(2^45^2)$, where κ is the projective curvature.
 - Rational curves with constant projective curvature: $x^p = y^q$.
 - ... only cuspidal cubics have non–singular contact lifts to $P(T^*\mathbb{CP}^2)$.
 - Agrees with the Wilczynski invariants.

• $(y + Q(x))^2 + P(x)^3 = 0$, where

$$Q(x) = q_0 + q_1 x + q_2 x^2 + q_3 x^3, \quad P(x) = p_3 (x - p_2)(x - p_1).$$

• $(y + Q(x))^2 + P(x)^3 = 0$, where

$$Q(x) = q_0 + q_1 x + q_2 x^2 + q_3 x^3, \quad P(x) = p_3 (x - p_2)(x - p_1).$$

 \bullet Two double points and one irregular quadruple point at $\infty.\ g=0.$

$$x(\lambda) = \frac{p_1 + p_2 \lambda^2}{\lambda^2 + 1}, \quad y(\lambda) = p_3^{3/2} (p_1 - p_2)^3 \frac{\lambda^3}{(\lambda^2 + 1)^3} - Q(x(\lambda)).$$

• $(y + Q(x))^2 + P(x)^3 = 0$, where

$$Q(x) = q_0 + q_1 x + q_2 x^2 + q_3 x^3, \quad P(x) = p_3 (x - p_2)(x - p_1).$$

 \bullet Two double points and one irregular quadruple point at $\infty.$ g=0.

$$x(\lambda) = \frac{p_1 + p_2 \lambda^2}{\lambda^2 + 1}, \quad y(\lambda) = p_3^{3/2} (p_1 - p_2)^3 \frac{\lambda^3}{(\lambda^2 + 1)^3} - Q(x(\lambda)).$$

7th order ODE
$$y^{(7)} = \frac{21}{5} \frac{y^{(6)} y^{(5)}}{y^{(4)}} - \frac{84}{25} \frac{(y^{(5)})^3}{(y^{(4)})^2}.$$

• $(y + Q(x))^2 + P(x)^3 = 0$, where

$$Q(x) = q_0 + q_1 x + q_2 x^2 + q_3 x^3, \quad P(x) = p_3 (x - p_2)(x - p_1).$$

• Two double points and one irregular quadruple point at ∞ . g = 0.

$$x(\lambda) = \frac{p_1 + p_2 \lambda^2}{\lambda^2 + 1}, \quad y(\lambda) = p_3^{3/2} (p_1 - p_2)^3 \frac{\lambda^3}{(\lambda^2 + 1)^3} - Q(x(\lambda)).$$

7th order ODE
$$y^{(7)} = \frac{21}{5} \frac{y^{(6)} y^{(5)}}{y^{(4)}} - \frac{84}{25} \frac{(y^{(5)})^3}{(y^{(4)})^2}.$$

• Closed Riemannian G_2 structure - explicit but messy.

Example 3: Weak G_2 from Submaximal ODE

• Contact geometry: $(x,y)\in Z$, $(x,y,z)\in P(TZ)$, contact form $\omega=dy-zdx$. Generators of contact transformations

$$X_H=-(\partial_z H)\partial_x+(H-z\partial_z H)\partial_y+(\partial_x H+z\partial_y H)\partial_z,$$
 where $H=H(x,y,z).$ Now $\mathcal{L}_X\omega=c\omega.$

Example 3: Weak G_2 from Submaximal ODE

• Contact geometry: $(x,y)\in Z$, $(x,y,z)\in P(TZ)$, contact form $\omega=dy-zdx$. Generators of contact transformations

$$X_{H} = -(\partial_{z}H)\partial_{x} + (H - z\partial_{z}H)\partial_{y} + (\partial_{x}H + z\partial_{y}H)\partial_{z},$$

where H = H(x, y, z). Now $\mathcal{L}_X \omega = c\omega$.

• Lie 1: Maximal contact Lie algebra on $Z=\mathbb{R}^2$ is ten-dimensional (isomorphic to $\mathfrak{sp}(4)$) and is generated by

$$1, x, x^2, y, z, xz, x^2z - 2xy, z^2, 2yz - xz^2, 4xyz - 4y^2 - x^2z^2.$$

• Contact geometry: $(x,y)\in Z$, $(x,y,z)\in P(TZ)$, contact form $\omega=dy-zdx$. Generators of contact transformations

$$X_{H} = -(\partial_{z}H)\partial_{x} + (H - z\partial_{z}H)\partial_{y} + (\partial_{x}H + z\partial_{y}H)\partial_{z},$$

where H = H(x, y, z). Now $\mathcal{L}_X \omega = c\omega$.

• Lie 1: Maximal contact Lie algebra on $Z=\mathbb{R}^2$ is ten-dimensional (isomorphic to $\mathfrak{sp}(4)$) and is generated by

$$1, x, x^2, y, z, xz, x^2z - 2xy, z^2, 2yz - xz^2, 4xyz - 4y^2 - x^2z^2.$$

• Lie 2: maximal dimension of the contact symmetry algebra of an ODE of order n>3 is (n+4) with maximal symmetry occurring if only if the ODE is contact equivalent to a trivial equation $y^{(n)}=0$.

• Contact geometry: $(x,y)\in Z$, $(x,y,z)\in P(TZ)$, contact form $\omega=dy-zdx$. Generators of contact transformations

$$X_{H} = -(\partial_{z}H)\partial_{x} + (H - z\partial_{z}H)\partial_{y} + (\partial_{x}H + z\partial_{y}H)\partial_{z},$$

where H = H(x, y, z). Now $\mathcal{L}_X \omega = c\omega$.

• Lie 1: Maximal contact Lie algebra on $Z=\mathbb{R}^2$ is ten-dimensional (isomorphic to $\mathfrak{sp}(4)$) and is generated by

$$1, x, x^2, y, z, xz, x^2z - 2xy, z^2, 2yz - xz^2, 4xyz - 4y^2 - x^2z^2.$$

- Lie 2: maximal dimension of the contact symmetry algebra of an ODE of order n>3 is (n+4) with maximal symmetry occurring if only if the ODE is contact equivalent to a trivial equation $y^{(n)}=0$.
- 7th order ODE with 10D contact symmetries (submaximal ODE)

$$\begin{split} &10(y^{(3)})^3y^{(7)}-70(y^{(3)})^2y^{(4)}y^{(6)}-49(y^{(3)})^2(y^{(5)})^2\\ +&280(y^{(3)})(y^{(4)})^2y^{(5)}-175(y^{(4)})^4=0, \quad \text{(Noth 1904)}. \end{split}$$

• Rational curve $y^2 + x(x-1)^3 = 0$ solves the ODE.

- Rational curve $y^2 + x(x-1)^3 = 0$ solves the ODE.
- Integrate the contact transformations and apply to the parametrization

$$x(\lambda) = \frac{1}{\lambda^2 + 1}, \quad y(\lambda) = -\frac{\lambda^3}{(\lambda^2 + 1)^2}.$$

- Rational curve $y^2 + x(x-1)^3 = 0$ solves the ODE.
- Integrate the contact transformations and apply to the parametrization

$$x(\lambda) = \frac{1}{\lambda^2 + 1}, \quad y(\lambda) = -\frac{\lambda^3}{(\lambda^2 + 1)^2}.$$

• Take a resultant to elliminate λ . General solution is a degree six rational curve.

- Rational curve $y^2 + x(x-1)^3 = 0$ solves the ODE.
- Integrate the contact transformations and apply to the parametrization

$$x(\lambda) = \frac{1}{\lambda^2 + 1}, \quad y(\lambda) = -\frac{\lambda^3}{(\lambda^2 + 1)^2}.$$

- Take a resultant to elliminate λ . General solution is a degree six rational curve.
- $W_1[F] = W_2[F] = \cdots = W_5[F] = 0.$

- Rational curve $y^2 + x(x-1)^3 = 0$ solves the ODE.
- Integrate the contact transformations and apply to the parametrization

$$x(\lambda) = \frac{1}{\lambda^2 + 1}, \quad y(\lambda) = -\frac{\lambda^3}{(\lambda^2 + 1)^2}.$$

- Take a resultant to elliminate λ . General solution is a degree six rational curve.
- $W_1[F] = W_2[F] = \cdots = W_5[F] = 0.$
- How about G_2 structure? Two real forms of Sp(4)/SL(2), one of which is a Riemannian homogeneous space SO(5)/SO(3) (Bryant 1987).

$$(c_4y + c_1 + c_2x + c_3x^2)^3 + 3(c_4y + c_1 + c_2x + c_3x^2)$$

$$(3(c_5x + c_6)^4 - 6(c_5x + c_6)^2(1 - c_7x)^2 - (1 - c_7x)^4)$$

$$+12(c_5x + c_6)(3(c_5x + c_6)^4(1 - c_7x) + (1 - c_7x)^5) = 0.$$

$$(c_4y + c_1 + c_2x + c_3x^2)^3 + 3(c_4y + c_1 + c_2x + c_3x^2)$$

$$(3(c_5x + c_6)^4 - 6(c_5x + c_6)^2(1 - c_7x)^2 - (1 - c_7x)^4)$$

$$+12(c_5x + c_6)(3(c_5x + c_6)^4(1 - c_7x) + (1 - c_7x)^5) = 0.$$

Discriminant of this cubic (in y) is a 3rd power of a quartic with equianharmonic cross—ratio.

• Twistor theory of G_2 -structures.

- Twistor theory of G_2 -structures.
 - Special structures depending on functions of three variables. General G_2 structures depend on functions of six variables.

- Twistor theory of G_2 -structures.
 - ullet Special structures depending on functions of three variables. General G_2 structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.

- Twistor theory of G_2 -structures.
 - ullet Special structures depending on functions of three variables. General G_2 structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.

- Twistor theory of G_2 -structures.
 - Special structures depending on functions of three variables. General G_2 structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.
- Conformal structures from binary quantics:

- Twistor theory of G_2 -structures.
 - Special structures depending on functions of three variables. General G_2 structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.
- Conformal structures from binary quantics:
 - Quadratic double root.

- Twistor theory of G_2 -structures.
 - Special structures depending on functions of three variables. General G_2 structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.
- Conformal structures from binary quantics:
 - Quadratic double root.
 - Quadric equianharmonic cross ratio.

- Twistor theory of G_2 -structures.
 - Special structures depending on functions of three variables. General G_2 structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.
- Conformal structures from binary quantics:
 - Quadratic double root.
 - Quadric equianharmonic cross ratio.
 - Sextic (relevant in this talk) -??