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Outline

Main theme:

Use surface theory in LG(2,4) (mod CSp(4,R))
to study the geometry of PDE
F(x,y,2,2x¢,2y, Zxx, Zxy, Zyy) =0

Outline:
@ A classification of (non-MA) hyperbolic PDE
@ Maximally symmetric “generic” hyperbolic PDE and G;

<e_ | (3zxx(—26zxy_zy(y +)22()§yy)3)2 _ C)
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Motivation

@ Non-MA hyperbolic PDE arise in hydrodynamic reduction of
hyperbolic PDE in 3 indep vars (Smith, 2010)
@ LG perspective on PDE in recent literature:
© Yamaguchi (1982)
@ Ferapontov et al. (2009)
© Smith (2010)
@ Doubrov—Ferapontov (2010)
© Alexeevsky et al. (2010)
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A classification of hyperbolic PDE PIDIE ae] Ji Sipeees

What is a PDE? (Classical)

Definition
A PDE F = 0 is a hypersurface ' C J?>(R% R), transverse to
72 2(R%R) — J(R?,R).

T =F10)c S(R*R) :(x,y,2,p.q,r,5,1)

2

JHR?R) : (x,y,2,p,q)

The jet spaces come equipped with contact systems:

Q@ J': 0 =dz— pdx — qdy.

@ J?: 0 and 0! = dp — rdx — sdy, 0® = dq — sdx — tdy.
GOAL: Classify PDE up to (local) contact transformations.
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PDE and Jet Spaces
Geometry of LG(2, 4)
Moving frames

What is a PDE? (Yamaguchi, 1982)

J : contact 5-mfld, i.e. 3 corank 1 distribution C = {oc =0} C TJ
s.t. n = do on C is nondegenerate.

Darboux thm: (J, C) ~oc J}(R?, R).

A classification of hyperbolic PDE

Definition

Given (R* 1) symplectic, LG(2,4) := isotropic 2-planes in R*.

Lagrange—Grassmann bundle L(J) = J:
L) = JLG(Ce ), Ge=m"(8), €el(I)eC Ce
ged
We have: (L(J), C) ~joc JA(R2 R).
Definition
A PDE is hypersurface in L(J) transverse to L(J) = J.




PDE and Jet Spaces
C

v

A classification of hyperbolic PDE

Locally speaking...

On J, have 0 = dz — pdx — gdy, and
C = {0 =0} = span{0x + p0;, Oy + q0;, Op, 0q},

and

n:da:dx/\dp—l—dy/\dqw( OI lg) on C.
—h

Then at £ = (x,y,2,p,q),

(r,s,t) < span{0x + pO; + rOp + s0q, 0y + q0; + s0p + t0q}.
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A classification of hyperbolic PDE

Contact transformations

@ ¢ contact on J < ¢,.C = C. In fact, ¢, : (C,[n]) — (C,[n])

is conformal symplectomorphism.

‘Prolongation to L(J) := ¢« = induced map of LG's.‘

@ Backlind thm:
® contact on L(J) = for ¢ contact on J.
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A classification of hyperbolic PDE PIDIE ae] Ji Sipeees

Symplectic invariants yield contact invariants

‘ IDEA: Do a fibrewise study of PDE. ‘

i.e. Given F(x,y,z,p,q,r,s,t) =0, freeze any £ = (x,y, z,p, q)
and study the surface F(r,s,t;£) =0 in LG(C¢) = LG(2,4).

Theorem (2010)

Any CSp(4,R) differential invariant for surfaces in LG(2,4)
induces a contact invariant for PDE.

Generalizes to n-indep. vars. and to systems. (Only 1 dep. var.)

NOTE: This study only takes into account “vertical derivatives”.
e.g. Cannot distinguish btw z,, = 0 or any hyperbolic MA PDE.

What's the point?: New invariants for non-MA PDE.
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PDE and Jet Spaces
Geometry of LG(2, 4)
Moving frames

A classification of hyperbolic PDE

Elliptic, parabolic, hyperbolic PDE

Sp(4,R) is SPECIAL: | Sp(4, R) = Spin(2, 3) |

Have a CSp(4,R)-invariant (Lorentzian) conformal structure [u],
so a cone C = {p = 0} in each tangent space of LG(2,4).

Classical description: Relative invariant A = F,F; — %(Fs)z.
Ell: A >0, par: A =0, hyp: A <0 (evaluated on F = 0).

LG perspective: Let M? C LG(2,4). TM N C looks like:

ZZE

Elliptic Parabolic Hyperbolic
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PDE and Jet Spaces
Geometry of LG(2, 4)
Moving frames

A classification of hyperbolic PDE

Projective realization and “spheres”

Pliicker embedding: Gr(2,4) — P(A?R*). This restricts to
LG(2,4) — PV = RP*, where

V= /\cz)R4 = {ze N*R*:n(z) = 0}.
On V, have sig. (2, 3) scalar product: (-,-) =n Amn, and
LG(2,4) = Q={[z] e PV : (z,z) = 0}.

Definition

For any [z] € PV, we refer to Sj;) = P(z-) N Q as a “sphere”.

i.e. if [w] € Q, we have [w] € S, iff (w,z) = 0.

Thus, orthogonality < incidence!
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PDE and Jet Spaces
Geometry of LG(2, 4)

Moving frames

A classification of hyperbolic PDE

Locally speaking...

Take n = ( OI IS) wrt {er,...,es}. Let 0 = span{e1, e2}. Then
—h

@ LG(2,4) = CSp(4,R)/P, where P = <; I)

t

. (h 0 _(r s
@ Nbd. of 0'is (X 12) /P, where X = (s )
«— span{e + res + ses, & + sez + tes }.
© Conformal structure: [u] = [drdt — ds?].

Q (e1 + res + ses) A (€2 + ses + tey)
—eaNetrareats(feeNea—area)ttaAea+(rt—sNeasNe

1

(r,s,t) < [1,r,s,t,rt —s’ 1€ Q| |

0 0 0o -
0 0 1 0
0 o -2 0 0
0 1 0 0
— 0 0 0

1

Q S 0= (w,z) = —z(rt — 52) + z3r — 2255 + zit — zs.
Fibrewise, this is exactly the Monge—Ampere PDE: it's a sphere.
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PDE and Jet Spaces
Geometry of LG(2, 4)
Moving frames

Invariance of the Monge—Ampere PDE

A classification of hyperbolic PDE

There are 3 types of spheres S|;) according to sign of (z, z):

Theorem (Classical)

The class of ell. / par. / hyp. MA PDE are contact invariant.

New proof: “sphere”, ell., par., hyp. are all CSp(4,R) inv. notions.
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PDE and Jet Spaces
Geometry of LG(2, 4)
Moving frames

A classification of hyperbolic PDE

Moving frames — adaptations

GOAL: CSp(4,R)-inv. study of hyperbolic M? C Q3 C PV = RP*.
NOTE: No intrinsic geometry. (Any surface is conformally flat.)

Use moving frames!

Geometric interpretation:
A frame v = (vg,v1,V2,V3,va) of V is a 5-tuple of spheres.

Projective moving frame adaptations:

© () [wleM A
(b) Ty, Q = vg = span{vg,v1,va,v3}. (Q = cone(Q))

Q@ (a) T, M = span{vg,vi,vo}. (M = cone(M))
(b) Hyperbolic: Require v1,v; to be null.

@ S|y, = central tangent sphere

© If M # sphere, 3 normalizing cones Sy, ], Sjy,)- Finally,
[Va] = Sjvi] N Spv,] N Spvs] = conjugate point is determined.
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1 Jet Spaces
y of LG(2, 4)
frames

null
geodesics
For hyp. M, use hyp. frames v: S
0

0 0| 0 | -1 [vi] -
oo 1[0 7]oO
<V,'7Vj> = 0 1 0 0 0
0 o o[-2]0
—-1]o o[ 0O

Recall: orthogonality < incidence!

null
>~ geodesics

Definition

The conjugate manifold M’ is the image of M — Q, p — [valp].
Given PDE X, can fibrewise construct the conjugate PDE Y’

NOTE: Conjugation is not an involution!
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I . PDE and Jet Spaces
A classification of hyperbolic PDE Ceriiny off LY.

Moving frames

Classification of hyperbolic surfaces / PDE

M hyperbolic

L=5L= LI;#0
Ii =0 |xor [ =0
Doubly-ruled by Singly-ruled by Generic surfaces:
null geodesics: null geodesics: 2ell: e=+1
2-isotropic 2-parabolic 2-hyp.: e=—1
M dim(M’) M’
point 0 point
null geodesic 1 null curve
hyp. 2-par. 2 hyperbolic
b=
bp=-1
e ” -
M pl()Sltlvely M n.egatlvely ’ M’ repulsive I | M’ attractive I
oriented oriented

eg. (i)s=2t% SR, M pt; (i) 3rt* +1=0o0r % =c: gen,,
M’ pt; (i) r = e': gen., M’ surface; (iv) rt = —1: gen. (Dupin cyclide),

M = {rt = —9}.
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Relations to Cartan's models
Parabolic subalgebras and representation theory

Maximally symmetric generic hyperbolic PDE and Gy Tiiea eroem @i

Maximally symmetric generic hyperbolic PDE

Definition
A hyperbolic PDE is of generic type if I}, # 0, i.e. fibrewise, 3
null geodesics.

Theorem (Vranceanu 1937, T. 2008)

@ Any gen. hyp. PDE has < 9-dim contact sym [sharp].
@ All max. sym. models are given by

A: 3rt3+1=0 oo
3r — 6st + 2t
B: ( r(2ss_:;)3 ) =, where c < —4 or c > 0 (%)

(%) : ifc=0, need s > g for hyperbolicity.
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Relations to Cartan's models
Parabolic subalgebras and representation theory

Maximally symmetric generic hyperbolic PDE and Gy Tiiea eroem @i

Degenerations to Cartan's G,-models

Let G = Gy (non-cpt). Relations to Cartan’s 5-vars paper (1910):

3r — 6st + 2t3)?

( r(255_ ;)3 ) = ¢ has contact sym. alg. =

@ c = 0: type-changing 3r — 6st + 2t = 0. Parabolic locus is
Cartan’s involutive system:

o

t3 t2
r=—, s=—
3’ 2
© c = —4: Cartan’'s parabolic Goursat model:

192 — 36rst + 12rt® — 125242 + 325% = 0
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Relations to Cartan's models
Parabolic subalgebras and representation theory

Maximally symmetric generic hyperbolic PDE and Gy Tiiea eroem @i

Preview: The global picture

FACT: J = G/P; is a contact 5-mfld.
The G-action prolongs to L(J) — J. Orbit decomposition:
L(J) = OgUO7 U Op,
where
o (Og = open orbit;

@ (07 = parabolic Goursat model;
o Og = involutive system.

Theorem (2011)

The open orbit Og C L(J) is globally foliated by P1-orbits, all
7-dim. Moreover, every Type B max. sym. generic hyp. PDE
occurs as a leaf in this foliation. (Note: 3 other leaves.)
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Relations to Cartan’s models
Parabolic subalgebras and representation theory
The open orbit

Maximally symmetric generic hyperbolic PDE and Gy

The parabolic subalgebra p,

(90, 98] C gats

‘ p2=g>0
——
P2 —x( M =90 2D9-1Dgo D g1 D 92

[9i,8j] C gi+;
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Relations to Cartan’s models
Parabolic subalgebras and representation theory

Maximally symmetric generic hyperbolic PDE and Gy Tiira eroem @i

Some sl,-representation theory

For orbit decomp. of L(J), look at fibre over 0 € J = G/P.
Q@ T,(G/P)=g/p Dg_1/p = Co (P-invariant).
@ Trivial g4 -action on C,; reduce to go-action, where go = gl,.
@ GOAL: Understand GLy-orbits on LG(C,) = Q € P(A3 C).
As slp-reps,

(Co=T3=5R2| and [A2C, =T, =S"R?|

Clebsch—Gordan (sl-inv.) pairings give:
@ symplectic form 7 on I3 (so, sly — spy)
@ sig. (2,3) scalar product (-,-) on I'4 (so, slo — s0(2,3))
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Relations to Cartan’s models
Parabolic subalgebras and representation theory

Maximally symmetric generic hyperbolic PDE and Gy Mo e st

GLy-orbits in @ C P(I'4)

On I, = S*(R?):
® (f,f) = 2oty — 8fooy Ffryyx + 6fiagy fyyr-
On Q = {[f]: (f,f) =0} C P(I'4), there are three GLy-orbits:

] GLy-orbit \ Description \ Representative \ G-orbit ‘
81 V4(P1) [X4] 06
52 7'(31)\51 [x3y] 07
S3 A\T(S1) | xv(®=V3xy+y)]| Os
Here,

@ S = rational normal quartic = {[a%] : [a] € P!}
o 7(S1) = tangential variety = {[a3b] : [a], [b] € P!}
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Relations to Cartan’s models

Maximally symmetric generic hyperbolic PDE and Gy ?ifg?: sourl;iatlgebras e CepressiEtion Girssyy

Coordinate description of GL,-orbits

The induced sly-action in affine coords (r, s, t) on LG(C,):

H: —3r0, —250s —t0;
X: 4520+ (4st — 3r)0s+(4t> — 65)0;
Y . —258, _tas _at

The GLy-action has orbits:

3 2
Q Si: locally, r = %,s: 5.

22 tt
y:(l,r,s,t,rt—sz):<1,3,2,t,12>.

@ S: locally, 9r% — 36rst + 12rt3 — 125%t% 4 3253 = 0.

(3r — 6st + 2t3)
(2s —t2)3

x=(1,r,s,t, rt—sz) = y+uy’ = —4.
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Relations to Cartan’s models
Parabolic subalgebras and representation theory
The open orbit

Maximally symmetric generic hyperbolic PDE and Gy

The parabolic subalgebra p;

g=9g-3Pg2Dg-1
DgoDg1Dg2Dgs

P1=9g>0

pi1:
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Relations to Cartan’s models
Parabolic subalgebras and representation theory

Maximally symmetric generic hyperbolic PDE and Gy The open orbit

Flip P!

The relative position of Py wrt P, matters. Take

/Pvlﬂ P> = subgrp of /15; fixingoe J = G/Pa:
@ long root & grading elt act trivially on Q = LG(G,).

@ has 2-dim orbits on S3 C Q,

@ locally, % is a diff. inv. (i.e. preserved by H, Y)
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Relations to Cartan’s models
Parabolic subalgebras and representation theory

Maximally symmetric generic hyperbolic PDE and G The open orbit

The open orbit

Let L C GLy be the lower triangular 2 x 2 matrices.
S3 C Q is globally foliated by L-orbits
o 7., c # —4:

o gen. hyp: ¢ < —4 orc >0, for c =0, have 7,
o (gen.?) ell: 0 < c < 4; for c =0, have 7,

e 7, : singly-ruled hyperbolic
e N : parabolic

Using the fﬁl—action, 3 corresponding foliation of Og C L(J).

Eqgns in local coords:
3r—6st+2t3)?
o 7. Bttty —c
e 7, s= t—;
o N : rt —s? =0 (different chart).
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Relations to Cartan’s models
Parabolic subalgebras and representation theory

Maximally symmetric generic hyperbolic PDE and Gy T2 e G

Open questions

@ How to get PDE structure eqns adapted to moving frame
adaptations in a fibre?

@ s the conjugate PDE useful / interesting?

© Submanifold theory in LG(n,2n) for n > 3? Geometrically
interesting classes?
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