The Lagrangian Grassmannian, hyperbolic PDE, and G_2

Dennis The

Texas A&M University

July 11, 2011

ESI Workshop on Conformal Geometry and its Generalizations

Outline

Main theme:

Use surface theory in
$$LG(2,4)$$
 (mod $CSp(4,\mathbb{R})$) to study the geometry of PDE
$$F(x,y,z,z_x,z_y,z_{xx},z_{xy},z_{yy})=0$$

Outline:

- A classification of (non-MA) hyperbolic PDE
- **2** Maximally symmetric "generic" hyperbolic PDE and G_2

$$\left(\text{e.g. } \frac{(3z_{xx} - 6z_{xy}z_{yy} + 2(z_{yy})^3)^2}{(2z_{xy} - (z_{yy})^2)^3} = c\right)$$

Motivation

- Non-MA hyperbolic PDE arise in hydrodynamic reduction of hyperbolic PDE in 3 indep vars (Smith, 2010)
- LG perspective on PDE in recent literature:
 - Yamaguchi (1982)
 - Ferapontov et al. (2009)
 - Smith (2010)
 - Doubrov–Ferapontov (2010)
 - Alexeevsky et al. (2010)

What is a PDE? (Classical)

Definition

A PDE F=0 is a hypersurface $\Sigma^7\subset J^2(\mathbb{R}^2,\mathbb{R})$, transverse to $\pi_1^2:J^2(\mathbb{R}^2,\mathbb{R})\to J^1(\mathbb{R}^2,\mathbb{R})$.

$$\Sigma = F^{-1}(0) \subset J^2(\mathbb{R}^2, \mathbb{R}) : (x, y, z, p, q, r, s, t)$$

$$\downarrow^{\pi_1^2}$$

$$J^1(\mathbb{R}^2, \mathbb{R}) : (x, y, z, p, q)$$

The jet spaces come equipped with contact systems:

- 2 J^2 : σ and $\sigma^1 = dp rdx sdy$, $\sigma^2 = dq sdx tdy$.

GOAL: Classify PDE up to (local) contact transformations.

PDE and Jet Spaces

What is a PDE? (Yamaguchi, 1982)

J: contact 5-mfld, i.e. \exists corank 1 distribution $C = \{\sigma = 0\} \subset TJ$ s.t. $\eta = d\sigma$ on C is nondegenerate.

Darboux thm: $(J, C) \simeq_{loc} J^1(\mathbb{R}^2, \mathbb{R})$.

Definition

Given (\mathbb{R}^4, η) symplectic, LG(2,4) := isotropic 2-planes in \mathbb{R}^4 .

Lagrange–Grassmann bundle $L(J) \stackrel{\pi}{\rightarrow} J$:

$$L(J) = \bigcup_{\xi \in J} LG(C_{\xi}, [\eta]), \qquad \widetilde{C}_{\widetilde{\xi}} = \pi_*^{-1}(\widetilde{\xi}), \quad \widetilde{\xi} \in L(J)|_{\xi} \subset C_{\xi}.$$

We have: $(L(J), \widetilde{C}) \simeq_{loc} J^2(\mathbb{R}^2, \mathbb{R}).$

Definition

A PDE is hypersurface in L(J) transverse to L(J) $\xrightarrow{\pi}$ J.

Locally speaking...

On J, have $\sigma = dz - pdx - qdy$, and

$$\textit{C} = \{\sigma = 0\} = \textit{span}\{\partial_x + \textit{p}\partial_z,\, \partial_y + \textit{q}\partial_z,\, \partial_\textit{p},\, \partial_\textit{q}\},$$

and

$$\eta = d\sigma = dx \wedge dp + dy \wedge dq \sim \begin{pmatrix} 0 & l_2 \\ -l_2 & 0 \end{pmatrix} \quad \text{on} \quad C.$$

Then at $\xi = (x, y, z, p, q)$,

$$(r, s, t) \leftrightarrow span\{\partial_x + p\partial_z + r\partial_p + s\partial_q, \partial_y + q\partial_z + s\partial_p + t\partial_q\}.$$

Contact transformations

• ϕ contact on $J \Leftrightarrow \phi_*C = C$. In fact, $\phi_*: (C, [\eta]) \to (C, [\eta])$ is conformal symplectomorphism.

Prolongation to
$$L(J) := \phi_* = \text{induced map of } LG$$
's.

- Backlünd thm:
 - Φ contact on $L(J) \Rightarrow \Phi = \phi_*$ for ϕ contact on J.

Symplectic invariants yield contact invariants

IDEA: Do a fibrewise study of PDE.

i.e. Given F(x, y, z, p, q, r, s, t) = 0, freeze any $\xi = (x, y, z, p, q)$ and study the surface $F(r, s, t; \xi) = 0$ in $LG(C_{\xi}) \cong LG(2, 4)$.

Theorem (2010)

Any $CSp(4,\mathbb{R})$ differential invariant for surfaces in LG(2,4) induces a contact invariant for PDE.

Generalizes to n-indep. vars. and to systems. (Only 1 dep. var.)

NOTE: This study only takes into account "vertical derivatives". e.g. Cannot distinguish btw $z_{xy} = 0$ or any hyperbolic MA PDE.

What's the point?: New invariants for non-MA PDE.

Elliptic, parabolic, hyperbolic PDE

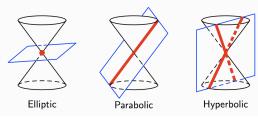
$$Sp(4,\mathbb{R})$$
 is SPECIAL: $Sp(4,\mathbb{R}) \cong Spin(2,3)$

Have a $CSp(4,\mathbb{R})$ -invariant (Lorentzian) conformal structure $[\mu]$, so a cone $\mathcal{C} = \{\mu = 0\}$ in each tangent space of LG(2,4).

Classical description: Relative invariant $\Delta = F_r F_t - \frac{1}{4} (F_s)^2$.

Ell: $\Delta > 0$, par: $\Delta = 0$, hyp: $\Delta < 0$ (evaluated on F = 0).

LG perspective: Let $M^2 \subset LG(2,4)$. $TM \cap C$ looks like:



Projective realization and "spheres"

Plücker embedding: $\mathrm{Gr}(2,4) \hookrightarrow \mathbb{P}(\bigwedge^2 \mathbb{R}^4)$. This restricts to $\mathrm{LG}(2,4) \hookrightarrow \mathbb{P}V = \mathbb{RP}^4$, where

$$V = \bigwedge_0^2 \mathbb{R}^4 := \{ z \in \bigwedge^2 \mathbb{R}^4 : \eta(z) = 0 \}.$$

On V, have sig. (2,3) scalar product: $\langle \cdot, \cdot \rangle = \eta \wedge \eta$, and

$$LG(2,4) = \mathcal{Q} = \{[z] \in \mathbb{P}V : \langle z,z \rangle = 0\}.$$

Definition

For any $[z] \in \mathbb{P}V$, we refer to $\mathcal{S}_{[z]} = \mathbb{P}(z^{\perp}) \cap \mathcal{Q}$ as a "sphere".

i.e. if $[w] \in \mathcal{Q}$, we have $[w] \in \mathcal{S}_{[z]}$ iff $\langle w, z \rangle = 0$.

Thus, orthogonality ↔ incidence!

Locally speaking...

Take
$$\eta = \begin{pmatrix} 0 & l_2 \\ -l_2 & 0 \end{pmatrix}$$
 wrt $\{e_1, ..., e_4\}$. Let $o = span\{e_1, e_2\}$. Then

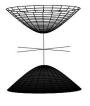
- 2 Nbd. of o is $\begin{pmatrix} l_2 & 0 \\ X & l_2 \end{pmatrix} / P$, where $X = \begin{pmatrix} r & s \\ s & t \end{pmatrix}$ $\leftrightarrow span\{e_1 + re_3 + se_4, e_2 + se_3 + te_4\}$.
- **3** Conformal structure: $[\mu] = [drdt ds^2]$.

$$(r,s,t) \leftrightarrow [1,r,s,t,rt-s^2] \in \mathcal{Q}$$
, $\langle \cdot,\cdot
angle = \left(egin{array}{cccccc} 0 & 0 & 0 & 0 & -1 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & -2 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ -1 & 0 & 0 & 0 & 0 & 0 \end{array}
ight)$

⑤ $S_{[z]}$: 0 = $\langle w, z \rangle$ = $-z_0(rt - s^2) + z_3r - 2z_2s + z_1t - z_4$. Fibrewise, this is exactly the Monge–Ampère PDE: it's a sphere.

Invariance of the Monge-Ampère PDE

There are 3 types of spheres $S_{[z]}$ according to sign of $\langle z, z \rangle$:



Theorem (Classical)

The class of ell. / par. / hyp. MA PDE are contact invariant.

New proof: "sphere", ell., par., hyp. are all $CSp(4,\mathbb{R})$ inv. notions.

Moving frames – adaptations

GOAL: $CSp(4,\mathbb{R})$ -inv. study of hyperbolic $M^2 \subset \mathcal{Q}^3 \subset \mathbb{P}V \cong \mathbb{RP}^4$.

NOTE: No intrinsic geometry. (Any surface is conformally flat.)

Use moving frames!

Geometric interpretation:

A frame $v = (v_0, v_1, v_2, v_3, v_4)$ of V is a 5-tuple of spheres.

Projective moving frame adaptations:

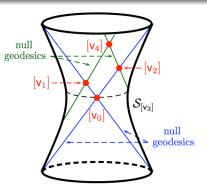
- **1** (a) $[v_0] \in M$
 - (b) $T_{v_0}\widehat{\mathcal{Q}} = v_0^{\perp} = span\{v_0, v_1, v_2, v_3\}.$ $(\widehat{\mathcal{Q}} = cone(\mathcal{Q}))$
- **1** (a) $T_{v_0}\widehat{M} = span\{v_0, v_1, v_2\}.$ ($\widehat{M} = cone(M)$)
 - (b) Hyperbolic: Require $\overline{v_1}, \overline{v_2}$ to be null.
- **③** If $M \neq$ sphere, \exists normalizing cones $S_{[v_1]}, S_{[v_2]}$. Finally, $[v_4] = S_{[v_1]} \cap S_{[v_2]} \cap S_{[v_3]} =$ conjugate point is determined.

Moving frames – geometric picture

For hyp. M, use hyp. frames v:

$$\langle \mathsf{v}_i, \mathsf{v}_j \rangle = \left(egin{array}{c|cccc} 0 & 0 & 0 & 0 & -1 \ \hline 0 & 0 & 1 & 0 & 0 \ \hline 0 & 1 & 0 & 0 & 0 \ \hline 0 & 0 & 0 & -2 & 0 \ \hline -1 & 0 & 0 & 0 & 0 \end{array}
ight)$$

Recall: orthogonality ↔ incidence!

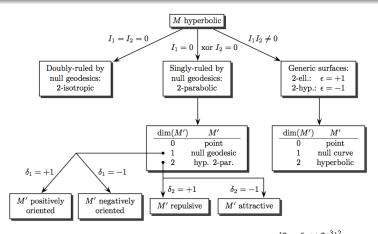


Definition

The conjugate manifold M' is the image of $M \to \mathcal{Q}$, $p \mapsto [v_4|_p]$. Given PDE Σ , can fibrewise construct the conjugate PDE Σ' .

NOTE: Conjugation is not an involution!

Classification of hyperbolic surfaces / PDE



e.g. (i)
$$s = \frac{1}{2}t^2$$
: SR, M' pt; (ii) $3rt^3 + 1 = 0$ or $\frac{(3r - 6st + 2t^3)^2}{(2s - t^2)^3} = c$: gen., M' pt; (iii) $r = e^t$: gen., M' surface; (iv) $rt = -1$: gen. (Dupin cyclide), $M' = \{rt = -9\}$.

Maximally symmetric generic hyperbolic PDE

Definition

A hyperbolic PDE is of generic type if $l_1l_2 \neq 0$, i.e. fibrewise, \nexists null geodesics.

Theorem (Vranceanu 1937, T. 2008)

- **1** Any gen. hyp. PDE has ≤ 9 -dim contact sym [sharp].
- 2 All max. sym. models are given by

A:
$$3rt^3 + 1 = 0$$

B: $\frac{(3r - 6st + 2t^3)^2}{(2s - t^2)^3} = c$, where $c < -4$ or $c \ge 0$ (*)

(*): if c = 0, need $s > \frac{t^2}{2}$ for hyperbolicity.

Degenerations to Cartan's G_2 -models

Let $G = G_2$ (non-cpt). Relations to Cartan's 5-vars paper (1910):

② c = 0: type-changing $3r - 6st + 2t^3 = 0$. Parabolic locus is Cartan's involutive system:

$$r = \frac{t^3}{3}, \quad s = \frac{t^2}{2}$$

 \circ c = -4: Cartan's parabolic Goursat model:

$$9r^2 - 36rst + 12rt^3 - 12s^2t^2 + 32s^3 = 0$$

Preview: The global picture

FACT: $J = G/P_2$ is a contact 5-mfld.

The *G*-action prolongs to $L(J) \rightarrow J$. Orbit decomposition:

$$L(J) = \mathcal{O}_8 \cup \mathcal{O}_7 \cup \mathcal{O}_6,$$

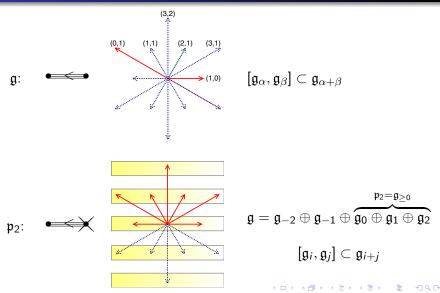
where

- \mathcal{O}_8 = open orbit;
- \mathcal{O}_7 = parabolic Goursat model;
- \mathcal{O}_6 = involutive system.

Theorem (2011)

The open orbit $\mathcal{O}_8 \subset L(J)$ is globally foliated by P_1 -orbits, all 7-dim. Moreover, every Type B max. sym. generic hyp. PDE occurs as a leaf in this foliation. (Note: \exists other leaves.)

The parabolic subalgebra p₂



Some \mathfrak{sl}_2 -representation theory

For orbit decomp. of L(J), look at fibre over $o \in J = G/P$.

- $T_o(G/P) = \mathfrak{g}/\mathfrak{p} \supset \mathfrak{g}_{-1}/\mathfrak{p} = C_o$ (*P*-invariant).
- 2 Trivial \mathfrak{g}_+ -action on C_o ; reduce to \mathfrak{g}_0 -action, where $\mathfrak{g}_0 = \mathfrak{gl}_2$.
- **3** GOAL: Understand GL_2 -orbits on $LG(C_o) = \mathcal{Q} \subset \mathbb{P}(\bigwedge_0^2 C_o)$.

As \mathfrak{sl}_2 -reps,

$$\boxed{C_o = \Gamma_3 = S^3 \mathbb{R}^2}$$
 and $\boxed{\bigwedge_0^2 C_o = \Gamma_4 = S^4 \mathbb{R}^2}$.

Clebsch–Gordan (\$\ilde{\graket}_2\text{-inv.}) pairings give:

- **1** symplectic form η on Γ_3 (so, $\mathfrak{sl}_2 \to \mathfrak{sp}_4$)
- 2 sig. (2,3) scalar product $\langle \cdot, \cdot \rangle$ on Γ_4 (so, $\mathfrak{sl}_2 \to \mathfrak{so}(2,3)$)

GL_2 -orbits in $\mathcal{Q} \subset \mathbb{P}(\Gamma_4)$

On
$$\Gamma_4 = S^4(\mathbb{R}^2)$$
:

•
$$\langle f, f \rangle = 2f_{xxxx}f_{yyyy} - 8f_{xxxy}f_{yyyx} + 6f_{xxyy}f_{yyxx}$$
.

On
$$Q = \{[f] : \langle f, f \rangle = 0\} \subset \mathbb{P}(\Gamma_4)$$
, there are three GL_2 -orbits:

GL ₂ -orbit	Description	Representative	<i>G</i> -orbit
\mathcal{S}_1	$\mathit{v}_4(\mathbb{P}^1)$	$[x^4]$	\mathcal{O}_6
\mathcal{S}_2	$ au(\mathcal{S}_1)ackslash\mathcal{S}_1$	$[x^3y]$	\mathcal{O}_7
\mathcal{S}_3	$\mathcal{Q} \backslash \tau(\mathcal{S}_1)$	$[xy(x^2-\sqrt{3}xy+y^2)]$	\mathcal{O}_8

Here,

- $S_1 = \text{rational normal quartic} = \{[a^4] : [a] \in \mathbb{P}^1\}$
- $\tau(\mathcal{S}_1) = \mathsf{tangential} \; \mathsf{variety} = \{[a^3b] : [a], [b] \in \mathbb{P}^1\}$

Coordinate description of GL_2 -orbits

The induced \mathfrak{sl}_2 -action in affine coords (r, s, t) on $LG(\mathcal{C}_o)$:

$$\begin{array}{lll} \mathsf{H}: & -3r\partial_r & -2s\partial_s & -t\partial_t \\ \mathsf{X}: & 4s^2\partial_r + (4st-3r)\partial_s + (4t^2-6s)\partial_t \\ \mathsf{Y}: & -2s\partial_r & -t\partial_s & -\partial_t \end{array}$$

The GL_2 -action has orbits:

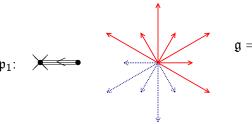
1 S_1 : locally, $r = \frac{t^3}{3}, s = \frac{t^2}{2}$.

$$\mathbf{y} = (1, r, s, t, rt - s^2) = \left(1, \frac{t^3}{3}, \frac{t^2}{2}, t, \frac{t^4}{12}\right).$$

② S_2 : locally, $9r^2 - 36rst + 12rt^3 - 12s^2t^2 + 32s^3 = 0$.

$$\mathbf{x} = (1, r, s, t, rt - s^2) = \mathbf{y} + u\mathbf{y}' \quad \Rightarrow \quad \frac{(3r - 6st + 2t^3)^2}{(2s - t^2)^3} = -4.$$

The parabolic subalgebra \mathfrak{p}_1

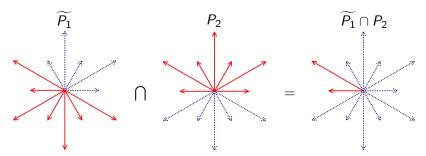


$$\mathfrak{g} = \mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \\ \oplus \underbrace{\mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \mathfrak{g}_3}_{\mathfrak{p}_1 = \mathfrak{g}_{\geq 0}}$$

Flip P_1 !

The relative position of P_1 wrt P_2 matters. Take $\left|\widetilde{P_1} = P_1^{op}\right|$

$$\widetilde{P_1} = P_1^{op}$$



$$P_1 \cap P_2 = \text{subgrp of } P_1 \text{ fixing } o \in J = G/P_2$$
:

- long root & grading elt act trivially on $\mathcal{Q} \cong LG(\mathcal{C}_0)$.
- has 2-dim orbits on $S_3 \subset Q$,
- locally, $\frac{(3r-6st+2t^3)^2}{(2s-t^2)^3}$ is a diff. inv. (i.e. preserved by H, Y)

The open orbit

Let $L \subset GL_2$ be the lower triangular 2×2 matrices.

Theorem

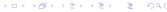
 $\mathcal{S}_3 \subset \mathcal{Q}$ is globally foliated by L-orbits

- T_c , $c \neq -4$:
 - gen. hyp: c < -4 or c > 0; for c = 0, have \mathcal{T}_0^-
 - (gen.?) ell: 0 < c < 4; for c = 0, have T_0^+
- ullet \mathcal{T}_{∞} : singly-ruled hyperbolic
- N : parabolic

Using the P_1 -action, \exists corresponding foliation of $\mathcal{O}_8 \subset L(J)$.

Eqns in local coords:

- T_c : $\frac{(3r-6st+2t^3)^2}{(2s-t^2)^3}=c$.
- T_{∞} : $s = \frac{t^2}{2}$.
- \mathcal{N} : $rt \bar{s}^2 = 0$ (different chart).



Open questions

- How to get PDE structure eqns adapted to moving frame adaptations in a fibre?
- Is the conjugate PDE useful / interesting?
- **3** Submanifold theory in LG(n, 2n) for $n \ge 3$? Geometrically interesting classes?