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In this short note we complement our study of the boundary behaviour of universal covering
maps. We give several examples showing that the result in [J-M] is best possible.

It is well known that the boundary behaviour of universal covering maps P : D — ) can
vary considerably, depending on topological and metric properties of the domain ) and its
boundary. To give an example, we let € be simply connected. Then the universal covering map
is a conformal mapping, and by a result of Beurling, the set of § where lim,_,; P(r¢'’) does
not exist has vanishing logarithmic capacity. Moreover the set of § for which lim,_; P'(re'?)
exists and is finite has Hausdorff dimension 1; even the set of 6 where [ |P"(re®)|dr < co has
Hausdorff dimension equal to one. These are the results of N. Makarov [M] and the present
authors [J-M 1] respectively. Similar results hold for the case of universal covering maps onto
domains with uniformly perfect boundaries.

A very different picture arises, however, when one considers the twice punctured plane
Q=C\{-1,1}. In that case the set of angles  for which the boundary value of the universal
covering map, lim,_,; P(re'’), exists is at most countable. This should be compared with the

result in [J-M ], that for every domain € one has
1 .
/ |P"(re)|dr < oo
0

for at least countably many 6 € [0,27[. Thus the result of [J-M] is best possible in general —
simply because P : D — C\ {—1,1} has boundary values for only countably many radii.

We will now consider domains €2 for which the boundary values of the universal covering
map P exist almost everywhere. It is natural to conjecture that for this class of domains there

exist also non trivial lower bounds on the size of the following sets,
{e: lirrll P'(re') exists and is finite},
r—r
. 1 .
{ew : / |P"(re'?)|dr < oo}
0
Below however we will give an example of a domain Qg with cap 9€y > 0 for which these

sets are at most countable. Consequently the result of [J-M] is best possible, even when the

boundary values of P exist almost everywhere.

Theorem 1 There exists a domain Qy C C, with universal covering map P : D — Qg such

that



1. The boundary of Qo has positive logarithmic capacity (hence the boundary values for the

universal covering map exist almost everywhere).

2. The set of angles € for which lim,_; P'(re'?) exists and is finite, is at most countable.

We obtain the proof of Theorem 1 by linking lower bounds for | P/(z)| to the geometric estimates
for the hyperbolic metric on the domain . By definition the density Ag for the hyperbolic

metric is given by
1
L= [z]*

where P : D —  is the universal covering map. The result of Beardon and Pommerenke [B-P]

Aa(P(E)IP(2)] =

provides geometric estimates for A\ as follows:

1
™ dist(w, 00)(B(w) + 1)

Aa(w)

where
3w = inf {
We will now define the domain Qg for which Theorem 1 holds. We let

log PH s |w — al = dist(w, E),a,b € E}
—a

E,={(1+ 2—2n)€27ri8_2"m :1<m <8},

The set F, consists of equidistributed points on the circle with radius 1 + 272", We point
out that the (euclidian) distance between neighboring points in F,, is much smaller than the
(euclidian) distance between E, and E,.;. Now we let £ = DU (2, F, and Qo = C\ E. The
boundary of Qg is TU U2, E,.

We have defined the domain {2y to be unbounded. This however is not essential for our
purposes. We can define a bounded domain for which Theorem 1 holds by applying the inversion
i(z) = 1/z to Q. The resulting domain is now containd in the unit disk and the proof given
below shows that also 7 (§) satisfies the conclusions of our Theorem 1.

Our proof of Theorem 1 relies on the following Lemma which gives lower bounds for the

hyperbolic distance in C\ F.

Lemma 1 Let {w,} be a sequence of points in C\ E such that |w,| = 14 272""'. Then the

hyperbolic distance in C\ E between w,, and w, 4 exeeds cin, and more generally
dC\E(wn—I—kv wn) 2 clkn-

Comment: The points w,, are chosen such that w, and w,; are separated by the “barrier”

formed by the points in £,.



PROOF. Welet B={z€ C:1+427%72 < |z|] <1+27%"}. Note that B is the annulus between

E, and F, ;. Next we select disjoint annuli contained in B as follows: We define
D;CB, je{—4n,...,0,...4n}

such that for w € D,
9-lil=2n < dist(w,0B) < 9-lil+1=2n

Note that the annuli D; are chosen in such a way that their thicknes is proportional to their
distance to 9 B; the distance of D; to 9B is > 872", By drawing the picture we see the following

two estimates for w € D;:
(1 — 87 *")dist(w, £) < dist(w, dB) < (1 + 87 *")dist(w, F),

log

w—a H > 9
a—">bll =7
whenever a,b, € F and |w — «| = dist(w, F).
Combining these observations, with the result of Beardon and Pommerenke we obtain the

following lower bound for the density of the hyperbolic metric in C\ E: For w € D; we have
Aove (w) > 22+l

Let now o be any curve connecting w,_; to w,. For such a curve the euclidian diameter of
o N D; exeeds 272"7lil. Consequently we have the following minorization for the hyperbolic

length of o N D,
/ Aove (w)|dw] > ¢,
onD

J

and therefore we can estimate the hyperbolic length of o in C\ FE as follows,

4n
[aptolde] > 32 [ Acp(wlde] > (0 —1).

J=—4n

Proof of Theorem 1 For the domain 0 = C\ (U £, U D) we have

I =TU | E..

n=1
Clearly 09 has positive capacity (simply because T is connected). Hence by the theorem of

R. Nevanlinna for the universal covering map P : D — (g the boundary values exist almost

everywhere, i.e., the set

T 0 .
{6 : ll_r}rll P(re") exists}

3



has full measure in the interval [0,27[. Observe that .2, F, is a countable set of isolated

points in 0y, hence the set

{(9 : limP(rew) € U En}
n=1

r—1
is at most countable. To prove the theorem it remains to show now that lim,_; P(rew) cT
implies that
lim sup |P'(re'?)| = oo.
r—1

By our assumption that lim,_; P(re??) € T, we can select a sequence of points {z,} on the ray

[0, €[ such that P(z,) = w, satisfies
a) Jw,| =1+27""1
b) 1 —|z] <1—=|2zn-1],
Now we apply Lemma 1 to the sequence of points {w,}, and we obtain

dp(zn; 2n-1) 2 day(P(2n), P(2n-1))

— dQO (wn7 wn—l)

AV

cn.

Therefore
I — |Zn—1|2
—_— > 2"
L=zl =7
where ¢ > 0 is a universal constant and n € N.
Now we present simple geometric considerations to prepare for the application of the result of
Beardon and Pommerenke. First we remark that for points w, € §Q, satisfying |w,| = 1427271

we have

dist(w,—1, £) < bdist(w,, F).
Next we observe that for any w € Qg with [w] = 1 +27*"7! and any « € F for which
|w — a| = dist(w, E), there exists b € F such that

w—a

|
og |3

< 9.

—a

It now remains to combine the defining equation

Aevg (P(2)| P'()] = —

L=



with the estimate of Beardon and Pommerenke,

1
™ dist(w, £)(B(w) + 1)

Aovs (w)

to obtain a lower estimate for |P’(z)|. Indeed we have

[P'(za)l _ Adee(wn)( = |20]?)
| P’ (z-1))] Aove (wn)(1 = [2:]?)
dist(w,, E)(1 — |z,-1]?)

= “dist(wo_y, E)(1 — |2, 2)
> 2",

or

|[P(zn)] = 27| P'(zp1)].

We close this note by discussing another domain 2y with properties similar to those of ().

We let F, = {27227 - ] < < 82"} be a set consisting of equidistributed points on the

circle of radius 272", Then we let F' = J°2, F,, U {0}, and

In the following list of remarks we sketch the boundary behavior of the universal covering map

P:D-}Ql.

Remarks:

1. The set {0 : lim,_,; P(re') exists} has measure zero in the interval [0,27[. This follows

from the fact that the boundary of €2y is countable.

2. The point {0} is a cluster point in 9€);. Hence by the theorem of J. Fernandez and M.

Melian [F-M], the set {0 : lim,_,; P(re') = 0} has Hausdorff dimension equal to one.

3. One can now adapt the proof of Theorem 1 to show that

limsup | P'(re)| = oo
r—1

whenever lim,_,; P(re’) = 0.

4. The set A= {0:1lim,_; P(re’’) € o2, F,,} is at most countable, and for § € A we have

1 .
/ |P" (re'®)|dr < oo.
0
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This follows by Proposition 5 in [J-M] from the fact that the points in [J;2, F), are isolated
in an

5. Our previous remarks 3) and 4) contain the following dichotomy: The boundary of €
can be decomposed as 9y = X UY, such that the following holds,
a) If lim,; P(re’) € X then limsup,_,, |P'(re'?)| = .

b) If lim,_,; P(rei®) € Y then [} |P"(re')|dr < co.

6. Note that the same dichotomy is also present in the examples g and C\ {—1,1}.
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