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In this short note we complement our study of the boundary behaviour of universal coveringmaps. We give several examples showing that the result in [J-M] is best possible.It is well known that the boundary behaviour of universal covering maps P : D ! 
 canvary considerably, depending on topological and metric properties of the domain 
 and itsboundary. To give an example, we let 
 be simply connected. Then the universal covering mapis a conformal mapping, and by a result of Beurling, the set of � where limr!1 P (rei�) doesnot exist has vanishing logarithmic capacity. Moreover the set of � for which limr!1 P 0(rei�)exists and is �nite has Hausdor� dimension 1; even the set of � where R 10 jP 00(rei�)jdr <1 hasHausdor� dimension equal to one. These are the results of N. Makarov [M] and the presentauthors [J-M 1] respectively. Similar results hold for the case of universal covering maps ontodomains with uniformly perfect boundaries.A very di�erent picture arises, however, when one considers the twice punctured plane
 = C n f�1; 1g. In that case the set of angles � for which the boundary value of the universalcovering map, limr!1 P (rei�); exists is at most countable. This should be compared with theresult in [J-M ], that for every domain 
 one hasZ 10 jP 00(rei�)jdr <1for at least countably many � 2 [0; 2�[. Thus the result of [J-M] is best possible in general {simply because P : D ! C n f�1; 1g has boundary values for only countably many radii.We will now consider domains 
 for which the boundary values of the universal coveringmap P exist almost everywhere. It is natural to conjecture that for this class of domains thereexist also non trivial lower bounds on the size of the following sets,fei� : limr!1P 0(rei�) exists and is �niteg;�ei� : Z 10 jP 00(rei�)jdr <1� :Below however we will give an example of a domain 
0 with cap @
0 > 0 for which thesesets are at most countable. Consequently the result of [J-M] is best possible, even when theboundary values of P exist almost everywhere.Theorem 1 There exists a domain 
0 � C , with universal covering map P : D ! 
0 suchthat 1



1. The boundary of 
0 has positive logarithmic capacity (hence the boundary values for theuniversal covering map exist almost everywhere).2. The set of angles ei� for which limr!1 P 0(rei�) exists and is �nite, is at most countable.We obtain the proof of Theorem 1 by linking lower bounds for jP 0(z)j to the geometric estimatesfor the hyperbolic metric on the domain 
. By de�nition the density �
 for the hyperbolicmetric is given by �
(P (z))jP 0(z)j = 11� jzj2 ;where P : D ! 
 is the universal covering map. The result of Beardon and Pommerenke [B-P]provides geometric estimates for �
 as follows:�
(w) � 1dist(w; @
)(�(w) + 1) ;where �(w) = inf �����log ����w � ab� a �������� : jw � aj = dist(w;E); a; b 2 E� :We will now de�ne the domain 
0 for which Theorem 1 holds. We letEn = f(1 + 2�2n)e2�i8�2nm : 1 � m � 82ng:The set En consists of equidistributed points on the circle with radius 1 + 2�2n. We pointout that the (euclidian) distance between neighboring points in En is much smaller than the(euclidian) distance between En and En+1: Now we let E = �D [S1n=1 En and 
0 = C nE. Theboundary of 
0 is T[ S1n=1 En.We have de�ned the domain 
0 to be unbounded. This however is not essential for ourpurposes. We can de�ne a bounded domain for which Theorem 1 holds by applying the inversioni(z) = 1=z to 
0: The resulting domain is now containd in the unit disk and the proof givenbelow shows that also i (
0) satis�es the conclusions of our Theorem 1.Our proof of Theorem 1 relies on the following Lemma which gives lower bounds for thehyperbolic distance in C n E:Lemma 1 Let fwng be a sequence of points in C n E such that jwnj = 1 + 2�2n�1: Then thehyperbolic distance in C n E between wn and wn+1 exeeds c1n, and more generallydCnE (wn+k; wn) � c1kn:Comment: The points wn are chosen such that wn and wn+1 are separated by the \barrier"formed by the points in En. 2



Proof. We let B = fz 2 C : 1+2�2n�2 � jzj � 1+2�2ng: Note that B is the annulus betweenEn and En+1. Next we select disjoint annuli contained in B as follows: We de�neDj � B; j 2 f�4n; : : : ; 0; : : : 4ngsuch that for w 2 Dj ; 2�jjj�2n � dist(w; @B) � 2�jjj+1�2n:Note that the annuli Dj are chosen in such a way that their thicknes is proportional to theirdistance to @B; the distance of Dj to @B is � 8�2n. By drawing the picture we see the followingtwo estimates for w 2 Dj :(1 � 8�2n)dist(w;E) � dist(w; @B) � (1 + 8�2n)dist(w;E);����log ����w � aa� b �������� � 2;whenever a; b;2 E and jw � aj = dist(w;E).Combining these observations, with the result of Beardon and Pommerenke we obtain thefollowing lower bound for the density of the hyperbolic metric in C n E: For w 2 Dj we have�CnE (w) � c22n+jjj:Let now � be any curve connecting wn�1 to wn. For such a curve the euclidian diameter of� \ Dj exeeds 2�2n�jjj. Consequently we have the following minorization for the hyperboliclength of � \Dj ; Z�\Dj �CnE (w)jdwj � c;and therefore we can estimate the hyperbolic length of � in C n E as follows,Z� �CnE (w)jdwj � 4nXj=�4n Z�\Dj �CnE (w)jdwj � c(8n � 1):Proof of Theorem 1 For the domain 
0 = C n (SEn [ �D ) we have@
0 = T[ 1[n=1En:Clearly @
 has positive capacity (simply because T is connected). Hence by the theorem ofR. Nevanlinna for the universal covering map P : D ! 
0 the boundary values exist almosteverywhere, i.e., the set f� : limr!1P (rei�) existsg3



has full measure in the interval [0; 2�[. Observe that S1n=1 En is a countable set of isolatedpoints in @
0, hence the set (� : limr!1P (rei�) 2 1[n=1En)is at most countable. To prove the theorem it remains to show now that limr!1 P (rei�) 2 Timplies that lim supr!1 jP 0(rei�)j =1:By our assumption that limr!1 P (rei�) 2 T; we can select a sequence of points fzng on the ray[0; ei�[ such that P (zn) = wn satis�esa) jwnj = 1 + 2�2n�1,b) 1� jznj < 1 � jzn�1j,Now we apply Lemma 1 to the sequence of points fwng, and we obtaindD (zn; zn�1) � d
0(P (zn); P (zn�1))= d
0(wn; wn�1)� cn:Therefore 1� jzn�1j21 � jznj2 � c2cn;where c > 0 is a universal constant and n 2 N.Now we present simple geometric considerations to prepare for the application of the result ofBeardon and Pommerenke. First we remark that for points wn 2 
, satisfying jwnj = 1+2�2n�1we have dist(wn�1; E) � 5dist(wn; E):Next we observe that for any w 2 
0 with jwj = 1 + 2�2n�1, and any a 2 E for whichjw � aj = dist(w;E), there exists b 2 E such that����log ����w � ab� a �������� � 2:It now remains to combine the de�ning equation�CnE (P (z))jP 0(z)j = 11 � jzj2 ;4



with the estimate of Beardon and Pommerenke,�CnE (w) � 1dist(w;E)(�(w) + 1)to obtain a lower estimate for jP 0(z)j. Indeed we havejP 0(zn)jjP 0(zn�1)j = �CnE (wn�1)(1� jzn�1j2)�CnE (wn)(1� jznj2)� cdist(wn; E)(1� jzn�1j2)dist(wn�1; E)(1� jznj2)� c2cn;or, jP 0(zn)j � c2cnjP 0(zn�1)j:We close this note by discussing another domain 
1 with properties similar to those of 
0:We let Fn = f2�2ne2�i8�2nm : 1 � m � 82ng be a set consisting of equidistributed points on thecircle of radius 2�2n. Then we let F = S1n=1 Fn [ f0g; and
1 = C n F:In the following list of remarks we sketch the boundary behavior of the universal covering mapP : D ! 
1:Remarks:1. The set f� : limr!1 P (rei�) existsg has measure zero in the interval [0; 2�[. This followsfrom the fact that the boundary of 
1 is countable.2. The point f0g is a cluster point in @
1: Hence by the theorem of J. Fernandez and M.Melian [F-M], the set f� : limr!1 P (rei�) = 0g has Hausdor� dimension equal to one.3. One can now adapt the proof of Theorem 1 to show thatlim supr!1 jP 0(rei�)j =1whenever limr!1 P (rei�) = 0:4. The set A = f� : limr!1 P (rei�) 2 S1n=1 Fng is at most countable, and for � 2 A we haveZ 10 jP 00(rei�)jdr <1:5



This follows by Proposition 5 in [J-M] from the fact that the points in S1n=1 Fn are isolatedin @
1:5. Our previous remarks 3) and 4) contain the following dichotomy: The boundary of 
1can be decomposed as @
1 = X [ Y; such that the following holds,a) If limr!1 P (rei�) 2 X then lim supr!1 jP 0(rei�)j =1:b) If limr!1 P (rei�) 2 Y then R 10 jP 00(rei�)jdr <1:6. Note that the same dichotomy is also present in the examples 
0 and C n f�1; 1g:
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