A Remark on a Martingale Inequality of J. Bourgain

Paul F.X. Müller

A remark on a martingale inequality of J. Bourgain

 byPaul F.X. Müller

In this note we improve a maringale inequality of J. Bourgain and simplify its original proof.
We let \mathcal{D} denote the collection of dyadic intervals in the interval $[0,1]$. For $I \in \mathcal{D}$ we let h_{I} be the L^{∞}-normalized Haar function supported on the interval I. The Haar function h_{I} takes the value +1 on the left half of the interval I, and the value -1 on the right half of I. For a function h with Haar expansion $h=\sum b_{I} h_{I}, b_{I} \in \mathbb{R}$, we say that h belongs to dyadic BMO space if

$$
\sup _{I \in \mathcal{D}}\left(\frac{1}{|I|} \sum_{J \subseteq I} b_{J}^{2}|J|\right)^{1 / 2}<\infty
$$

We write $\operatorname{BMO}(\delta)$ for the dyadic BMO space and we denote the above supremum by $\|h\|_{\mathrm{BMO}(\delta)}$. For $f=\sum a_{J} h_{J}$ we have the dyadic square function given as

$$
S(f)(x)=\left(\sum a_{J}^{2} \mathbf{1}_{J}(x)\right)^{1 / 2}
$$

If g is a positive integrable function then the martingale inequality of J. Bourgain relates the above expressions as follows.

$$
\int g S(h) \geq \delta \int f h d x-\delta^{-1}\|S(f)-g\|_{L^{1}}^{1 / 2}\|S(f)\|_{L^{1}}^{1 / 2}\|h\|_{\mathrm{BMO}(\delta)}
$$

where $\delta>0$ is a universal constant. In [B] J. Bourgain uses this inequality to obtain estimates from below for

$$
\int g S(h)
$$

under the hypotheses that $\int f h=1$ and that the error term $\|S(f)-g\|_{L^{1}}^{1 / 2}$ is small. It follows from the proof in $[B]$ that improvements in the estimates for the error term translate into better estimates for the main theorem in [B]. It is the puprose of this note to improve this error term. We also obtain simple numerical constants from a simple straightforward proof.

Theorem 1 Let $h \in B M O(\delta), g \in L^{1}([0,1]), g \geq 0$, and let f be a function with $S(f) \in$ $L^{1}([0,1])$. Then

$$
\int g S(h) d x \geq \frac{1}{2} \int f h d x-2\|S(f)-g\|_{L^{1}}\|h\|_{B M O}
$$

Comment. The proof we give is just the standard proof of $H^{1}-\mathrm{BMO}$ duality as in [F-S] pp. 148-149. Clearly it is only the contrast to the original - quite delicate - argument of J. Bourgain [B] that justifies the presentation below.

Proof. We let $f=\sum a_{I} h_{I}$ and $h=\sum b_{I} h_{I}$ be the respective Haar expansions of f respectively h. Then we write

$$
\begin{aligned}
S(f, m)(x) & =\left(\sum_{|I| \leq 2^{-m}} a_{I}^{2} \mathbf{1}_{I}(x)\right)^{1 / 2}, \\
h^{\#}(x) & =\sup _{I \ni x}\left(\frac{1}{|I|} \sum_{J \subseteq I} b_{J}^{2}|J|\right)^{1 / 2} .
\end{aligned}
$$

Now we define the following stopping time

$$
m(x)=\inf \left\{m: S(h, m)(x)<2 h^{\#}(x)\right\} .
$$

We will use the following estimate which will be proved below

$$
\left|\left\{x \in I: 2^{-m(x)}<|I|\right\}\right| \leq|I| / 2 .
$$

It follows from biorthogonality of the Haar functions, Fubini's theorem and the Cauchy Schwarz inequality that

$$
\begin{aligned}
\int f(x) h(x) d x & \leq \int \sum_{I \in \mathcal{D}}\left|a_{I}\right|\left|b_{I}\right| \mid \mathbf{1}_{I}(x) d x \\
& \leq 2 \int \sum_{\{I:|I|<2-m(x)\}}\left|a_{I} b_{I}\right| \mathbf{1}_{I}(x) d x \\
& \leq 2 \int S(f)(x) S(h, m(x))(x) d x .
\end{aligned}
$$

We now add and subtract the function g, and we finish the proof using the definig property of the stopping time $m(x)$.

$$
\begin{aligned}
\int f(x) h(x) d x & \leq 2 \int(S(f)(x)-g(x)) S(h, m(x))(x) d x+2 \int g(x) S(h, m(x)) d x \\
& \leq 4 \int(S(f)(x)-g(x)) h^{\#}(x) d x+2 \int g(x) S(h)(x) d x \\
& \leq 4\|S(f)-g\|_{1}\|h\|_{\mathrm{BMO}(\delta)}+2 \int g(x) S(h)(x) d x .
\end{aligned}
$$

We used the equality $\left\|h^{\#}\right\|_{\infty}=\|h\|_{\mathrm{BMO}(\delta)}$ to obtain the last line.

It remains to prove the estimate $\left|\left\{x \in I: 2^{-m(x)}<|I|\right\}\right| \leq|I| / 2$. We fix $I \in \mathcal{D}$ and write $A=\left\{x \in I: 2^{-m(x)}<|I|\right\}$. Then we choose $m \in \mathbb{N}$ such that

$$
|I|=2^{-m}
$$

Note that for $x \in A$ we have the following pointwise estimate,

$$
\begin{aligned}
S^{2}(h, m(x)-1)(x) & \geq 4 h^{\# 2}(x) \\
& \geq 4 \frac{1}{|\tilde{I}|} \int_{\tilde{I}} S^{2}(h, m-1)(t) d t
\end{aligned}
$$

where \tilde{I} is the dyadic interval satisfying $I \subseteq \tilde{I},|\tilde{I}|=2|I|$. We also have that

$$
S^{2}(h, m-1)(x) \geq S^{2}(h, m(x)-1)(x), \text { for } x \in A
$$

Hence

$$
\begin{aligned}
\frac{1}{|\tilde{I}|} \int_{\tilde{I}} S^{2}(h, m-1)(x) d x & \geq \frac{1}{|\tilde{I}|} \int_{A} S^{2}(h, m(x)-1)(x) d x \\
& \geq 4 \frac{|A|}{|\tilde{I}|} \frac{1}{|\tilde{I}|} \int_{\tilde{I}} S^{2}(h, m-1)(x) d x
\end{aligned}
$$

Cancelling the following factor from both sides of the above estimate

$$
\frac{1}{|\tilde{I}|} \int_{\tilde{I}} S^{2}(h, m-1)(x) d x
$$

gives

$$
|A| \leq|I| / 2
$$

as claimed.
REmarks.

1. Note that we actually proved more than we claimed. In fact we showed that the integral

$$
\int g(x) \min \left\{S(h)(x), 2 h^{\#}(x)\right\} d x
$$

dominates the expression

$$
\frac{1}{2} \int f h d x-2\|S(f)-g\|_{L^{1}}\|h\|_{\mathrm{BMO}(\delta)}
$$

We should remark that this improvement of Bourgain's martingale inequality has further consequences. It allowes us to break the proof of the non-isomorphism theorem in $[\mathrm{B}]$ into two independent pieces, in such a way that the only place where one uses the notion of "order-inversion" is in Lemma 5 of [B]. In this way the content of the present paper helps to clearify somewhat the role played by the concept of "order-inversion" in the proof of the non-isomorphism between H^{1} spaces.
2. The above proof uses only well known, and well understood tools developed to prove $H^{1}-$ BMO duality. Therefore it is clear that the validity of Theorem 1 is not limited to the case of dyadic martingales. Analogous versions can be obtained, e.g., for the case of H^{1} spaces consisting of harmonic functions in the upper half space \mathbb{R}_{+}^{n+1} which are defined as follows. For an integrable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we denote by $F: \mathbb{R}_{+}^{n+1} \rightarrow \mathbb{R}$ its harmonic extension to the upper half space

$$
\mathbb{R}_{+}^{n+1}=\left\{(y, t): y \in \mathbb{R}^{n}, t>0\right\}
$$

Then the square function is

$$
S(f)(x)=\left(\int_{\Gamma(x)}|\nabla F(y, t)|^{2} t^{1-n} d t d x\right)^{1 / 2}
$$

where $\Gamma(x)=\left\{(y, t) \in \mathbb{R}_{+}^{n+1}:|x-y|<t\right\}$. For $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$, locally integrable, we let

$$
\|h\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}=\left(\sup _{Q} \int_{Q}\left|h(x)-\int_{Q} h(y) \frac{d y}{|Q|}\right|^{2} \frac{d x}{|Q|}\right)^{1 / 2}
$$

where the supremum is extended over all cubes in \mathbb{R}^{n}. Finally we let $g \in L^{1}\left(\mathbb{R}^{n}\right)$ be a non negative integrable function. With essentially the same proof as above we can show that

$$
\int_{\mathbb{R}^{n}} g(x) S(h)(x) d x \geq \delta \int_{\mathbb{R}^{n}} f(x) h(x) d x-\delta^{-1}\|S(f)-g\|_{L^{1}\left(\mathbb{R}^{n}\right)}\|h\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}
$$

where $\delta>0$ is a positive universal constant. (See [F-S] pp.148, 149.)

References:

[B] J. Bourgain, The non isomorphism of H^{1} spaces in one and several variables, J. of Funct. Anal. 46 (1982) 45-67.
[F-S] C. Fefferman, E.M. Stein, H^{p} spaces of several variables, Acta Math. 19 (1972) 137-193.
Institut f. Analysis u. Numerik
J. Kepler Universität Linz

A-4040 Linz, Austria.
e-mail: pfxm@caddo.bayou.uni-linz.ac.at

