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Two types of q-extensions of Abhyankar’s inversion formula for formal power 
series in a single variable are obtained. One type represents a new contribution to 
the Garsia-Gessel q-Lagrange inversion theory, the second to that of Hofbauer and 
the author. ‘r’ 1989 Academic Press, Inc 

1. INTRODUCTION 

Let f(z) be a formal power series (fps) over a field K,, with characteristic 
zero subject to f(0) = 0 and f’(0) = 1. Then there exists the compositional 
inverse fps F(z) meaning f(F(z)) = CP;=, f,F’(z) = F(f(z)) = z. Given a 
formal Laurent series (fLs) g(z) over K, of the form 

g(z)= c g,zk, 
k>d 

(1.1) 

for a dc Z (integers), and given f(z) as above, the formula of Abhyankar 
[ 11, rediscovered independently by Garsia and Joni [S, 6, 121 and Viskov 
[ 151, in the one variable case gives an expression in terms off(z) and g(z) 
for the substitution of F(z) in g(z), namely 

g(Qz)) = ,;, g (g(z) f’(z) Gk(z)), (1.2) 

where G(z) = z-f(z) and D denotes the differential operator acting on z. 
(Note that, since the order of G(z) is at least two, the right-hand side of 
(1.2) is summable in the formal sense. The order of an fLs is the smallest 
integer d for which the coefficient of zd is different from zero.) It turns out 
that Abhyankar’s formula is equivalent with the Lagrange-Good formula 
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[9; 12; 7, Part II], which in the one-variable case can be rewritten as [4, 
Identity 1.5(a)] 

(z”) g(F(z)) = (z”) g(z) ~ fn+ I(--)' n e Z, (1.3) 

where (2”) a(z) means the coefficient of 2” in a(z). 
The crucial point for finding q-analogues of (1.2) is the existence of 

q-analogues of (1.3). Up to now three different types of q-analogues of the 
Lagrange formula have been discovered (see [ 11, 141 and the references 
cited there), two of which have general character. The first is due to Garsia 
[4]. The q-analogue of (1.2) coming out of his formula will be derived in 
Section 3. In Section 4 the q-Lagrange formula of Hofbauer [lo] further 
developed by the author [ 131 will be applied to deduce a q-analogue of a 
formula similar to (1.2): 

(1.4) 

Obviously (1.4) comes out of (1.2) by substituting g(z)/f(z) for g(z) in 
(1.2). Moreover, (1.4) and (1.2) are equivalent. In [S] Garsia and Joni give 
an alternative form of (1.2), 

g(e)) =g(z) + ,E, q k’(z) Q(Z))> (1.5) 

which corresponds to a second form of the Lagrange formula in one 
variable [4, Identity 1.5(b)] 

(z”) g(F(r))=A (2 +q 
f”(z) 

n #O. (1.6) 

In Garsia’s q-Lagrange theory an analogue of (1.6) could not be found, but 
there is one for Hofbauer’s. From this we are able to derive a q-analogue 
of (1.5), which also will be given in Section 4. 

2. NOTATION AND PRELIMINARIES 

We use the familiar standard q-notation [N], = (q’ - 1 )/(q - 1 ), 
[n],!=[n]y[n-l]y...[l]y, [O],!=l, (x;q)x=17Zo(1-qix)and 

(X;q)Z=(X;q)x/(Xql;q)r= f (-1Yq’:) ; Xk, 11 (2.1) 
k=O 4 
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where 

c? [I b =[cr],[a-l]y...[CI--kl]y/[k],!. 

The q-exponential function is e,(z) = CpZO z”/[k],!. Alternative expres- 
sions are e,(z)=np=o(l +(q- l)qkz)-’ and e,lq(z)=n~CO(l + 
(1 - q)qkz). Finally we introduce the q-difference operator by 

D,f(z) = (f(P) -f(z)Mq - l)z. (2.2) 

In the q-analogues of the Lagrange formula the powersfk(z) are replaced 
by q-powers, say f,Jz), having the form fk(z) = xnak fnkzn, where k E Z. In 
the limiting case q + 1 the fLs &(z) become powers of a single fps. Sub- 
stitution of the sequence f= &(z))~~ E of fLs into an fLs of the form (1. I ) 
is defined by 

dP)(z)= c !zkfkb), 
k>d 

The inverse sequence 9 = (F,(z)),, h of / is the unique solution of the 
equations 

F,(f)(z) = z( for 1c.Z. 

It is easy to show [14, Section 33 that f is the inverse of 9, too, thus 
establishing 

fk(F) = zk for /CEZ 

Now, following Henrici [9 J, let us recall the proof of (1.2) starting from 
(1.3). Letf(z)=z-G(z); then by (1.3) 

zf ‘(z) (z”> g(F(z))= o”> g(z)s”+yz) 

= (zO> dz)f’(z) yl(l_ c;z)/z).+ I 

= <z”> s(twlz~z-“m~o(n]tm”) (G(z)/zr 

=m$o <z~+~) (“‘m”) &)f’(z)G(zY 

= (z”> f. 5 Mz)f’(z) G(z)“). 
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,4s this is valid for all n E Z. (1.2) follows. A proof of (1.5) starting from 
(1.6) proceeds quite analogously. 

Considering this calculation we recognize that for transferring this proof 
to the q-case it is necessary to find a q-analogue of 

for all n E Z, or, what is the same, for 

z -“f”(z) = i (-1)” ; (G(z)/z)” 
n, = 0 0 

(2.3 1 

for all n E Z. Indeed after having found the “right” q-analogues of (G(z)/z)” 
this can easily be done. 

3. THE q-ANALOGUE USING GARSIA’S q-POWERS 

Here the powers h“(z) are replaced by the q-powers 

h(z) h(qz) . . h(qk ‘z), k>O 

j[k.yl(z) = 1, k=O 

l/h(z/q) h(z/q’) h(z/qPk), k < 0, 

where h(z) is an arbitrary fps. (For properties of these q-powers see [14, 
Section 61.) With the help of Garsia’s [4] starring operator this could be 
written in a closed expression, 

/PRY’= h*(z)/h*(qkz) for kEZ. 

Let f(z) be an fps with f(0) = 0 and f’(0) = 1. It is the surprising result of 
Garsia [4, Theorem 1.11 that the inverse sequence off= (fCk~41(z)),,, 
also can be written in terms of q-powers, namely 9 = (FC’,“Y1(z)),EH, 
where the so called “right inverse” of f(z), F(z), satisfies F(/)(z) = z (vice 
versa, f(z) is called the “left inverse” of F(z)). The q-Lagrange formula [4, 
Theorem 1.21 reads 

(z”> g(F’)(z) = <z”> g(z) 4”zf0(4”z) 
j-C” + I.Yl(z)’ (3.1) 
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where the fps f”(z) is the q-analogue for f’(z) and is uniquely determined 
by 

( -,> fOWz) z j-C” + l,Yl(z) = 6,o. 

(hk, is the Kronecker delta.) 
The next lemma essentially contains the wanted q-analogue of (2.3). 

LEMMA 1. Zf h(z) is an fps with h(0) = 1 then for k E No (non-negative 
integers) the fps 

hci,y’(z), 
4 

a q-unulogue of (1 - h(z))k, is qf order k. Moreover, there holds 

hc”-yl(z)= f (- l)k 
k=O 

for all n E Z. 

Proof First observe that, by using 

(3.4) 

(3.5) 

[2, p. 893, we get the recurrence relation 

@kd(Z) = qk- l@k- ‘JI’(~) _ fj’k- LY’(~~) h(z), (3.6) 

for k z 1. From this identity, by an inductive argument, it can be derived 
that the order of H’k,y’(z) is k. Therefore the infinite formal sum 

is well defined. Rewriting (3.6), with k replaced by k + 1, as 

H(k,Y)(qz) h(z) = qkH(k,y)(z) - fftk+ ‘.y’(z), 

multiplying both sides of this identity by (- l)k [zly, and summing up 
over all k E No, leads to 
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E’“J/l(yz) /qr) = i (- 1 )k qk ; H’“qr) 

k = 0 [I Y 

-kg”(-l)” ; H’~+‘~“)(:) 
II 

= 1 (-1) 9~ ,1, k ( i, [;](,+[kn l],j H’k.q’(~) 

by (3.5). As from the definition Eco.y1 = hCo,yl(z), by induction, 
~[“s”l(z) = ht”,Y](z) for all n E Z is proved, which is (3.4). 1 

Before formulating the q-analogue of Abhyankar’s formula it is 
convenient to adopt two further notations of Garsia’s paper [4]. The 
unroofing operator “, acting on fLs of the form ( 1.1 ), is defined by 

(g(z)) ” = 1 gkq(i)zk. (3.7) 
kzd 

The q-substitution of F(z) into g(z) is denoted by 

g(F)(z) = c gkFLkqZ). (3.8) 

THEOREM 2. For a given fps f(z) = zh(z) with h(0) = 1 let F(z) be the 
right inverse off(z), f”(z) the q-analogue off’(z) defined by (3.2). Zf 

= -2k f (__,),q(:)--'(k-l) Zk-y-lid(Z), (3.9) 
/=O 

(Hck3’)(z) is given by (3.3)), then .for g(z), an ,fLs of the form (l.l), holds 

(g(z) f”(z) G’k*4’(qz)) ” (3.10) 

Proof. Starting point is (3.1) with q replaced by l/q. If J(z) denotes the 
right inverse of F(z) then (3.1) reads 

<z”> dmz) = (=O> g(z) 
qpnz JO(q-“z) 

J-C” + 1, L/Yl(z) . 
(3.1 1 ) 
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The connection between the right and left inverse of F(z) was discovered in 
[ 14, identity (6.19)]: 

where 

yoT,cz, =zg 

(3.12) 

(3.13) 

[14, identity (6.8)]. Moreover, it is proved in [14, Remark to identity 
(6.15)] that yO(z) is the same for the left and right inverse of F(z), i.e., 
y,(z) = ,Jb(z), therefore 

(3.14) 

Use of (3.12) turns (3.11) into 

(z”> gbw) = (z”> g(z) 4rz lf0W”c7&) 
4”700(4 -nwCn~l’y’wd 1f(4-“z)’ 

By (3.13) and (3.14) this is 

<z”> g(m) = (z”> &W” zf O(z) 
fC”’ 1.1/Y1(z)’ 

and, after having replaced f(z) by z/z(z), 

(z”) g(F)(z) = q(i)(zO) g(z)f”(z)z~“h[~“~‘~~‘(qz). 

Application of (3.4) gives 

(z”) g(F(z))=q(;)(z”> g(z)fO(z)z-” f (-1)” -1-l H’yqz) 
k=O [ 1 4 

x g(z) fO(Z)zwk~~‘(qZ) 

- (g(z) f’(z) G’k%4). 

To establish (3.10), both sides of the last equation have to be multiplied by 
zn and then summed up over all n E Z. i 
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EXAMPLE 3. The standard example for Garsia’s q-theory is the case 
f’(z) = z/( 1 -z), thus h(z) = l/( 1 -z). From (3.6) by induction, we gain 

so 

-2h 
G’k.d(qz) = (_ 1 )k qk2-k -et- 

(4’; q)k 

(3.15) 

(3.16) 

Since f”(z) = l/(1 -z)( 1 -z/q), which can easily be checked in (3.2), by 
(3.10) we obtain the expansion 

k=O 114 g(=) (z/q; q)k + 2 . 
(3.17) 

By the Lagrange formula (3.1) for g(z)=z, it turns out that F(z) = 
z/( 1 + z/q), therefore (3.17) for g(z) = z’ leads to 

q(:)zi 
(-4% 41, = k~o~-l,k$j$+-J(z,;~q;~+2))“. ( (3.18) 

3 

Equating coefficients of z’l and some manipulation furnish the q-binomial 
identity 

which is a special case of q-Vandermonde convolution [2, identity (IS)]. 
Another choice is 

Again for g(F)(z) a closed expression can be obtained. The equation 
f/m(z) = z ’ in our example is 

,(:I f [“:-‘1 q-r:‘)z’+‘(-z;q) , ,=z(. (3.20) 
,=o q 

After division of z’, substitution of q'z, and multiplication of ( -z; y), on 
both sides of this identity, we obtain 

f I”:-‘1 4 -(1)zy -z; q)pi= (-z; q), 

i=O q 

(3.21) 
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Changing q into l/q and replacing z by z/q* turns (3.21) into 

f q-““l)[l+‘-‘] q(:)zipz/q;q), 
,=O 1 Y 

= (-z/q’+ ‘; q),, 

which is equivalent with 

g@?(z) = (-z/d+ l; q),. 

Therefore, for g(z) = (z/q; q)-,, (3.17) yields 

(3.22) 

” 

(-z/q’+‘; q),= 
’ 

(3.23) 

Next we consider the uniform example for g(z) containing the preceding 
two choices of g(z) as special cases. Set g(z) =z’(z/q; q)m; then the 
generalization of (3.22) is 

g(F)(z) = Pz:i( -4% q),+m, (3.24) 

valid for all I, m E Z. Indeed, to establish (3.24), quite similar considerations 
like that which led from (3.20) to (3.22), have to be done. Hence, by com- 
bining (3.17) and (3.24), we get the expansion 

(-,)kq(:) D’;hi ( 
z2k+! ” 

Ckl I/k/! w-’ =; q)k-mf2 1) . 

(3.25) 

This time, equating coefficients of z” on both sides of (3.25) leads to 

-1-m [ 1 n-l y 
k(k-m+l)[ -;-l],[n;\-;:l]q, (3.26) 

which by change of variables is seen to be equivalent with the 
q-Vandermonde convolution formula [2, identity (18)]. 

4. THE q-AmLocm INVOLVING HOFBAUER'S q-Powms 

The essential definition is 

DEFINITION 4. The fps cp,(z),cr E IR (real numbers), are called q-powers 
for a fixed fps q(z), if q,(O) = 1 for all CI and 

D,cp,(z) = [Ial, v(z) q&J. (4.1) 
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By (4.1) q,(z) is uniquely determined for all XE R. Obviously in the case 
q = 1, where D, becomes the ordinary derivative, the fps cp,(z) are powers 
of an fps Cp(z) with cp(,-) = (p’(z)/@(z). 

This time the q-analogue of (2.3) reads 

LEMMA 5. If q,(z) are q-powers,for cp(;) then for all kE N, the fps 

fQqz)= i (-l)Iq- W) k [I j cp -,(=) (4.2) 
, = 0 

,, 
4 

(the q-analogue of (1 - h(z))k, where h(z) corresponds to l/@(z)) has order 
k. Moreover, 

HP’(z) 
I.4 

for all n ~2 Z (even for all n E R). 

Proof. By the defining relation (4. l), we have 

DyHp’(z)= i (-l)J,-(‘i’) 
j=O 

k 

k Cl j I,~ 
[I -.A, V(Z) Cp- jtz) 

= [-k],cp(z) 1 (-l)‘q~(“i’) ;I; 
i 1 

cp -,(Z)> 
,= I I/Y 

(4.3 1 

and after remembering (3.5) 

D,Hp’(z)=[-k],cp(s) i (-l)lqP(kr’) 
i=O 

= C-k], cp(z)(H:Y’(z)-q-k+’ HFl 1(z)). (4.4) 

First the constant term of Hi4’(z) has to be evaluated: 

HP’(O)= i (-1)‘q 
/=O 

= (- l)k (1; l/q)k = 6kO. 

Again, reasoning inductively, HP’(z) is seen to be of order k. Therefore the 
infinite formal sum 

H:q’(z) 
I.4 
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is well defined. After having multiplied both sides of (4.4) by (- l)k [i] ,,y 
and after summation with respect to kE N,, we get by renewed use of (3.5) 

+q-k 
n-1 [ I) k 

Hp’( z) 
114 

= c -4, cpk) c?‘(z). 
Comparison with (4.1) completes the proof of (4.3) because of the unique- 
ness of the q-powers ~~(2). 1 

Perhaps it is interesting to note that there is a result which in a way is 
dual to Lemma 5. We will state it without proof, because it runs in the 
same manner as that of Lemma 5. 

PROPOSITION 6. With the assumptions of Lemma 5 the fps 

,=o 

are qf order k. Moreover, there holds 

cPjtz) 
Y 

(4.5) 

(4.6) 

The reason why by Lemma 5 we do get a q-analogue of Abhyankar’s 
formula, but we do not by trying with Proposition 6 is that there exists a 
q-Lagrange formula for the sequence (.?k/$?k(z))k,z, but there is none for 
the sequence ( zk/‘p -k(~))ke =. 

Let f=(fk(Z))kek be the sequence of fLs defined by 

fk~z~=zk,%?k~z~~ (4.7) 

P- = (F,(z)),,, denotes the inverse sequence of 14 Then the Lagrange 
formula [ 13, Theorem 1 (A) for ,I= p = 0, Q(z) = 0] can be rewritten as 

(z”> g(@w) = (zO> dz)(l -(z/q) 40(4q))z-“cp,(~/q). 

The q-analogue of (1.4) is the contents of 

(4.8) 

THEOREM 7. For a given fps go(z) let the sequence f= (~Jz))~~~ be 
dejined by (4.7), where the q-powers q,(z) are given by (4.1). If 

($‘(z) z qzkzkH:y’(z) 

= 9 2kZk i (q)iq-tk;‘) P-,(Z), (4.9) 
j=O 114 
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then ,for g(z), an fL.r of’ the ,fbrm ( I .1 ), holds 

x (g(2) z- ‘( 1 -(r/y) cp(z/q)) Gy(:/q)). (4.10) 

Rrmurk. In the case q = 1 as mentioned above, (~~(2) are powers of an 
fps Cp(z) and cp(z) is the analogue for @‘(z)/@(z). Thereforef,(z) are powers 
off(z)=z/@(z) and z~‘(l -(z/q) (p(z/q)) -,f”(z)/f(z) for q + 1. 

Proc$ According to (4.8) and (4.3), 

(f) g(Wz) = (=“> id,-I(1 - G/4) cp(zlq))-- -“(P,z(=/q) 

Ic = (9) g(z)( 1 - (z/q) c/Y(z/q))z ” ,;, ( - ’ )” 

-n 

’ L 1 k 1.4 
H!?‘(zlq) 

=,-f, (zn+k-l)qk [n+k-11, [n+k-2],...[n], 

P&c,! 
xg(z) -'~- I( 1 - (z/q) cp(z/q))z”H:~‘(z/q) 

x (g(z) = -‘(I -(z/q) dzlq)) Gj,Y’(z/q)). 

Multiplication of both sides of this equation by 2’ and summation over all 
n E Z furnish (4.10). 1 

Next we derive the q-analogue of (1.5). 

THEOREM 8. With the assumptions of Theorem 7, 

g(W(z)=g(z)+ i: rk $& (D,k(z)) G”(z)). 
k=l 14 

(4.11) 

Proof. The q-Lagrange formula corresponding to (1.6) is 

(Z’I > g(T”l)(=) = Cn,, - (-- ’ > D,(g(z))= -“qn(dr n#O (4.12) 

[ 13, Theorem 1 (B) for D(z) = 0). Therefore for n #O, by (4.3), we get 
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(zn> g(F)(z)=+ (z-‘) D,(g(z))z-” f (-1y 
4 k=O 

-n 

x [ I k II4 
fly(Z) 

=L (Zn-l 
[nl, 

> D,(g(z))+ f (zn+k, ‘)qk 
&=I 

x 1Ifl+k- ‘I, Cfi+k-21;~.Cn+ ‘I,, 
llkl I/y ! Y (g(z))skH:“‘(Z) 

(4.13) 

= (z”) g(z)+ (z”) 5 q-k 
k-1 

f$+ (D&G)) @“W 
‘IY 

(4.14) 

This leaves us to prove that (4.14) is true for n=O, too. 
By (4.13) and (4.4) the right-hand side of (4.14) for n = 0 can be transfor- 

med as follows: 

(D,(&)) G!?(z)) 

( 
II, & -1 : +I 

= (ZO) g(z)- (z-‘> gwq-‘D,;, ,s, m fw(d 
1:Y > 

= (2”) g(z)- (z-l> g(z)D, 
i 

z ,w 
,$, ~%“(;:q) 

‘14 

x(~~‘(z/q)-q-k+‘~~~~(Zlq))~(Z/q) 
= (zO> g(z) - (z- 1 > g~~hl-‘Pw7) 
= (z”> g(zNl - (44) dzlq)) = (zQ) g(W(z). 

The fast step was performed by remembering (4.8). The second step used 
the fact that the adjoint of D relative to the bilinear form 
(a(z), b(z)) = (z-l) a(z) .b(z) is - q-‘D,,q. (For a more detailed discus- 
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sion of this concept concerning Lagrange inversion we refer the reader 
to 111, 141.) 1 

Concluding we give some examples for these two theorems. 

EXAMPLE 9. For cp(z) = - l:/( 1 -z) the corresponding q-powers are 
given by cp,(z) = (z; q)X [ 13, Example 31. From (4.4) we get by induction 

Hy(Z) = ( - 1)” q +(Z; q) k 

(4.15) 

thus 

Gj;Y’(z/q) = (- 1)’ q-kZz2k(z/q; q)pk 

,2/r 

=(-l)kq-k' - 

(l-z/q2)...(1-z/qk+‘)’ 
(4.16) 

Since 1 - zcp(z) = l/( 1 -z), by (4.10), 

g(F)(z)=z i (-1)“q k2& 
k=O 1 ‘Y 

-2k- I 
’ g(3)(~-z,q)...(l-~,qk+~) ’ > 

(4.17) 

The Lagrange formula (4.8) for g(z) = z’ leads to 

n-l F,(z)= i (-l)“-‘qw n-l =‘I 
?1 = / L 1 4 

which, of course, in view of Example 3 is the same as 

Therefore the q-Abhyankar formula (4.17) for g(z) = z’ gives 

x 

F,(z)=: 1 (-l)Aq 
-(“;I) II”; 

- 
k=O Ckl,! 

-x+/L I i 
> (l-z/q)...(l -z/qk+‘) 

(4.18) 
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Equating coefficients of zn on both sides of (4.18) leads after some 
simplification to the q-Vandermonde convolution 

-I [ 1 
n-l 

n-l y =k;oq- 

which again is a special case 
of the q-Abhyankar formula, 

Cn+kKn-k- 0 [ ;“I, [,l;i,],, (4.19) 

of [2, identity (18)]. (4.1 l), the second form 
reads 

g(P-)(z)=g(z)+ % (-1)kq 
-(';)Dk-' 

k=l * 

,2k 

x(D,(g(z)+l -z/q)...(l -z/qk)' 
(4.20) 

Next we take g(z) = z’/(z; q),,. For this choice of g(z) we obtain just in the 
same manner as (3.24) 

g(9)(z) = 4 -($z’(-z; q)m-,)v. 

From (4.17) and (4.20) therefore we get the expansions 

,-(:I (4 -z; qh - I) ” 

=z f (-qkq-(k;') 
D" 

Y 

( 

Z2k+l-l 

k=O Lkl,! (z/qk+l; q)k+m+l > 

and 

q-(+(-&q) _ )” m I 
/ 

pd.-+ -f (-,)kq-(:) 
k=l 

DkYI ([l]+q’[m-f]z)P+‘-’ 

x$jJ ( > (Z/qk;dk+m+l ' 

For the latter expression we used 

Z’ 

D”(z;= 
([I] + q/[m - I]z)z’- ’ 

(z;qL+, . 

(4.21) 

(4.22) 

(4.23) 

EXAMPLE 10. Take q(z) = 1, then [13, Example 21 qJz)=e,([a],z); 
hence in this case, 

(4.24) 
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Comparison with [3, Example at the bottom of p. 5363 unveils the connec- 
tion with the q-Stirling numbers of second kind introduced by Gould [8]. 
In [3 J Cigler obtains an expression for the generating function of Gould’s 
q-Stirling numbers of the second kind which is quite similar to (4.24): 

Comparing the coefficients of z”l in (4.24) and (4.25) implies 

Hpy-q4=)=(-l)ky- qk]]:,,! c L %/h k) -,), 
,,=k Cnl,! - ’ 

(4.26) 

therefore 

Now we are ready to apply Theorems 7 and 8. (4.10) reads 

(4.28) 

by (4.11) we get 
% 

g(F)(z)=g(z)+ 1 q i:),;- ’ 
i 

D,(gk)) 
x=1 

x i (-1 )I, y2k- ,I S,!,(n -k k) ,,, 

[n-k&! - 
(4.29) 

,r=Zk 

By the q-Lagrange formula (4.12) it is possible to evaluate F,(z): 

f-,(z) = f) ““;nJT:“l-;- ’ 2”. (4.30) 
4’ 

Setting g(z) = z’ in (4.29) and equating coefficients of z” of both sides leads 
by a short calculation finally to the well-known identity [S, identity (3.7) J 

(4.31) 

where we set n - I = j. 
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By (4.28), similarly, a q-identity involving q-Stirling numbers could be 
derived. We will omit it here because it is more complicated than (4.31) 
(which is due to the term (1 -z/q) on the right-hand side of (4.28)) and 
therefore of less interest. 

REFERENCES 

1. S. S. ABHYANKAR, Lectures in algebraic geometry, Notes by Chris Christensen, Purdue 
University, 1974. 

2. J. CIGLER, Operatormethoden fiir q-Identitzten, Monatsh. Math. 88 (1979), 87-105. 
3. J. CIGLER, Operatormethoden fiir q-IdentitLten III: Umbrale Inversion und die 

Lagrange’sche Formel, Arch. Math. 35 (1980), 533-543. 
4. A. M. GARSIA, A q-analogue of the Lagrange inversion formula, Houston J. Math. 7 

(1981), 205-237. 
5. A. M. GARSIA AND S. A. JON, A new expression for umbra1 operators and power series 

inversion, Proc. Amer. Math. Sot. 64 (1977), 179-185. 
6. A. M. GARSIA AND S. A. JON, Higher dimensional polynomials of binomial type and 

formal power series inversion, &mm. Algebra 6 (1978), 1187-1215. 
7. I. GESSEL, A combinatorial proof of the multivariable Lagrange inversion formula, 

J. Combin. Theory Ser. A 45 (1987), 178-196. 
8. H. W. GOULD, q-Stirling numbers of first and second kind, Duke Math. J. 28 (1961), 

281-289. 
9. P. HENRICI, Die Lagrange-Biirmannsche Formel bei formalen Potenzreihen, Jahresber. 

Deufsch. Math.-Verein 86 (1984), 115-134. 
10. J. HOFBAUER, A q-analog of the Lagrange expansion, Arch. Marh. 42 (1984), 536-544. 
11. J. HOFBAUER, Lagrange-Inversion in “La 6-krne session du Seminaire Lotharingien de 

Combinatoire,” publication de I’IRMA no 191/S-05, Strasbourg, 1982. 
12. S. A. JONI, Lagrange inversion in higher dimensions and umbra1 operators, Linear Multi- 

linear Algebra 6 (1978), 11 l-121. 
13. C. KRATTENTHALER, A new q-Lagrange formula and some applications, Proc. Amer. Math. 

Sot. 90 (1984), 338-344. 
14. C. KRATTENTHALER, Operator methods and Lagrange inversion-A unified approach to 

Lagrange formulas, Trans. Amer. Math. Sot. 305 (1988), 431465. 
15. 0. V. VISKOV, Inversion of power series and the Lagrange formula, Soviet Math. Dokl. 22 

(19SO), 330-332. 

409/140/2-18 


