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Abstract

Heine transformations are proved for a new kind of multivariate basic hypergeometric series which had been
previously introduced by Krattenthaler in connection with generating functions for nonintersecting lattice paths.
As a consequence, a g-Gauss and g-Chu—-Vandermonde sum are proved and also a generalization of Ramanujan’s ;i/,
sum.
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1. Introduction and statement of results

The classical basic hypergeometric series (with notation as in [2]) is defined by

< (a; Pu(b; @nz"
2¢1(a,b;c;q,2) = Zo%z_q()]*)z,

where

(@) = 1, n=0,
& Dn = A—a—aq)--(1—-aqg"™ '), n=12, ...,
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is the g-shifted factorial and it is assumed that ¢ # ¢~ ™ for m = 0,1, ..., and the series converges
absolutely if |g| < 1 and |z| < 1. We will also use the notation

(al;q)n(aZ;q)n (ak§61)n = (al, ,ak;Q)n = (ala ’ak)na

where we assume that the base q is fixed throughout.
The study of the properties of such a ,¢; series was initiated by Heine [4,5] who proved the
following transformation formulas:

(a,bz)

201(a,b;c;q,2) = 2. 201(c/a,z;bz;q,a) (1.1)
b, b
- % ,01(abz/c, b; az; g, ¢/b) (1.2)
bz/¢) b
= (a(zz)/:) 201 <c/a, ¢/b;c;q, %) (1.3)

These transformations can be iterated and it was Rogers [ 10] who observed how to simply describe
the symmetry of the ,¢, function under the symmetry group generated by these transformations.
A description of Roger’s result and how it became a starting point in Roger’s further investigation
on g-Hermite polynomials and partition identities is given in the second chapter of [1].

We will prove multivariate generalizations of the three transformations (1.1)—(1.3) involving the
following extension of the classical ,¢,. For a positive integer r and A,B,C,Z, X4, ..., X, e C,and
for convergence assume |Z| < |g|"~! < 1, define

2(P1)(X1, 5Xr9AaBaC’qu)
— ! k(1— l) k; (A)k (BX) >
Zk {U < (@i (CX ),

1 —gh h)x. /X,
< T q i/ }
1<i<j<gr l_Xj/Xi

— Z l_[ (Xl_ lq_ki - Xj:_ 1q—ki)
ki, ...k, 20 1 <i<j<r (Xi_l - XJ'_I)

r o (AW(BX),
12 Gnicx, (14)

Remark 1. The multivariate hypergeometric series (1.4) first occurred in connection with certain
generating functions for nonintersecting lattice paths [8]. The ,¢% series is a new kind of series
associated to the group U(r) (or root system A4,_,). It is closely related to Milne’s basic hyper-
geometric series in U(n) [9, Definition 1.39], which is in turn a g-analog of the ordinary
hypergeometric series in U(n) introduced by Holman [7]. The main difference between the
.0V series and one of Milne’s series [F]® are the factors (A./(g), appearing in (1.4).
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Our generalizations of (1.1)—(1.3) read as follows.

Theorem 2. With notation as above and |Z| < |q|" "' and |q| < 1

2(p'i(X15 ’Xr; AaBacaqaz)

r

qu r)oo(BZX )oo r)
= X4, ..., X,;Z,C/A;BZ;q, A
W z.cxy, 7Ky KXo 2 CABZ A

. (qu_r/B)oo(BZXi)oo (r)
= Py X4, ...,X,; ABZ/C,B;BZ;q,C/B)
i1 (24" o (CXi)o v (X / 1

r (ABZg'""
- % 00 (X1, ..., X,; C/B,C/A;C;q, ABZ/C).
i=1 w

Theorem will be proved in Section 2.

By specializing Z = C/AB in (1.6), one obtains a generalization of the g-Gauss sum

Corollary 3. With notation as above and assuming convergence

) A B C- _ 17 (€ 7/B)o(CXi/A)
2(01 (X1> 9XraA,B,Caq7C/AB) - ilz—ll (qu_r/AB)OO(CXi)OO . (18)

Setting A = g~ " for some nonnegative integer n and reversing the series on the left-hand side of
(1.8), one finds a generalization of the g-Chu-Vandermonde sum:

_ o 1 (Cq' "/ B)(BX,)"
200 (X1, ..., X,; 47" B;C;q,9) = "¢ H( 9 /BBX)S (1.9)
i=1 (CXl)n

Remark 4. Identity (1.8) was first discovered by counting nonintersecting lattice paths [8, identity

(4.3.12)] and identity (1.6) was used in the same paper for rewriting certain generating functions for
nonintersecting lattice paths.

One can also give a natural generalization of the bilateral iy, hypergeometric series

i Xilq™h = X7\ L (A,
v (X, ..., X,; A, B3¢, Z) = < - L :
A e x—x;0 ) UL,
which converges when |B/4| < |Z| < |gq|"~! < 1. There is the following generalization of Rama-
nujan’s 1y, sum (which includes the g-binomial theorem as a special case). The proof is included
below.

Zk, (1.10)

J,=—w 1 €i<j<gr
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Theorem 5. With notation and assumptions as above,

[ @=(B/A)ala* */42).(AZg" ),
L B/ A)o(q B/AZ) g )

1¢(1r)(X1’ "-aXr;A9B;q5Z)= (111)

Proof. Expand the sum on the left-hand side of (1.11) using the classical r = 1 case and the
Vandermonde determinant. We find

llp(lr)(Xla 9Xr;AaB;q)Z) = l_[ (Xr_1 _Xj_l)_l Z 8(6)

1gi<j<gr seS,
x H{Xf“’"- y Wk zgro- ')"} (1.12)
i=1 ki=- (B)k

(where §, is the permutation group on r letters and &(o) is the sign of the permutation o)

= [ &'=X7H7 Y elo)

1gi<j<r ceS,

s @B/ A)o(a Y AZ) (AZG )

x an"‘” B)(@/A) (@ BIAZ)(Zd ).
@B/ A)e(a Y AZ) o (AZ4 ), .
Ul Bl A)u(d BJAZ)Zq ) (1.14)

(1.13)

This completes the proof. [

2. Proof of Theor_em 2

We will prove identity (1.5) by induction on r. Identity (1.6) is proved by an entirely similar
argument and (1.7) follows by equating the right-hand sides of (1.5) and (1.6).

The case r = 1 of (1.5) is just the classical result (1.1). For the general case we will use Good’s
identity [3, 117, [6, p. 61]:

1=y H(l—y/yk) :

-y ﬁ R S @1

Setting y; = Xiq"*, use (2.1) to expand the series on the left-hand side of (1.5),
207 (X1, ..., X,; A,B;C;q,Z)

r Xil—r
= Z r X—l _
i=1 Hk 1( 1

XZ(P(lr 1)(X15"'3Xi7"'5Xr;AaB;C;qiz)’ (22)

)2(P1(A BX:,CX:,% - rz)
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where X; means omit X;. Then by induction and (1.1) we have

A). (BX,Zq' ™"
Z()( q

s ' (44" 9o
(CX)o(Zq' e j=1(Zg* 7))
r (BX;Z). Xxi-r
11 Tex). My O — X2 )
J#i

X ,01(CXi/A,Zq""";BZX:q" "";4, A)
r—1)

x 05 Xy, ..., X, ..., X,;Z,C/A; BZ;q, A) (2.3)
11[ (A4’ ") (BZX))w & ¥ X!
j= (Zq’~ Vo (CX ) o =1 H;;(X 1 Xj_l)

j#i

X(BXiqu_r)r—l - (CXi/A)k(qu_r)k AF
(Aq" ™)1 o (@(BZX:q' ")

(r—1)

XZ()DI (Xl’ "‘,XAia ---aXnZ»C/A;BZ;‘LA)} (2‘4)
Observe that
on _ (287,
24" "% = s, @l (2.5)
and by the g-Chu—Vandermonde sum, we also have
_ _ r—1 Z k—r+1 _ B s
g NZg )= Y {—( T gemreenay, (= 1y g ’q’}- (2.6)
¢=0 (@)
Substituting (2.5) and (2.6) into the right-hand side of (2.4) we find that
207(X1, ..., X3 4,B;C; 4, Z)

r

(A9’ ") (BZX )
U (Zg'™")o (CX )

(BXiqu_r)r—l
(Aql_r)r— 1

l—I] I(X 1 Xk_l)
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X0 (X4, ..., X, ....X,;Z,C/A;BZ;q, A)

w r—1 —k(r—1 k—r+1
q ) (Zh (Zg )
X Z z 7 k—r+1 k BZX l—r!
k=0 /=0 (Zq )r—1 (@ ( 9k

(CX AW ),
@

Note that if 0 < k < r — ¢ — 1 then the factor (g*"*“*2),_,_, vanishes. Hence in the right-hand
side of (2.7) we may replace k — r + £ + 1 by m and sum over m > 0 instead of k > 0. Also observe
that

Dmsr-e-1Zg"°), _
(qu_f)r—l

(@ (= 1y~ lq”‘”q’A"}- 2.7)

(Z)m (2.8a)

and

m+1)

(q r—-1 _
Dmir—-1  (Dm>

(2.8b)

so we have
209X, ...,X,;4,B;C;q,Z)
r (A¢° ) (BZX )y

- 11

j=1 (Zg'™")0 (CX )

OSSR A %
i=1 H;::I.(Xi—l_Xj_l) (Aql_r)r—l
J#i

X Zq)(lr—l)(Xls 9)?1', 5Xr;Zs C/A,BZ,LI,A)
e o VA A S MY (9. € ) Sy

x 2

m=0 ¢£=0 (BZXiql_r)r—l(BZXiqm)—l

o1 @ T @Dl CX i A Am}
@ @nBZX)n

x(A)

2.9)

(— 1)'_161-(;) -1 ~1y-1
=T i~ X —X;
(Ag* ™), lszlzljsr( i)
r (qu"’)oo(BZXj)OO
X —
jl=_[1 (Zq' )0 (CX )0

r Ar—/—l ‘r 1—r{
o Z{ &

my, ....m,20/=0



R.A. Gustafson, C. Krattenthaler | Journal of Computational and Applied Mathematics 68 (1996) 151-158 157

(2 CX/ A A™
=0, 37%).,

X Z &(0) [(BZXa(l)qma(l)_()Z(CXG(I)qm"m/A)r—(— 1

geS,

X lj1 (X,,’(})q_"'““’)"i]}. (2.10)

where the Vandermonde determinant is used, S, is the symmetric group on r letters, and (o) is the
sign of the permutation o € S,.
We expand the product

r—1

(BZX,1yd™ " N ACX 51y @™/ AYp— -1 = Z (X syg™)*, (2.11)
k=0

where d, = 1 and d, is independent of X,;, and g™ for 0 < k <r — 1. It follows that

Z &(o) [(BZXG(I)q'"am‘f),(CXa(l)q"'am/A)r_(_ 1

geS,

i=1

x 1 (X,:(})q"”"“)""]

r—1
= z dy z (0) (X geyg™ )71
k=0

ges,

,
X Z (Xa(j)qm""")j_r
i=2

= ). &) Hl (Xowgq™) ™", (2.12)

ceS,
since the only nonvanishing term in the sum over k is the k = 0 term. It follows that

(=D"'q”? T (A9 (BZX))s

"Xy, ....X,;A,B;C;4,Z) = — _
201 (X =", L zi.cx).

x A" ,00(Xy, ..., X,;Z,C/A; BZ;q, A)

r 1 r)
J’;O (@) <A> @1)

The proof of Theorem 2 is completed by applying the g-binomial theorem to the sum over £ in
(2.13) and simplifying.



158  R.A. Gustafson, C. Krattenthaler | Journal of Computational and Applied Mathematics 68 (1996) 151158

References

[1] G.E. Andrews, g-Series: Their Development and Applications in Analysis, Number Theory, Combinatorics, Physics
and Computer Algebra, NSF-CBMS Regional Conf. Ser. in Math., No. 66 (Conf. Board Math. Sci., Washington,
DC, 1986).
[2] G. Gasper and M. Rahman, Basic hypergeometric series, in: G.-C. Rota, Ed., Encyclopedia of Mathematics and its
Applications, Vol. 35 (Cambridge Univ. Press, Cambridge, 1990).
[3] LJ. Good, Short proof of a conjecture of Dyson, J. Math. Phys. 11 (1970) 1884.
[4] E. Heine, Uber die Reihe ... , J. Reine Angew. Math. 32 (1846) 210-212.
[5] E. Heine, Untersuchungen iiber die Reihe ..., J. Reine Angew. Math. 34 (1847) 285-328.
[6] F. Hildebrand, Introduction to Numerical Analysis (McGraw-Hill, New York, 1956).
[7]1 W.J. Holman III, Summation theorems for hypergeometric series in U{(n), SIAM J. Math. Anal. 11 (1980) 523-532.
[8] C. Krattenthaler, The major counting of nonintersecting lattice paths and generating functions for tableaux, Mem.
Amer. Math. Soc., to appear.
[9] S.C. Milne, An elementary proof of the Macdonald identities for A", Adv. in Math. 57 (1985) 34-70.
[10] L.J. Rogers, On a three-fold symmetry in the elements of Heine’s series, Proc. London Math. Soc. 24 (1893) 171-179.
[11] K. Wilson, Proof of a conjecture by Dyson, J. Math. Phys. 3 (1962) 1040—1043.



