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Introduction - Preliminaries
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Apparent Singularities

K=C(z), "= Z. For A € Maty(K), we denote by [A] the system:

aX

w -

A(2)X,
e The (finite) singularities of system [A] are the poles of the entries of A(z).

e Singularities of solutions of the system [A] are among the singularities of
[A], but the converse is not always true.

Def. An apparent singularity of [A] is a singular point where
the general solution of [A] is holomorphic.

Question:
How to detect and remove the apparent singularities of a given system
[A]?
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Example

==

Al % =A@2)X, A(z)_{_oz 1§ }

o A fundamental matrix solution of [A] is

e 14+z+%
e? 142z '

e Hence z = 0 is an apparent singularity for [A].

o The polynomial gauge transformation
10
x=1@v. @)=} 2
takes [A] into the equivalent system
d

B —Y=8Y

where

az 0 O

B=TA=T" (AT dT> - [1 ZT |
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What this talk is about?

e A general fact : Any system [A] with rational coefficients can be reduced
to a gauge equivalent system [B] with rational coefficients, such that the
finite singularities of [B] coincide with the non-apparent singularities of
[Al.

e Such a system [B] will be called a complete desingularization of [A]

e We present an algorithm which outputs a desingularization for any input
system [A].

e More generally, given [A], to find a polynomial matrix T € GL,(C(z)) such

that B = T[A] satisfies den(B) | den(A), and den(B) is as “small” as
possible.
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Previous and related works

e Desingularization of linear difference/ differential (and more generally
Ore) operators, e.g.

Abramov, van Hoeij 1999

Tsai 2000

Abramov-B.-van Hoeij’2006,
Chen-Jaroschek-Kauers-Singer'2013, Chen-Kauers-Singer'2015
Yi Zhang, ISSAC’2016

vy VY VY VY

o Desingularization of linear differential systems:

» B.2010,
» B.-Maddah ISSAC’2015

e Desingularization of linear difference systems Maximilian Jaroschek’ talk
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Classification of Singularities

Consider a System of first order linear differential equations:

aX

A -

A(2)X, A(z) € Mat,(C(z))

e A pole z, of A(z) is a regular singular point for [A] if there is a
fundamental solution W of [A] has the form:

W(z) = &(2)(z - 20)"
where ®(z) is holomorphic and A is a constant matrix.
e Otherwise z; is called an irregular singular point.

o A system [A] has regular singularity at z; iff it is gauge equivalent to a
system [B] with a simple pole at z.

e We shall refer to simple poles of A(z) as simple singularities of [A].

e if zy is an apparent singularity then z; is a regular singularity and thus
can be reduced to a simple one.
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Apparent singularities are removable

Prop.0 If z = z; is a finite apparent singularity of [A] then there exists a
polynomial matrix T(z) with

detT(z)=c(z—2)", ceC',aeN

such that [B] := T[A] has no pole at z = z.

Proof.
e Every fundamental solution F of [A] is holomorphic (in a neighborhood of
2);
e There exists matrices P(z) € GL,(C[z]), and Q(z) € GL,(C|[[z — z0]])
such that

P(2)F(2)Q(z) = Diag((z — z0)*",...,(z — 2)*")

where a4,...ap € N
o Take

T(z) = P~'(2) Diag((z — z0)™,...,(z — 20)™")
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Characterization of Regular Singularities
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How to recognize regular singularities?

Problem 1: Given a system [A] and a pole z; of order p,(A) > 1 to decide
whether z; is regular singular or not.

In other words, to decide if the order of a given singularity can be reduced to 1
or not?

» There is no analogue of the Fuchs’ Criterion.

Problem 2: Given a system [A] and a pole z, of order p;,(A) > 1, to decide
whether there exists T € GL(n, C((z — Zp))) such that p,,(T[A]) < pz(A).

» There is a method due to Moser (1960) which solve these two problems.

» Rational Moser -Algorithm Barkatou’1995: It transforms a given system
over C(z) into an equivalent one for which the orders of the finite poles are
reduced to their minimal values.

» Other methods for reducing the rank of a singularity (to its minimal value)
do exist: Levelt (1992), Wagenfurer (1989), ..., B.-Pfluegel (2007, 2008),
B.-El Bacha (2012).
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An example

—1 —1+2'7 82" 424 7" 32841670

0 1

z 23(23_2)2 23(23—2)2
0 0 ! 0

23(23—2)2
A= ! 0 4 0
(23—2)324 z
2 1 2
| ° E e

€ My(Q(2))

» When applied to [A] and the roots of the irreducible polynomial z° — 2,
Algorithm [Bar’95] produces the equivalent matrix

B=TIA =

M. Barkatou

r 102°+4

2(25-2) 0 0
s —35g O
0 oy D)
0 0 z3(z13 )
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and the gauge transformation

0 (2-2° 0 o0
0 0 0
T =
0 0 z2-2 0
(22-2* o 0

e The denominator of the matrix Bis z*(z% — 2).
e Hence the system [A] has regular singularities at the zeros of g = 2% — 2.
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Applied to [B] and z; = 0, Algorithm [Bar’95] produces the equivalent matrix

r 1 152°-6 ]
0 0 2(z8-2) z(z€72)
1 122°—6
2( 73 _ - 3_ O 0
c—spB=|"“? z(j 2 s
Z
0 22(8=2) z(z-g—fZ) 0
152°—6
L 0 0 0 7z(z€72) i
and the transformation
0 0 0 -2
0 24 0 0
S =
0 0 2z 0
1 0 O 1

» z = 0is still a pole of order > 1, hence the point z = 0 is an irregular

singular point of the original system [A].

M. Barkatou
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Moser’s Method

»We assume here z; = 0

1 oo
= ZAkzk, Ak € M,(CT), Ay #0.
k=0

» A necessary condition that there exist a gauge transformation
T € GL(n,C((2))) such that T[A] = T+1 (Bo+ Biz+---)withp < p
(By # 0), is that Ay is nilpotent.

Moser rank: m(A)=p—1+ m if p > 1, otherwise m(A) = 1.

Moser invariant: ;(A) = min {m(T[A])| T € GL(n,C((2)))}

Definition. [A] is said to be Moser-reducible if m(A) > pn(A).

e [A] is Moser-reducible < 3T € GL(n,C((2))) such that m(T[A]) < m(A).

e z = 0 is regular singular for [A] <= u(A) = 1.
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A Criterion for Moser-reducibility

Theorem. [Moser 1960]
@ If p> 1then Ais Moser-reducible iff the polynomial

Ba()) := z@(A) det (M — Ag/z — Ay),  =0.

[z=0

@ If Ais Moser-reducible then the reduction can be carried out with a
transformation of the form
T =(Po + zPy)diag(1,...,1,z,...,2), P; e C™" detPy # 0.

e Applying Moser’s Theorem several times, if necessary, u(A) can be
determined.

e Further, a polynomial matrix T such that m(T[A]) = u(A) can be
computed in this way
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Review of Moser-reduction Algorithms

There are various algorithms to compute T such that T[A] is
Moser-reduced.

Moser’s paper: no constructive algorithm given.

Dietrich (1978), Hilali/Wazner (1987): first efficient algorithms,

e Bar'1995: version for rational function coefficients, implemented in
ISOLDE

[

B.-Pfligel (2007): New reduction algorithm + complexity analysis.
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Description of Moser Algorithm

[

By a constant gauge transformation we can put Ay in the form:

1M
Ao = ( 2%1 : > AN € T r = rank(A).

Let A; be partitioned so that A" is a square matrix of order r:

A11 A12
w= (G )

e Consider » .
A A
G A) = 0 1
A(A) ( A2, )

Then det Gy\(A)) = Ba()).
Ais Moser-reducible < det G\(A) = 0.
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Case 1: rank(A)' Al2) <r (1)

12
A1

A2, |0

A is Moser-reducible < ‘

Proposition 1 If m(A) > 1 and rank(A}' Al2) < r, then Ais M-reducible and
the reduction can be carried out with the gauge transformation

T - dlag(zlr, In_r).

Proof: Let B= T[A] = T 'AT — Tf1%_

B=zP[By+zB; +---| + z 'diag(l;,0)

11 12
B=(% %)

where
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Case 1: rank(A)! Al2) <r An example

0o 4 0 0 -4
A=z2 +z! + .
2 0 0 -3 0 O

> Herep=2,r=1=m(A) =1+1/2=3/2> 1.

0 0 . .
> detG\(A) = 5 34\ ‘ = 0 = Ais Moser-reducible.
> Take

z 0
T:
3 -4
B=TA=T'AT-T'T' = 1 )
zZ\ 2 -3

The system Z' = BZ has a singularity of first kind at z = 0.

v

v

Hence Y’ = AY has a regular singularity at z = 0.

Desingularization of Differential Systems
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Case 2: rank(A)' Al2)=r (I)

Proposition 2 If A is M-reducible and rank(A}' Al?) = r, then there exists a
constant matrix @ such that the matrix Gy (Q[A]) has the form has the
following particular form:

AE)1 Ui Uz
G\(A) = Vi Wi+ Ah_—p w2 , (1)
0 0 Ws + Al

where 1 < h<n-r, W1, W3 are square matrices of order (n—r — h) and h
respectively, W3 is upper triangular with zero diagonal with the condition

rank(AY' Uy) <r (2)
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Case 2: rank(A)' Al2)=r (1)

Proposition 3 If m(A) > 1 and G, (A) has the form (1) with the condition (2),
then A is reducible and the reduction can be carried out with the
transformation

T = diag(zly, In—r—n, Zln)
Proof: Put B= T[A] = T~'AT — T~'9L. One has

B=zP[By+ 2By + ---] + z 'diag(,, 0, I)

Al U 0
Bb=( 0 0 o],
0 0 0

and then rank(Bo) = rank(Al' U;) < r = rank(Ap). On the other hand since
p > 1,then m(B) = p— 1 + rank(By)/n. Hence m(B) < m(A).

where
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Moser-reduction (End)

If Ais Moser-reducible and m(A) > 1 then one can construct a matrix
polynomial S of the form :

S = Udiag(z,z,---,z,1,1,--- ,1)

where U € GL(n, C), such that m(S[A]) < m(A).
e Moser’s Theorem allows us to check whether A is Moser-reducible.

o If Ais Moser-reducible then by the above theorem we can find a matrix S
such that m(S[A]) < m(A).

o After this reduction has been carried out we can apply Moser’s Theorem
to check whether further reduction is possible and so on.

e After at most n(p — 1) steps we obtain an equivalent matrix B such that
m(B) = u(A).

e The nature of the singularity depends on the first n(p — 1) coefficients in
the series expansion of A
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Removal of Apparent Singularities
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How to detect and remove an apparent singularity? (I)

Prop.1: If z = Z, is a finite apparent singularity of [A] then one can construct a
polynomial matrix T(z) with det T(z) = ¢(z — zp)*, ¢ € C* and a € N such
that T[A] has at worst a simple pole at z = z,.

This follows from the fact that:
- if zp is an apparent singularity then z, is a regular singularity,

- and that a system with a regular singularity at z; is equivalent to a system
with a simple pole at z,.

e The transformation T can be constructed using the rational Moser algorithm
(developed in Bar'1995).
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How to detect and remove an apparent singularity? (11)

Prop.2 Suppose that A(z) has simple pole at z = z; and let

_ AO k—1 nxn
A(z) = (Z_ZO)+I;Ak(z—zo) , A e Cm™n.

If zo is an apparent singularity then the eigenvalues of Ay are nonnegative
integers and Ay is diagonalizable.

This follows from the fact that:

o A system having a simple singularity at z = z, with residue matrix Ag
possesses a local fundamental solution of the form:

®(2)(z - 2)"
where ®(z) is holomorphic at z = z, and A is a constant matrix with
spec(N) C spec(Ag) — N

o When Aj is not diagonalizable, the local solutions at z; involve
logarithmic terms.
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How to detect and remove an apparent singularity? (11I)

Prop.3: Suppose that z = z, is a simple pole of A(z) and that its residue

matrix Ag has only nonnegative integer eigenvalues. Then one can construct
a polynomial matrix T(z) with

detT(z) = c(z — zp)*
for some ¢ € C* and « € N such that
B:=TIA = Bo(z — 20) " +---
has at worst a simple pole at z = z with
Bo=ml,+N

where m € N and N nilpotent.

o Moreover zj is an apparent singularity iff N = 0.

o In this case the gauge transformation Y = (z — z,)™ Y leads to a system
for which z = z; is an ordinary point.
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How to detect and remove an apparent singularity? (IV)

Skech of the proof of Prop. 3:
o The eigenvalues of Ay of are nonnegative integers:

my>me >...> Mg, M — Mjtq :f,‘EN*, I':'l,...,S—'I.

e By applying a constant gauge transformation we can assume that:

A0
AO = 2 )
0 A

where A(1)1 is an vy by vy matrix having one single eigenvalue my
A(1)1 = m /,,1 + Ny

N; being a nilpotent matrix.
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¢ Apply the gauge transformation U = diag((z — z)1,,, In—.,) yields the new
system:

Z =(z—-2)""A(2)Z, A(2)=(z-2)U"A2)U - (z-2)U""'U

with the leading matrix:

Az0) = (Ao + (2 — 20)U " AU — (2 — z0)U'U)

|z=20 *

e Let Ay be partitioned as Ay :

A11 A12
A1 _ < 1 1 ) 7 A}1 c Cl/1><1/1

A pz2
Then
. Al -1, Al?
A(Zo) = .
0 AZ2
Hence the eigenvalues of A(0) are: m; — 1, my, ..., ms, each with the same
initial multiplicity v;.
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How to detect and remove an apparent singularity? (V)

» By repeating this process ¢; times, the eigenvalues become:
my — L0y =mMmo, Mo, ..., Mg.

» Thus, after /4 + ...+ ¢s_1 steps, the eigenvalues my, ..., mg are reduced to
one single eigenvalue ms of multiplicity v4 + ... +vs = n.

Aoz_ —>i —>. —>. =mglh, + N

» 2, is an apparent singularity iff N = 0.

» In this case the gauge transformation Y = (z — z5)™ Y leads to a system
for which z = z, is an ordinary point.
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Complete Desingularization

e The matrix T in Prop3 is obtained as a product of invertible constant

matrices or diagonal matrices of the form U = diag((z — z0) 1., In—.).
Hence T is a polynomial matrix with det T(z) = ¢(z — z,)“ for some
ceCandaeN.

¢ Due to the form of its determinant, the gauge transformation T(z) in the
above proposition does not affect the other finite singularities of [A].

Theorem One can construct a polynomial matrix T(z) which is invertible in
C(z) such that the finite poles of B := T[A] are exactly the true singularities
for [A].
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Algorithm of Desingularization

Step 1 Reduce the rank of each singularity to its minimal value :
Compute a polynomial matrix T(z) such that

» the zeros of det T(z) are in P(A)
» TI[A] has the same poles as A with minimal orders.

Step 2 Select simple singularities with nonnegative exponents:
For each simple pole z; compute Ay ,, := res,—;A(z) and its spectrum.
App(A) = {zy simple singularities such that spec(Ao ) C N}

Step 3 Make all exponents equal:

For zy € App(A) compute a polynomial matrix T,,(z) with

det T, (z) = ¢(z — Zp)™ such that T [A] has at worst a simple pole at

z = zy with residue matrix of the form R,, = my, I, + N,, where m,, € N
and N, nilpotent.

Step 4 Determine the apparent singularities of [A]:
Keep in App(A) only the points z for which N, = 0.
Step 5 Shift the exponentto 0 :
Apply the scalar transformation T = [, < 4pp(a) (2 — 20)™0 In.
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Application to Desingularization of Scalar
Differential Equations
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Desingularization of Scalar differential Equations

e Removing apparent singularities of L € C(z2)[d]:

— to construct another operator L € C(z)[d)] such that:

(i) any solution of L(y) = 0 is a solution of L(y)=0,
i.e. L= RoLforsome R € C(z)[9]

(ii) and the singularities of L are exactly the singularities of L that are not
apparent.

e Such an operator L is called a desingularization of L.

Example: L=0-1%, nweN

The operator [ = 9** is a desingularization of L.
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e Several algorithms have been developed for linear differential (and more
generally Ore) operators, e.g.

e Abramov-B.-van Hoeij’20086,

o Chen-Jaroschek-Kauers-Singer'2013, Chen-Kauers-Singer2015

e We developed, in [ABH 2006]" an algorithm that, given an operator L of
order n, produces a desingularization L with minimal order m > n+ 1.

e This algorithm has been implemented in Maple.

o | will refer to this algorithm as ABH method.

1 S. ABRAMOV, M. BARKATOU and M. van HOEIJ AAECC 2006
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Example 1

Consider the second order operator

L::@Z—Ma—kg.
z z

e z=0is asingularity of L.

e The general solution of L(y) = 0 is given by

2

V4
cie° +C (1 +Zz+ 2) ci,c € C.

e L has an apparent singularity at z = 0.

e The desingularization computed by ABH method is of order 4

ot (c142) P (L1 82 e (1, 2) 50
L_8+(1+4)8+<4 8>a+(2+8>a Z
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e The apparent singularity of L at z = 0 can be removed by computing a

gauge equivalent first-order differential system with coefficient in C(z) of
size ord(L) = 2.

e Consider the first-order differential system associated with L

d

A 5

X = A2)X, maz[%1lz}.

z z

o Set

X=T(z) Y, where T(z)= “ 202] .
e The new variable Y satisfies the gauge equivalent first-order differential
system of the same dimension given by

d
B —Y=8Y

where

d 1z
o TApAT T _
B:=T 'AT - T dZT_{O 0}
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Example 2

e Consider
(322 —4) o o~ +222
z(z2+2) 2242

L=0%+

e L has an apparent singularity at z = 0 with local exponents 0 and 3.

o The desingularization computed by ABH method is of order 4

- 24 +7 2 58 2% 4 88 + 27 2*
Lo 12 2BATT2) oy g p (B4 881 2721)
7242 (22 +2)
1/22(—422+4+9324+2826) 5 g 4422+ 16442204728
(22 +2)° (22 +2)° '

M. Barkatou Desingularization of Differential Systems 37/43



e The companion matrix of L is

0 1
A =
2 —1422°2  37°—4
z2+42 z(Z2+2)

e It has a simple pole at z = 0 with a residue matrix Ay =

00
0 2|

e Our algorithm computes the following gauge transformation T

1 0
T pr—
z —-Zz2

e The matrix of the new equivalent system is

z .
B = T_1(AT— T/) =
- - 2(22+7)
1 7242

e It has z = 0 as ordinary point.

M. Barkatou Desingularization of Differential Systems 38743



Example 3

e Let 9 = Z and consider

T (22-3)(z2-2z+2) (z—-2)(222 -3z +3)
S T N (@ -82z+3) 2" T Z-1)(Z#-3z+3)z

o L has apparent singularities at z = 0 and the roots of z2 — 3z +3 = 0.

e A desingularization computed by the classical algorithm? is given by:
ZClassicazl = (z-1) (24 —Z22+32%2-6z+ 6)84
— (22272 4+ 221222+ 247 -24) 9
~(82°+92%)0°+ (622 +182)0 — (62 + 18).

2Exm 1, Chen-Kauers-Singer'14
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e A desingularization computed by the probabilistic method of CKS143 is
given by:

Leks = (z—1)(22-32°+32 -2 +6)9*
—(22°-92°+152* — 1128 +32% - 24)%°
— (2 —4251+62° -4+ 22 +62-6)0
+(22°-92°+152* — 1122 4 32% — 24).

e The removal of one apparent singularity introduces new singularities. The
latter can then be removed by using a trick introduced in ABH algorithm.

3Exm 7(1), Chen-Kauers-Singer'14
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o The desingularization computed by ABH method is:

16z* —552° + 6322 — 42z + 36) o

i o (
Lagn = 0"+ 5z 1)

_ (6425 —316z* +591 28 —46822+123Z+42) pe
9(z—-1)2

B 9625 — 570z* + 133323 — 1597 22 + 993z — 219
9(z—-1)83

where

B=(482° 197 2° + 1482* +4882° — 116222 + 999 z — 288).
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e The companion matrix of L is

A:

0 1
(z2=2)(22°2—38243)  (£-8) (-2 z+2)]
(z=1)(2—38z+8)z (z—1)(2—3z+3)z

e Our new algorithm computes the following gauge transformation T

T_ 1 0
|1 (-22+3z-3)2
e The matrix of the new equivalent system is

B=T '(AT-T)= [1 _22(22_3”3)]

0 _2

1—z

e It has z = 0 and roots of z2 — 3 z + 3 = 0 as ordinary points.
o No new apparent singularities are introduced.
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Comments

o The desingularization algorithms developed specifically for scalar
equations are based on computing a least common left multiple of the
operator in question and an appropriately chosen operator.

e This outputs an equation whose solution space contains strictly the
solution space of the input equation.

o The new algorithm is based on an adequate choice of a gauge
transformation.

e The desingularized output system is always equivalent to the input
system and the dimension of the solution space is preserved.

e The transformations and the equivalent systems computed by our
algorithm, have rational function coefficients.
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