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Summary of Part 1: Cl

The Main Theorem Let & be a 2D non-singular model with small steps.
The following assertions are equivalent:

(1) The full generating function Fg (¢; x, ) is D-finite

(2) the excursions generating function Fg (#;0,0) is D-finite

(3) the excursions sequence [t"] Fg (£;0,0) is ~ K- p" - n*, with « € Q
(4) the group Gg is finite (and |Gg | = 2-min{/ € N* | 5 € Z})

(5) the step set & has either an axial symmetry, or zero drift and
cardinality different from 5.

Proof

(1) = (2) Easy

(2) = (3) [Denisov, Wachtel, 2013] + [Katz "70, Chudnovsky ‘85, André "89]
(3) = (4) [B., Raschel, Salvy, 2013]

(4) = (1) [Bousquet-Mélou, Mishna, 2010] + [B., Kauers, 2010]

(5) < (4) A posteriori observation
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Summary of Part 1: Classificat

The Main Theorem Let & be a 2D non-singular model with small steps.
The following assertions are equivalent:

(1) The full generating function Fg (t; x, ) is D-finite

(2) the excursions generating function Fg (£;0,0) is D-finite

(3) the excursions sequence [t"] Fg(£;0,0) is ~ K- p" - n*, with xaeqQ
(4) the group Gg is finite (and |Gg| = 2 - min{f € N* 1x+1 eZy})

(5) the step set & has either an axial symmetry, or zero drift and
cardinality different from 5.

Moreover, under (1)—(5), Fs (£ x,y) is algebralc if and only if the model &
has positive covariance ) ij— ) i- ) j>0,andiff it has OS = 0.
(ij)e6 (iL)e6  (ij)e&

In this case, Fs (f; x, 1) is expressible using nested radicals.
If not, Fs (t; x,y) is expressible using iterated integrals of »F; expressions.

> Proof of the last statements: [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

NN o Algebr fo Lattice Path Combinalorics



Two important mo

6={l« 7 Fs(tix,y) = K(t;x,y)

S={",,+,—} Fstxy) =Gtxy)

D
SRS
A

Example: A Kreweras excursion.

5/45
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Gessel’s co

o Gessel walks: walks in IN? using only steps in & = { 7, //,+, —}
e ¢(n;1,j) = number of walks from (0,0) to (i,j) with n steps in &

Question: Find the nature of the generating function

G(tx,y) = i g(n;i,j)xiyjt" € Q[[x,y,t]]

i,jn=0

Theorem (B.-Kauers, 2010) G(¢; x, y) is an algebraic function®.

— Effective, computer-driven discovery and proof

1t Minimal polynomial P(x,y,t, G(t; x,y)) = 0 has > 10 terms; ~ 30Gb (!)
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First guess, then prove [Pdlya, 1954]

wnires | GUESSinG and Proving

George Pélya

What is “scientific method”? Philosophers and non-philosophers have
discussed this question and have not yet finished discussing it. Yet as a first introduction
it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to
confess it. They have, however, something which the other scientists cannot really have.
For mathematicians the advice is

First guess, then prove.
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Personal bias: Experimental Mathematics using Computer Algebra

David H. Bailey

Modern computer Algebra Second Edition

Joachim von zur Gathen and Jirgen Gerhard

Victor H. Moll

Experimental
Mathematics
in Action
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Guess’'n’Prove for

-PROVING ALGEBRAICITY-
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Experimental mathematics -Guess'n’Prove— approach:

(S1) Generate data

(52) Conjecture

(S3) Prove
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 Methodology for proving algebraicty

Experimental mathematics -Guess'n’Prove— approach:

(S1) Generate data
compute a high order expansion of the series Fg (£; ¥, );

(52) Conjecture
guess a candidate for the minimal polynomial of Fg (£ x, ), using
Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

11/45
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Meth

Experimental mathematics -Guess'n’Prove— approach:

(S1) Generate data
compute a high order expansion of the series Fg (£; ¥, );

(52) Conjecture
guess candidates for minimal polynomials of Fg (f; x,0) and Fg (£0,vy),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

11/45

NN o Algebr fo Lattice Path Combinaorics



 Methodologyfor provingalgebreiy

Experimental mathematics -Guess'n’Prove— approach:

(S1) Generate data
compute a high order expansion of the series Fg (£; ¥, );

(52) Conjecture
guess candidates for minimal polynomials of Fg (f; x,0) and Fg (£0,vy),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra

11/45
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fe(n;i,j) satisfies the recurrence with constant coefficients

fen+Lij)= ), fe(mi-uj—v) for nij>0
(u0)e&

+ initial conditions fe& (0;7, /) = &g, and fe (n; —1,j) = fs(n;i,—1) = 0.
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fe(n;i,j) satisfies the recurrence with constant coefficients

fen+Lij)= ), fe(mi-uj—v) for nij>0
(u0)e&

+ initial conditions fe& (0;7, /) = &g, and fe (n; —1,j) = fs(n;i,—1) = 0.

Example: for the Kreweras walks,

k(n+1;i,j) =k(n;i+1,j)

+k(n;i,j+1) *

+k(ni—1,j—-1)
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Step (S1):

fe(n;i,j) satisfies the recurrence with constant coefficients

fen+Lij)= ), fe(mi-uj—v) for nij>0
(u0)e&

+ initial conditions fe& (0;7, /) = &g, and fe (n; —1,j) = fs(n;i,—1) = 0.

Example: for the Kreweras walks,

k(n+1;i,j) =k(n;i+1,j)

+k(n;i,j+1) *

+k(mi—1,j—1)

> Recurrence is used to compute Fg (t; x,y) mod tV for large N.

K(t;x,y) = 1+ xyt + (2% +y + )2 + (3 + 2xy% + 222y +2)1°
+ (w4 3x2y% + 3232 4+ 292 + by + 2x2)
+ (Y + 43yt + axty® + 5xyP + 1227 + 523y + 8y + 8x) 0 + - -

12/ 45
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Step (S

In terms of generating functions, the recurrence on k(n;1,j) reads

(xy — (x +y+ 22y*))K(5x,y)
=xy —xtK(t;x,0) —yt K(£;0,v) (KerEq)

> A similar kernel equation holds for Fg (t; x,y), for any &-walk.

Corollary. Fg (t; x,y) is algebraic (resp. D-finite) if and only if Fg (£ x,0) and
Fes (£;0,y) are both algebraic (resp. D-finite).

> Crucial simplification: equations for G(t; x, y) are huge (=~ 30 Gb)

13/45
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Task 1: Given the first N terms of S = Fg(¢;x,0) € Q[x][[t]], search for a
differential equation satisfied by S at precision N:

7

'S aS
cr(x,t) - W+~~~+c1(x,t) g +co(x,t) - S = 0 mod V.
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Task 1: Given the first N terms of S = Fg(¢;x,0) € Q[x][[t]], search for a
differential equation satisfied by S at precision N:

7

'S aS
cr(x,t) - W+~~~+c1(x,t) g +co(x,t) - S = 0 mod V.

Task 2: Search for an algebraic equation Py ((S) =0 mod V.
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Step (52): gues

Task 1: Given the first N terms of S = Fg(£;x,0) € Q[x][[t]], search for a
differential equation satisfied by S at precision N:

T

cr(x,t) S+~~~+cl(x,t)~E§+c0(x,t)~5=0m0dtN.

ot

Task 2: Search for an algebraic equation Py ((S) =0 mod V.

o Both tasks amount to linear algebra in size N over Q(x).

o In practice, we use modular Hermite-Padé approximation
(Beckermann-Labahn algorithm) combined with (rational)
evaluation-interpolation and rational number reconstruction.

o Fast (FFT-based) arithmetic in Fp[t] and F[t] ().

14 /45
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 Stap (52 guesing equatons for K(:3.0)

Using N = 80 terms of K(f;x,0), one can guess
> a linear differential equation of order 4, degrees (14,11) in (t, x), such that

£ (3t —1)- (92 43t +1) - (3> + 24£2x> — 3xt — 2x2)-
- (1662x° + 4xt — 72t4%3 — 18x3t 4+ 51242 + 18xt3 — 9t4)-
3*K(t;x,0)

- (4253 — 12 4 2xt — x?
(4t°x + 2xt — x%) pye!

=0 mod %

> a polynomial of tridegree (6,10, 6) in (T, t, x)
Pro = xHOTO — 3248 (x —26)T5+

+ x40 (12t2 +3#2x% — 12xt + ;xz) T 4 ...

such that P, o(K(t;x,0),t,x) = 0 mod 180,
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 Stap (52 guesing equations for Gt2,0) and G(E0Y)

Using N = 1200 terms of G(; x,y), our guesser found candidates

o Pypin Z[T,t, x] of degree (24,43,32), coefficients of 21 digits
o Po,y in Z[T,t,y] of degree (24,44,40), coefficients of 23 digits

such that

Pro(G(t;x,0),t,x) = 0mod #1200, Po,y(G(t;0,y),t,y) = 0 mod #1200,

16 /45
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Step (52): gu

Using N = 1200 terms of G(¢; x, ), our guesser found candidates

o Pypin Z[T,t, x| of degree (24,43,32), coefficients of 21 digits
o Po, in Z|T,t,y] of degree (24,44, 40), coefficients of 23 digits

such that

Pro(G(t;x,0),t,x) = 0mod 20, Py, (G(0,y),t,y) = 0 mod t'2%.

> Guessing Py o by undetermined coefficients would have required to solve
a dense linear system of size ~ 100000, and ~ 1000 digits entries!

16 / 45
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Step (S2): guessing equations for G(t;x,0) and G(£;0,y)

Using N = 1200 terms of G(t; x,y), our guesser found candidates
0 Pyo in Z[T, t, x] of degree (24,43,32), coefficients of 21 digits
o Pyy in Z[T,t,y] of degree (24, 44,40), coefficients of 23 digits
such that

Pro(G(t;x,0),t,x) = 0mod #1290, Poy(G(£0,y),t,y) = 0mod $1200,

> Guessing Py o by undetermined coefficients would have required to solve
a dense linear system of size ~ 100000, and ~ 1000 digits entries!

> [B., Kauers '09] actually first guessed differential equations+, then
computed their p-curvatures to empirically certify them. This led them
suspect the algebraicity of G(t;x,0) and G(+,0,y), using a conjecture of
Grothendieck’s (on differential equations modulo p) as an oracle.

1 of order 11, and bidegree (96,78) for G(t;x,0), and (68,28) for G(t;0,y)
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~ Guessing is good, proving is better [_

How to Solve It

A New Aspect of

e Guessing and Proving

George Pélya

Guessing is good, proving is better.



Theorem. g(t) := G(V/£0,0) Z (5(2?3 1(2)2 Jn (16t)" is algebraic.
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Theorem. g(t) := G(\/E;0,0) _ i (5/6)u(1/2)n

n o .
L 7(5/3),(2)n (16t)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y 5 gnt" as a root.
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Theorem. g(t) := G(\/E;0,0) _ i (5/6)u(1/2)n

n o .
L (5/3)4(2)n (161)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y 5 gnt" as a root.

@ Such a P can be guessed from the first 100 terms of g(¢).
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 Stap (55 warmup - Gessl xcursionsarealgebraie

(5/6)n 1/2)

G/ @ (16t)" is algebraic.

Theorem. g(t) := G(V/£0,0) = Z

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = Y 5 gnt" as a root.

@ Such a P can be guessed from the first 100 terms of g(¢).

@ Implicit function theorem: 3! root r(t) € QI[#]] of P.

18 /45
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Step (S3):

(5/6)n 1/2
Z (5/6)u(1/2)n

Theorem. g(t) := G(V/£0,0) 573D

(16t)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = Y 5 gnt" as a root.

@ Such a P can be guessed from the first 100 terms of g(¢).

@ Implicit function theorem: 3! root r(t) € QI[#]] of P.

@ r(t)=Y;_orat" being algebraic, it is D-finite, and so is (r4):
(n+2)Bn+5)ry,11 —4(6n+5)2n+1)r, =0, ro=1

= solution r, = Wl@‘ = gn, thus g(t) = r(t) is algebraic.

18 / 45
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. __\/ﬁ .
® Setting yp = S VT IEIET 4 1p L BB Ly e

kernel equation

(xy — (x +y + 2y )DK (£ x,y) = xy — xtK(t; x,0) — ytK(£0,y)

!
=0
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@ Setting yo = VI IPIAD) 124 L4154 i the
kernel equation (diagonal symmetry lmphes K(t Y, x) = (t,' X, Y))
(xy — (x +y + 2y )DK (£ x,y) = xy — xtK(t; x,0) — ytK(t;y,0)

!
=0
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. —t—/xE 20+ 2 (1—4x3) .
® Setting yo = VI OIIIA) 4 124 28 4 inthe

kernel equation

(xy — (x +y + 2y )DK(t %, y) = xy — xtK(t; x,0) — ytK(£;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)
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(xy — (x +y + 2y )DK(t %, y) = xy — xtK(t; x,0) — ytK(£;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)

@ (RKerEq) admits a unique solution in Q[[x, t]], namely U = K(¢; x,0).
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@ (RKerEq) admits a unique solution in Q[[x, t]], namely U = K(¢; x,0).
@ The guessed candidate P, (T, t, x) has a root H(t,x) in Q[[x, t]].
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. __\/ﬁ .
® Setting yp = S VT IEIET 4 1p L BB Ly e

kernel equation

(xy — (x +y + 2y )DK(t %, y) = xy — xtK(t; x,0) — ytK(£;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)

@ (RKerEq) admits a unique solution in Q[[x, t]], namely U = K(¢; x,0).
@ The guessed candidate P, (T, t, x) has a root H(t,x) in Q[[x, t]].

@ U = H(t,x) also satisfies (RKerEq) Resultant computations!
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_

' P P(E0) ]
@ Setting yo = * VI 2OEEITAD _y 4 124 PB4 in the

kernel equation

(xy — (x +y + 2y )DK(t %, y) = xy — xtK(t; x,0) — ytK(£;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)

@ (RKerEq) admits a unique solution in Q[[x, t]], namely U = K(¢; x,0).
@ The guessed candidate P, (T, t, x) has a root H(t,x) in Q[[x, t]].
@ U = H(t,x) also satisfies (RKerEq) Resultant computations!

® Uniqueness = H(t,x) = K(t;x,0) = K(t;x,0) is algebraic!

19 /45
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Algebraicity of Kreweras walks: a computer proof in a nutshell

Vv

V VV VYV H®H

HIGH ORDER EXPANSION (S1)
st,bu:=time() ,kernelopts(bytesused) :
f:=proc(n,i,j) option remember;
if i<0 or j<O or n<O then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else f(n-1,i-1,j-1)+f(n-1,1i,j+1)+f(n-1,i+1,j) fi
end:
S:=series(add(add(f(k,i,0)*x"i,i=0..k)*t"k,k=0..80),t,80):

GUESSING (S2)
libname:=".",libname:gfun:-version();

3.76
P:=subs(Fx0(t)=T,gfun:-seriestoalgeq(S,Fx0(t)) [1]):

RIGOROUS PROOF (S3)
ker := (T,t,x) —-> (x+T+x"2*xT"2)*t-x*T:
pol := unapply(P,T,t,x):
pl := resultant(pol(z-T,t,x),ker(t*z,t,x),z):
p2 := subs(T=x*T,resultant (numer(pol(T/z,t,z)) ,ker(z,t,x),z)):
normal (primpart (pl,T) /primpart (p2,T));
1

time (in sec) and memory consumption (in Mb)
trunc (time()-st) ,trunc((kernelopts(bytesused)-bu)/100072) ;
8, 785
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Step (S3):

Same strategy, but several complications:
o stepset diagonal symmetry is lost: G(t;x,y) # G(ty, x);
o G(+0,0) occurs in (KerEq) (because of the step /);
o equations are ~ 5000 times bigger.

— replace equation (RKerEq) by a system of 2 reduced kernel equations.

— fast algorithms needed (e.g., [B., Flajolet, Salvy, Schost, 2006] for
computations with algebraic series).

Available onli directcom

.B.....,.@......:r- Journal of
Symbolic
e Computation
ELSEVIER Journal of Symbolic Computation 41 (2006) 1-29

www.elsevier.com/locate/js

Fast computation of special resultants

Alin Bostan®*, Philippe Flajolet?, Bruno Salvy?, Eric Schost®

® Algorithms Project, Inria Rocquencourt, 78153 Le Chesnay, France
Y LIX, Ecole polytechnique, 91128 Palaiseau, France

Received 3 September 2003; accepted 9 July 2005
Available online 25 October 2005

21/ 45

NN o Algebr fo Lattice Path Combinalorics



INSIDE THE BOX

—Hermite-Padé approximants—
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Definition: Given a column vector F = (fy,..., f1)T € K[[x]]" and an n-tuple
d=(dy,...,dy) € N", a Hermite-Padé approximant of type d for F is a row
vector P = (Py,...,Py) € K[x]", (P # 0), such that:

(1) P-F= P1f1 —+ e +Pnfn = O(X‘T) with 0 = Zi(di + 1) —1,
(2) deg(P;) < d for all i.

o is called the order of the approximant P.

> Very useful concept in number theory (irrationality/transcendence):
o [Hermite, 1873]: e is transcendent.
o [Lindemann, 1882]: 7t is transcendent; so does ¢* for any & € Q \ {0}.
o [Apéry, 1978; Beukers, 1981]: {(3) = L1 n% is irrational.
o [Rivoal, 2000]: there exist infinite values of k such that {(2k+ 1) ¢ Q.
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Worked example

Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, CZ),
where C(x) = 1+ x + 2x% + 5x3 4+ 14x* + 42x° + O(x°).
This boils down to finding &g, &1, Bo, 1,70, 71 (not all zero) such that

agF+arx+(Bo + B1x) (14 x +2x% + 537 + 14x*)+ (70 + 1) (1 + 2x + 5x% + 14x° + 42x*) = O (%)
Identifying coefficients, this is equivalent to a homogeneous linear system:

10 1 0 1 0 ZO 10 1 0 1 g 0
01 1 1 2 1 ﬁl 01 1 1 2 a 1
000 2 1 5 2|x|2% =010 0 2 1 5|x|f|=-m]2
00 5 2 14 5 P 00 5 2 14 B1 5
0 0 14 5 42 14 3‘1) 0 0 14 5 42 Yo 14

By homogeneity, one can choose y; = 1.
Then, the violet minor shows that one can take (B, f1,70) = (—1,0,0).
The other values are oy =1, a7 = 0.

Thus the approximant is (1, —1, x), which corresponds to P = 1 — y + xy?
such that P(x,C(x)) = 0 mod x°.
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Algebraic and differential approxim—

o Hermite-Padé approximants of 1 = 2 power series are related to Padé
approximants, i.e. to approximation of series by rational functions

o algebraic approximants = Hermite-Padé approximants for f; = AR

where A € K][x]] seriestoalgeq, listtoalgeq
o differential approximants = Hermite-Padé approximants for f, = A=),
where A € K[[x]] seriestodiffeq, listtodiffeq

> listtoalgeq([1,1,2,5,14,42,132,429],y(x));
2
[1 - y&) +x y&x) , ogf]

> listtodiffeq([1,1,2,5,14,42,132,429],y(x)) [1];
/ 2 \
/d \ ld |

{2y&x + @2-4x |--y®| +x |-—-yI,
\dx / | 2 |

\dx /

y(0) =1, D(y)(0) = 1}, egf]




Existence and naiv

Theorem For any vector F = (fi,..., fu)T € K[[x]]" and for any n-tuple
d = (dq,...,dn) € N", there exists a Hermite-Padé approx. of type d for F.

Proof: The undetermined coefficients of P; = Z;.i;o pi,jxf satisfy a linear
homogeneous system with o =) ;(d; + 1) — 1 eqs and ¢ + 1 unknowns.

Corollary Computation in O(¢0®), for 2 < w < 3 (linear algebra exponent)

> There are better algorithms (the linear system is structured, Sylvester-like):

o Derksen's algorithm (Euclidean-like elimination) O(c?)
o Beckermann-Labahn algorithm (DAC) O(c) = O(clog? r)
o structured linear algebra algorithms for Toeplitz-like matrices O(U)
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Quasi-optimal comput

Theorem [Beckermann, Labahn, 1994] One can compute a Hermite-Padé
approximant of type (d,...,d) for F = (f1,..., fu) in O(n“d) ops. in K.

Ideas:

o Compute a whole matrix of approximants
o Exploit divide-and-conquer
Algorithm:

@ If o =n(d+1)—1 < threshold, call the naive algorithm
@ Else:

@ recursively compute P; € K[x]"*" s.t. P - F = O(x%/2), deg(P;) ~ %
@ compute “residue” R such that Py -F = x/2. (R + O(x”/ 2))

@ recursively compute P € K[x]"*" s.t. P, - R = O(x7/2), deg(P,) ~ 4
@ returnP:=Py-P;

> The precise choices of degrees is a delicate issue B
> Corollary: Ged, extended ged, Padé approximants in O(d) ops. in K.
> Extensions to order bases, over Ore domains: George Labahn’s talk.

27 /45

NN o Algebr fo Lattice Path Combinalorics



Guess’'n’Prove for

-TRANSCENDENCE-
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Design an algorithm suitable for computer implementations which
decides if a D-finite power series —represented by a linear differential
equation with polynomial coefficients and suitable initial conditions—

is transcendental, or not.

[Stanley, 1980]
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Sanleysprodlem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —represented by a linear differential
equation with polynomial coefficients and suitable initial conditions—

is transcendental, or not.

[Stanley, 1980]
Eg.,

is D-finite and can be represented by the second-order equation

(=132 +1) () =0, f(0)=0,f(0) = 1.

The algorithm should recognize that f is transcendental.
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Design an algorithm suitable for computer implementations which
decides if a D-finite power series —represented by a linear differential
equation with polynomial coefficients and suitable initial conditions—

is transcendental, or not.

[Stanley, 1980]

> Notation: For a D-finite series f, we write L?"n for its differential resolvent,
i.e. the least order monic differential operator in Q(t)(d;) that cancels f.
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Sanleysprodlem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —represented by a linear differential
equation with polynomial coefficients and suitable initial conditions—

is transcendental, or not.

[Stanley, 1980]

> Notation: For a D-finite series f, we write L}ni“ for its differential resolvent,
i.e. the least order monic differential operator in Q(t)(0;) that cancels f.

> Warning: L’f‘“jn is not known a priori; only some multiple L of it is given.
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Sanleysprodlem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —represented by a linear differential
equation with polynomial coefficients and suitable initial conditions—

is transcendental, or not.

[Stanley, 1980]

> Notation: For a D-finite series f, we write LfmiJn for its differential resolvent,
i.e. the least order monic differential operator in Q(t)(d;) that cancels f.

> Warning: Lfmin is not known a priori; only some multiple L of it is given.
> Difficulty: L?jn might not be irreducible. E.g., Lﬂi(rl‘_ = <3t + t_lI) 0.
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Three

(A) Apéry’s power series [Apéry, 1978] (used in his proof of {(3) ¢ Q)

22( ) (”+k) =145+ 7312+ 14456 133001 £ + - -
n k=0

(B) GF of trident walks in the quarter plane
Yoant" =142¢+762 42368 84 +301£ 411276+ -+,

n

where a, = # {\I/ — walks of length # in INE starting at (0, 0)}

(C) GF of a quadrant model with repeated steps
Ylant" =1+t+42+88 +3911 + 98+ +5204° + .-+,

n .
where a, = # {% — walks of length 1 in IN? from (0,0) to (%, 0)}
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Three ex

(A) Apéry’s power series [Apéry, 1978] (used in his proof of {(3) ¢ Q)

ZZ( ) (”+k) =145+ 7312+ 14456 133001 £ + - -
n k=0

(B) GF of trident walks in the quarter plane
Y ant" =1+42¢+7 4236 + 84 +301£ + 1127 +
n
where a, = # {\I/ — walks of length 1 in IN? starting at (0, 0)}
(C) GF of a quadrant model with repeated steps
Yoant" =1+ t+47 488 +3911 + 98 +5204° + -+,

n .
where a, = # {}4 — walks of length 7 in IN? from (0,0) to (%, O)}

Question: How to prove that these three power series are transcendental? J
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Singer’s algorit

Problem: Decide if a D-finite power series f € Q[[t]], given by a differential
equation L(f) = 0 and sufficiently many initial terms, is transcendental.

@ Compute L8, the (right) factor of L whose solution space is spanned
by all algebraic solutions of L [Singer, 2014]

@ Decide if L8 annihilates f

> Benefit: Solves (in principle) Stanley’s problem.
> Drawbacks: Step 1 involves impractical bounds and requires ODE factorization

> ODE factorization is effective
[Schlesinger, 1897], [Singer, 1981], [Grigoriev, 1990], [van Hoeij, 1997]

> ...but possibly extremely costly [Grigoriev, 1990]  exp ((bitsize(L)Z”)zn)
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Problem: Decide if a D-finite power series f € Q[[t]], given by a differential
equation L(f) = 0 and sufficiently many initial terms, is transcendental.

Basic remark: If L?in has a logarithmic singularity, then f is transcendental.

(f algebraic implies basis of algebraic solutions for L}“i“ [Tannery, 1875].)

> Pros and cons: Avoids factorization of L, but requires to compute L}nin.
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=g o= £ (0 (")

k=0

> Creative telescoping;:
(n+1)%ay — (2n+3)(17n% +51n+39)a, 41 + (n+2)%a,.2 =0, ag=1, a4, =5
> Conversion from recurrence to differential equation L(f) = 0, where
L= (t* — 34t +£2)32 + (61> — 153t + 3t)0? + (7t* — 112t +1)9; +t — 5
> L?‘jn = F*mitWL using L irreducible, or cf. new algorithm
> Basis of formal solutions of ernin att =0:

{1 +5t+0(f2), In(t) + (5In(t) +12)t + O(2), In(t)? + (5In(t)2 +241In(t))t + O(2) }

> Conclusion: f is transcendental
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Ex. (B): Nature of F(¢;1,1) for SSW [B, Chyzak, van Hoeij, Kauers, Pech, 2016]

OEIS & algebraic? asymptotics OEIS & algebraic? asymptotics
1|A005566 <> N au yglarsios 8 N 24302V00
2|A018224 X N 28 ligla51314 BE N YouC COF
3|A151312 3K N vee'  |115A151255 N N 24f <2f b
4|a151331 3 N L8 llp|A151287 R N 22 2247 (2;\)
5(a151266 Y N 5 /3.3 l7/ac01006 Y 322
6|Aa151307 3 N 1/2 5 |lisla2o400 B Y 3./2.5;
7|a151201 'Y N sz || 19|A005558 ] N 84
slatsiz2e ¥ N 2o¢)
9la151302 K N 1/ 22 |20A1s1265 0 Y e
10/a151320 & N 1/ 7, |21ja1s1278 S Y ﬁ%ﬁ/ -
11|A151261 3 N 123231 Iniats1303 yE e
12|A151297 g N B3F2EB" a3lA060000 #5 Y o

> Computer-driven discovery and proof; no human proof yet in some cases
> Proof uses creative telescoping, ODE factorization, Singer’s algorithm
> For models 5-10, asymptotics do not conclude.

Alin Bostan
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http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900

Ex. (C): a di

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Leta, =# {}4 — walks of length 7 in IN? from (0,0) to (*,0)}. Then
f(t) =, ant" =1+t +4t>+ 83 +39+* + 98> + - - - is transcendental.

Computer Algebra for Lattice Path Combinatorics



Ex. (O): a difficult quadr

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Leta, =# {%4 — walks of length 7 in IN? from (0,0) to (x,0) } Then
ft) =L ant" =1+t +41>+ 843 +39+* +981° + - - - is transcendental.

Proof:
@ Discover and certify a differential equation L for f(t) of order 11 and
degree 73 (high-tech) Guess'n’Prove
Q If ord(L}“m) < 10, then degt(L}ni“) <580 apparent singularities
@ Rule out this possibility differential Hermite-Padé approximants
@ Thus, [P =L
@ L has alog singularity at ¢ = 0, thus f is transcendental O
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Ex. (O): a difficult quadr

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Leta, =# {%4 — walks of length 7 in IN? from (0,0) to (x,0) } Then
ft) =L ant" =1+t +41>+ 843 +39+* +981° + - - - is transcendental.

Proof:
@ Discover and certify a differential equation L for f(t) of order 11 and
degree 73 (high-tech) Guess'n’Prove
@ If ord(L}“m) < 10, then degt(L}ni“) < 580 apparent singularities
@ Rule out this possibility [Beckermann, Labahn, 1994]
@ Thus, [P =L
@ L has alog singularity at ¢ = 0, thus f is transcendental O

35 /45

NN o Algebr fo Lattice Path Combinalorics



Ex. (O): a difficult quadrant mo

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Leta, =# {% — walks of length 7 in IN? from (0,0) to (x,0) } Then
f(t) =, ant" =1+t +4t>+813+39+* + 9815 + - - - is transcendental.

Proof:

@ Discover and certify a differential equation L for f(t) of order 11 and
degree 73 (high-tech) Guess'n’Prove

Q If ord(L}nm) < 10, then degt(L?i“) < 580 apparent singularities
@ Rule out this possibility differential Hermite-Padé approximants

@ Thus, [P =L
@ L has a log singularity at ¢ = 0, thus f is transcendental O

> Computer-driven discovery and proof; no human proof yet.
> All other transcendence criteria / algorithms fail or do not terminate.

35/ 45

NN o Algebr fo Lattice Path Combinaorics



Central sub-task:

Problem: Given a D-finite power series f € Q[[t]] by a differential equation
L(f) = 0 and sufficiently many initial terms, compute its resolvent L;“m.

> Why isn’t this easy? After all, it is just a differential analogue of:

Given an algebraic power series f € Q[[t]]
by an algebraic equation P(t, f) = 0 and sufficiently many initial terms,
compute its minimal polynomial P}"m.

> L;“in is a (right) factor of L, but contrary to the commutative case:

o factorization of diff. operators is not unique 97 = (9; + %)(at - tl—c)
o ...and it is difficult to compute

o deg, Lfmi“ > deg, L, due to apparent singularities (td; — N) | oN+1

> deg, L}“i“ can be bounded w.r.t. n and local data of L via Fuchs’ relation

36 /45

NN o Algebr fo Lattice Path Combinatorics



Central sub-task: computation

Problem: Given a D-finite power series f € Q[[t]] by a differential equation
L(f) = 0 and sufficiently many initial terms, compute its resolvent L}“m.

> Why isn’t this easy? After all, it is just a differential analogue of:

Given an algebraic power series f € Q[[t]]
by an algebraic equation P(t, f) = 0 and sufficiently many initial terms,
compute its minimal polynomial P}"m.

> Lj,“i“ is a (right) factor of L, but contrary to the commutative case:

o factorization of diff. operators is not unique 9% = (9; + %)(at - t}—c)
o ...and it is difficult to compute

o deg, Lfmi“ > deg, L, due to apparent singularities (td; — N) | oN+1

> deg, L}"in can be bounded w.r.t. n and local data of L via Fuchs’ relation

> More on apparent singularities and desingularization in Moulay Barkatou’s
and Maximilian Jaroschek’s talks

> L}I‘jn useful in other contexts, e.g. in number theory: Tanguy Rivoal’s talk
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sy

@ Guess'n’Prove is a powerful method, especially when combined with
efficient computer algebra

@ It is robust: it can be used to uniformly prove
® D-finiteness in all the cases with finite group
© algebraicity in all the cases with finite group and zero orbit sum

® transcendence in all the cases with finite group and nonzero orbit sum
@ Brute-force and/or use of naive algorithms = hopeless.

E.g. size of algebraic equations for G(; x,y) ~ 30 Gb.
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BACK TO THE EXERCISE
—A hint-
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Let G = {1, +, \,}. A G-walk is a path in Z? using only steps from &.
Show that, for any integer 7, the following quantities are equal:

(i) the number a, of &-walks of length 1 confined to the upper half plane
Z x N that start and end at the origin (0,0);

(ii) the number b, of G-walks of length 1 confined to the quarter plane IN?
that start at the origin (0,0) and finish on the diagonal x = y.
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_

Let G = {1, +, \,}. A G-walk is a path in Z? using only steps from &.
Show that, for any integer 7, the following quantities are equal:

(i) the number a, of &-walks of length 1 confined to the upper half plane
Z x N that start and end at the origin (0,0);

(ii) the number b, of G-walks of length 1 confined to the quarter plane IN?
that start at the origin (0,0) and finish on the diagonal x = y.

For instance, for n = 3, this common value is a3 = b3 = 3:

va::: i\'::
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A recurrence relation for {f,

h(n;i,j) =nb. of {1, -, \y}-walks in Z x N of length n from (0,0) to (i, )
The numbers h(n;i,j) satisfy

0 ifj<0orn <0,
o T ifn=20
h 1, = i=j=0 . . . '
(n3i,]) t h(n—1;i—i,j—j) otherwise.
(#,j)e&

> h:=proc(n,i,j)
option remember;
if j<O0 or n<0 then O
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else h(n-1,i,j-1) + h(n-1,i+1,j) + h(n-1,i-1,j+1) fi
end:

> A:=series(add(h(n,0,0)*t"n, n=0..12), t,12);

A =143 430t° + 420t° + O(t12)
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A recurrence relation for {

q(n;i,j) = nb. of {1, +-, \,}-walks in IN? of length 1 from (0,0) to (i, )
The numbers q(n; i, j) satisfy

0 ifi<Oorj<Oorn<0,
e ]li='=0 ifl’lIO,
a0nii,f) = i gin—1i—i,j—j) otherwise.
(.j)e&

> q:=proc(n,i,j)
option remember;
if i<0 or j<O or n<0 then O
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else q(n-1,i,j-1) + q(n-1,i+1,j) + q(n-1,i-1,j+1) fi
end:

> B:=series(add(add(q(n,k,k), k=0..n)*t"n, n=0..12), t,12);

B =1+ 3t +30t° + 420t + O(t1?)
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Guessing the answ

> seriestorec(A, u(n))[1];
2 2
{(-27 n -81n-54) u(n) + (@ +9n + 18) u(a + 3),

u(0) =1, u(1) = 0, u(2) = 0}
> rsolve(%, u(n)):
> A:=sum(subs(n=3*n, op(2,%))*t~(3*n), n=0..infinity);

3
A := hypergeom([1/3, 2/3], [2], 27 t )

> Thus, differential guessing predicts

- - 1/3 2/3|...3) < (3n)! £7
A(t)_B(t)_2F1< ) ‘27t>—n§ B a1
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Guessing the ans

> seriestorec(A, u(n))[1];
2 2
{(-27 n -81n-54) u(m) + (@ + 9 n + 18) u(n + 3),

u(0) =1, u(l) =0, u(2) = 0}
> rsolve(%, u(n)):
> A:=sum(subs(n=3*n, op(2,%))*t~(3*n), n=0..infinity);

3
A := hypergeom([1/3, 2/3], [2], 27 t )

> This can be algorithmically proved using creative telescoping
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Thanks for your attention!



