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This talk shows ways in which integer relation algorithms have empowered
quantum field theorists to turn numerical results into conjecturally exact
evaluations of Feynman periods. Ideas on quasi-periods are fermenting.

1. 1985: Periods in the Dark Ages

2. 1995: Renaissance by PSLQ

3. 1999: Improvements and parallelization

4. 2009: Work on the Broadhurst–Kreimer conjecture

5. 2015: Periods from Panzer and Schnetz

6. 2017: Periods from Laporta in electrodynamics

7. Heute: Quasi-periods from Brown and Zhou



1 1985: Periods in the Dark Ages

Problem: Given numerical approximations to n > 2 real numbers, xk,
is there is at least one probable relation

n∑
k=1

zkxk = 0

with integers zk, at least two of which are non-zero? If so, produce one.

Examples: I studied periods from 6-loop Feynman diagrams in 1985:

P6,1 = 168ζ9, P6,2 =
1063

9
ζ9 + 8ζ33 , 16P6,3 + P6,4 = 1440ζ3ζ5

with Riemann zeta values ζa :=
∑
n>0 n

−a. I had a strong intuition that
P6,3 and P6,4 would involve ζ8 and the multiple zeta value (MZV)

ζ5,3 :=
∑

m>n>0

1

m5n3
= 0.03770767298484754401130478 . . .

but did not have enough digits for the periods to test this.



2 1995: Renaissance by PSLQ

In response to a request from Dirk Kreimer, I obtained
P6,3 = 256N3,5 + 72ζ3ζ5 and P6,4 = −4096N3,5 + 288ζ3ζ5, with

N3,5 :=
27

80
ζ5,3 +

45

64
ζ3ζ5 −

261

320
ζ8

found by PSLQ, after more digits were obtained for the periods.

We found ζ3,5,3, with weight 11 and depth 3, in some 7-loop periods.

Much experimenting with PSLQ led to the Broadhurst-Kreimer (BK)
conjecture that the number N(w, d) of independent primitive MZVs of
weight w and depth d is generated by

∏
w>2

∏
d>0

(1− xwyd)N(w,d) = 1− x3y

1− x2
+

x12y2(1− y2)
(1− x4)(1− x6)

with a final term inferred by relating MZVs to alternating sums.



2.1 PSLQ: Partial Sums, Lower triangular, orthogonal Quotient

PSLQ came from work by Helaman Ferguson and Rodney Forcade in
1977, was implemented in multiple-precision ForTran by David Bailey in
1992, improved and parallelized in 1999. See David H. Bailey and David J.
Broadhurst, Parallel Integer Relation Detection: Techniques and
Applications, Math. Comp. 70 (2001), 1719–1736. Initialization:

1. For j := 1 to n: for i := 1 to n: if i = j then set Aij := 1 and Bij := 1
else set Aij := 0 and Bij := 0; endfor; endfor.

2. For k := 1 to n: set sk := sqrt
(∑n

j=k x
2
j

)
; endfor. Set t = 1/s1.

For k := 1 to n: set yk := txk; sk := tsk; endfor.

3. For j := 1 to n− 1: for i := 1 to j − 1: set Hij := 0; endfor;
set Hjj := sj+1/sj; for i := j + 1 to n: set Hij := −yiyj/(sjsj+1);
endfor; endfor.

4. For i := 2 to n: for j := i− 1 to 1 step −1: set t := round(Hij/Hjj);
and yj := yj + tyi; for k := 1 to j: set Hik := Hik − tHjk; endfor;
for k := 1 to n: set Aik := Aik − tAjk and Bkj := Bkj + tBki;
endfor; endfor; endfor.



Iteration:

1. Select m such that (4/3)i/2|Hii| is maximal when i = m. Swap the
entries of y indexed m and m+ 1, the corresponding rows of A and
H, and the corresponding columns of B.

2. If m ≤ n− 2 then set t0 := sqrt(H2
mm +H2

m,m+1), t1 := Hmm/t0 and
t2 := Hm,m+1/t0; for i := m to n: set t3 := Him, t4 := Hi,m+1,
Him := t1t3 + t2t4 and Hi,m+1 := −t2t3 + t1t4; endfor; endif.

3. For i := m+ 1 to n: for j := min(i− 1,m+ 1) to 1 step −1: set
t := round(Hij/Hjj) and yj := yj + tyi; for k := 1 to j: set
Hik := Hik − tHjk; endfor; for k := 1 to n: set Aik := Aik − tAjk and
Bkj := Bkj + tBki; endfor; endfor; endfor.

4. If the largest entry of A exceeds the precision, then fail, else if a
component of the y vector is very small, then output the relation
from the corresponding column of B, else go back to Step 1.



For big problems, the parallelization of PSLQ has been vital, especially
for the magnetic moment of the electron. For smaller problems, there is
now a handy alternative.

2.2 LLL

In 1982, Arjen Lenstra, Hendrik Lenstra and László Lovász gave the LLL
algorithm for lattice reduction to a basis with short and almost orthogonal
components. An extension of this underlies lindep in Pari-GP.

$ Z53=0.03770767298484754401130478;

$ P63=107.71102484102;

$ V=[P63,Z53,zeta(3)*zeta(5),zeta(8)];

$ for(d=10,16,U=lindep(V,d);U*=sign(U[1]);print([d,U~]));

[10, [12, 44, -936, -127]]

[11, [4, -827, -460, 173]]

[12, [4, -827, -460, 173]]

[13, [4, -827, -460, 173]]

[14, [5, -432, -1260, 1044]]

[15, [5, -432, -1260, 1044]]

[16, [196, 1652, -9701, -9045]]



3 1999: Improvements and parallelization

Multi-level improvement: perform most operations at 64-bit precision,
some at intermediate precision (we chose 125 digits) and only the bare
minimum of the most delicate operations at full precision (more than
10000 digits, for some big problems).

Multi-pair improvement: swap up to 0.4n disjoint pairs of the n indices
at each iteration. In this case, it is not proven that the algorithm will
succeed, but it ain’t yet been found to fail.

Parallelization: distribute the disjoint-pair jobs; for each pair, distribute
the full-precision matrix multiplication in the outermost loop.

3.1 Fourth bifurcation of the logistic map

Working at 10000 digits, we found that the constant associated with the
fourth bifurcation is the root of a polynomial of degree 240.



3.2 Alternating sums

We tested my conjecture on alternating sums defined by

ζ

 s1, s2 · · · sr
σ1, σ2 · · · σr

 :=
∑

k1>k2>···>kr>0

σk11
ks11

σk22
ks22
· · · σ

kr
r

ksrr

where σj = ±1 are signs and sj > 0 are integers, namely that at weight
w =

∑
j sj every alternating sum is a rational linear combination of

elements of a basis of size Fw+1 = Fw + Fw−1, i.e. the Fibonacci number
with index w + 1. At w = 11, integer relations of size n = F12 + 1 = 145
were readily found, working at 5000-digit precision.

3.3 Inverse binomial sums

Noting that S(4) = 17
36ζ4, I conjectured that

S(w) :=
∞∑
n=1

1

nw
(
2n
n

)
is reducible to weigth w nested sums that involve sixth roots of unity,
i.e. with σ6j = 1, above. This was confirmed for all weights w ≤ 20, with
525990827847624469523748125835264000S(20) given by 106 terms.



4 2009: Work on the BK conjecture

The BK conjecture was a rash leap based on a PSLQ dicovery:

25 · 33ζ4,4,2,2 − 214
∑

m>n>0

(−1)m+n

(m3n)3
=

25 · 32 ζ43 + 26 · 33 · 5 · 13 ζ9 ζ3 + 26 · 33 · 7 · 13 ζ7 ζ5

+ 27 · 35 ζ7 ζ3 ζ2 + 26 · 35 ζ25 ζ2 − 26 · 33 · 5 · 7 ζ5 ζ4 ζ3
− 28 · 32 ζ6 ζ23 −

13177 · 15991

691
ζ12

+ 24 · 33 · 5 · 7 ζ6,2 ζ4 − 27 · 33 ζ8,2 ζ2 − 26 · 32 · 112 ζ10,2

is reducible to MZVs of depth d ≤ 2 and their products. It means that
ζ4,4,2,2 is pushed down to depth d = 2, if we allow alternating sums in
the MZV basis. When constructing the MZV datamine, Johannes
Blümlein and Jos Vermaseren and I were able to prove this by
massive use of computer algebra. There seems little hope of proving my
discovery of pushdown at weight 21 and depth 7, where

81ζ6,2,3,3,5,1,1 + 326
∑

j>k>l>m>n>0

(−1)k+m

(jk2lm2n)3

is empirically reducible to 150 terms containing MZVs of depths d ≤ 5.



5 2015: Periods from Panzer and Schnetz

I found empirical reductions to MZVs for a pair of 7-loop periods

P7,8 =
22383

20
ζ11 +

4572

5
(ζ3,5,3 − ζ3ζ5,3)− 700ζ23ζ5

+ 1792ζ3

(
9

320
(12ζ5,3 − 29ζ8) +

45

64
ζ5ζ3

)

P7,9 =
92943

160
ζ11 +

3381

20
(ζ3,5,3 − ζ3ζ5,3)−

1155

4
ζ23ζ5

+ 896ζ3

(
9

320
(12ζ5,3 − 29ζ8) +

45

64
ζ5ζ3

)

that had been expected to involve alternating sums. These results were
later proven, one by Erik Panzer and the other by Oliver Schnetz.
They obtained complicated combinations of alternating sums which then
gave my MZV formulas by use of proven results in the datamine.
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The period from this 7-loop diagram is called P7,11 in the census of
Schnetz. All other periods up to 7 loops reduce to MZVs; only P7,11

requires nested sums with sixth roots of unity. Panzer evaluated√
3P7,11 in terms of 4589 such sums, each of which he evaluated to 5000

digits. Then he found an empirical reduction to a 72-dimensional basis.
The rational coefficient of π11 in his result was

C11 = − 964259961464176555529722140887

2733669078108291387021448260000

whose denominator contains 8 primes greater than 11, namely 19, 31,
37, 43, 71, 73, 50909 and 121577.

I built an empirical datamine to enable substantial simplification.



Let A = d log(x), B = −d log(1− x) and D = −d log(1− exp(2πi/6)x) be
letters, forming words W that define iterated integrals Z(W ). Let

Wm,n ≡
n−1∑
k=0

ζk3
k!
Am−2kDn−k

Pn ≡ (π/3)n/n!, In ≡ Cln(2π/3) and Ia,b ≡ =Z(Ab−a−1DA2a−1B). Then
√

3P7,11 = −10080=Z(W7,4 +W7,2P2) + 50400ζ3ζ5P3

+

(
35280<Z(W8,2) +

46130

9
ζ3ζ7 + 17640ζ25

)
P1

− 13277952T2,9 − 7799049T3,8 +
6765337

2
I4,7 −

583765

6
I5,6

− 121905

4
ζ3I8 − 93555ζ5I6 − 102060ζ7I4 − 141120ζ9I2

+
42452687872649

6
P11

with the datamine transformations

I2,9 = 91(11T2,9)− 898T3,8 + 11I4,7 − 292P11

I3,8 = 24(11T2,9) + 841T3,8 − 190I4,7 − 255P11

removing denominator primes greater than 3.



6 2017: Periods from Laporta in electrodynamics

The magnetic moment of the electron, in Bohr magnetons, has
electrodynamic contributions

∑
L≥0 aL(α/π)L given up to L = 4 loops by

a0 = 1 [Dirac, 1928]

a1 = 0.5 [Schwinger, 1947]

a2 = −0.32847896557919378458217281696489239241111929867962 . . .

a3 = 1.18124145658720000627475398221287785336878939093213 . . .

a4 = −1.91224576492644557415264716743983005406087339065872 . . .

In 1957, corrections by Petermann and Sommerfield resulted in

a2 =
197

144
+
ζ2
2

+
3ζ3 − 2π2 log 2

4
.

In 1996, Laporta and Remiddi [hep-ph/9602417] gave us

a3 =
28259

5184
+

17101ζ2
135

+
139ζ3 − 596π2 log 2

18

− 39ζ4 + 400U3,1

24
− 215ζ5 − 166ζ3ζ2

24
.



The 3-loop contribution contains a weight-4 depth-2 polylogarithm

U3,1 :=
∑

m>n>0

(−1)m+n

m3n
=
ζ4
2

+
(π2 − log2 2) log2 2

12
− 2

∑
n>0

1

2nn4

encountered in my study of alternating sums [arXiv:hep-th/9611004].

Equally fascinating is the Bessel moment B, at weight 4, in the
breath-taking evaluation by Laporta [arXiv:1704.06996] of 4800 digits of

a4 = P +B+E +U ≈ 2650.565− 1483.685− 1036.765− 132.027 ≈ −1.912

where P comprises polylogs and E comprises integrals, with weights 5, 6
and 7, whose integrands contain logs and products of elliptic integrals.
U comes from 6 difficult integrals, still under investigation.

The weight-4 non-polylogarithm at 4 loops has N = 6 Bessel functions:

B = −
∫ ∞
0

27550138t+ 35725423t3

48600
I0(t)K

5
0(t)dt.



6.1 Bessel moments and modular forms

Gauss noted on 30 May 1799 that the lemniscate constant

A :=
∫ 1

0

dx√
1− x4

=
(Γ(1/4))2

4
√

2π
=

π/2

agm(1,
√

2)

is given by the reciprocal of an arithmetic-geometric mean. This is an
example of the Chowla-Selberg formula (1949) at the first singular value,
seen in the talk by Dan Romick. In Bruno Salvy’s talk, we encountered
the sixth singular value, where an integral evaluated by Watson in 1939

in terms of
(∑

n∈Z exp(−
√

6πn2)
)4

gives the product of Γ(k/24) with
k = 1, 5, 7, 11, as observed by Glasser and Zucker in 1977. In 2007, I
identified a Feynman period at the fifteenth singular value, where(∑

n∈Z exp(−
√

15πn2)
)4

gives the product of Γ(k/15) with k = 1, 2, 4, 8.

With N = a+ b Bessel functions and c ≥ 0, I define moments

M(a, b, c) ≡
∫ ∞
0
Ia0 (t)Kb

0(t)t
cdt

that converge for b > a > 0. Then the 5-Bessel matrix is M(1, 4, 1) M(1, 4, 3)
M(2, 3, 1) M(2, 3, 3)

 =

 π2C π2
(
2
15

)2 (
13C − 1

10C

)
√
15π
2 C

√
15π
2

(
2
15

)2 (
13C + 1

10C

)
 .



The determinant 2π3/
√

3355 is free of the 3-loop constant

C ≡ π

16

(
1− 1√

5

) ∞∑
n=−∞

exp(−
√

15πn2)

4

=
1

240
√

5π2

3∏
k=0

Γ

 2k

15


The L-series for N = 5 Bessel functions comes from a modular form of
weight 3 and level 15 [arXiv:1604.03057]:

ηn ≡ qn/24
∏
k>0

(1− qnk)

f3,15 ≡ (η3η5)
3 + (η1η15)

3 =
∑
n>0

A5(n)qn

L5(s) ≡
∑
n>0

A5(n)

ns
for s > 2

L5(1) =
∑
n>0

A5(n)

n

2 +

√
15

2πn

 exp

(
− 2πn√

15

)

= 5C =
5

π2

∫ ∞
0
I0(t)K

4
0(t)tdt .

Laporta’s work engages the first row of the 6-Bessel determinant

det

 M(1, 5, 1) M(1, 5, 3)
M(2, 4, 1) M(2, 4, 3)

 =
5ζ4
32

associated to f4,6 = (η1η2η3η6)
2 with weight 4 and level 6.



7 Heute: Quasi-periods from Brown and Zhou

7.1 Proofs of conjectures on determinants

A few days ago, Yajun Zhou posted impressive proofs [arXiv:1711.01829]
of conjectures that Anton Mellit and I had made about determinants of
matrices of Feynman integrals. Let Mk be the k × k matrix with elements
M(a, 2k + 1− a, 2b− 1), for a and b running from 1 to k. Then I
discovered that with N = 2k + 1 = 31 Bessel functions

detM15 =
2182π120

333 520 75
√

113 139 1717 1919 2323 2929 3131

after seeking an integer relation between logs of the determinant, small
primes and π. Then I inferred a general formula which Zhou has proven.
My result for even numbers of Bessel functions is also proven and hence
the 6 Bessel determinant is secure, in quantum electrodynamics.



7.2 Brown’s quasi-periods

Recently, Francis Brown posted impressive ideas [arXiv:1710.07912] on
quasi-periods associated to modular forms. A definition of these has been
strangely elusive at weights greater than 2. For the weight 12 level 1
modular form ∆(z) := η241 with q := exp(2πiz), periods are defined via
L(∆, s) which has 11 critical values at integers s ∈ [1, 11]. At odd integers
these are given, up to rational multiples of powers of π, by ω+, while at
even integers we use ω−. Specifically, the periods are

ω+ := −70(2π)11
∫ ∞
0
y4∆(iy)dy

= −68916772.8095951947543101246553310304390699691 . . .

ω− := −6(2π)11
∫ ∞
0
y5∆(iy)dy

= −5585015.37931040186687713926379627512963503343 . . .

To define quasi-periods, Brown considers the weakly holomorphic
modular form ∆′(z), defined in terms of Klein’s j-invariant by

∆′(z) := (j2 − 1464j + 142236)∆(z) = 1/q +O(q2),

j :=
1

∆(z)

1 + 240
∑
n>0

n3qn

1− qn

3

.



The quasi-periods are

η+ = 127202100647.177094777317161298610877494045988 . . .

η− = 10276732343.6491327508171930724009209088993990 . . .

with numerical values obtainable from a determinant and permanent,

ω+η− − ω−η+ = (2π)1110!

ω+η− + ω−η+
4πω+ω−

= −
∑
c>0

I11(4π/c)

c

∑
r∈(Z/Zc)∗

exp

2πi(r − s)
c


∣∣∣∣∣∣∣
rs=1mod c

Brown is able to obtain these directly by Eichler-type integrals in the
upper half plane, taking care to avoid the singularity at infinity in ∆′.

7.3 Quasi-periods from lindep and Zhou?

I conjectured and Zhou proved the determinant condition

det
∫ ∞
0

 K0(t) K0(t)t
2

I0(t) I0(t)t
2

 I0(t)K4
0(t)tdt =

π4

2632

for the 6-Bessel problem encountered by Laporta in electrodynamics.



Using lindep, I discovered that this may be recast as

6π3 det
∫ ∞
0

 f(1/2 + iy) g(1/2 + iy)
f(1/2 + iy)y g(1/2 + iy)y

 dy = 1

with the cuspform f(z) = (η1η2η3η6)
2,

g(z)

f(z)
= w4 − 6w2 + c− 6w−2 + 9w−4,

w

3
=

(
η3
η1

)4 (η2
η6

)2
.

Amusingly, w defines an external energy for the two-loop sunrise diagram
that I evaluated in my first talk, using Domb’s enumeration of returning
walks on a honeycomb. Clearly the determinant alone cannot tell us the
value of c. The Bessel moments choose c = 2 which makes g(z)/f(z)
vanish at the pseudo-threshold w = 1, where the Feynman integral is
regular. This week, Zhou proved my empirical result, above.

It remains to be seen how, if at all, Francis Brown’s definition of
quasi-periods relates to the second column of the matrix above.



Summary

1. PSLQ and LLL have enlivened quests for analytical results.

2. PSLQ led to the Broadhurst-Kreimer conjecture.

3. PSLQ has been parallelized.

4. PSLQ and LLL have provided strong tests on conjectures.

5. PSLQ and LLL have condensed huge expressions.

6. PSLQ was of the essence in Laporta’s work in electrodynamics.

7. PSLQ and LLL led to determinants that may relate to quasi-periods.

8. Yajun Zhou’s remarkable proofs [arXiv:1711.01829; 1708.02857;
1706.08308; 1706.01068] continue to turn experimental findings
into proven mathematics.

I thank colleagues and hosts in Creswick (Victoria), Newcastle (NSW),
Mainz, Oxford, Paris, Marseille, Edinburgh, Copenhagen, Zeuthen and
Vienna.


