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Systems of Diference Equations Single Pole

“Pólya said: ‘First guess, then prove.’” (A. Bostan, 2017)

Apparent Singularities Desingularization
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Recurrences

Systems of Diference Equations Single PoleApparent Singularities Desingularization



4 / 101

Holonomic Sequences
These are holonomic:

● Fibonacci numbers
● Factorials
● Harmonic numbers
● Catalan numbers
● Sequences given by polynomial / rational functions
● Sums, products, (certain) subsequences of these

These are not:
● Sequence of prime numbers
● Bernoulli numbers
● Partition numbers
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From Single Equations to Systems
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From Single Equations to Systems
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What is a Diference System

Definition: Linear Diference System

d-dimensional column vector
invertible matrix of size d  d with entries in 

0 1 2 3 4-1-2-3-4
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Number Sequences

What is a Solution?

Definition: Linear Diference System

Systems of Diference Equations Single PoleApparent Singularities Desingularization

Meromorphic Functions

for all z where A(z) is defined.

where S is a set of isolated points.
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Number Sequences

What is a Solution?

Definition: Linear Diference System

Systems of Diference Equations Single PoleApparent Singularities Desingularization

Meromorphic Functions

for all z where A(z) is defined.

where S is a set of isolated points.
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What is a Solution?

Theorem
The set of meromorphic solutions of [A] is a vector space of dimension d over the field of 
1-periodic meromorphic functions. (Norlund 1924)
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What is a Solution?

Theorem
Any diference system [A] has a fundamental system of entire solutions. (Praagman 1986)

Theorem
The set of meromorphic solutions of [A] is a vector space of dimension d over the field of 
1-periodic meromorphic functions. (Norlund 1924)
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What is a Solution?

Theorem
Any diference system [A] has a fundamental system of entire solutions. (Praagman 1986)

Theorem
The set of meromorphic solutions of [A] is a vector space of dimension d over the field of 
1-periodic meromorphic functions. (Norlund 1924)

Theorem
For any complex number q with −Re(q) large enough, there exist d linearly independent 
meromorphic solutions which are holomorphic for −Re(z) large enough and the associated 
fundamental matrix F satisfies F(q) =   . (Ramis 1987, Barkatou 1989, Immink 1999)
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Singularities in Meromorphic Solutions
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Singularities in Meromorphic Solutions

x
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Singularities in Meromorphic Solutions

x

Number SequencesSystems of Diference Equations Single PoleApparent Singularities Desingularization



18 / 101

Singularities in Meromorphic Solutions
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Singularities in Meromorphic Solutions

x
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An Example for a Function Solution
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An Example for a Function Solution
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An Example for a Function Solution

holomorphic
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An Example for a Function Solution

holomorphic

Question: Which poles in A correspond to poles in solutions?
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Apparent Singularities

Definition
A pole of A(z) is called an apparent singularity, if any solution of [A] which is holomorphic 
in some left half-plane can be analytically continued to a meromorphic solution which is 
holomorphic at each point of 
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Previous and Related Work
Desingularization of Ore operators:

● Abramov, van Hoeij 1999
● Tsai 2000
● Abramov, Barkatou, van Hoeij 2006
● Chen, J., Kauers, Singer 2013
● Chen, Kauers, Singer 2015
● Zhang 2016

Desingularization of linear diferential systems:
● Barkatou 2010
● Barkatou, Maddah 2015

Systems of Diference Equations Single PoleApparent Singularities Desingularization



30 / 101

Desingularized

Desingularization of Operators vs. 
Desingularization of Systems

Operator of order d

System of dimension d

Operator of order d+m

System of dimension d

Original Additional solutions
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Basis Transformations
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Basis Transformations
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Basis Transformations
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Basis Transformations
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Basis Transformations
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Humble Beginnings
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Humble Beginnings
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Humble Beginnings
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Problem Statement
Let A be a         matrix with coefcients in         where q is an irreducible polynomial in z. 
Find a polynomial transformation T such that                or show that no such T exists.
If such a T exists, we call q removable.

The Algebraic Approach – Problem Statement
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Problem Statement
Let A be a         matrix with coefcients in         where q is an irreducible polynomial in z. 
Find a polynomial transformation T such that                or show that no such T exists.
If such a T exists, we call q removable.

Strategy
– Construct T as a composition of easy to understand transformations.
– Things that work for diferential equations might work for diference equations.

The Algebraic Approach – Problem Statement
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Some Very Easy Examples
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Dispersion – A Necessary Condition

Lemma
Let q be removable from A. Then there exists a positive integer   such that
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Dispersion – A Necessary Condition

Lemma
Let q be removable from A. Then there exists a positive integer   such that

Definition
We call the largest such   the dispersion of A (at q).

2
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Dispersion – A Necessary Condition

Lemma
Let q be removable from A. Then there exists a positive integer   such that

Definition
We call the largest such   the dispersion of A (at q).

2 – 3
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Dispersion Reduction

Observation: Entries in the intersection were multiplied with      → Reduced dispersion.

Idea: Reduce dispersion to zero → Singularity removed or not removal not possible.
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Column Reduced Form

Lemma
Let r be the rank of the residue matrix of A with respect to q. There exists a unimodular 
polynomial transformation S such that S[A] is of the form

where    ,     are polynomial matrices of size d × r and d × d − r respectively.
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Column Reduced Form

Lemma
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polynomial transformation S such that S[A] is of the form
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Shearing Transformation

Lemma
Let A be desingularizable at q and of the form

Any desingularizing transformation T for A can be written as           , where 

and

r columns

r times
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Assembling the Transformation
Lemma
If A is desingularizable at q with dispersion   , then there exist polynomial
transformations D, S such that (SD)[A] is either desingularized or desingularizable at
q(z + 1) with dispersion        .
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Assembling the Transformation
Lemma
If A is desingularizable at q with dispersion   , then there exist polynomial
transformations D, S such that (SD)[A] is either desingularized or desingularizable at
q(z + 1) with dispersion        .

dispersion dispersion
column reduced

S dispersionD

SD

desingularizable
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Assembling the Transformation
Lemma
If A is desingularizable at q with dispersion   , then there exist polynomial
transformations D, S such that (SD)[A] is either desingularized or desingularizable at
q(z + 1) with dispersion        .

dispersion dispersion
column reduced

S dispersionD

SD

desingularizable

Repeat       times

Systems of Diference Equations Single PoleApparent Singularities Desingularization



73 / 101

Desingularization Theorem

Lemma

Theorem
Let A be desingularizable at q. Then there exists an integer m, unimodular polynomial 
matrices                and diagonal polynomial matrices                 such that

is a desingularizing transformation for A at q. Furthermore, any other desingularizing
transformation     for A at p can be written as

with
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Our Example
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Our Example
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The Story So Far
What we did:

● Given: Diference system with irreducible polynomial as denominator.
● Can we find a polynomial basis transformation that removes the denominator?
● We know how to construct such a transformation.
● We know the dispersion → We know an upper bound for #loop iterations.

Question: How can we generalize this to several diferent poles or poles with higher multiplicity?

Systems of Diference Equations Single PoleApparent Singularities Desingularization
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Desingularization – Take One

Definition: Desingularization

We call [A] desingularizable at q if            is desingularizable at q. 
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Desingularization – Take Two
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Desingularization – Take Three

Definition: Desingularization

We call [A] desingularizable at q if there exists a polynomial transformation T s.t. 
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Definition: Desingularization
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Phi Minimality
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Phi Minimality

x x
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Phi Minimality
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Phi Minimality
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Phi Minimality

xx
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Desingularization – Take Four

Definition: Desingularization

We call [A] desingularizable at a phi-minimal q if there exists a polynomial transformation T 
s.t. 
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Desingularization – Take Four

Definition: Desingularization

We call [A] desingularizable at a phi-minimal q if there exists a polynomial transformation T 
s.t. 
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Desingularization – Take Five

Definition: Desingularization

Systems of Diference Equations Single PoleApparent Singularities Desingularization

?
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Desingularization and Rank Reduction
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From Nilpotency to the Factorial Relation

Proposition
Let   be a pole of A(z) of order         such that        is not a pole of A for all positive 
integers j. Let                           , so that             . If   is an apparent singularity for 
[A], then there exists a positive integer k such that

in particular, the matrix            is singular for some nonnegative integer j. 

Systems of Diference Equations Desingularization Apparent Singularities Number Sequences
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Apparent Implies Removable

Theorem
Let   be a pole of A(z) such that        is not a pole of A for all positive integers j. Then A 
is desingularizable at              if and only if

Systems of Diference Equations Single PoleApparent Singularities Desingularization

Theorem
Let   be a pole of A(z) such that        is not a pole of A for all positive integers j. If    is 
an apparent singularity, then A is desingularizable at 
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Conclusion

We saw:
● What are linear diference systems?
● What are apparent singularities of solutions?
● What is desingularization?
● Algorithm for removing singularities.
● Apparent Singularities are removable.
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