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Hermite Normal Forms

Given nonsingular A ∈ K[D]n×n. Compute U and H:

(i) U unimodular, i.e. invertible in K[D]n×n

(iii) U · A = H

(iii) H in (row) Hermite form , i.e.

H =



h11 h12 · · · · · · h1n

0 h22 h23 h2n
...

. . .
. . .

...
...

. . . hn−1,n
0 · · · · · · 0 hnn


hiimonic

deg hji < deg hii

.

Also called Polynomial Echelon Form in systems theory
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Popov Normal Form

Given nonsingular A ∈ K[D]n×n. Compute U and P:

(i) U unimodular,

(iii) U · A = P

(iii) P in (row) Popov form , i.e. after possibly permuting rows

P =



p11 p12 p13 · · · p1n

p21 p22 p23 p2n
...

... p33
. . .

...
...

...
. . . pn−1,n

pn1 pn,2 pn,3 · · · pnn


lcoeff (P) special
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More on Normal forms

Hermite : solving systems of linear equations

Popov :

* convert Transfer function representation to linear system
representation in linear systems theory

* also called Polynomial Echelon Form in Kailath

Also shifted Popov form : one rescales the row degrees

Also two sided Smith and Jacobson Forms (Mark’s talk)
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Example: Conversion to first order

Higher order system of linear differential equations

y′′1 (t) + (t + 2)y1(t) + t2y′′2 (t) + y2(t) + y′3(t) + y3(t) = 0
y′′1 (t) − 3y1(t) + 2t2y′′2 (t) + y′2(t) + y2(t) + y′′′′′3 (t) − y′′′3 (t) + 2t2y3(t) = 0

y′1(t) + y1(t) + y′′2 (t) + 2ty′2(t) − y2(t) + y′′′′3 (t) = 0.

Represent system in operator form

 D2 + (t + 2) t2D2 + 1 D + 1
D2 − 3 2tD2 + D + 1 D5 − D3 + 2t2

D + 1 D2 + 2tD + 1 D4

 ·
y1(t)
y2(t)
y3(t)

 = 0.

Hence can rewrite as

(row) Lcoeff =

 1 t2 0
0 1 1
0 0 1

 (col) Lcoeff =

 1 0 0
0 1 0
0 0 1


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Example

Change to new higher order system

y′′1 (t) + (t + 2)y1(t) + t2y′′2 (t) + y2(t) + y′3(t) + y3(t) = 0
y′1(t) + 3y1(t) + y′′′2 (t) + 2y′2(t) − y2(t) + y′′′3 (t) − 2t2y3(t) = 0

y′1(t) + y1(t) + y′′2 (t) + 2ty′2(t) − y2(t) + y′′′′3 (t) = 0.

Represent system in operator form D2 + (t + 2) t2D2 + 1 D + 1
D + 3 D3 + D + 1 D3 − 2t2

D + 1 D2 + 2tD + 1 D4

 ·
y1(t)
y2(t)
y3(t)

 = 0.

Hence can rewrite as

y′′1 (t) = −(t + 2)y1(t) − t2y′′2 (t) − y2(t) − y′3(t) − y3(t)

y′′′2 (t) = −y′1(t) − 3y1(t) − 2y′2(t) + y2(t) − y′′′3 (t) + 2t2y3(t)

y′′′′3 (t) = −y′1(t) − y1(t) − y′′2 (t) − 2ty′2(t) − y2(t)
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Hermite and Popov are connected:

Monomials on vectors K1×n[z] :

zαej = [0, . . . , 0, zα, 0, . . . , 0]

Ordering on monomials of K1×n[z] :

Position over Term (POT):

zαei < zβej ⇐⇒ i < j or i = j and α < β

If M submodule of K1×n[z] then can speak of Gröbner bases.

POT reduced Gröbner bases for M ⇐⇒ M in Hermite Form.

Hermite to Popov via FGLM: PhD thesis J. Middeke (2011)
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Computation in

Polynomial Domains
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Polynomial Matrices

- Fast, deterministic algorithms for Hermite and Popov

- Complexity : O∼ (nωdse) where s bounded by average

: of row and column degrees of A
: output size O(n2s), =⇒ good complexity.

G. Labahn, V. Neiger and W. Zhou,
Fast, deterministic computation of determinants and
Hermite normal forms of polynomial matrices,
To appear in Journal of Complexity

V. Neiger and Thi Xuan Vu,
Computing Canonical Bases of Modules of Univariate
Relations, Proceedings of ISSAC’17, (2017).
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Previous work : Hermite Form

- Polynomial-time over Q[x] : Kannan 1985.

- O∼(n4d) : Hafner-McCurley 1991 deterministic
- O∼(nω+1d) : Hafner-McCurley (1991), Villard (1996)

Storjohann and L. (1996) deterministic

- O∼(n3d2) : Mulders and Storjohann (2003) deterministic

- O∼(n3d) : Gupta and Storjohann (2012) probabilistic

- O∼(nωd) : Gupta and Storjohann (2012) probabilistic

- O∼(nωs) : L.-Neiger-Zhou deterministic

Vienna 2017 Computation of normal forms for polynomial and maybe Ore matrices 12/29



Techniques

(1) Triangularize

Finding Diagonals

Complexity

(2) Normalize to Hermite Form

(3) Normalize to (shifted) Popov Form
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Finding Diagonal Elements

Given nonsingular A: Partition U and A and reduce via

U · A =
[
Uu

Ud

] [
A` Ar

]
=

[
B1 ∗

0 B2

]
.

Here

(i) Ud a left kernel basis of A`

(ii) B1 (= Uu · A`) is nonsingular and a row basis of A`.
(iii) B2 = Ud · Ar,

Recurse on B1 and B2 to get diagonal elements

Important to control size (measured by row degrees).

Cannot actually compute all of U - it’s too big.
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Approach for Hermite

Triangularize A (fast for all 3 steps)

- Gives diagonal entries of H which can be large

Reduce remaining off-diagonal entries (fast)

Remember: Avoid computing unimodular multiplier U
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Size measures : Shifted Degrees

The row degree of a row vector p is

rdeg p = max
1≤i≤n

[
deg p(i)

]
.

The ~s-row degree of p is

rdeg~s p = max
1≤i≤n

[
deg p(i) + si

]
= rdeg p · x~s.

- e.g. rdeg
[
x x2

]
= 2, rdeg [3,1]

[
x x2

]
= rdeg

[
x4 x3

]
= 4

- For any matrix A: rdeg −~s A ≤ 0 same as cdeg A ≤ ~s
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Minimal Kernel Bases

Given F ∈ K[z]m×n, m ≤ n:

A Left Kernel Basis for F is a K[z] module basis for

{ p ∈ K[x]m | p · F = 0 }

Can represent basis as matrix M ∈ K[z]∗×m.

Minimal Kernel Basis if matrix M is row reduced,

Shifted ~s-Minimal Kernel Basis if M · z~s is row reduced.
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Row Bases

Given F ∈ K[x]m×n with m ≥ n.

A Row Basis for F is a K[x] module basis for

{ q ∈ K[x]n | ∃ p ∈ K[x]m with q = p · F }

Again

(i) Represent row basis as full rank matrix T ∈ K[x]r×n.

(ii) Can find unimodular matrix U with U · F =
[
T
0

]
.
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Costs

F ∈ K [x]n×n, ~s ∈ Zm bounds row degrees,
∑
~s ≤ ξ

Theorem: (Zhou,L,Storjohann) ISSAC (2012)
~s-Minimal left kernel basis computation costs O∼(mωs).

Note: depends on fast order bases computation Zhou-L. (2009)

Theorem: (Zhou, L (ISSAC 2013)
Row basis computation costs O∼(mωs).

Note: depends on fast Nullspace bases computation.
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Complexity

F ∈ K [x]n×m, ~s ∈ Zn bounds row degrees,
∑
~s ≤ ξ

Theorem
For M a ~s-minimal kernel basis of F:

∑
rdeg~s M ≤

∑
~s

Theorem
(i) A ∈ K [x]n×m, m ≤ n, ~s ∈ Zn bounding row degrees of A
(ii) B ∈ K [x]k×n with k ∈ O (n),

∑
rdeg~s B ≤

∑
~s ∈ O (ξ)

Multiply B and A : O∼(m2nω−2s) ⊂ O∼(nωs), s = ξ/n.

Theorem

A ∈ K [x]n×n. Diagonals costs O∼ (nωdse) where s =
∑

cdeg A
n .
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Determinants

Diagonals not enough - need to worry about unimodular part.

det A =
det B1 · det B2

det U

For det U = det [ U` Ur] we do:

1 det U = det U mod z = det U = det [U`,Ur]

2 V = U−1 =

[
Vu

Vd

]
3 Ur and Vu determined in column bases computation

4 Find U`
∗ such that U∗ = [U`

∗,Ur] is unimodular

5 Let Vu = Vu mod z. Then det U = det U∗

det VuU`
∗
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Rest : Reduction of Off-diagonals

Know : ~δ diagonal degrees of H. Set µ = max(~δ)

A · x~µ−~δ
reduce
−−−−−−−→ R · x~µ−~δ

normalize
−−−−−−−−−−→ H = lc

−~δ(R)−1 · R

where R is any −~δ-row reduced form of A.

Problem : Shift ~µ − ~δ might be too large

Answer : Partial linearization of Storjohann (2007): A→ L(A)

Smooths shifts, keeps properties of A while enlarging a bit.
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Partial Linearization

Consider H with diagonal degrees (2, 37, 7, 18).

H =


(2) [36] [6] [17]

(37) [6] [17]
(7) [17]

(18)

 ,
[d] : degree at most d and (d) : monic , degree exactly d.

δ = 1+ b(2+ 37+ 7+ 18)/4c = 17. Construct by “expanding columns”:

H̃ =


(2) [16] [16] [2] [6] [16] 0

[16] [16] (3) [6] [16] [0]
(7) [16] [0]

[16] (1)

 .
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H and H̃ are related by H = H̃ · E~δ where

E~δ =



1 0 0 0
0 1 0 0
0 x17 0 0
0 x34 0 0
0 0 1 0
0 0 0 1
0 0 0 x17


Insert elementary rows in H̃ by

L~δ(H) =



(2) [16] [16] [2] [6] [16] [0]
x17 −1

x17 −1
[16] [16] (3) [6] [16] [0]

(7) [16] [0]
x17 −1
[16] (1)


Column degrees ~d = (2, 17, 17, 3, 7, 17, 1) - maximum 17.
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Main property kept : shifted row reduction.

Ax~µ−~δ
reduce
−−−−−−−→ Rx~µ−~δ

normalize
−−−−−−−−−→ H = lc

−~δ(R)−1R
| |

partial linearization partial linearization
↓ ↓

L~δ(A)x~m−~d
reduce
−−−−−−−→ R̂x~m−~d

normalize
−−−−−−−−−→ L~δ(H) = lc

−~d(R̂)−1R̂

.

Theorem

Let A ∈ K[x]n×n nonsingular with ~δ the degrees of the diagonal entries
of the Hermite form.

Then the Hermite form is computed using O∼(nωd) field operations.
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Improving the Complexity

Repeat : partial linearization (this time with rows) :

(i) Enlarge : A→ Lc(A)

- size of Lc(A) at most twice size of A

- degree Lc(A) at most average of A

(ii) Compute Hermite form of Lc(A)

(iii) H is found in upper left corner of Hermite form of Lc(A)

Theorem
A ∈ K[x]n×n nonsingular. Hermite form computed: O∼(nωdse).
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Results specific to Ore domain

M. Giesbrecht and M. Sub Kim, (2013) Domain A ∈ F (t)[Dt]n×n

- Hermite: Polynomial F operations in n, degD A, and degt A
(also polynomial in the coefficient bit-length when F = Q).

M. Barkatou, C. El Bacha, E. Pflügell, G.L. (2013)

- Two-sided block Popov form for A ∈ F [[t]][Dt]n×n

B. Beckermann, H. Cheng and G.L, (2006)

- Fraction-free row reduction Ore matrices

Order bases for Ore matrices

M. Khochtali and A. Storjohann, (ISSAC 2017)

- Fraction-free Popov for Ore matrices
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Thanks

To the organizers for the invitation

To the audience for listening

Vienna 2017 Computation of normal forms for polynomial and maybe Ore matrices 28/29



Complexity

Proof.

If cost : g(n) then recurrence relation: (with s = ξ
n )

g(n) ∈ O∼(nωdse) + g(dn/2e) + g(bn/2c)

∈ O∼(nω−1ξ + nω) + g(dn/2e) + g(bn/2c)

∈ O∼(nω−1ξ + nω) + 2g(dn/2e)

∈ O∼(nω−1ξ + nω) = O∼(nωdse).

�
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