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Hermite Normal Forms J

Given nonsingular A € K[D]". Compute U and H:

(i) U unimodular, i.e. invertible in K[D]>"
(i) U-A=H

(iii) Hin (row) Hermite form , i.e.

[ Ay o e e By,
0 hxn hos hon h;monic
H=| : T : )
: Byt deg /;; < deg h;
0 o i 0 hy,
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Popov Normal Form ]

Given nonsingular A € K[D]"™". Compute U and P:

(i) U unimodular,

(i) U-A=P

(iiiy P in (row) Popov form , i.e. after possibly permuting rows

[ P11 P12 P13
P21 P22 P23

P-= : : P33

L Pn1 Pn2 Pnj3

Plin
P2n

Pn-1.n
Pnn

Icoeff (P) special
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More on Normal forms J

@ Hermite : solving systems of linear equations
@ Popov :

* convert Transfer function representation to linear system
representation in linear systems theory

*

also called Polynomial Echelon Form in Kailath

@ Also shifted Popov form : one rescales the row degrees

@ Also two sided Smith and Jacobson Forms (Mark’s talk)
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Example: Conversion to first order |

Higher order system of linear differential equations

YO+ @+ + 2y +y()  + Vi +y = 0
YO =3y + 2290 +yy(0+ya(t) + WO =y O +22y3(0) = 0
Y@+ + Y0 +250) -y + o = 0.
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Example: Conversion to first order ]

Higher order system of linear differential equations

YO +@+200) + 2yt + (1) + Vi +y@0 = 0
W@O=300 + 2550 +y,0+n@ + ¥O-yO+22y30) = 0
YO+ + YO +250 -+ o = 0.

Represent system in operator form

D>+(t+2) D*+1 D+1 yi(t)
D*-3  2uD*+D+1 D’-D*>+2 |-|ym(@)]|=0.
D+1 D* +2tD + 1 D* 3(0)
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Example J

Higher order system of linear differential equations

WO+@+29m@  + 2yy) +ya(r)  + ;O +y3@ = 0
YO+3010)  + W O+250 -0+ WWO-2:0 = 0
O+ + YO +2050 -y + W = 0.

Represent system in operator form
D*+(@+2) rD*+1 D+1 yi(t)

D+3 D}*+2D-1 D=2 |- |»n@®|=0.
D+1 D> +2tD + 1 D* 3(1)
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Example J

Higher order system of linear differential equations

WO+@+29m@  + 2yy) +ya(r)  + ;O +y3@ = 0
YO+3010)  + W O+250 -0+ WWO-2:0 = 0
O+ + YO +2050 -y + W = 0.

Represent system in operator form

D>+(t+2) D’ +1 D+1 yi(t)
D+3 D*+2D—1 D*=2¢ |-|»n®|=0.

D+1 D> +2tD + 1 D* 3(1)
1 20
(row) Lcoeff = 0 1 1
0 0 1
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Example J

Higher order system of linear differential equations

WO+@+29m@  + 2yy) +ya(r)  + ;O +y3@ = 0

VIO +3y1(0)  + YO+ 2050 =B+ yg”(t)—212y3(t) = 0

NO+y1@)  + YO+ 2050 -y + 5w = 0.

Represent system in operator form
D>+ (t+2) D*+1 D+1 yi(t)
D+3 D*+2D—-1 D3-2¢ |-|»n®|=0.

D+1 D> +2tD + 1 D* 3(1)

1 2 0 1 00

(row) Lcoeff = 0 1 1 (col) Lcoeff =1 0 1 0

0 0 1 0 0 1

Vienna 2017 Computation of normal forms for polynomial and maybe Ore matrices 6/29



Example J

Change to new higher order system

YO+ @+ 2y + 2y + () + V0 +y = 0
V@O +3010)  + 3 O+250 -n@  + WO-202:0 = 0
V@O +y10)  + Y@+ 250 - )+ V=0

Represent system in operator form

D>+(t+2) £D*+1 D+1 yi()
D+3 D’+D+1 D>-272 |-|y@®]=0.
D+1 D?>+2tD + 1 D* 3(1)

Hence can rewrite as
V(1) = =(t + 1) = 235 (1) = y2(0) = ¥;() — y3(t)
V(1) = =y () = By1(0) = 295(0) + ya(t) — ¥5' (1) + 27y3(8)
V() = =y () = yi(6) = y5 (1) = 2ty5(1) — 2 (1)
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Hermite and Popov are connected: J

Monomials on vectors K>"[z] :
z%¢ =10,...,0,2%,0,...,0]
Ordering on monomials of K>"[z] :
@ Position over Term (POT):
"ej<Pe; &= i<j ori=janda<p

If M submodule of K*"[z] then can speak of Grébner bases.
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Hermite and Popov are connected: J

Monomials on vectors K>"[z] :
z%¢ =10,...,0,2%,0,...,0]
Ordering on monomials of K>"[z] :
@ Position over Term (POT):
"ej<Pe; &= i<j ori=janda<p
If M submodule of K*"[z] then can speak of Grébner bases.

POT reduced Grobner bases for M <= M in Hermite Form.
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Hermite and Popov are connected: J

Monomials on vectors K>"[z] :
2%¢; = [0,...,0,2%,0,...,0]
Ordering on monomials of K>"[z] :

@ Term over Position (TOP):
e <Pe; = a<p ori=jandi<j
If M submodule of K*"[z] then can speak of Grébner bases.

TOP reduced Grobner bases for M < M in Popov Form.
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Hermite and Popov are connected: J

Monomials on vectors K>"[z] :
z%¢ =10,...,0,2%,0,...,0]
Ordering on monomials of K>"[z] :
@ Term over Position (TOP):
e <Pe; = a<p ori=jandi<j
If M submodule of K*"[z] then can speak of Grébner bases.

TOP reduced Grobner bases for M < M in Popov Form.

Hermite to Popov via FGLM: PhD thesis J. Middeke (2011)
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Computation in
Polynomial Domains
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Polynomial Matrices J

- Fast, deterministic algorithms for Hermite and Popov

- Complexity : O~ (n“[s]) where s bounded by average
of row and column degrees of A
output size O(n*s), = good complexity.
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Polynomial Matrices J

- Fast, deterministic algorithms for Hermite and Popov

- Complexity : O~ (n“[s]) where s bounded by average
of row and column degrees of A
output size O(n’s), = good complexity.

@ G. Labahn, V. Neiger and W. Zhou,
Fast, deterministic computation of determinants and
Hermite normal forms of polynomial matrices,
To appear in Journal of Complexity

@ V. Neiger and Thi Xuan Vu,
Computing Canonical Bases of Modules of Univariate
Relations, Proceedings of ISSAC’17, (2017).
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Previous work : Hermite Form

Vienna 2017

Polynomial-time over Q[x] : Kannan 1985.

O~ (n*d) : Hafner-McCurley 1991 deterministic

O~ (n“*'d) : Hafner-McCurley (1991), Villard (1996)
Storjohann and L. (1996) deterministic

O~ (n*d?) : Mulders and Storjohann (2003) deterministic
O~ (n’d) : Gupta and Storjohann (2012)  probabilistic
O~ (n“d) : Gupta and Storjohann (2012) probabilistic

O~ (n“s) : L.-Neiger-Zhou deterministic
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Techniques

(1) Triangularize
e Finding Diagonals

o Complexity
(2) Normalize to Hermite Form

(3) Normalize to (shifted) Popov Form
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Finding Diagonal Elements J

Given nonsingular A: Partition U and A and reduce via

U.-A = [g»ﬂ A A _ []?)1 1:2].
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Finding Diagonal Elements J

Given nonsingular A: Partition U and A and reduce via

U.-A = [g»ﬂ A A _ []?)1 1:2].

Here

(i) U, aleft kernel basis of A,
(i) By (= U, - Ay) is nonsingular and a row basis of A,.
(iii) B, =U;-A,,

Recurse on B, and B, to get diagonal elements
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Finding Diagonal Elements ]

Given nonsingular A: Partition U and A and reduce via

U.-A = [g»ﬂ A A _ [1?)1 1:2].

Here

(i) U, aleft kernel basis of A,
(i) By (= U, - Ay) is nonsingular and a row basis of A,.
(iii) B, =U;-A,,

Recurse on B, and B, to get diagonal elements

Important to control size (measured by row degrees).
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Finding Diagonal Elements ]

Given nonsingular A: Partition U and A and reduce via

U.-A = [g»ﬂ A A _ [1?)1 1:2].

Here

(i) U, aleft kernel basis of A,

(i) By (= U, - Ay) is nonsingular and a row basis of A,.
(i) B, =U,;-A,,
Recurse on B, and B, to get diagonal elements
Important to control size (measured by row degrees).

Cannot actually compute all of U - it’s too big.
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Approach for Hermite J

@ Triangularize A (fast for all 3 steps)

- Gives diagonal entries of H which can be large

@ Reduce remaining off-diagonal entries (fast)

@ Remember: Avoid computing unimodular multiplier U
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Size measures : Shifted Degrees ]

@ The row degree of a row vector p is

rdegp = max [degp(i)] .
I<i<n
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Size measures : Shifted Degrees ]

@ The row degree of a row vector p is

rdegp = max [degp(i)] .
I<i<n

@ The s-row degree of p is

rdegz p = {r<11a<)§l [degp(i) + si] = rdegp X

- eqg. rdeg [x x2] =2, rdeg [3,1] [x xz] = rdeg [x4 x3] =4
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Size measures : Shifted Degrees

@ The row degree of a row vector p is

rdegp = max [degp(i)] .

1<i<n

@ The s-row degree of p is

rdegz p = {r<11a<)§l [degp(i) + si] = rdegp X

- eqg. rdeg [x x2] =2, rdeg [3,1] [x x2:| = rdeg [x4 x3] =4

- Forany matrix A: rdeg_yA <0 sameas cdegA <¥
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Minimal Kernel Bases J

Given F € K[z]™", m<n:

A Left Kernel Basis for F is a K[z] module basis for

{peKx]" | p-F=0}

Can represent basis as matrix M € K[z]"™".
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Minimal Kernel Bases J

Given F € K[z]™", m<n:

A Left Kernel Basis for F is a K[z] module basis for

{peKx]" | p-F=0}

Can represent basis as matrix M € K[z]"™".

Minimal Kernel Basis if matrix M is row reduced,

Shifted s-Minimal Kernel Basis if M - z* is row reduced.
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Row Bases

Given F € K[x]™" with m > n.

A Row Basis for F is a K[x] module basis for

{qeKx]" | Ap e Kx]" with q=p-F}
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Row Bases )

Given F € K[x]™" with m > n.

A Row Basis for F is a K[x] module basis for
{qeKx]" | ApeKx]" with q=p-F}
Again
(i) Represent row basis as full rank matrix T € K[x]™".

(i) Can find unimodular matrix U with U - F = [r(l;]
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Costs J

F € K[x]™", §e€Z™ bounds row degrees, >5<&

Theorem: (Zhou,L,Storjohann) ISSAC (2012)
s-Minimal left kernel basis computation costs O~ (m®s). J

Note: depends on fast order bases computation Zhou-L. (2009)
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Costs J

F € K[x]™", §e€Z™ bounds row degrees, >5<&

Theorem: (Zhou,L,Storjohann) ISSAC (2012)
s-Minimal left kernel basis computation costs O~ (m®s). J

Note: depends on fast order bases computation Zhou-L. (2009)

Theorem: (Zhou, L (ISSAC 2013)
Row basis computation costs O~ (m“s). J

Note: depends on fast Nullspace bases computation.
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Complexity |

F e K[x]™", §eZ"bounds row degrees, >5<&

Theorem
For M a s-minimal kernel basis of F: Y rdeg; M < ) §

Theorem
(i) AeK[x]™, m<n, §eZ"bounding row degrees of A
(i) BeKI®" withke O(n), Y,rdegz;B <Y 5€ 0(&)
Multiply B and A : O (m*n®%s) c O~ (n%s), s=&/n.
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Complexity ]

F e K[x]™", §eZ"bounds row degrees, >5<&

Theorem
For M a s-minimal kernel basis of F: Y rdeg; M < ) § J

Theorem
(i) AeK[x]™, m<n, §eZ"bounding row degrees of A
(i) BeKI®" withke O(n), Y,rdegz;B <Y 5€ 0(&)

Multiply B and A : O (m*n®%s) c O~ (n%s), s=&/n.

Theorem

A € K [x]™". Diagonals costs O~ (n“[s]) where s = 254,
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Determinants J

Diagonals not enough - need to worry about unimodular part.
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Determinants J

Diagonals not enough - need to worry about unimodular part.

det B, det B,

det A =
det U
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Determinants J

Diagonals not enough - need to worry about unimodular part.

det B - det B,

det A =
det U

For det U = det [ U, U,] we do:

@ det U =det Umod z =det U =det [U,, U,]

\%
—_1-! — u
@Vv-=U _[Vd}

@ U, and V, determined in column bases computation
@ Find U, such that U* = [U,*, U,] is unimodular

B _ _detuv
@ LetV, =V, modz Then detU = detv.o,
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Rest : Reduction of Off-diagonals ]

Know : & diagonal degrees of H. Set u = max(3)

i3 reduce S 2 normalize
> _

R x"0 H=1lc ;R R

where R is any —5-row reduced form of A.
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Rest : Reduction of Off-diagonals J

Know : & diagonal degrees of H. Set u = max(3)

S 2 reduce S 2 normalize
—_— _—

A-xH0 R x"0 H=1lc ;R R

where R is any —5-row reduced form of A.

Problem : Shift 2 — & might be too large
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Rest : Reduction of Off-diagonals J

Know : & diagonal degrees of H. Set u = max(3)

S 2 reduce S 2 normalize
—_— _—

A-xH0 R x"0 H=1lc ;R R

where R is any —é-row reduced form of A.
Problem : Shift 2 — & might be too large
Answer : Partial linearization of Storjohann (2007): A — L(A)

Smooths shifts, keeps properties of A while enlarging a bit.
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Partial Linearization J

Consider H with diagonal degrees (2,37,7, 18).

(2 [36] [6] [17]
(37) (6] [17]
[y

(18)

H=

[d] : degree at most d and (d) : monic , degree exactly d.

6=1+12+37+7+18)/4] =17. Construct by “expanding columns”:

() [16] [16] [2] [6] [16] O
[16] [16] (3) [6] [16] [O]
(1 [16] [0]}

[16] (1)

H=
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Hand Harerelated by H =H-&; where

1 0 0 0]
0 1 0 0
0 x7 0 0

E=10 x* 0 0
00 1 0
00 0 1
0 0 0 X

Insert elementary rows in H by

() [16] [16] [2] [6] ([16] [O]]

x\7 -1
X7 -1
L;H) = [16] [16] (3) [6] [16] [O]
(7 [16] [0]
7 -1
[16] (1)]

Column degrees d= 2,17,17,3,7,17,1) - maximum 17.
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Main property kept : shifted row reduction.

reduce

Axﬁ_g Rxﬁ_g normalize
partial linearization
S 3 reduce A 3 normalize
m—d m—d
.Eg(A)X Rx

Theorem

H=1Ic;R)'R
|

partial linearization

3
L;H) = 1c_;R)'R

Let A € K[x]™" nonsingular with § the degrees of the diagonal entries

of the Hermite form.

Then the Hermite form is computed using O~ (n“d) field operations.
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Improving the Complexity ]

Repeat : partial linearization (this time with rows) :

() Enlarge : A — L°(A)
- size of L°(A) at most twice size of A

- degree L£°(A) at most average of A

(i) Compute Hermite form of £°(A)

(i) His found in upper left corner of Hermite form of £°(A)

Theorem
A € K[x]™" nonsingular. Hermite form computed: O~ (n“[s]). J
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Results specific to Ore domain J

@ M. Giesbrecht and M. Sub Kim, (2013) Domain A € F(r)[D,]™"

- Hermite: Polynomial ¥ operations in n, deg,, A, and deg, A
(also polynomial in the coefficient bit-length when # = Q).

@ M. Barkatou, C. El Bacha, E. Pfligell, G.L. (2013)
- Two-sided block Popov form for A € F[[¢]][D,]""

@ B. Beckermann, H. Cheng and G.L, (2006)
- Fraction-free row reduction Ore matrices

Order bases for Ore matrices

@ M. Khochtali and A. Storjohann, (ISSAC 2017)
- Fraction-free Popov for Ore matrices
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Thanks J

e To the organizers for the invitation

e To the audience for listening
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Complexity )
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Complexity )

Proof.
If cost : g(n) then recurrence relation: (with s = £)

n

gn) € O~(n®[s]) +g([n/21) + g(Ln/2])
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Complexity

Proof.
If cost : g(n) then recurrence relation: (with s = £)

n

gn) € O~(n®[s]) +g([n/21) + g(Ln/2])
€ 0“7 'é+n®) +g(n/2]) + gln/2])
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Complexity

Proof.
If cost : g(n) then recurrence relation: (with s = £)

n

O~ (n“[s1) + g(Tn/21) + g(Ln/2))

0~ (n7'& +n) + g(Tn/21) + g(ln/2))
0~ (n“7'& + n®) + 2g(Tn/21)

O~ (n~'¢ + n®) = 0~ (n“Is)).

g(n)

€
€
€
S
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