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y' =1,
y(0)=y(1) =0

@ Differential operators
@ Boundary conditions (evaluations)
@ Integral operators (Green’s operators) G: f— y

(Rosenkranz '03, '05, Rosenkranz-R '08, Rosenkranz-R-Tec-Buchberger '12, Korporal-R '14, Hossein Poor-Raab-R '16 '18)

Goal: Develop constructive algebraic systems theory for linear ordinary
integro-differential equations with boundary conditions

(Quadrat-R "13, Quadrat-R ’17)
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Definition

Let (R, d) be a commutative differential ring with ring of constants K.
LetdR = Rand [: R — R be a K-linear operation on R such that

aff=f

for f € R. We call (R, 9, f) a (generalized) integro-differential ring and
we define the evaluation operation on R by

Ef = f - [of.

(Standard) integro-differential algebra, if E is multiplicative

Efg = (Ef)Eg (Rosenkranz 05, Rosenkranz-R '08)
Differential Rota-Baxter algebra, f satisfies the Rota-Baxter identity

(ff)fg = fffg + f(ff)g (Guo-Keigher '08)
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Polynomials K[x] with Q € K

J . xk+1
=2 and [x= o
E = id - [4 acts by
1 k=0
ExK = )
0 otherwise

thatis, E: p(x) + p(0), and is multiplicative

Differential algebras closed under integration and
with multiplicative evaluation:

@ Formal power series
@ Smooth and analytic functions
@ Exponential polynomials
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R = K[x, 1,In(x)] with d = & and [ defined recursively by

K41
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In(x)"* _
n+1 k=-1
E = id - [0 acts by
1 k=n=0
ExX In(x)" = ,
0 otherwise

and is not multiplicative: for f = x and g = 1

Efg=1 and Ef=Eg=0

Laurent series: K((x))[In(x)]
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Integro-differential operators

Linear operators
@ multiplication operators induced by f € R acting as g — fg

@ differential operator 0
e integral [
@ evaluation E = id - [8

Understand all relations between these operators?

Algorithmic approach via tensor reduction systems
for tensor algebras and rings

(Bergman '78, Hossein Poor-Raab-R 16 '18)

@ operator product (composition) is represented by tensor product
@ allows for a basis-free treatment of multiplication operators and
@ computations with general elements in integro-differential algebras
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Tensor reduction systems

Reduction rule (homomorphism) for multiplication operators

fegm fg
Ambiguity fegeh
_ M
S-polynomial fg®h - fegh

— (fg)h—f(gh) =0 forallf,g,heR

Definition

An ambiguity is resolvable if all S-polynomials can be reduced to zero.

Theorem (Diamond Lemma for tensors)

Given a tensor reduction system, every tensor has a unique normal form
iff all ambiguities are resolvable.

In that case, the tensor algebra factored by the reduction ideal is
isomorphic to the algebra of irreducible tensors. (Bergman '78)
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Reduction rules

fegmr— fg and 0@ f> f®J+ of
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Irreducible tensors (normal form)

feo®
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Differential operators
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Completion: Add new rules for S-polynomials not reducing to zero

Ambiguity 0® [®0
S-polynomial e®I-0®(e—E)=0®E
New reduction rule 0QEmrH 0
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S-polynomial (¢-E)® [- [ee=-E® [

New reduction rule E® [0



Completion (cont.)
Ambiguity [®oef

(e-E)of- [®(f®d+ )



Completion (cont.)
Ambiguity [®oef
(e-E)ef- [@(fed+df)=f-Eaf- [@fed- [®df



Completion (cont.)

Ambiguity [®oef
(e-BE)of- [e(fed+df)=f-Eef- [efed- [®df
New rule [®f®d > f - Eaf — [@0f



Completion (cont.)

Ambiguity [®oef
(e-E)®f- [@(fed+df)=f-Eaf- [efed- [@df
New rule [®f®d > f - Eaf — [@0f

Integration by parts in R

[fog = fg - Efg - [(8f)g



Completion (cont.)

Ambiguity [®oef
(e-E)of- [@(fed+df)=f-Eaf- [ef®d- [eof
New rule [®f®d > f - Eaf — [@0f

Integration by parts in R

[fog = fg - Efg - [(8f)g

Ambiguity [efede [
(f-Eof - [@0f)® [ - [@f®c



Completion (cont.)

Ambiguity [®oef
(e-E)of- [@(fed+df)=f-Eaf- [ef®d- [eof
New rule [®f®d > f - Eaf — [@0f

Integration by parts in R

[fog = fg - Efg - [(8f)g

Ambiguity [efede [

(f-Eof - [@0f)® [- [efec=fo [-Esfe [- [edfe [~ [of



Completion (cont.)

Ambiguity [®oef
(e-E)of- [@(fed+df)=f-Eaf- [ef®d- [eof
New rule Jofed - f - Eof — [@df
Integration by parts in R
[fog = fg - Efg - [(8f)g
Ambiguity [efede [
(f-Eof - [@0f)® [- [efec=fo [-Esfe [- [edfe [~ [of

New rule [efe[ - [fof - [e[f-Ee[fef



Completion (cont.)

Ambiguity [®oef
(e-E)of- [@(fed+df)=f-Eaf- [ef®d- [eof
New rule Jofed - f - Eof — [@df
Integration by parts in R
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Ambiguity [efede [
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Modified Rota-Baxter identity in R

(Hfg=[tfa+ [([Hg+E([F)[g



Reduction system for integro-differential operators

“Grobner basis” of all relations

K 1> ¢
FF fog - fg
DF 0®f — fRJ + Of
DE ORE — 0

EE EQE — E

El E®[ 0

DI B[ e

IE [®E - [18E

ID f®(9 —ec—E

I e[+ [1&f - [®[1-Ee[1a[
IFE  [®f9E - [foE
EFE E®fQE — (Ef)E

IFD  [®f®d — f— [@3f — Eef

IFl - [efe[ - [fof- [&ff-E®[fof
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Theorem
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commutative ring of constants K has a unique normal form,
which can be written as a K-linear combination of tensors of the form

fed®, fo[®g fe®E®ged”, o feE®h® [®g

where j € Ny, f,g,h € f R, and each f and g may be absent.
These irreducible tensors form an algebra with multiplication

s-t=(set)l,

where t | denotes the normal form of a tensor t.

(Raab-R "17)
V.

An integro-differential operator (IDO) is the sum of a

differential, integral, and a boundary operator.
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Variation of constants

First-order differential differential system L=0+A with A € R
with invertible fundamental matrix Ze R: 0Z+AZ =0

Variation of constants in operator form
V=28[ez"

Verify V is right inverse of L
Using the Leibniz rule

(0+A)R®RZ >Z@0+IZ+AZ=2Q9
and using FTC

LeV=(0+A)Ze[aZ" - Z808[eZ' > 72821 51 5 ¢

Same computation for first-order systems: same rules, “just” replace
scalars by matrices and tensor algebra by tensor ring
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Taylor’s theorem (first version)

lterate
e=E+ [®)

E—l—f®8®6
E+ [QE®d + [® 20000

™
1l

E+f®E®a+---+f®"®E®a®” +f®("+1)®6®(”+‘)

Analytic translation

X X th—1
(x) f(a)+f f’(a)dt+f f 0 (a)dlty ... oty + Ry
a a a

X tn
Rn — f S f f(n+1)(tn+1 )dtn+1 000 dt1
a a
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Reducing multiple integrals (for multiplicative evaluation)

Assume that the evaluation E = id —fﬁ is multiplicative

Simplified rule for reducing double integrals

[ef - [1ef- [e[1-Es[1ef - [1&f- [e[1

With

X = f1 €R
we obtain n "1 =x"
fQcR:

Reducing multiple integrals

e — x®f—f®x
[ Zkl x®f®x




Taylor’'s theorem (second version)

First version of Taylor’s theorem

e= Zn: j®k®E®a®" + j®("+1)®6®(”+1)
k=0

Theorem (for multiplicative evaluation)

n n—k
- 2 ®k ( ) n—-k o a®(n+1)
s_kgzo ®E®a + E e _k)lx o [ex" &0




Taylor’'s theorem (second version)

First version of Taylor’s theorem

= Zn: [*eEe0™ + [ gge(nt)
k=0

Theorem (for multiplicative evaluation)

n k n n—-k
X 3 =1
= E ®k
& ®E®J +k:0 P

k n—-k o a®(n+1)
PICEDE ® [ex"*@d

flx) = f(a)+f’(a)(x—a)+---+%(x—a)”—i—m
n _4\n-k X
R, = 2 %xk fa tTK ) () dt




Taylor’'s theorem (second version)

First version of Taylor’s theorem

6= Zn: [*eBea + [*TDgge(nt)
k=0

Theorem (for multiplicative evaluation)

n

k n n—-k
— X ®k (_1 ) k n-k o, a®(n+1)
£= E 7 OE®0 +k_go—k!(n_k)!x ® [®x" 7 ®d

f(”)(a)
n!

-
—~
>
~
I

fla) + f(a)(x—a)+ -+

X _A\n
R, = f %f(”ﬂ)(t)dt
S

(X_a)n‘l‘Rn
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Summary and outlook

FTC in differential algebra

Integro-differential operators via tensor reduction systems
Completion and normal forms

Variations of constants and Taylor formula

Matrix coefficients

Algebraic theory of boundary problems (with singularities)

Include also shift operators (delay equations) or linear substitutions
Applications to algebraic systems theory

Computable integro-differential algebras (nested integrals)

Other operator algebras (discrete analogs)



