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Goal of this talk

We introduce and advertise two questions about rational functions like

1

1− (x1 + x2 + x3) + 4x1x2x3
=
∑
n∈Z3

>0

A(n)xn.

When has a rational function the Gauss property?

That is, when do the following congruences hold?

A(npr) ≡ A(npr−1) (mod pr)

Q

When is a rational function positive?

That is, when is A(n) > 0 for all n?

Q

In both cases, we will wonder about an explicit characterization.
These are not conjectures because our evidence is limited. Computer algebra!
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Goal of this talk

We introduce and advertise two questions about rational functions like

1

1− (x1 + x2 + x3) + 4x1x2x3
=
∑
n∈Z3

>0

A(n)xn.

Here, the diagonal coefficients are the Franel numbers

A(n, n, n) =

n∑
k=0

(
n

k

)3

.

EG

• As seen in previous talks, simple multivariate generating functions can
be enormously useful, for instance, in computing asymptotics.

• Time permitting, more on Apéry-like numbers later. . .
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I

Gauss congruences
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The classical Gauss congruence

ap ≡ a (mod p)
if p is prime.

THM
Fermat

aφ(m) ≡ 1 (modm)
if a is coprime to m.

THM
Euler

∑
d|m

µ(md )ad ≡ 0 (modm)
THM

Gauss

Möbius function: µ(n) = (−1)# of p|n if n is square-free, µ(n) = 0 else

If m = pr then only d = pr, d = pr−1 contribute, and we get

ap
r ≡ apr−1

(mod pr).

EG

Properties of Laurent coefficients of multivariate rational functions Armin Straub
4 / 34



The classical Gauss congruence

ap ≡ a (mod p)
if p is prime.

THM
Fermat

aφ(m) ≡ 1 (modm)
if a is coprime to m.

THM
Euler

∑
d|m

µ(md )ad ≡ 0 (modm)
THM

Gauss
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Gauss congruences

a(n) satisfies the Gauss congruences if, for all primes p,

a(mpr) ≡ a(mpr−1) (mod pr).

DEF

Equivalently,
∑
d|m

µ(md )a(d) ≡ 0 (modm).

• a(n) = an

• a(n) = Ln Lucas numbers:
Ln+1 = Ln + Ln−1

L0 = 2, L1 = 1

• a(n) = Dn Delannoy numbers: Dn =
n∑
k=0

(
n

k

)(
n+ k

k

)

EG

• Later, we allow a(n) ∈ Q. If the Gauss congruences hold for all but finitely
many p, we say that the sequence (or its GF) has the Gauss property.

• Similarly, for multivariate sequences a(n), we require

a(mpr) ≡ a(mpr−1) (mod pr).
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More sequences satisfying Gauss congruences

a(mpr) ≡ a(mpr−1) (mod pr) (G)

• realizable sequences a(n), i.e., for some map T : X → X,

a(n) = #{x ∈ X : Tnx = x} “points of period n”
Everest–van der Poorten–Puri–Ward ’02, Arias de Reyna ’05

In fact, up to a positivity condition, (G) characterizes realizability.

• a(n) = trace(Mn) Jänichen ’21, Schur ’37; also: Arnold, Zarelua

where M is an integer matrix

• (G) is equivalent to exp

( ∞∑
n=1

a(n)

n
Tn

)
∈ Z[[T ]].

This is a natural condition in formal group theory.
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Minton’s theorem

f ∈ Q(x) has the Gauss property if and only if f is a Q-linear
combination of functions xu′(x)/u(x), with u ∈ Z[x].

THM
Minton,

2014

• If u(x) =
∏s
i=1(1− αix) then

x
u′(x)

u(x)
= −

s∑
i=1

αix

1− αix
= s−

s∑
i=1

1

1− αix
.

• Assuming the αi are distinct,

s∑
i=1

1

1− αix
=
∑
n>0

(
s∑
i=1

αni

)
xn =

∑
n>0

trace(Mn)xn,

where M is the companion matrix of
∏s
i=1(x− αi) = xsu(1/x).

• Minton: No new C-finite sequences with the Gauss property!

• Can we generalize from C-finite towards D-finite?
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The multivariate case

Let f1, . . . , fm ∈ Q(x) = Q(x1, . . . , xn) be nonzero. Then

x1 · · ·xm
f1 · · · fm

det

(
∂fj
∂xi

)
i,j=1,...,m

(D)

has the Gauss property.

THM
Beukers,
Houben,
S 2017

Interesting detail: true for any of the different Laurent expansions of multivariate rational functions

Consider Q = 1− x− y − z + 4xyz:

f1 = Q =⇒ (D) =
−x+ 4xyz

Q

f1 = Q, f2 = 1− 4yz =⇒ (D) =
4xyz

Q

In particular,
1

1− x− y − z + 4xyz
has the Gauss property.

EG

There is nothing special about 4.
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(
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has the Gauss property.

THM
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Let P,Q ∈ Z[x] with Q is linear in each variable.

Then P/Q has the Gauss property if and only if N(P ) ⊆ N(Q).

THM
BHS

• Here, N(Q) is the Newton polytope of Q.

• In this case, N(Q) = supp(Q) ⊆ {0, 1}n.

Let P,Q ∈ Z[x±1].

If P/Q has the Gauss property, then N(P ) ⊆ N(Q).

PROP
BHS
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det

(
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THM
Beukers,
Houben,
S 2017

Suppose f ∈ Q(x) has the Gauss property. Can it be written as
a Q-linear combination of functions of the form (D)?

Q
BHS

• Yes, for n = 1, by Minton’s theorem.

• Yes, for f = P/Q with Q linear in all, or all but one, variables.

• Yes, for f = P/Q with Q in two variables and total degree 2.

Can
x(x+ y + y2 + 2xy2)

1 + 3x+ 3y + 2x2 + 2y2 + xy − 2x2y2
be written in that form?

EG
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Application: Delannoy numbers

Let P,Q ∈ Z[x] with Q is linear in each variable.

Then P/Q has the Gauss property if and only if N(P ) ⊆ N(Q).

THM
BHS

The Delannoy numbers Dn1,n2 are characterized by

1

1− x− y − xy =
∞∑

n1,n2=0

Dn1,n2x
n1yn2 .

By the theorem, the following have the Gauss property:

N

1− x− y − xy with N ∈ {1, x, y, xy}

In other words, for δ ∈ {0, 1}2,

Dmpr−δ ≡ Dmpr−1−δ (mod pr).

EG
Beukers,
Houben,
S 2017
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Then P/Q has the Gauss property if and only if N(P ) ⊆ N(Q).

THM
BHS

The Delannoy numbers Dn1,n2 are characterized by
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1− x− y − xy =

∞∑
n1,n2=0

Dn1,n2x
n1yn2 .

By the theorem, the following have the Gauss property:
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II

Positivity
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Positivity of rational functions

• A rational function

F (x1, . . . , xd) =
∑

n1,...,nd>0

an1,...,ndx
n1
1 · · ·xndd

is positive if an1,...,nd > 0 for all indices.

1

1− x and
1

(1− x)(1− y)
are positive.EG

1

(1− x)(1− y) + (1− y)(1− z) + (1− z)(1− x)
is positive.EG

Szegő
1933

• Szegő’s proof builds on an integral of a product of Bessel functions.
“the used tools, however, are disproportionate to the simplicity of the statement”

• Elementary proof by Kaluza (’33)
• Askey–Gasper (’72) use integral of product of Legendre functions.
• Ismail–Tamhankar (’79) systematize Kaluza’s approach by using

MacMahon’s Master Theorem.
• S (’08): simple proof using a positivity-preserving operator
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Historical motivation

1

(1− x)(1− y) + (1− y)(1− z) + (1− z)(1− x)
=
∑
k,m,n

A(k,m, n)xkymzn

• Friedrichs and Lewy conjectured positivity of A(k,m, n).

• Wanted to show convergence of finite difference approximations to(
∂

∂x

∂

∂y
+

∂

∂x

∂

∂z
+

∂

∂y

∂

∂z

)
u(x, y, z) = 0,

which transforms to the 2D wave equation.

• With ∂/∂x replaced by ∆k, ∆a(k) = a(k) − a(k − 1)

(∆k∆m + ∆k∆n + ∆m∆n)A(k,m, n) = 0.
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Generalizations

• Szegő also showed positivity of (and extension to any # of variables)

1∑4
i=1

∏
j 6=i(1− xj)

=
1

(1− x2)(1− x3)(1− x4) + · · ·+ (1− x1)(1− x2)(1− x3)

• The Lewy–Askey problem asks for positivity of

1∑
16i<j64

(1− xi)(1− xj)
=

1

(1− x1)(1− x2) + · · ·+ (1− x3)(1− x4)
.

• Non-negativity proved by a very general result of Scott–Sokal (’13):

• 1

det (
∑

(1− xi)Ai)
is non-negative if Ai > 0 are hermitian matrices.

• For the Lewy–Askey problem:

A1 =

[
1 0
0 0

]
, A2 =

[
0 0
0 1

]
, A3 =

[
1 1
1 1

]
, A4 =

[
1 e−iπ/3

eiπ/3 1

]
.

er(1−x)−β in n variables positive iff β > (n−r)/2 (or β = 0)?Q
2 6 r 6 n

With complete monotonicity of er(x)−β , this is a conjecture of Scott-Sokal (’13).

Multivariate asymptotics?
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Preserving positivity

• Positivity of the Askey–Gasper rational function
Askey–Gasper ’77

Koornwinder ’78
Ismail–Tamhankar ’79

Gillis–Reznick–Zeilberger ’831

1− (x+ y + z) + 4xyz

implies positivity, for any ε > 0, of

for β > (
√

17− 3)/2 ≈ 0.56

1

1− (x+ y + z) + (4− ε)xyz

• If F (x1, . . . , xn) is positive, so is, for 0 6 p 6 1,
Gillis–Reznick–Zeilberger ’83

S ’08
Kauers–Zeilberger ’08

Tp(F ) =
F
(

px1
1−(1−p)x1 , . . . ,

pxn
1−(1−p)xn

)
(1− (1− p)x1) · · · (1− (1− p)xn)

.

T1/2
1

1− (x+ y + z) + 4xyz
=

1

1− (x+ y + z) + 3
4(xy + yz + zx)

Hence, we can conclude positivity of Szegő’s function e2(1−x, 1−y, 1−z)−1.

EG
S ’08
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EG
S ’08

Properties of Laurent coefficients of multivariate rational functions Armin Straub
14 / 34



Preserving positivity

• Positivity of the Askey–Gasper rational function
Askey–Gasper ’77

Koornwinder ’78
Ismail–Tamhankar ’79

Gillis–Reznick–Zeilberger ’831

(1− (x+ y + z) + 4xyz)β

implies positivity, for any ε > 0, of for β > (
√

17− 3)/2 ≈ 0.56

1

1− (x+ y + z) + (4− ε)xyz

• If F (x1, . . . , xn) is positive, so is, for 0 6 p 6 1,
Gillis–Reznick–Zeilberger ’83

S ’08
Kauers–Zeilberger ’08

Tp(F ) =
F
(

px1
1−(1−p)x1 , . . . ,

pxn
1−(1−p)xn

)
(1− (1− p)x1) · · · (1− (1− p)xn)

.

T1/2
1

1− (x+ y + z) + 4xyz
=

1

1− (x+ y + z) + 3
4(xy + yz + zx)

Hence, we can conclude positivity of Szegő’s function e2(1−x, 1−y, 1−z)−1.
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The case of three variables

ha,b(x, y, z) =
1

1− (x+ y + z) + a(xy + yz + zx) + bxyz

ha,b is positive ⇐⇒


b < 6(1− a)

b 6 2− 3a+ 2(1− a)3/2

a 6 1

CONJ
S ’08

−2 −1 1

5

10

15

20

a

b • ha,b is positive in the
green region S ’08

• The conditions in the
conjecture are necessary
for positivity S–Zudilin ’15

Properties of Laurent coefficients of multivariate rational functions Armin Straub
15 / 34



A conjecture of Gillis, Reznick and Zeilberger

For any d > 4, the following function is non-negative:

1

1− (x1 + x2 + . . .+ xd) + d!x1x2 · · ·xd

CONJ
G-R-Z

’83

Suffices to prove that the diagonal coefficients are non-negative.THM
G-R-Z

“omitted due to its length”proof

• False for d = 2, 3.

• Kauers proved that diagonal is non-negative for d = 4, 5, 6.

• With c in place of d!, the coefficient of x1 · · ·xd is d!− c.
• Diagonal coefficients eventually positive if c < (d− 1)d−1?

Multivariate asymptotics?
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Positivity vs diagonal positivity

• Consider rational functions F = 1/p(x1, . . . , xd) with p a symmetric
polynomial, linear in each variable.

Under what condition(s) is the positivity of F implied by the
positivity of its diagonal?

Q

1
1+x+y has positive diagonal coefficients but is not positive.EG

F positive ⇐⇒ diagonal of F , and F |xd=0 are positive?Q
SZ ’15

F (x, y) =
1

1 + c1(x+ y) + c2xy
is positive

⇐⇒ diagonal of F , and F |y=0 are positive

THM
S-Zudilin

2015

• d = 3: also yes, if the previous conjecture on ha,b is true.
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Application: Szegő’s rational function, once more

• Recall Szegő’s rational function

S(x, y, z) =
1

1− (x+ y + z) + 3
4(xy + yz + zx)

.

S(2x, 2y, 2z) has diagonal coefficients

sn =
n∑
k=0

(−27)n−k22k−n
(3k)!

k!3

(
k

n− k

)
,

whose generating function is

y(z) = 2F1

( 1
3 ,

2
3

1

∣∣∣∣27z(2− 27z)

)
.

• Ramanujan’s cubic transformation

2F1

(
1
3 ,

2
3

1

∣∣∣∣∣1−
(

1− x
1 + 2x

)3
)

= (1 + 2x)2F1

( 1
3 ,

2
3

1

∣∣∣∣x3) ,

puts this in the form

y(z) = (1 + 2x(z))2F1

( 1
3 ,

2
3

1

∣∣∣∣x(z)3
)
,

where the algebraic x(z) = c1z + c2z
2 + . . . has positive coefficients.
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Application: Szegő’s rational function, once more
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Application: A conjecture of Kauers

The following rational function is positive:

1

1− (x+ y + z + w) + 64
27(yzw + xzw + xyw + xyz)

.

CONJ
Kauers
2007

• The diagonal is positive. S–Zudilin ’15

(apply CAD to recurrence of order 3 and degree 6)

• The rational function obtained from setting w = 0 is positive.

(because 64/27 < 4)
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Application: Another conjecture of Kauers and Zeilberger

The following rational function is positive:

1

1− (x+ y + z + w) + 2(yzw + xzw + xyw + xyz) + 4xyzw
.

CONJ
Kauers-

Zeilberger
2008

• Would imply conjectured positivity of Lewy–Askey rational function

1

1− (x+ y + z + w) + 2
3(xy + xz + xw + yz + yw + zw)

.

Recent proof of non-negativity by Scott and Sokal, 2013

The Kauers–Zeilberger function has diagonal coefficients

dn =

n∑
k=0

(
n

k

)2(2k

n

)2

.

PROP
S-Zudilin

2015
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Arithmetically interesting diagonals

Remarkably, several further rational functions on the boundary of
positivity have Apéry-like diagonals:

1

1− (x+ y + z) + 4xyz
has diagonal coefficients

n∑
k=0

(
n

k

)3

.
EG

Koornwinder’s rational function

1

1− (x+ y + z + w) + 4e3(x, y, z, w)− 16xyzw

has diagonal coefficients
n∑
k=0

(
2k

k

)2(2(n− k)

n− k

)2

.

Using a positivity preserving operator, implies positivity of

1/e3(1− x, 1− y, 1− z, 1− w)

EG

• Next, time permitting: congruences stronger than Gauss for these
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III

Apéry-like sequences
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Apéry numbers and the irrationality of ζ(3)

• The Apéry numbers 1, 5, 73, 1445, . . .

A(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

satisfy

(n+ 1)3A(n+ 1) = (2n+ 1)(17n2 + 17n+ 5)A(n)− n3A(n− 1).

ζ(3) =
∑∞

n=1
1
n3 is irrational.THM

Apéry ’78

The same recurrence is satisfied by the “near”-integers

B(n) =
n∑
k=0

(
n

k

)2(n+ k

k

)2
 n∑
j=1

1

j3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)
 .

Then, B(n)
A(n) → ζ(3). But too fast for ζ(3) to be rational.

proof
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Zagier’s search and Apéry-like numbers

• Recurrence for Apéry numbers is the case (a, b, c) = (17, 5, 1) of

(n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − cn3un−1.

Are there other tuples (a, b, c) for which the solution defined by
u−1 = 0, u0 = 1 is integral?

Q
Beukers,

Zagier

• Essentially, only 14 tuples (a, b, c) found. (Almkvist–Zudilin)

• 4 hypergeometric and 4 Legendrian solutions (with generating functions

3F2

( 1
2 , α, 1− α

1, 1

∣∣∣∣4Cαz) , 1

1− Cαz 2F1

(
α, 1− α

1

∣∣∣∣ −Cαz1− Cαz

)2

,

with α = 1
2 ,

1
3 ,

1
4 ,

1
6 and Cα = 24, 33, 26, 24 · 33)

• 6 sporadic solutions

• Similar (and intertwined) story for:
• (n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1 (Beukers, Zagier)

• (n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − n(cn2 + d)un−1 (Cooper)
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The six sporadic Apéry-like numbers

(a, b, c) A(n)

(17, 5, 1) Apéry numbers

∑
k

(
n

k

)2(n+ k

n

)2

(12, 4, 16)
∑
k

(
n

k

)2(2k

n

)2

(10, 4, 64) Domb numbers

∑
k

(
n

k

)2(2k

k

)(
2(n− k)

n− k

)

(7, 3, 81) Almkvist–Zudilin numbers

∑
k

(−1)k3n−3k
(
n

3k

)(
n+ k

n

)
(3k)!

k!3

(11, 5, 125)
∑
k

(−1)k
(
n

k

)3(4n− 5k

3n

)

(9, 3,−27)
∑
k,l

(
n

k

)2(n
l

)(
k

l

)(
k + l

n

)
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Supercongruences for Apéry numbers

• Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,

A(p) ≡ 5 (mod p3).

• Gessel (1982) proved that A(mp) ≡ A(m) (mod p3).

The Apéry numbers satisfy the supercongruence (p > 5)

A(mpr) ≡ A(mpr−1) (mod p3r).

THM
Beukers,
Coster

’85, ’88
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The Apéry numbers satisfy the supercongruence (p > 5)

A(mpr) ≡ A(mpr−1) (mod p3r).

THM
Beukers,
Coster

’85, ’88

For primes p, simple combinatorics proves the congruence(
2p

p

)
=
∑
k

(
p

k

)(
p

p− k

)
≡ 1 + 1 (mod p2).

For p > 5, Wolstenholme’s congruence shows that, in fact,(
2p

p

)
≡ 2 (mod p3).

EG
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The Apéry numbers satisfy the supercongruence (p > 5)

A(mpr) ≡ A(mpr−1) (mod p3r).

THM
Beukers,
Coster
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Mathematica 7 miscomputes A(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

for n > 5500.

A(5 · 113) = 12488301. . .about 2000 digits. . .about 8000 digits. . .795652125

Weirdly, with this wrong value, one still has

A(5 · 113) ≡ A(5 · 112) (mod 116).

EG
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Supercongruences for Apéry-like numbers

• Conjecturally, supercongruences like

A(mpr) ≡ A(mpr−1) (mod p3r)

hold for all Apéry-like numbers. Osburn–Sahu ’09

• Current state of affairs for the six sporadic sequences from earlier:

(a, b, c) A(n)

(17, 5, 1)
∑
k

(
n
k

)2(n+k
n

)2
Beukers, Coster ’87-’88

(12, 4, 16)
∑
k

(
n
k

)2(2k
n

)2
Osburn–Sahu–S ’16

(10, 4, 64)
∑
k

(
n
k

)2(2k
k

)(
2(n−k)
n−k

)
Osburn–Sahu ’11

(7, 3, 81)
∑
k(−1)k3n−3k

(
n
3k

)(
n+k
n

) (3k)!
k!3 open modulo p3

Amdeberhan–Tauraso ’16

(11, 5, 125)
∑
k(−1)k

(
n
k

)3(4n−5k
3n

)
Osburn–Sahu–S ’16

(9, 3,−27)
∑
k,l

(
n
k

)2(n
l

)(
k
l

)(
k+l
n

)
open

Robert Osburn Brundaban Sahu

(University of Dublin) (NISER, India)
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Multivariate supercongruences

Define A(n) = A(n1, n2, n3, n4) by

1

(1− x1 − x2)(1− x3 − x4)− x1x2x3x4
=
∑
n∈Z4

>0

A(n)xn.

• The Apéry numbers are the diagonal coefficients.

• For p > 5, we have the multivariate supercongruences

A(npr) ≡ A(npr−1) (mod p3r).

THM
S 2014
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THM
S 2014

•
∑
n>0

a(n)xn = F (x) =⇒
∑
n>0

a(pn)xpn =
1

p

p−1∑
k=0

F (ζkpx) ζp = e2πi/p

• Hence, both A(npr) and A(npr−1) have rational generating function.
The proof, however, relies on an explicit binomial sum for the coefficients.
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• For p > 5, we have the multivariate supercongruences

A(npr) ≡ A(npr−1) (mod p3r).

THM
S 2014

• By MacMahon’s Master Theorem,

A(n) =
∑
k∈Z

(
n1
k

)(
n3
k

)(
n1 + n2 − k

n1

)(
n3 + n4 − k

n3

)
.

• Because A(n− 1) = A(−n,−n,−n,−n), we also find

A(mpr − 1) ≡ A(mpr−1 − 1) (mod p3r). Beukers ’85
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• The Apéry numbers are the diagonal coefficients.

• For p > 5, we have the multivariate supercongruences

A(npr) ≡ A(npr−1) (mod p3r).

THM
S 2014

• By MacMahon’s Master Theorem,

A(n) =
∑
k∈Z

(
n1
k

)(
n3
k

)(
n1 + n2 − k

n1

)(
n3 + n4 − k

n3

)
.

• Because A(n− 1) = A(−n,−n,−n,−n), we also find

A(mpr − 1) ≡ A(mpr−1 − 1) (mod p3r). Beukers ’85

Properties of Laurent coefficients of multivariate rational functions Armin Straub
28 / 34



More conjectural multivariate supercongruences

• Exhaustive search by Alin Bostan and Bruno Salvy:
1/(1 − p(x, y, z, w)) with p(x, y, z, w) a sum of distinct monomials; Apéry numbers as diagonal

1

1 − (x + y + xy)(z + w + zw)

1

1 − (1 + w)(z + xy + yz + zx + xyz)

1

1 − (y + z + xy + xz + zw + xyw + xyzw)

1

1 − (y + z + xz + wz + xyw + xzw + xyzw)

1

1 − (z + xy + yz + xw + xyw + yzw + xyzw)

1

1 − (z + (x + y)(z + w) + xyz + xyzw)

The coefficients B(n) of each of these satisfy, for p > 5,

B(npr) ≡ B(npr−1) (mod p3r).

CONJ
S 2014
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1

1 − (x + y + xy)(z + w + zw)

1

1 − (1 + w)(z + xy + yz + zx + xyz)

1

1 − (y + z + xy + xz + zw + xyw + xyzw)

1

1 − (y + z + xz + wz + xyw + xzw + xyzw)

1

1 − (z + xy + yz + xw + xyw + yzw + xyzw)

1

1 − (z + (x + y)(z + w) + xyz + xyzw)

The coefficients B(n) of each of these satisfy, for p > 5,

B(npr) ≡ B(npr−1) (mod p3r).

CONJ
S 2014

Properties of Laurent coefficients of multivariate rational functions Armin Straub
29 / 34



An infinite family of rational functions

Let λ ∈ Z`>0 with d = λ1 + . . .+ λ`. Define Aλ(n) by

1∏
16j6`

[
1− ∑

16r6λj

xλ1+...+λj−1+r

]
− x1x2 · · ·xd

=
∑
n∈Zd>0

Aλ(n)xn.

• If ` > 2, then, for all primes p,

Aλ(npr) ≡ Aλ(npr−1) (mod p2r).

• If ` > 2 and max(λ1, . . . , λ`) 6 2, then, for primes p > 5,

Aλ(npr) ≡ Aλ(npr−1) (mod p3r).

THM
S 2014

λ = (2, 2) λ = (2, 1)

1

(1− x1 − x2)(1− x3 − x4)− x1x2x3x4
1

(1− x1 − x2)(1− x3)− x1x2x3

EG
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Further examples

1

(1− x1 − x2)(1− x3)− x1x2x3
has as diagonal the Apéry-like numbers, associated with ζ(2),

B(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)
.

EG

1

(1− x1)(1− x2) · · · (1− xd)− x1x2 · · ·xd
has as diagonal the numbers d = 3: Franel, d = 4: Yang–Zudilin

Yd(n) =

n∑
k=0

(
n

k

)d
.

EG

• In each case, we obtain supercongruences generalizing results of
Coster (1988) and Chan–Cooper–Sica (2010).

Properties of Laurent coefficients of multivariate rational functions Armin Straub
31 / 34



A conjectural multivariate supercongruence

The coefficients Z(n) of

1

1− (x1 + x2 + x3 + x4) + 27x1x2x3x4
=
∑
n∈Z4

>0

Z(n)xn

satisfy, for p > 5, the multivariate supercongruences

Z(npr) ≡ Z(npr−1) (mod p3r).

CONJ
S 2014

• Here, the diagonal coefficients are the Almkvist–Zudilin numbers

Z(n) =
n∑
k=0

(−3)n−3k
(
n

3k

)(
n+ k

n

)
(3k)!

k!3
,

for which the univariate congruences are still open.
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Some open problems

• Which rational functions have the Gauss property?

A(npr) ≡ A(npr−1) (mod pr)

When are these necessarily combinations of x1···xm

f1···fm det
(
∂fj
∂xi

)
?

• Which rational functions are positive?

When is diagonal, plus lower-dimensional, positivity sufficient?

• Can we establish all supercongruences via rational functions?

1

1− (x+ y + z) + 4xyz
,

1

1− (x+ y + z + w) + 27xyzw

• Is there a rational function in three variables with the ζ(3)-Apéry
numbers as diagonal? As Alin showed us, the GF is transcendental, so two variables is impossible.

Properties of Laurent coefficients of multivariate rational functions Armin Straub
33 / 34



THANK YOU!
Slides for this talk will be available from my website:

http://arminstraub.com/talks
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