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Hypergeometric Series

A hypergeometric series is a series of the form
o, .. o)k - (ar)k 2,
[617"’765 :l Zk'( 1 k 65)

where (a)x == a(a+1)--- (o + k—1).
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Hypergeometric Series

A hypergeometric series is a series of the form
o, .. o)k - (ar)k 2,
|:ﬂ17"‘76$ :l Zk'( 1 k 65)

where (a)x == a(a+1)--- (o + k—1).

It is routine to decide whether a given series can be written in

hypergeometric form or not: if t; denotes the k-th summand in
the sum above, then

b (aat k) (art k)
e (k+D)(Br+k)--(Bs+ k)
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It is routine to decide whether a given series can be written in
hypergeometric form or not: if t; denotes the k-th summand in
the sum above, then
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Hypergeometric Series

It is routine to decide whether a given series can be written in
hypergeometric form or not: if t; denotes the k-th summand in
the sum above, then

tht1 (a1 + k) -+ (ar + k)

e (k+1)(Brt k) (Bs+ k)

Hence: a series can be written in hypergeometric form if and only
if the ratio of its (k + 1)-st by its k-th summand is a rational
function in k.
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Hypergeometric Series

It is routine to decide whether a given series can be written in
hypergeometric form or not: if t; denotes the k-th summand in
the sum above, then

b (aatk)(ar+ k)
e (k+D)(Br+k)--(Bs+ k)

Hence: a series can be written in hypergeometric form if and only
if the ratio of its (k + 1)-st by its k-th summand is a rational
function in k.

Moreover, the conversion into hypergeometric notation is
completely automatic. (Maple and Mathematica do it, for
example.)
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Hypergeometric series are everywhere!

Christian Krattenthaler Hypergeometrics in action!



Hypergeometric Series

Hypergeometric series are everywhere!

o0

x* 1,1
logx = Z(—l)k&T :szl[ ’2 ;—x] :

k=1
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Hypergeometric Series

Hypergeometric series are everywhere!

- x* 1,1
logx = Z(—l)k&T :szl[ ’2 ;—x] :
k=1
o0 2k 2
= )X oF _;—X— .
conx = 300" G =R 1
k=0
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Hypergeometric Series

Hypergeometric series are everywhere!

- xk 1,1
logx = Z(—l)k&T :szl[ ’2 ;—x] :
k=1
o0 2k 2
_ X —._x
cosx—Z( 1) (k)] OFl[é' 4]-
k=0

Chebyshev polynomials of the second kind:

Un(x) = Z(_l)k <n ; k> (2x)"72K = (2x)" 2 Fy [2’ :% i %?XJ] .

k>0
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All binomial sums are hypergeometric series!
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All? binomial sums are hypergeometric series!

“Well, almost all ...
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Hypergeometric Series

All? binomial sums are hypergeometric series!

For example, the sum

D

2 (1)

“Well, almost all ...

Christian Krattenthaler Hypergeometrics in action!



Hypergeometric Series

All? binomial sums are hypergeometric series!

For example, the sum

D

2 (1)

can be written in the form
N —M,—L
<L)2F1[N—L+1'1] :

“Well, almost all ...
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Hypergeometric Series

The “classical” treatment of hypergeometric series
The theory of hypergeometric series has a very long tradition, with
names such as Euler, GauB, Kummer, Thomae, Whipple, Sears,
Bailey, etc. associated to it.
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Hypergeometric Series

The “classical” treatment of hypergeometric series
The “backbone” of the theory are identities,
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Hypergeometric Series

The “classical” treatment of hypergeometric series
The “backbone” of the theory are identities, in particular summation
formulae such as the Chu—Vandermonde identity

opon 2

where n is a non-negative integer,
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Hypergeometric Series

The “classical” treatment of hypergeometric series
The “backbone” of the theory are identities, in particular summation
formulae such as the Chu—Vandermonde identity

a,—n (c—a)y
Fl7 51 =—
“[ c } ()
where n is a non-negative integer, and transformation formulae such
as
a,b,c,—n .
4F3[e,f,1+a+b+c—e—f—n'1}
_(@n(e+f—a—b)p(e+f—a—c),
(e)n(fln(e+f—a—b—c)s
= —ne—a,f—ae+f—a—b—c 1
473 e+f—a—bet+f—a—-cl—a—n"|’

where n is a non-negative integer.
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Hypergeometric Series

The “classical” treatment of hypergeometric series
Returning to our earlier binomial sum:

(") - ()it
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Hypergeometric Series

The “classical” treatment of hypergeometric series
Returning to our earlier binomial sum:

XL: MY( N (N [ ML
k)J\L—k)  \L)* N—L+1 |

k=0
The 5 F1-series can be summed by means of the Chu—Vandermonde
identity, so that

S (1)(M ) - (1) e
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Hypergeometric Series

The “classical” treatment of hypergeometric series
Returning to our earlier binomial sum:

XL: MY( N (N [ ML
k)J\L—k)  \L)* N—L+1 |

k=0
The 5 F1-series can be summed by means of the Chu—Vandermonde
identity, so that

S0 - () St (1)
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Hypergeometric Series

The “classical” treatment of hypergeometric series
Returning to our earlier binomial sum:

XL: MY( N (N [ ML
k)J\L—k)  \L)* N—L+1 |

k=0
The 5 F1-series can be summed by means of the Chu—Vandermonde
identity, so that

D

2 (") -("")
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Hypergeometric Series

The “classical” treatment of hypergeometric series
Returning to our earlier binomial sum:

(0= (D m i)

The 5 F1-series can be summed by means of the Chu—Vandermonde

identity, so that
ZL: M\( N\ _ (M+N
k)\L—k) L )
k=0
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Hypergeometric Series

The “modern” treatment of hypergeometric series
Suppose that we want to prove

()= ()

and let SUM[n] denote the left-hand side.
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The “modern” treatment of hypergeometric series
Suppose that we want to prove

ZL: M\/ N\ _ (M+N
k)\L—k) L ’
k=0
and let SUM[n] denote the left-hand side.
We put this into the Zeilberger algorithm:
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Hypergeometric Series

The “modern” treatment of hypergeometric series
Suppose that we want to prove

ZL: M\/ N\ _ (M+N
k)\L—k) L ’
k=0
and let SUM[n] denote the left-hand side.

We put this into the Zeilberger algorithm:
In[1]:= <<zb.m
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Hypergeometric Series

The “modern” treatment of hypergeometric series
Suppose that we want to prove

LMY/ N\ _ (M+N
> ()= (")
and let SUM[n] denote the left-hand side.
We put this into the Zeilberger algorithm:
In[1]:= <<zb.m

Fast Zeilberger Package by Peter Paule,

Markus Schorn, and Axel Riese
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Hypergeometric Series

The “modern” treatment of hypergeometric series
Suppose that we want to prove

()= ()

and let SUM[n] denote the left-hand side.
We put this into the Zeilberger algorithm:

In[1]:= <<zb.m
Fast Zeilberger Package by Peter Paule,
Markus Schorn, and Axel Riese
In[2]:= Zb[Binomial [M,k]Binomial [N,L-k],{k,0,L},N,1]
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Hypergeometric Series

The “modern” treatment of hypergeometric series
Suppose that we want to prove

LMY/ N\ _ (M+N
> ()= (")
and let SUM[n] denote the left-hand side.
We put this into the Zeilberger algorithm:
In[1]:= <<zb.m

Fast Zeilberger Package by Peter Paule,

Markus Schorn, and Axel Riese

In[2]:= Zb[Binomial [M,k]Binomial [N,L-k],{k,0,L},N,1]
If ‘L’ is a natural number, then:
Out[2]= (-1-M-N) SUM[N]+(1-L+M+N) SUM[1+N]==0
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Binomial Sums and Hypergeometric Series

Some papers of Volker Strehl

Volker Strehl.
Identities of Rothe-Abel-Schlafli-Hurwitz-type.
Discrete Math., 99:321-340, 1992.

P. Lison&k, Peter Paule, and Volker Strehl.
Improvement of the degree setting in Gosper's algorithm.
J. Symbolic Comput., 16(3):243-258, 1993.

Volker Strehl.
Recurrences and Legendre transform.
In Séminaire Lotharingien de Combinatoire, 33:81-100, 1993.

Volker Strehl.
Binomial identities—combinatorial and algorithmic aspects.
Discrete Math., 136(1-3):309-346, 1994.

Roberto Pirastu and Volker Strehl.
Rational summation and Gosper-Petkoviek representation.
J. Symbolic Comput., 20(5-6):617—635, 1995.
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Asymptotics of a Selberg integral

In a recent paper in random scattering theory ( “random ma-
trix approach to quantum transport in chaotic cavities”), Carré,
Deneufchatel, Luque and Vivo consider the Selberg-type integral

1
Sk(a, b / xK X7 1 —X;) b Ldxi |,
(=)= N [0,V ' <1<i<Hj<N > <H

and they aim at determining its asymptotic behaviour when N, a, b
all tend to infinity so that a ~ a;/N and b ~ b1 N.
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Asymptotics of a Selberg integral

In a recent paper in random scattering theory ( “random ma-
trix approach to quantum transport in chaotic cavities”), Carré,
Deneufchatel, Luque and Vivo consider the Selberg-type integral

1
Sk(a, b / xK X7 1 —X;) b Ldxi |,
(=)= N [0,V ' <1<i<Hj<N > <H

and they aim at determining its asymptotic behaviour when N, a, b
all tend to infinity so that a ~ a;/N and b ~ b1 N.
For k = 0, this is exactly Selberg's famous integral.
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Asymptotics of a Selberg integral

In a recent paper in random scattering theory ( “random ma-
trix approach to quantum transport in chaotic cavities”), Carré,
Deneufchatel, Luque and Vivo consider the Selberg-type integral

So(a, b) = I\lll/[o’l]N ( II & )(Hx (1- leldx,>,

1<i<j<N

and they aim at determining its asymptotic behaviour when N, a, b
all tend to infinity so that a ~ a;N and b ~ b1 N.

For k = 0, this is exactly Selberg’'s famous integral.

The Selberg integral can be evaluated in closed form, and the result
is a product/quotient of gamma functions.
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Asymptotics of a Selberg integral

In a recent paper in random scattering theory ( “random ma-
trix approach to quantum transport in chaotic cavities”), Carré,
Deneufchatel, Luque and Vivo consider the Selberg-type integral

Se(a,b) = /\ll'/[o,l]wxf< H )(Hx (1-x;)P~ 1dx,>,

1<i<j<N

and they aim at determining its asymptotic behaviour when N, a, b
all tend to infinity so that a ~ a;N and b ~ b1 N.

For k = 0, this is exactly Selberg’'s famous integral.

The Selberg integral can be evaluated in closed form, and the result
is a product/quotient of gamma functions.

Consequently, the asymptotics of So(a, b) is easily determined by
means of known asymptotic formulae for the Barnes G-function.
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Asymptotics of a Selberg integral

We may therefore restrict our attention to

J, — Sk(av b)
kT 50(‘97 b)

Christian Krattenthaler Hypergeometrics in action!



Asymptotics of a Selberg integral

We may therefore restrict our attention to

B Sk(a, b)

Jk B 50(‘97 b)

Using classical identities in the theory of symmetric functions and
the evaluation of Selberg-like integrals, it is not too difficult to derive
that

Jk =

1 & (k=1\(N=i)(a+N—i—1)
N.k!iz_;(_l)( i ) (a+bk+2N—i—2)kk'
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Asymptotics of a Selberg integral

Determining the asymptotics of
1 kz_:l(_n" k=1\(N=i)(a+N—i—1)
N -kl i (a+b+2N—i—2) °

as N, a, b — oo looks innocent,

J =
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Asymptotics of a Selberg integral

Determining the asymptotics of
1 kz_:l(_n" k=1\(N=i)(a+N—i—1)
N -kl i (a+b+2N—i—2) °

as N, a, b — oo looks innocent, but it is not!

J =
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Asymptotics of a Selberg integral

Determining the asymptotics of

k—1 . .
Jk: N1k| ;(_1),-(/(—.]) (N—/)k(a+N—/—1)k‘

/ (a+b+2N—i—2)k
as N, a, b — oo looks innocent, but it is not!

Carré, Deneufchatel, Luque and Vivo develop a difference calculus
over several pages in order to approach the problem.
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Asymptotics of a Selberg integral

Determining the asymptotics of
k—1 ) .
1 Z(_l), k—1\(N—-i)(a+N—i—1)
N -kl i (a+b+2N—i—2) °

as N, a, b — oo looks innocent, but it is not!

Carré, Deneufchatel, Luque and Vivo develop a difference calculus
over several pages in order to approach the problem.

However: this is a hypergeometric series! Namely,

J =

(N+1)k_1 (a—l—N—l)k

k!(2N+a+b—2)k
1-N,1-k2-a-N3-a—b-k-2N_
2—a—k—N,1—k—N,3—a—b—2N""|"

Ji =

X 4F3
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Asymptotics of a Selberg integral

This is a hypergeometric series!

N—i—l)k,l(a—i—N—l)k

KI(2N +a+ b — 2)x

X4F3[1N,1k,23N,3abk2N_1]
2 a—k—-N1-k—N3—a—b—2N""|

go=t
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Asymptotics of a Selberg integral

This is a hypergeometric series!

N—i—l)k,l(a—i—N—l)k

KI(2N +a+ b — 2)x

X4F3[1N,1k,23N,3abk2N_1]
2 a—k—-N1-k—N3—a—b—2N""|

go=t

So, the theory of hypergeometric series should do it!
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Asymptotics of a Selberg integral

This is a hypergeometric series!

N—i—l)k,l(a—i—N—l)k

KI(2N +a+ b — 2)x

X4F3[1N,1k,23N,3abk2N_1]
2 a—k—-N1-k—N3—a—b—2N""|

go=t

So, the theory of hypergeometric series should do it!
And it does ...
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Asymptotics of a Selberg integral

This is a hypergeometric series!

N—i—l)k,l(a—i—N—l)k

KI(2N +a+ b — 2)x

X4F3[1N,1k,ZaN,3abk2N_1]
2 a—k—-N1-k—N3—a—b—2N""|

go=t

So, the theory of hypergeometric series should do it!
And it does ...
The sum of the upper parameters equals

(1-N)+(1—k)+(2—a—N)+(3—a—b—k—2N) = 7—2a—b—2k—4N,
while the sum of the lower parameters equals
2—a—k—-—N,1—-k—N,3—a—b—2N=6—-2a—b—2k—4N.
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Asymptotics of a Selberg integral

This is a hypergeometric series!

(N—i—l)k,l (3+N—1)k
KI(2N +a+ b — 2)x
X4F3[1—N,1—k,2—a—N,3—a—b—k—2N_1]‘
2D—a—k-N1—k—N3—a—b—2N"

Jk =
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Asymptotics of a Selberg integral

This is a hypergeometric series!

(N—i—l)k,l (3+N—1)k
KI(2N +a+ b — 2)x
X4F3[1—N,1—k,2—a—N,3—a—b—k—2N_1]‘
2D—a—k-N1—k—N3—a—b—2N"

Jk =

Let us check our earlier horrendous transformation formula:
a,b,c,—n _
4F3[e,f,1+a—|—b+c—e—f—n'1
_(a)n(e+f—a—b)s(e+f—a—c),
(e)n(fln(e+f—a—b—c),
><4F3{ —ne—af—aetf-a—b-c .|

e+f—a—be+f—a—cl—a—n
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Asymptotics of a Selberg integral

This is a hypergeometric series!

(N—i—l)k,l (3+N—1)k
KI(2N +a+ b — 2)x
X4F3[1—N,1—k,2—a—N,3—a—b—k—2N_1]‘
2D—a—k-N1—k—N3—a—b—2N"

Jk =

Let us check our earlier horrendous transformation formula:

£ a,b,c,—n q
43 e,f,l+a+b+c—e—f—-n

_(a)n(e+f—a—b)s(e+f—a—c),
(e)n(fln(e+f—a—b—c),
><4F3{ —ne—af—ae+f—a—b—c 4]

e+f—a—be+f—a—cl—a—n

If we want to apply this formula, then we have to “lower” the dif-
ference between the sums of the upper and lower parameters.
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If we want to apply this formula, then we have to “lower” the dif-
ference between the sums of the upper and lower parameters.
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Asymptotics of a Selberg integral

If we want to apply this formula, then we have to “lower” the dif-
ference between the sums of the upper and lower parameters.

To do this kind of “operation,” the hypergeometric literature offers
contiguous relations. An example is

F[ABCD | _ BCD _[AB+1,C+1,D+1

SV EFG Y TFEFRGY | E41,F+1,6+1 "

A-1,B,C,D ]
4

+4F3[ EF.G

Christian Krattenthaler Hypergeometrics in action!



Asymptotics of a Selberg integral

If we want to apply this formula, then we have to “lower” the dif-
ference between the sums of the upper and lower parameters.

To do this kind of “operation,” the hypergeometric literature offers
contiguous relations. An example is

([ABCD ] _ BCD  [AB+1,C+1,D+1

3\ EFG Y TPERGY| E41,F+1,641 "
. r[A-LB.CD
431 EF G F

If we iterate this contiguous relation, then we arrive at

AL ] - OO
YOl EFGT (E): (F), (G),

< .(B)s(C)s (D)s F—LB+;C+5D+5]
Z —4F3 vz

—0 S (G)S E+S7F+57G+S

AB+r,C+r,.D+r ]

4F3[ E+trFt+rG+r '®



Asymptotics of a Selberg integral

We apply the iterated contiguous relation to our series:

kz:l (N+1)k_1(a+N—1)(1—k)s
Py

(a+b+2N—-2),(2—a—k—N)s
(2—a—N);(3—a—b—k—2N),
(1—k—N)s;(3—a—b—2N),
F —N,1—k+s,2—a—N+s
430 a—k—N+s1—k—N+s
3—a—b—k—2N+s
3—a—b—2N+s '’
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Asymptotics of a Selberg integral

We apply the iterated contiguous relation to our series:

kz:l (N+1)k_1(a+N—1)(1—k)s
Py

(a+b+2N—-2),(2—a—k—N)s
(2—a—N);(3—a—b—k—2N),
(1—k—N)s;(3—a—b—2N),
F —N,1—k+s,2—a—N+s
430 a—k—N+s1—k—N+s
3—a—b—k—2N+s
3—a—b—2N+s '’

The sum of the upper parameters:
(-N)+(1—k+s)+(2—a—N+s)+(3—a—b—k—2N+5s)
=6—-2a—b—2k—4N + 3s.
The sum of the lower parameters:
(-N)+(1—k+s)+(2—a—N+s)+(3—a—b—k—2N+5)
=6—2a—b—2k—4N + 3s.



Asymptotics of a Selberg integral

We apply the iterated contiguous a second time:

k—
:ZZ N+l)k 1(3+N—1)k(1— )S+t
kl(a4+ b+ 2N —2),

' 2—a—N)sy:(3—a—b—k—2N)s;+
2—a—k—N)stt(1—k—N)s1t(3—a—b—2N)s4:
F 3—a—b—k—2N+s+t,—1—N,

473 3—a—b—2N+s+t,
2—a—-N+s+t,1—k+s+t '
1—-k—N+4+s+t,2—a—k—-—N+s+1t
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Asymptotics of a Selberg integral

We apply the iterated contiguous a second time:

k—
:ZZ N+1)k 1(3+N—1)k(1— )S+t
kl(a4+ b+ 2N —2),

' 2—a—N)sy:(3—a—b—k—2N)s;+
2—a—k—N)stt(1—k—N)s1t(3—a—b—2N)s4:
F 3—a—b—k—2N+s+t,—1—N,

473 3—a—b—2N+s+t,
2—a—-N+s+t,1—k+s+t '
1—-k—N+4+s+t,2—a—k—-—N+s+1t

Now the sum of the upper parameters is by one less than the sum
of the lower parameter!
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Asymptotics of a Selberg integral

Our horrendous transformation formula can be applied, and, after
some simplification, the resulting expression collapses to

_kz: i (a—Dp-s—t-1(1—a—N)sier1
N k!

s=0 t=0
. (k—S— t)s+t (5+t+2)k757t71
(2—a—b—2N),
F [1—k+s+t,k,a+b+N—2,a+N_1}
43 syt+2a-1l,at+b+2N—1

x

—~ (= Dm 1 (1= 3= N)mi1 (k= m)m (m+ D

KI'(2—a—b—2N),

1—k+m,k,a+b—|—N—2,a+N_1
m+2,a—1la+b+2N-1 ’

i
o

'4F3[
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Asymptotics of a Selberg integral

Explicitly,
k—
o= 2:1 (@=1g-ma1(l—a—N)mi1(k=m)m(m+1)k—m
0 kl(2—a—b—2N),
k—m— 1

Z k+m—|—1),();(a—l—b+N—2),-(a—|—N),-'

P I| m+2),(a—1),-(a+b+2N—1),-
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Asymptotics of a Selberg integral

Explicitly,
e ki (3= Diem1 (L= a— N)ms1 (k= m)m (m+ D
T KI(2—a—b—2N),
k—m— 1

(—k+m+1)j(k)i(a+b+N—-2);(a+ N);
Z "(m+2)i(a—1);(a+b+2N-1);

The limit N,a,b — o0 so that a ~ a1V and b ~ bi N can now be
safely done in each summand separately.
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Asymptotics of a Selberg integral

Explicitly,
5N Diemea (L= 3= N (k= m) (m+ D
k=2
P KI(2—a—b—2N),

(ke m 1) (K)i(a+ b+ N —2)i (a+ N);
X imi (a1 braN -1,

The limit N,a,b — o0 so that a ~ a1V and b ~ bi N can now be
safely done in each summand separately.
The result is:

k—1 k m+1
. o 1(k—1 ai ai+1
| — § -1 k—m—1
im ( ) ( m ) <a1+b1+2) ( a >

N—oo
m=0

K ke m = 1\ (k4 €~ 1)I(m+ 1)/ (a1 + 1)(ay + by + 1)\
;( 1) ( )(k—l)!(m—i—ﬁ—i—l)!( a(ar + b1 +2) >
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Asymptotics of a Selberg integral

Doing some more “hypergeometrics,” one arrives at the more com-
pact statement:

Theorem

The limit of the quantity Ji as N, a, b — oo such that a ~ aiN
and b ~ b1 N is equal to

k B
1 k+j—1\ (ap+1y*!
Iinoo i = k Z < ' ) (ay + by + 2)k+

Jj=0
' k_zjfl (f) (i -i-jl'(-i- 1) (a1 +1)"

i=0
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Non-crossing partitions on an annulus

m-divisible non-crossing partitions on the (A, B)-annulus are set par-
titionsof {1,2,..., A+ B} all of whose block sizes are divisible which
can be drawn in a non-crossing fashion inside an (A, B)-annulus.
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Non-crossing partitions on an annulus

m-divisible non-crossing partitions on the (A, B)-annulus are set par-
titionsof {1,2,..., A+ B} all of whose block sizes are divisible which
can be drawn in a non-crossing fashion inside an (A, B)-annulus.

{{1,2,30}, {3, 4, 35,36, 25,29}, {5,9, 34},
{6,7,8},{10,14, 18,19, 32,33}, {11,12,13},

{15,16,17}, {20, 24, 31},

{21,22,23}, {26,27,28}}

A divicible nan Assing N
Christian Krattenthaler Hypergeometrics in action!



Non-crossing partitions on an annulus

(m-divisible) non-crossing partitions on an annulus have arisen in
various contexts: in statistical physics, in free probability, and in
Coxeter group theory.
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Non-crossing partitions on an annulus

(m-divisible) non-crossing partitions on an annulus have arisen in
various contexts: in statistical physics, in free probability, and in
Coxeter group theory.

Question: How many m-divisible non-crossing partitions on the
(A, B)-annulus are there?
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Using a combinatorial decomposition, generating functions, some
manipulation, one obtains that the number of m-divisible non-
crossing partitions on the (A, B)-annulus is given by

Christian Krattenthaler Hypergeometrics in action!



Non-crossing partitions on an annulus

Using a combinatorial decomposition, generating functions, some
manipulation, one obtains that the number of m-divisible non-
crossing partitions on the (A, B)-annulus is given by

A+t—1\(B+2E —t—1
S e

t>(A+1)/m
3 B(mt—A)(mt—A+1)<A+t—1><B+A+mB—t)
- A+B
t>(A11)/m B+1 t “m —t
Almt — A—1)(mt — A) (A+t\ (B+2E —t—1
2 A+l ¢ ALB 4 )
£>(A+2)/m m
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Non-crossing partitions on an annulus

Theorem?

The number of m-divisible non-crossing partitions on the
(A, B)-annulus is equal to

A+t—1\/B+4E 1
L A G ey

t>(A+1)/m
3 B(mt—A)(mt—A+1)<A+t—1>(B+A+mB—t>
£>(A+1)/m Chal 2 Eed g
N Z A(mt—A—l)(mt—A)(A—i—t)(B%—AerB—t—1>.
vy A+1 t AL ¢
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Non-crossing partitions on an annulus

Definition (H. Wilf)
An enumeration formula is an expression which is computable in
time less than needed for generating all the objects that we want

to count.
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Non-crossing partitions on an annulus

Theorem?

The number of m-divisible non-crossing partitions on the
(A, B)-annulus is equal to

A+t—1\/B+4E 1
L A G ey

t>(A+1)/m
3 B(mt—A)(mt—A+1)<A+t—1>(B+A+mB—t>
£>(A+1)/m Chal 2 Eed g
N Z A(mt—A—l)(mt—A)(A—i—t)(B%—AerB—t—1>.
vy A+1 t AL ¢
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Non-crossing partitions on an annulus

Our Favourite Theorem

The number of m-divisible non-crossing partitions on the
(A, B)-annulus is equal to?

(NICE).

? © Doron Zeilberger
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A miracle (?7)
If one programs this in computer algebra and says

Factor[%]

then one obtains:
For A=2a, B=2b, m=2:
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A miracle (?7)
If one programs this in computer algebra and says

Factor[%]

then one obtains:
For A=2a, B=2b, m=2:

1/ 3a 3b \(a+1)(b+1)(4ab—a—b+1)
<a—|—1>(b+1> (2a+1)(2b+1)(a+b) '

3
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Non-crossing partitions on an annulus

A miracle (?7)
If one programs this in computer algebra and says

Factor[%]

then one obtains:
For A=2a, B=2b, m=2:

1/ 3a 3b \(a+1)(b+1)(4ab—a—b+1)
<a—|—1>(b+1> (2a+1)(2b+1)(a+b) '

3
ForA=3a—-1, B=3b—-2 m=3:
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Non-crossing partitions on an annulus

A miracle (?7)
If one programs this in computer algebra and says

Factor[%]

then one obtains:
For A=2a, B=2b, m=2:

1/ 3a 3b \(a+1)(b+1)(4ab—a—b+1)
3<a~|—1>(b+1> (2a+1)(2b+1)(a+b)

ForA=3a—-1, B=3b—-2 m=3:

() ()
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Non-crossing partitions on an annulus

A miracle (?7)
If one programs this in computer algebra and says

Factor[%]

then one obtains:
For A=2a, B=2b, m=2:

1/ 3a 3b \(a+1)(b+1)(4ab—a—b+1)
3<a~|—1>(b+1> (2a+1)(2b+1)(a+b)

ForA=3a—-1, B=3b—-2 m=3:

() ()

Etc.

Christian Krattenthaler Hypergeometrics in action!
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The “explanation”
The first sum,

A+t—1\(B+2E 1
G Gy

t>(A+1)/m

is a telescoping sum!
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Non-crossing partitions on an annulus

The “explanation”
The first sum,

A+t—1\/B+2E ¢+ 1
Z (mt — A)< t ) ( é —t ’
t>(A+1)/m m

is a telescoping sum! Namely,

A+t—1><B+A+mB—t—

(mt—A)( , AtB 1>—G(t+1)—G(t)

mAB (A+t—1\/B+2E ¢
G(t):_AJrB t—1 AtB _ ¢ )
m

with
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Non-crossing partitions on an annulus

The “explanation”
The second and third sum together,

-y B(mt—A)(mt—A+1)<A—i—t—1><B+A+mBt—t)

A+B _
t>(A+1)/m B+1 t m
N Z Almt —A—1)(mt — A) ([A+1t\ (B+2EE —t—1
A+1 t ALB ¢ ’
>(A+2)/ m

is a telescoping sum!
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Non-crossing partitions on an annulus

The “explanation”
Namely,

B B(mt—A)(mt—A+1)<A+t—1><B+A;B—t)

B+1 t %—t
+A(mt—A—l)(mt—A) A+t (B+2E -1
A AN N
= H(t+1) — H(t)
with
t—A+1)(mt—-A-—m-1
H(t):_(m +1)(m m—1)

(A+1)(B+1)
(A+t—1)1(B+ 2B — 1)l
. (t—1)1(A-1) (A —t)1(B-1)1
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The “explanation”
After all hard thinking (= “classical” hypergeometrics) did not lead
to anything, in despair (and lack of other ideas) one tries the Gosper
algorithm.
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Non-crossing partitions on an annulus

The “explanation”
After all hard thinking (= “classical” hypergeometrics) did not lead
to anything, in despair (and lack of other ideas) one tries the Gosper
algorithm.
The Gosper algorithm decides whether a G(t) exists such that

A+t—1><B+AJ,;B—t—

(mt—A)< , s 1>:G(t+1)—G(t),

and if it does, it finds it!

Christian Krattenthaler Hypergeometrics in action!
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The “explanation”
So:

Christian Krattenthaler Hypergeometrics in action!



Non-crossing partitions on an annulus

The “explanation”
So:
In[1]:= <<zb.m

Christian Krattenthaler Hypergeometrics in action!



Non-crossing partitions on an annulus

The “explanation”
So:
In[1]:= <<zb.m
Fast Zeilberger Package by Peter Paule,

Markus Schorn, and Axel Riese
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The “explanation”

So:

In[1]:= <<zb.m
Fast Zeilberger Package by Peter Paule,
Markus Schorn, and Axel Riese

In[2]:= Gosper[(m*t-A)Binomial [A+t-1,t]

Binomial [B+(A+B)/m-t-1, (A+B)/m-t] ,t]
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The “explanation”

So:

In[1]:= <<zb.m
Fast Zeilberger Package by Peter Paule,
Markus Schorn, and Axel Riese

In[2]:= Gosper[(m*t-A)Binomial [A+t-1,t]

Binomial [B+(A+B)/m-t-1, (A+B)/m-t] ,t]
Out[2]= {-(A-m t) Binomial[-1+B+(A+B)/m-t, (A+B)/m-t]
Binomial [-1+A+t,t]==
A [(1/(A+B))t (-A-B-B m+m t)
Binomial [-1+B+(A+B)/m-t, (A+B) /m-t]
Binomial [-1+A+t,t]]}

Here, At is the standard difference operator A:G(t) := G(t + 1) — G(t).
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Non-crossing partitions on an annulus

The number of m-divisible non-crossing partitions on the
(A, B)-annulus is equal to

AB(mAB — ((A mod m) - (B mod m) + 1)(A+ B) + m)
(x(A=B=0mod m)m+1)(A+1)(B+1)(A+ B)

9 <L”’$A1AJ><L"’,§;BJ>,

where (A mod m) is the remainder of the division of A by m, and
X(A) =1 if A is true and x(A) = 0 otherwise.
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A Happy Retirement!
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