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Discrete Mehta-type integrals?

Ole Warnaar:

Together with Richard Brent, I have recently been
looking at sums of the form

Z H (k/q_kja)

ki,....ke€Z ' 1<i<j<r

Vﬁ!ki!(s 2n
n+ ki)’

i=1

which we call "discrete Mehta-type integrals'.
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Discrete Mehta-type integrals?

Ole Warnaar:

Together with Richard Brent, I have recently been
looking at sums of the form

Z H (k/q_kja)

ki,....ke€Z ' 1<i<j<r

Vﬁ!ki!(s 2n
n+ ki)’

i=1

which we call "discrete Mehta-type integrals'.

At least, for «,v €{1,2} and small §, we believe that
these sums can be evaluated in closed form.
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Discrete Mehta-type integrals?

The Mehta integral
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Discrete Mehta-type integrals?

The Mehta integral
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Discrete Mehta-type integrals?

Ole Warnaar:

Needless to tell you that the case =1, y=2, §=0
follows from specialising a rectangular Schur
functions in two sets of variables.
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Discrete Mehta-type integrals?

Ole Warnaar:

Needless to tell you that the case =1, y=2, §=0
follows from specialising a rectangular Schur
functions in two sets of variables.

Indeed,

2T eI ()

Lkr€Z 1<i<j<r i=1

_H<,—1> (/2—n1) <,2_ml>(2m+2n—/—r+2) (i —1)15

can be proved in various ways, one of which is by the use of Schur
functions, as | pointed out in a paper 15 years ago.

Richard Brent, Christian Krattenthaler and Ole Warnaar Non-intersecting lattice paths



Discrete Mehta-type integrals?

Ole Warnaar:

Needless to tell you that the case =1, y=2, §=0
follows from specialising a rectangular Schur
functions in two sets of variables.

Indeed,

2T wwr I ()

Lk €Z 1<i<j<r i=1

_H<,—1> (/2—n1) <,2_ml>(2m+2n—/—r+2) (i —1)15

can be proved in various ways, one of which is by the use of Schur
functions, as | pointed out in a paper 15 years ago.

Richard Brent, Christian Krattenthaler and Ole Warnaar Non-intersecting lattice paths



Discrete Mehta-type integrals?

Indeed,

r
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Discrete Mehta-type integrals?

Indeed,
. 2m
> I -4 2H< )( )
kl: 7kr€Z1<i<j§r i=1 n+kl m+k,
2
2n 2m _ _ :
_H<'—1> (i—l)(i—1>(2'"+2”"—f+2)!(/—1)!.
But, say,

SRS (AR

k1., kr€Z 1<i<j<r
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Non-intersecting lattice paths

We shall be concerned with paths in the integer lattice consisting
of up-steps (1,1) and down-steps (1, —1).
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Non-intersecting lattice paths

We shall be concerned with paths in the integer lattice consisting
of up-steps (1,1) and down-steps (1, —1).

A family of lattice paths is called non-intersecting if no two paths
in the family meet in a lattice point.
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Non-intersecting lattice paths

Theorem (Karlin-McGregor, Lindstrom, Gessel-Viennot, Fisher,

John—Sachs, Gronau—Just-Schade-Scheffler—Wojciechowski)

Let G be an acyclic, directed graph, and let A1, Ao, ..., A, and
Ei, Es, ..., E, be vertices in the graph with the property that, for
i <j and k < I, any (directed) path from A; to E; intersects with
any path from A; to E,. Then the number of families

(P1, P2, ..., P,) of non-intersecting (directed) paths, where the
i-th path P; runs from A; to E;, i =1,2,...,r, is given by

det (|P(A; — Ej)l),

1<ij<r

where P(A — E) denotes the set of paths from A to E.
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Non-intersecting lattice paths

Let A; =(0,2(i —1)) and E; = (n, kj), i =1,2,...,r, with

ki = n (mod 2). Then the number of families (Py, Py, ..., P,) of
non-intersecting lattice paths, where P; connects A; with E;,
i=1,2,...,r,is given by

1sdi(3t§r ((/ -1+ g(n - ki)>>
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Non-intersecting lattice paths

Let A; =(0,2(i —1)) and E; = (n, kj), i =1,2,...,r, with

ki = n (mod 2). Then the number of families (Py, Py, ..., P,) of
non-intersecting lattice paths, where P; connects A; with E;,
i=1,2,...,r,is given by

1sdi(3t§r ((/ -1+ g(n - ki)>>

_ H1§i<j§r(%(kj — ki) Tl_y(m+i—1)
[T G(m = ki) + r = DT (G (m + ki)Y

(ADC1, Theorem 26; hook-content formula in disguise)
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Non-intersecting lattice paths

We are ready to prove

ST, ()

ki, ke €Z1<i<j<r i=1

_H<I_1)2<I_2_”1) <I2_m1>(2m+2n—/—r+2) (i — 1)1,

and the proof consists in one picture!
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Non-intersecting lattice paths
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Non-intersecting lattice paths
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Non-intersecting lattice paths
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Non-intersecting lattice paths
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Non-intersecting lattice paths

If everything is worked out, then the previous picture does indeed
prove

S eewr () (07

..... kr€Z 1<i<j<r i=1

-11 <’:’_+1”> (i2_”1> <I,2_ml> (2m+2n—i—r+2)I(i —1)I°.
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Non-intersecting lattice paths

If everything is worked out, then the previous picture does indeed

prove
- 2m
Z T k- K)? H( >< )
..... ke€Z 1<,<J<r 1 \n+ ki) \m+ ki
_ m+n 2n 2m (2m+2n—i r+2)l(i—1)'5
_, A i—1)\i—-1 ! ! °.
What about

> I w-gr (7, ) () =7

ki,...,kr €L 1<i<j<r
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Non-intersecting lattice paths

What about
> II ¢ Hkl2< 2”,(,)( 2mk> =77
Kiyeooskr €2 1<i<j<r i=1 n—+ Ki m + K;
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Non-intersecting lattice paths

What about
> II ¢ Hkl2< 2”,(,)( 2mk> =77
Kiyeooskr €2 1<i<j<r i=1 n—+ Ki m + K;

The above sum is equivalent to

D D | It Hk2 (n i”k> (msz) =77

0<ki < <kr 1<i<j<r
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Non-intersecting lattice paths

What about
> II ¢ Hkl2< 2”,(,)( 2mk> =77
Kiyeooskr €2 1<i<j<r i=1 n—+ Ki m + K;

The above sum is equivalent to

D D | It Hk2 (n i"k> (msz) =77

0<ki < <kr 1<i<j<r

How can one generate

T (& -k)? H K? 7
i=1

1<i<j<r
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Non-intersecting lattice paths

What about
> II ¢ Hkl2< 2”,(,)( 2mk> =77
Kiyeooskr €2 1<i<j<r i=1 n—+ Ki m + K;

The above sum is equivalent to

2 Y T (- k) Hk2 (n i"k> (msz) —77

0<ki < <kr 1<i<j<r

How can one generate

r

II & -« [k 7

1<i<j<r i=1
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Non-intersecting lattice paths

How can one generate
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Non-intersecting lattice paths

How can one generate

By non-intersecting lattice paths again!
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Non-intersecting lattice paths

Let A; =(0,2i —1) and E; = (n, ki — 1), i =1,2,...,r, with

ki = n (mod 2). Here, the non-intersecting lattice paths that we
consider have the the additional property that paths never run
below the x-axis.
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Non-intersecting lattice paths

Let A; =(0,2i —1) and E; = (n, ki — 1), i =1,2,...,r, with

ki = n (mod 2). Here, the non-intersecting lattice paths that we
consider have the the additional property that paths never run
below the x-axis.

By the main theorem on non-intersecting lattice paths, the number
of families of these non-intersecting lattice paths is again given by
a determinant. The individual entries are obtained by the reflection
principle:

1sdii't§r <</ + é(rrlr - ki)) - <—J +1 +n§(" - ki))) '
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Non-intersecting lattice paths

And, once again, this determinant

i (g )~ (Ganiio- )
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Non-intersecting lattice paths

And, once again, this determinant can be evaluated:

i (g )~ (Ganiio- )

~ TI G- D+ k- 2)
1<i<j<r

(ki — 1) (n +2i — 2)!

R S Y EYT IS s Y EY PR T

i=1

(ADC1, Theorem 30; dimension formula for irreducible
representations of Spa,(C) in disguise)
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Non-intersecting lattice paths

And, once again, this determinant can be evaluated:

i (g )~ (Ganiio- )

= I Gls—k)Gki+k—2)

1<i<j<r
: (ki —1)(n+2i —2)!
(3(n = ki) + N (G0 + ki) +r = 1)1

X
i=1

(ADC1, Theorem 30; dimension formula for irreducible
representations of Spa,(C) in disguise)

One can “smell” the type B Vandermonde product: one only needs
to replace k; by 2k; + 1 (which you need to take if n is odd).
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Non-intersecting lattice paths

Here is the one-picture proof of

S qesriie ()

0<ki<-<k, 1<i<j<r

_ 2(m+n)r—3("*2'1) ]j (2n)! (2m)|
pa (2n—=2i+ 1)1 (2m —2i +1)!
2i—1)'2m+2n—2i—2r+ 1)
(m+n—i+1)!
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Non-intersecting lattice paths
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Non-intersecting lattice paths
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Non-intersecting lattice paths

There is a third scenario, where this idea works:

Let A; =(0,2(i —1)) and E; = (n, kj), i =1,2,...,r, with

ki = n (mod 2). Here, we consider families of non-intersecting
lattice paths with the property that the family remains
non-intersecting if any of the paths are reflected in the x-axis.
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Non-intersecting lattice paths

Let A; =(0,2(i —1)) and E; = (n, k;), i =1,2,...,r, with

ki = n (mod 2). Here, we consider families of non-intersecting
lattice paths with the property that the family remains
non-intersecting if any of the paths are reflected in the x-axis.
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Non-intersecting lattice paths

Let A; =(0,2(i —1)) and E; = (n, k;), i =1,2,...,r, with

ki = n (mod 2). Here, we consider families of non-intersecting
lattice paths with the property that the family remains
non-intersecting if any of the paths are reflected in the x-axis.

By a combination of the Lindstrom—Gessel-Viennot involution and
path reflections, it can be shown that the number of the above
families is given by the determinant

E det v + #
21<ij<r \\Jj — 1+ 3(m — k) —j+14+3(m=k)))’

which equals the closed form product

r

T Gki—k))Gki+k) ]

1<i<j<r i=1

(m+2i —2)!
G(m—k)+r—1)(E(m+k)+r—1)1

(ADC1, Theorem 31; dimension formula for irreducible
representations of Oz,(C) in disguise)
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Non-intersecting lattice paths

Consequently, there is a one-picture proof of another identity,
namely

> Te 4Pl (n ink,) (mzf k,-)

Ki,...kr€Z 1<i<j<r i=1

—_ 1 o(mtn+2)r—(5) - (2n)! (2m)!
2 2[[1(2n—2i+2)!(2m—2i+2)!
(2i =2)'(2m+2n—2i —2r + 3)!
(m+n—i+1)! '
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Non-intersecting lattice paths
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Classical group characters
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Classical group characters

The classical group characters of interest here are:

e Schur functions sy(; x);

e symplectic characters spyn(\; x*1);

e orthogonal characters oy(\; x*1).

They are indexed by partitions A = (A1, A2, ..., A,), i.e., integer
sequences with A\; > Ao > --- > X\, > 0.

The sets of variables used here are

11 (Xl,xl_l,...,x,,,x,,’l), if N =2n,
X =
(Xl,xfl,...,x,,,x,:l,l), if N=2n+1.
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Classical group characters

Let ex(xi,...,xn) denote the k-th elementary symmetric functions

ek(xl,...,xN): Z Xiy * 0 Xiy -

1< < <ix<N

Furthermore, let \' denote the partition conjugate to \.
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Classical group characters

Let ex(xi,...,xn) denote the k-th elementary symmetric functions

ek(xl,...,xN): E Xiy * 0 Xiy -
1<in<-<ix<N

Furthermore, let \' denote the partition conjugate to \.

e Schur functions

sw(Aix) = | det (ex—it;(x)).

e symplectic characters

sp2n(A; x) = 1<(I.j?£)\l(e>\§fi+j(xil) —exij(x*).

e orthogonal characters

. 1 +1 +1
on(Aix) = 51;,'{%&(%*"“()( )+ en—ijr2(x7))-
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Classical group characters

Combinatorial interpretation of Schur functions

Let A; =(0,2(/—1)) and E; = (N, ki), i =1,2,...,r. The Schur
function corresponding to these data is

sny(A;x) = Z w(F),

F

where F ranges over families of non-intersecting lattice paths
which connect A; to E;, i =1,2,...,r.

(semistandard tableaux in disguise)
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Classical group characters

Combinatorial interpretation of Schur functions

Let A; =(0,2(/—1)) and E; = (N, ki), i =1,2,...,r. The Schur
function corresponding to these data is

where F ranges over families of non-intersecting lattice paths
which connect A; to E;, i =1,2,...,r.

(semistandard tableaux in disguise)

Richard Brent, Christian Krattenthaler and Ole Warnaar Non-intersecting lattice paths



Classical group characters

Combinatorial interpretation of Schur functions
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Classical group characters

Combinatorial interpretation of Schur functions

N = (5,4,4,2)
A=(4,4,331)

\: = #(down-steps between A; and E;
1
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Classical group characters

Combinatorial interpretation of Schur functions

X1 X2 X3 X4 X5 X X7 X8

N =(5,4,4,2)
A= (4,4,3,3,1)

\; = #(down-steps between A; and E;)

W(F) _ fo#(down—steps in “column ")
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Classical group characters

Combinatorial interpretation of symplectic characters

Let A, =(0,2/i —1) and E; = (2n,k; — 1), i =1,2,...,r. Here,
the non-intersecting lattice paths that we consider have the the
additional property that paths never run below the x-axis.

The symplectic character corresponding to these data is
5p2n(A; X) = Z WI(F)a
F

where F ranges over the above families of non-intersecting lattice
paths which connect A;j to E;, i=1,2,...,r.

(King and El-Sharkaway'’s symplectic tableaux in disguise)
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Classical group characters

Combinatorial interpretation of symplectic characters

-1 -1 -
Xy ed
\J/ o o \l/ e o J/ e o o

Es

1

As W’(F):xflxzfzxsf2
A3
Az

A1
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Classical group characters

Combinatorial interpretation of orthogonal characters

Let A; =(0,2(i —1)) and E; = (N, k;), i =1,2,...,r. Here, we
consider families of non-intersecting lattice paths with a technical
additional property.
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Classical group characters

Combinatorial interpretation of orthogonal characters

The orthogonal character corresponding to these data is
on(\ix) =D w/(F),
F

where F ranges over families of non-intersecting lattice paths
which connect A; to E;, i =1,2,...,r, and the weight w/(F) is
the same as for symplectic characters.

(Proctor’s orthogonal tableaux of the first kind in disguise)
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Classical group characters

Why do these combinatorial interpretations work?

For example, in the symplectic case,
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Classical group characters

Combinatorial interpretation of symplectic characters

-1 -1 -
Xy ed
\J/ o o \l/ e o J/ e o o

Es

1

As W’(F):xflxzfzxsf2
A3
Az

A1
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Classical group characters

Why do these combinatorial interpretations work?

For example, in the symplectic case, the (weighted)
Lindstrom—Gessel-Viennot theorem implies that

> W/(F) =det S w(P)

F P:A;j—E;, pos.

>, w(P)

P:A—E, pos.

So, we need to compute

for given lattice points A and E.
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Classical group characters

Why do these combinatorial interpretations work?

So, we need to compute

> w(P)

P:A—E, pos.

for given lattice points A = (0,a) and E = (2n, e).
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Classical group characters

A modified reflection principle
So, we need to compute
Z w’(P) = GF(all paths) — GF(bad paths)
P:A—E, pos.

for given lattice points A = (0,a) and E = (2n, e).
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Classical group characters

A modified reflection principle

So, we need to compute

> W/(P)=GF(all paths) — GF(bad paths)
P:A—E, pos.

for given lattice points A = (0,a) and E = (2n, e).
-1 -1 -1 -1 -1 -1 -1

X| T Xy X3 Xp o Xg o Xg o Xg
]_oicXQoiQX30J,QX40\L.X5QJ/¢X6.\L.X70¢Q

J/. [ .\l/. .i. .\l/. .J/. .J/. o
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Classical group characters

A modified reflection principle

So, we need to compute

Z W' (P) = €(n10-e)/2(x**) — GF(bad paths)
P:A—E, pos.

for given lattice points A = (0,a) and E = (2n, e).
-1 -1 -1 -1 -1 -1 -1

X| T Xy X3 Xp o Xg o Xg o Xg
]_oicXQoiQX30J,QX40\L.X5QJ/¢X6.\L.X70¢Q

J/. [ .\l/. .i. .\l/. .J/. .J/. o
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Classical group characters

A modified reflection principle

So, we need to compute
Z w'(P) = e(n+afe)/2(X:tl) — GF(bad paths)

P:A—E, pos.
for given lattice points A = (0,a) and E = (2n, e).
-1 -1 -1 -1 -1 _-1 _-1
Xi Xﬁ/ X3 Xy X, Xg X7
10 | @XDe lX3.J/.X4OJ/.X5.J/.X6.J/.X7.J/.

J/. .\l/. .J/. .\J/. .J/. .J/. .J/. [ )

ooooo:/.E
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Classical group characters

A modified reflection principle
So, we need to compute

Z W' (P) = €(nta—e)/2(x*1) — GF(bad paths)
P:A—E, pos.
for given lattice points A = (0,a) and E = (2n, e).
-1 -1 -1 -1 -1 -1 -1
X Xp U X3 X, Xg o Xg o Xg
]_oicXQoiQX30J,QX40\L.X5QJ/¢X6.\L.X70¢Q

J/. .\l/. .J/. .\J/. .J/. .J/. .J/. [ )
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Classical group characters

A modified reflection principle

So, we need to compute

Z w'(P) = e(n+afe)/2(X:tl) — GF(bad paths)
P:A—E, pos.

for given lattice points A = (0,a) and E = (2n, e).
-1 — -1 -1 -1 -1 -1
X| T Xy X3 Xg o Xg o Xg o Xp
]_oicXQoiQX30J,QX40\L.X5QJ/¢X6.\L.X70¢Q
J/. .\L. .\l/. .i. .\l/. .J/. .J/. o

A

ooooooooooo:/.E
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Classical group characters

A modified reflection principle

So, we need to compute

S W(P) = enra—e)2(XF) = enae2)2(x*)
P:A—E, pos.

for given lattice points A = (0,a) and E = (2n, e).
-1 _ -1 -1 -1 -1
X| T Xy X3 Xg o Xg o Xg o Xp
]_oicXQoinX3oJ/cX4oj,cX5oJ/cX6o\l,cX7o¢o
J/. .\L. .\l/. .i. .\l/. .J/. .J/. o

A® © ¢ 0o 0o 0 0 0 0 0 0 0 0 o o
oooooooooooo:/.E
P 2
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Classical group characters

A modified reflection principle

If the previous finding is substituted back in

D W/(F) = det Sow(p) ],

F P:Aj—)E,', pos.
we obtain
/ _ +1 41y _ )
DoWIF) = gt (o) = ooy (6) = o),
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Classical group characters

H
; E,
E;
; E;
e o o [ ] ' [ ] e o
e o o [ ] [ ] X e o [ ] [ ] ,
[ ] [ ] 2-’ [ ] [ ] [ ] [ ] [ ] [ ] 2’” [ ] [ ] [ ] [ ]
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Classical group characters

For all non-negative integers m and n with m < n, we have

Z Sm (A %) s ((r"™™, A yY) = Smpn ((F™F7)ix,y).

)\2)\1Sr
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Classical group characters

For all non-negative integers m and n with m < n, we have

Z SP2m (A’ Xil) SPop, ((rnima A)r yil) = 5p2(m+n) ((rern); xila yil)'
A <Zr
and

Y sPamin (NixTh2) span i (1", Ny 2)

Aa<r

=z SP2(m+n+1) ((rm+n); Xil? yil’ Zil) :

The symplectic characters on the left-hand side are the “odd
symplectic characters” of Proctor.
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Classical group characters

For all non-negative integers m and n with m < n, we have

> 0o (Ax) 020 (I A)iy* ) = Oameny (777 y ™).
>\:)\1§r

and

Z 02mr1 (A x, 1) opppr ((r™ ™, A);yH 1)
A <r

= O(mynt1) ((F™F M) x L y* 150,
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Classical group characters

As a matter of fact, these identities had been found earlier by
Soichi Okada, except for one, the identity

D Pomir (X 2) spynq (177 A) YT 2)
AiAi<r

m+n) :I:l’ y:l:l’ Z:I:l)

=z SP2(m4-n+1) ((r 1 X

for odd symplectic characters. He used heavy determinant
calculations for proving his formulae.
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g-analogues?
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g-analogues?

Yes, for example,

12 Tk k12 : k2 —=(2i=1)ki [ k. 2n 2m
> Tk-kilkesh T \[k,]qz|[n+ki]q[m+kj

Kb,k €2 1<i<j<r

a2 T [2n]! [2m]!

!<1—|—q> 7 Il;[l[n—/+1]q![n—i]q![m—i—i—l]q![m—i]q!
[i — 142 [m+n—i—r+1],
' [m+n—i+1],

)

where

1—g°

1-q’

[n]q! = [nlg [n —1]q - -~ [1]q,

|
[”] _ [n]q!
| — 1
k q [Klg! [ — Klg!
Richard Brent, Christian Krattenthaler and Ole Warnaar Non-intersecting lattice paths
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g-analogues?

Yes, also for those where the Vandermonde-type product is not
squared, for example

=

) H[k—qu[k+k1qu |[k]q|[2”}

n -+ k,'
1,--,Kr EZ 1</<J<r

3/2 2n—i+2 n—i+1
_2r,.H i /G)on o T D (q2 1 @)oo E,(z,+§ @)oo
i—1 (0" @)oo (°™ 15 q)o0 (47725 @)oo
but ...
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