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The Catalan numbers are defined by

1 2n

Johann Cigler and Christian Krattenthaler Some determinants of path generating functions



The Catalan numbers are defined by

C, — 1 <2n>'
n+1\n

The first few numbers are

1,1,2,5,14,42,132,429, . ..
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The Catalan numbers are defined by

The first few numbers are

1,1,2,5,14,42,132,429, . ..

We have the (surprising?) Hankel determinant evaluation

G G G ... Ci
G G G ... (o
det| & G G ... G| =1
Cn—l Cn Cn+1 o C2n—2
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The orthogonal polynomials explanation
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The orthogonal polynomials explanation

Theorem

Let (pn(x))n>0 be a sequence of monic polynomials, the polynomial
pn(x) having degree n, which is orthogonal with respect to some
functional L, that is, L(pm(x)pn(x)) = dm nCn, where the c,’s are
some non-zero constants and 0, , is the Kronecker delta. Let

Pn+1(x) = (an + x)Pn(x) — bnpn-1(x)

be the corresponding three-term recurrence which is guaranteed by
Favard'’s theorem. Then the Hankel determinant of the moments
pk = L(x*) satisfies

~1pn-2 2
og;f,j%tn_l(“’“) = pgbf by - by _pbn1.
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The orthogonal polynomials explanation

Theorem

Let (pn(x))n>0 be a sequence of monic polynomials, the polynomial
pn(x) having degree n, which is orthogonal with respect to some
functional L, that is, L(pm(x)pn(x)) = dm nCn, where the c,’s are
some non-zero constants and 0, , is the Kronecker delta. Let

Pn+1(x) = (an + x)Pn(x) — bnpn-1(x)

be the corresponding three-term recurrence which is guaranteed by
Favard'’s theorem. Then the Hankel determinant of the moments
pk = L(x*) satisfies

~1pn-2 2
og;f,j%tn_l(“’”) = pgbf by - by _pbn1.

The Catalan numbers are the moments for Up(x/2), where Up(x)
denotes the n-th Chebyshev polynomial of the second kind.
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The combinatorial explanation

hann Cigler and Christian Krattenthaler Some determinants of path generating functions



The combinatorial explanation

The Catalan number C, counts Dyck paths of length 2n:

(A Dyck path is a lattice path from (0, 0) back to the x-axis consisting of up-steps

(1,1) and down-steps (1, —1) never running below the x-axis.)
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The non-intersecting lattice path theorem
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The non-intersecting lattice path theorem

Theorem (Lindstrom, Gessel-Viennot)

Fix a lattice region R. Let Ay, A1,...,An_1 and Eg, Eq1, ..., Ep 1
be lattice points in R. Then (modulo a mild technical condition)
the number of all families (Po, P1, ..., Ps—1) of non-intersecting

paths staying in R, such that the i-th path P; runs from A; to E;,
i=0,1,...,n—1, is given by

st (1P(A;— B,

where P(A — E) denotes the set of paths from A to E staying in
R.
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Claim

det Ciii) =1.
OgiJegn—l( I+J)

Proof.

| A\
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° ° ° ° ° ° ° °
Ay, A3 A A 40 E; E> Es Eq4
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° ° ° ° ° ° ° °
Ay, A3 A A 40 E; E> Es E4
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The Motzkin number M,, is defined as the number of Motzkin
paths of length n.
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The Motzkin number M,, is defined as the number of Motzkin
paths of length n.

(A Motzkin path is a lattice path from (0, 0) back to the x-axis consisting of up-steps

(1,1), level steps (1,0), and down-steps (1, —1), never running below the x-axis.)
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The Motzkin number M,, is defined as the number of Motzkin
paths of length n.

(A Motzkin path is a lattice path from (0, 0) back to the x-axis consisting of up-steps

(1,1), level steps (1,0), and down-steps (1, —1), never running below the x-axis.)

The first few numbers are

1,1,2,4,9,21,51,127,323, ...
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The Motzkin number M,, is defined as the number of Motzkin
paths of length n.
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The Motzkin number M,, is defined as the number of Motzkin
paths of length n.
We have the Hankel determinant evaluation

det (M,’+j) =1.

0<ij<n—1
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The Motzkin number M,, is defined as the number of Motzkin
paths of length n.
We have the Hankel determinant evaluation

det (M,’+j) =1.

0<ij<n—1

Why?
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The Motzkin number M,, is defined as the number of Motzkin
paths of length n.
We have the Hankel determinant evaluation

det (M,’+j) =1.

0<ij<n—1

Why?

@ The Motzkin numbers are again moments of (suitably scaled)
Chebyshev polynomials of the second kind.
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The Motzkin number M,, is defined as the number of Motzkin
paths of length n.
We have the Hankel determinant evaluation

det (M,'+J') =1.

0<ij<n—1

Why?
@ The Motzkin numbers are again moments of (suitably scaled)
Chebyshev polynomials of the second kind.
@ Non-intersecting lattice paths strike again!

AsA3Ar A1 Ao E1 Ex E3 Ey
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The Motzkin number M,, is defined as the number of Motzkin
paths of length n.
We have the Hankel determinant evaluation

det (M,'+J') =1.

0<ij<n—1

Why?
@ The Motzkin numbers are again moments of (suitably scaled)
Chebyshev polynomials of the second kind.
@ Non-intersecting lattice paths strike again!

AsA3Ar A1 Ao E1 Ex E3 Ey
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The Motzkin number M,, is defined as the number of Motzkin
paths of length n.
We have the Hankel determinant evaluation

det (M,'+J') =1.

0<ij<n—1

Why?
@ The Motzkin numbers are again moments of (suitably scaled)
Chebyshev polynomials of the second kind.
@ Non-intersecting lattice paths strike again!

AsA3Ar A1 Ao E1 Ex E3 Ey
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The Motzkin number M,, is defined as the number of Motzkin
paths of length n.
We have the Hankel determinant evaluation

det (M,'+J') =1.

0<ij<n—1

Why?
@ The Motzkin numbers are again moments of (suitably scaled)
Chebyshev polynomials of the second kind.
@ Non-intersecting lattice paths strike again!

AsA3Ar A1 Ao E1 Ex E3 Ey
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The Motzkin number M,, is defined as the number of Motzkin
paths of length n.
We have the Hankel determinant evaluation

det (M,'+J') =1.

0<ij<n—1

Why?
@ The Motzkin numbers are again moments of (suitably scaled)
Chebyshev polynomials of the second kind.
@ Non-intersecting lattice paths strike again!

AsA3Ar A1 Ao E1 Ex E3 Ey
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The “next” Hankel determinants:
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The “next” Hankel determinants:
We have

. -1
Ogigegtnil(cl-ﬂ-i-l)
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The “next” Hankel determinants:

We have
0<’_cj_<2tn71(C,-+j+1) =1
and
(—1)"/3 if n=0 (mod 3),
i) = (=113 ifp=
ogif,l'eg:tn_1(M'+J+l) ( ].) ifn=1 (mod 3),
0 if n=2 (mod 3).
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The “next” Hankel determinants:

We have
0<’_cj_<2tn71(C,-+j+1) =1
and
(—1)"/3 if n=0 (mod 3),
i) = (=113 ifp=
ogif,l'eg:tn_1(M'+J+l) ( ].) ifn=1 (mod 3),
0 if n=2 (mod 3).

REMARK. There is actually a closed product formula for

deto<jj<n—1(Cx+j)- This is, however, not the case for the Motzkin
numbers.
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Can we have a common generalisation of Catalan and
Motzkin numbers?
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Can we have a common generalisation of Catalan and
Motzkin numbers?

Yes, certainly!
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Can we have a common generalisation of Catalan and
Motzkin numbers?

Yes, certainly! We have to introduce weights!
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Can we have a common generalisation of Catalan and
Motzkin numbers?

Yes, certainly! We have to introduce weights!
Let us do this for “generalised” Motzkin paths:
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Can we have a common generalisation of Catalan and
Motzkin numbers?

Yes, certainly! We have to introduce weights!
Let us do this for “generalised” Motzkin paths:
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Can we have a common generalisation of Catalan and
Motzkin numbers?

Yes, certainly! We have to introduce weights!
Let us do this for “generalised” Motzkin paths:

where a = x4+ y and b= xy.
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Can we have a common generalisation of Catalan and
Motzkin numbers?

Yes, certainly! We have to introduce weights!
Let us do this for “generalised” Motzkin paths:

where a = x4+ y and b= xy.
The weight w(P) of a path P is then the product of the weights of
its steps. (In the example: w(P) = a3b3.)
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Can we have a common generalisation of Catalan and
Motzkin numbers?

Yes, certainly! We have to introduce weights!
Let us do this for “generalised” Motzkin paths:

where a = x4+ y and b= xy.

The weight w(P) of a path P is then the product of the weights of
its steps. (In the example: w(P) = a3b3.)

Furthermore, let P;1 (I, k) = > p w(P), where P runs over all
Motzkin paths from (0, /) to (n, k).
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Can we have a common generalisation of Catalan and
Motzin numbers?

Furthermore, let P,/ (/,k) = >"p w(P), where P runs over all
Motzkin paths from (0, /) to (n, k).
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Can we have a common generalisation of Catalan and
Motzin numbers?

Furthermore, let P, (/,
Motzkin paths from (0,

We have

k) = > p w(P), where P runs over all
l) to (n, k).

Co =P7(0,0)|,_9 1 = P7(0,0)|
M, = P*(0,0)| =P*(0,0)|

where w is a primitive sixth root of unity.

X:—y:d—]_’

a=b=1 x=y~l=w’
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Some computer experiments:
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Some computer experiments:
Consider the Hankel determinant

D(n, k) := det (Pﬁj(o,k))

0<ij<n-1
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Some computer experiments:
Consider the Hankel determinant

D(n k) i= _det  (P/,;(0.K)

In[1]:= Trinom[N_,M1_,M2_]:=N!/M1!/M2!/(N-M1-M2)!
In[2]:= WIn_,1_,k_]:=Sum[Trinom[n,s,s+k-1]%*
(x+y)" (n-2s5-k+1) (x y)"'s,
{s,0,Max[n/2, (n+1-k)/2]}]
In[3]:= D[n_,k_]:=Det[Table[W[i+j,0,k]-

(x y)Wli+j,-2,k1,{i,0,n-1},{j,0,n-1}1]
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Some computer experiments:
Consider the Hankel determinant

D(n k) i= _det  (P/,;(0.K)

In[1]:= Trinom[N_,M1_,M2_]:=N!/M1!/M2!/(N-M1-M2)!
In[2]:= WIn_,1_,k_]:=Sum[Trinom[n,s,s+k-1]%*
(x+y)" (n-2s5-k+1) (x y)"'s,
{s,0,Max[n/2, (n+1-k)/2]}]
In[3]:= D[n_,k_]:=Det[Table[W[i+j,0,k]-
(x y)Wli+j,-2,k1,{i,0,n-1},{j,0,n-1}]1]
In[4] := Table[Factor[D[n,0]],{n,1,9}]
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Some computer experiments:
Consider the Hankel determinant

D(n k) i= _det  (P/,;(0.K)

In[1]:= Trinom[N_,M1_,M2_]:=N!/M1!/M2!/(N-M1-M2)!
In[2]:= WIn_,1_,k_]:=Sum[Trinom[n,s,s+k-1]%*
(x+y)" (n-2s5-k+1) (x y)"'s,
{s,0,Max[n/2, (n+1-k)/2]}]
In[3]:= D[n_,k_]:=Det[Table[W[i+j,0,k]-
(x y)Wli+j,-2,k1,{i,0,n-1},{j,0,n-1}]1]
In[4] := Table[Factor[D[n,0]],{n,1,9}]

3 3 6 6 10 10 15 15
Outf4]l= {1, xy,x y,x y,xXx Yy ,x §y ,
21 21 28 28 36 36
> x y , X y ,X%X y
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Some computer experiments:
Consider the Hankel determinant

D(n, k) := Ogiggtnil(P,.ij(o, k))

In[4]:

Table[Factor[D[n,0]],{n,1,9}]
3 3 6 6 10 10 15 15
Outf4]l= {1, xy,x y,x y,xX Yy ,X §y ,
21 21 28 28 36 36
> x y , X y ,X%X y
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Some computer experiments:
Consider the Hankel determinant

D(n, k) := Ogiggtnil(P,.ij(o, k))

In[4]:

Table[Factor[D[n,0]],{n,1,9}]
3 3 6 6 10 10 15 15
Outf4]l= {1, xy,x y,x y,xX Yy ,X §y ,
21 21 28 28 36 36
> x y , X y ,X%X y
In[5]:= Table[Factor[D[n,1]1],{n,1,9}]
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Some computer experiments:
Consider the Hankel determinant

D(n, k) := Ogiggtnil(P,.ij(o, k))

In[4]:

Table[Factor[D[n,0]],{n,1,9}]
3 3 6 6 10 10 15 15
Outf4]l= {1, xy,x y,x y,xX Yy ,X §y ,
21 21 28 28 36 36
> x y , X y ,X%X y

In[5]:= Table[Factor[D[n,1]1],{n,1,9}]

4 4 12 12 24 24
DUt[5]= {O, _1’ O: X Yy, Oy _(X y ), o’ X y )
> 0}
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Some computer experiments:
Consider the Hankel determinant

D(n k) i= _det _ (P/,;(0.K)

In[4]:

Table[Factor[D[n,0]],{n,1,9}]
3 3 6 6 10 10 15 15
Outf4]l= {1, xy,x y,x y,xX Yy ,X §y ,
21 21 28 28 36 36
> x y , X y ,X%X y

In[5]:= Table[Factor[D[n,1]1],{n,1,9}]

4 4 12 12 24 24
DUt[5]= {O, _1’ O: X Yy, Oy _(X y ), o’ X y )
> 0}

In[6]:= Table[Factor[D[n,2]],{n,1,9}]
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Some computer experiments:
Consider the Hankel determinant

D(n, k) := Ogiggtnil(P,.ij(o, k))

In[4] := Table[Factor[D[n,0]],{n,1,9}]

3 3 6 6 10 10 15 15
Outf4]l= {1, xy,x y,x y,xX Yy ,X §y ,
21 21 28 28 36 36
> x y , X y ,X%X y

In[5]:= Table[Factor[D[n,1]1],{n,1,9}]

4 4 12 12 24 24
Out[5]= {0, -1, 0, x y , 0, -(x y ), 0,x y ,
> 0}
In[6]:= Table[Factor[D[n,2]],{n,1,9}]

9 9 27 27
Out[6]= {0, 0, -1, 0, 0, x y , 0, 0, -(x y )}
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For all positive integers n und k, we have

det (P,J;J-(O, k))

0<i,j<n—1

_ (—1)"1(}(;1)(xy)(k+1)2(n2l) n—= nl(k + ]_),
o n#0 (mod k +1).
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For all positive integers n und k, we have

det (79,11(0, k))

0<i,j<n—1
3 (_1)n1(k;1) (xy)(k+1)2(n21) n—= nl(k -+ ]_)7
o n#0 (mod k + 1).

Theorem

For all positive integers n und k, we have

det (79, () k))

0<i,j<n—1
(_1)n1(k2 )(Xy)(k+1 2(7) Lttt et tymtt) m(k +1),

YR kT
(_1)n1( 2 )—1—(2) (Xy)(k+1)2(n21)+n1k(k+1)

(k4+1)(n1+1) _X(k+1)(n1+1)

x ¥ YR kT n= nl(k + 1) + ka

0 n# 0,k (mod k +1).




What about wunrestricted paths?
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What about wunrestricted paths?
Let us consider three-step paths:
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What about wunrestricted paths?
Let us consider three-step paths:

Let Po(/, k) =
from (0,/) to (n,
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, where P runs over all three-step paths



For all positive integers n and k, we have

det (Pis(0, k)

0<ij<n—1
(_1)kn1+(§)(Xy)k(nl—l)(2kn1—k+1) n=2km — k+1,
= (_1)kn1(xy)kn1(2kn1—k—1) n = 2kny,
0 n#0,k+1 (mod 2k).
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For all positive integers n and integers k > 2, we have
0<icjl.§tn_1 (Pi+j+1(0, k))

(_1)k(n171)71(Xy)kn1(2kn17kf3)+k Pn—k+2,k(X> y)

n=2kn — 1,

(_1)kn1+(§)(Xy)k(nl—l)(2kn1—k+1)Pn,k(x, ¥)

= n=2kn — k+1,

(—1)k"1+(k§1)(xy)k("l_l)(2k"1_k_1)Pn—k,k(X, )

(_1)kn1 (Xy)kn1(2kn1—k—1) Pn,k(X, }/)

L0 n#0,k,k+1,2k—1 (mod 2k),
where
Xm+k+(71)m/kym+k
Xk+ k
Pm,k(X7 )/) = (thm/kj+k+(,1)Lm/kJyk[m/kJ+k)(Xm—kLm/’<J +(71)Lm/’dy'ﬂ—kt "/kJ)

Xk+yk
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By specialising the variables x und y, one can derive numerous
formulae for binomial determinants, determinants of Catalan and
ballot numbers, determinants of (generalised) Motzkin numbers.
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By specialising the variables x und y, one can derive numerous
formulae for binomial determinants, determinants of Catalan and
ballot numbers, determinants of (generalised) Motzkin numbers.
For example:

Corollary

For all positive integers n und k, we have

2i+2j+4
det L
0<ij<n—1\\/i +j+k+2

(=L n=2n1k,

(—1)mk+(3) n=2nk— k-1,

= (=) () (n 4 k) n=2nk — &,

(=1 4 1) n=2nk—1,

0 n#0,k—1,k 2k —1 (mod 2k),
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Corollary

For all positive integers n and k > 2, we have

(- 1)k"1/2 n= km and k =0 (mod 6),
ny+1
(-1 )(12 ) n = km and k = 3 (mod 12),
(-1 )( ) n = kny and k =9 (mod 12),
k+1
(- 1)""”( ) n = 6kn; — 5k and 3 1 k,
3(—1)k(m+D+1(k+1)/6] = 6kn; — 5k + 1 and 3 1 k,
3(—1)k(m+1)+[k/3] n=6kn; — 4k — 1 and 3 1 k,
bt ( (I;ej +k1)) =) 2= 0= G =S E R
=h/=0= + 2(— 1)k"1+( ) n = 6kn — 3k and 31 k,
3(—1)kK(m+D)+L(k+4)/6]  n — 6kny — 3k + 1 and 3 1 k,
3(— 1)""1+U‘/3JJrl n=6kn; —2k —1 and 3 1k,
(—1)k(m+1) n = 6kn; — 2k and 3 1 k,
k+1
(_1)k"1+( 2 ) n = 6kn; — k and 3 1 k,
(—1)km n = 6kn; and 31 k,
0 otherwise.
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How do we prove our theorems?
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How do we prove our theorems?

We show that our determinants can be transformed into
equivalent, but more accessible determinants.
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How do we prove our theorems?

We show that our determinants can be transformed into
equivalent, but more accessible determinants.

This transformation is most conveniently explained by using
non-intersecting paths again.
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Let us consider
det  (P/;(0,k)).

0<ij<n—1
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Let us consider
det  (P/;(0,k)).

0<ij<n—1

Its combinatorial interpretation in terms of non-intersecting lattice
paths is (here, n =5, k = 3):
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Let us consider
det  (P/;(0,k)).

0<ij<n—1

Its combinatorial interpretation in terms of non-intersecting lattice
paths is (here, n =5, k = 3):
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Let us consider
det  (P/;(0,k)).

0<ij<n—1

Its combinatorial interpretation in terms of non-intersecting lattice
paths is (here, n =5, k = 3):
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Let us consider

det (P .(0,k)).

0<ij<n—1' it

Its combinatorial interpretation in terms of non-intersecting lattice
paths is (here, n =5, k = 3):

By the (generalised) non-intersecting lattice paths theorem, the
weighted generating function is again a determinant:

+ .
oo e (P (i K)).
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Now we make use of the reflection principle, which allows us to
express the restricted weighted counts P*(/, k) in terms of the
unrestricted ones:

P, k) = Pu(l, k) — (xy)F1Pu(—1 — 2, k).
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Now we make use of the reflection principle, which allows us to
express the restricted weighted counts P*(/, k) in terms of the
unrestricted ones:

P, k) = Pu(l, k) — (xy)F1Pu(—1 — 2, k).

Hence, the determinant in our first theorem equals

det (P(i,k)) = _det (Pj(i,k) — (xy) " Pi(—i —2,k)),

0<i,j<n—1 0<i,j<n—1

and there are similar transformations for all the other determinants.
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So, we should prove:

Theorem

For all positive integers n and non-negative integers k, we have
det (i, k) — TP (—i -2,k
OSIJ%n—l (PJ(’a ) (Xy) PJ( b ’ ))

- (=) )+ (B) = py(k + 1),
~ o n#0 (mod k + 1).
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In fact, we can introduce another parameter:

For all positive integers n and non-negative integers k, we have

(7 _ i+lp.
st (Pilik) = (o) Py(=i = 2,))

B (_1)n1(k;1)(Xy)(k+1)2(n21) n=n(k+1),
~ o n#0 (mod k + 1).
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In fact, we can introduce another parameter:

For all positive integers n and non-negative integers k, we have

(] _ i+1lp.
Ogiggtn_l(PJ(l,k) q(xy) T Pi(—i — 2,k))

B qu%J(_1),71(’(;1)(Xy)(k+1)2(n21) n= n]_(k aF 1),
~ o n#0 (mod k + 1).
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And the same works for all the other determinants:
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And the same works for all the other determinants:

For all positive integers n and non-negative integers k, we have

det  (Pjya(i, k) — ay) Pja(—i = 2, k)

0<i,j<n—
(=1)(3) gH L3 () D2(3)

v 221:0 qmin{s,m—s}Xs(k+1)y(n1—s)(k+1)

n=n(k+1),
= § (~1)mU)HE) g3 () (k1P (3 mkChr)
x 221:0 qmin{s,nl7S}Xs(k+1)y(n1*5)(k+1)
n:nl(k+1)+k7

\0 n;éO,k(modk+1)
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And the same works for all the other determinants:

For all positive integers n and k, we have

det _ (P;(i, k) + q(xy)"Pj(~i, k))

0<ij<n—1
(_1)kn1+(§)(1 + g)gkm=1)(xy)K(m—1)(2km—k-+1)
n=2kn —k+1,

(

— (_1)kn1(1 + q)qkm—l(Xy)kn1(2kn1—k—l)
n = 2kny,
0 n# 0,k +1 (mod 2k).

4
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And the same works for all the other determinants:

For all positive integers n and k, we have

Ogif}egtn_l(PjH( k) + a(xy)"Pjsa(=i, k))

(—1) m=1=Y(1 4 q)ghm=2(xy)km@km=k=3)+kp | 5 k(x,¥,q)
n=2kn —1
(_1)kn1+(§)(1+q)qk(nrl)(xy) (m—1)(2km—k+1) p_ w06y, 9)
n=2kn —k+1,
knm+(*3) k(n—1) k(i —1)(2kn —k—1) '
= (1) 2 (1 + q)g ™Y (xy ) m Po—kk(x,¥,q)

n = 2kn; — k,
( 1)kn1(1 + q)qkm 1(Xy)kn1(2kn1 k— l)P (X V. q )
n = 2kny,
0 nZ0,k k+1,2k—1 (mod 2k),
where Pp, k(x,y,q)
_ {Zm/k( 1)s gmin{s & —s} sk m—sk if m=0 (mod k),
- Z_E:é“(*l)s min{s,[m/k]=s} (xskym=sk 4 xm=skysk) jf m 20 (mod k),
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How does one prove these determinant evaluations?
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How does one prove these determinant evaluations?

By applying (tedious) row operations, one can convert all these

saw-tooth” forms:

determinants into

*

0 0 O

*

0 0 000 0O
0 0 00 0 O
0 0 0 0 O

0 0 0 O

*

*

* *
* *

*

0 0 00 0 0 0 0 0 O0 O
0 0 0 0O0O 0 0 0 0O
0 0 0O0O0OO O 0 O

0 0 0 OO 0 0 O

*

*

*

*

*

*

*

0 0 00 0O OO OOTOOOTUOTO
0 0 00 0O 0O O O OO OTDO
0 0 0 0OO0O 0 0 OO O OO
0 0 00 0 0 0 0O 0O O O O

0
*

det
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How does one prove these determinant evaluations?

right” size, it

In particular, if the determinant should not have the

will vanish:

0 0 O

0 0 00 0 O
0 0 0 0 0 O
0 0 0 0 O
0 0 0 O

*

*

*

0 0 0 0 O
0 0 O
0 0

0
0

0 0 00 0 O
0 0 00 0 O
0 0 0 0 0 O
0 0 00 0 O

*

0 0 00OO0OO OOOOU OO OO OTU OO

0 0 0 00O 0 O
0 0 0 0 0 O

0

0

0 0 00 0 O
0 0 00 0 O
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How does one prove these determinant evaluations?

right” size, then it is simply

If the determinant does have the

equal to the product of the left-most entries in each row:

0 0 O

*

0 0 0 0O 0 0 O
0 0 0 0 0 O
0 0 0 0 O

0 0 0 O

*

*

*
*

*
*

*
0 0 0 0 0 0 0O 0O 0O 0 O
0 0 00O OO O OO
0 0 00 0OOO 0O

0 0 0 00O O O O

*

*

*

*

*

*
*
*

0o 0 0 0 0 O OO O0OO0OTO0OTOTOTOT O
0 0 00 0 0 OO O O OO0 O0O0
0 0 0 0O0OOOO O O 0 0O
0o 0 0 0 0 0 0 0 0 0 0 O

*
*
*

*
*

*

det
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Open Questions
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Open Questions

(1) ARE THERE COMBINATORIAL PROOFS OF THESE
THEOREMS?
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Open Questions

(1) ARE THERE COMBINATORIAL PROOFS OF THESE
THEOREMS?

(2) Is THERE A CONNECTION WITH SYMPLECTIC AND
ORTHOGONAL CHARACTERS?
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Symplectic (and orthogonal) characters
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Symplectic (and orthogonal) characters

SPA(X1>X27 s 7Xn)
+ +1 + +1 +1 +
:lgeijé)\l (e)\’{_i+j(X1 17X2 e Xp 1)7eA;_i_j(X1 y Xy ey Xy 1))7
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Symplectic (and orthogonal) characters

SPA(X1>X27 s 7Xn)
+ +1 + +1 +1 +
:lgeijé)\l (e)\’{_i+j(X1 17X2 e Xp 1)7eA;_i_j(X1 y Xy ey Xy 1))7

SPA(X17X27 e 7Xn)

1
= — det (h)\i_,'_;,_j(Xlil,XQil, R ,X;tl)

+1 41 +1
T 21<ij<n )

+ h)\i—i—j+2(X1 yXo sy Xy
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Symplectic (and orthogonal) characters

SPA(X1>X27 s 7Xn)
+ +1 + +1 +1 +
:lgeijé)\l (e)\’{_i+j(X1 17X2 e Xp 1)7eA;_i_j(X1 y Xy ey Xy 1))7

det  (P;(i, k) — q(xy)" "' Pj(—i — 2,k))

0<ij<n—1

SPA(X17X27 e 7Xn)

1
= — det (h)\i_,'_;,_j(Xlil,XQil, R ,X;tl)

+1 41 +1
T 21<ij<n )

+ h)\i—i—j+2(X1 yXo sy Xy
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Symplectic (and orthogonal) characters

SPA(X1>X27 s 7Xn)

= 1§$j,1e£>\1 (e)\f—iJrj(Xl:tlaXZilv SR >Xni1) - eA;—i—j(XIZt17X2:t1a s aXnil)) )
. i+1 .
ogifj'%tnfl (Pi(i, k) — q(xy) T Pi(—i — 2, k))

Spx(X1s X2y« - s Xn)

1

+1 _+1 +1 +1 41 +1
:§1<d.ejt<n(h)\i_,-+j(x1 X5 e X ) i (X X, XS )),
7’77

08, (Pi(is k) + a(xy) Pi(—i, k))
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Open Questions

(1) ARE THERE COMBINATORIAL PROOFS OF THESE
THEOREMS?

(2) Is THERE A CONNECTION WITH SYMPLECTIC AND
ORTHOGONAL CHARACTERS?
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Open Questions
(1) ARE THERE COMBINATORIAL PROOFS OF THESE
THEOREMS?

(2) Is THERE A CONNECTION WITH SYMPLECTIC AND
ORTHOGONAL CHARACTERS?

(3) Is IT POSSIBLE TO PUT THIS UNDER ONE ROOF WITH
DETERMINANT EVALUATIONS OF EGECIOGLU, REDMOND AND
RyAvEC?
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The determinants of Egecioglu, Redmond and Ryavec
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The determinants of Egecioglu, Redmond and Ryavec

Egecioglu, Redmond and Ryavec consider (among others)

determinants
<<2i +2j + k)>
det L. .
0<i,j<n—1 I+
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The determinants of Egecioglu, Redmond and Ryavec

Egecioglu, Redmond and Ryavec consider (among others)

determinants
<<2i +2j + k)>
det L. .
0<i,j<n—1 I+

For example, they prove
5i i 13 (2n+3) if n=0 (mod 3),
det <<I+J+ )): —%(n+2) ifn=1 (mod 3),
0<i,j<n—-1 I+
(2n+5) if n=2 (mod 3).

Wi WD Wi
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The determinants of Egecioglu, Redmond and Ryavec

Egecioglu, Redmond and Ryavec consider (among others)

determinants
<<2i +2j + k)>
det L. .
0<i,j<n—1 I+

For example, they prove

<<2i +2j+ 3))
det Lo =< —
0<ij<n—1 I+

As specialisations of our results, we obtain determinant evaluations
for 0i i o
. 4
det . : + S+ ,
0<ij<n—1 i+j+k+2
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(2n+3) if n=0 (mod 3),
(n+2) ifn=1 (mod 3),
(2n+5) if n=2 (mod 3).

Wi WD Wi

for example.



