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Why are combinatorialists fascinated by determinants?

@ Often, determinants solve combinatorial problems

e Combinatorics may evaluate a determinant (“One picture
proof”)

— non-intersecting lattice paths
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A combinatorial problem
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How many rhombus tilings of a hexagon with side lengths
a,b,c,a,b,c are there?

Christian Krattenthaler Combinatorial Determinants



Christian Krattenthaler Combinatorial Determinants



JAVAVAVAVAVAVA
AVAVAVAVAVAVAVA
JAVAVAVAVAVAVAVAVANIRRL
JAVAVAVAVAVAVAVAVAVANRM
AVAYAVAVAVAVAVAVAVAVANS
JAVAVAVAVAVAVAVAVAVAVAVA
\VAVAVAVAVAVAVAVAVAYAVAV
VAVAVAVAVAVAVAVAVAVAVAR
VAVAVAVAVAVAVAVAVAVARL
\VAVAVAVAVAVAVAVAY,
\VAVAVAVAVAVAVAV,
\VAVAVAVAVAVAY,




\\\A\/ ANAAN

0
i

]

5

£

g

o

(a]

s

S

©

- - - c
£

. ’ m
o

(9]

.

©

<

. . . =
@

s

I\

X

c

By

k)

<

(9]

LR




The bijection with non-intersecting lattice paths

Christian Krattenthaler Combinatorial Determinants



\\\A\/ ANAAN

0
i

]

5

£

g

o

(a]

s

S

©

- - - c
£

. ’ m
o

(9]

.

©

<

. . . =
@

s

I\

X

c

By

k)

<

(9]

LR




\\\A\/ ANAAN

OfO..OOO”O.O

3

c

©

5

:

I

g

Q

(a]

s

S

2

2

@ a
=

5

7 v
72 B

i

7 m
s

I\

X

c

By

k)

<

O




RS 55

ﬁ,vhnzhnhwm@,

XX
Y
X

‘ ‘ )




7

Christian Krattenthaler Combinatorial Determin







We have now converted the original enumeration problem to the
following problem:
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We have now converted the original enumeration problem to the
following problem:

Given starting points A1, Aa, ..., A, and end points E1, E>, . .., E,,
count families (P1, Pa, ..., P,) of non-intersecting lattice paths,
where the i-th path P; runs from A; to E;, i =1,2,... n.
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Theorem (Karlin-McGregor, Lindstrom, Gessel-Viennot, Fisher,

John—Sachs, Gronau—Just-Schade—Scheffler—Wojciechowski)

Let G be an acyclic, directed graph, and let A1, A, ..., A, and
Ei, Ep, ..., E, be vertices in the graph with the property that, for
i <j and k < I, any (directed) path from A; to E; intersects with
any path from A; to E,. Then the number of families

(P1, P2, ..., Pn) of non-intersecting (directed) paths, where the
i-th path P; runs from A; to E;, i =1,2,...,n, is given by

et (IP(4; ~ E))

where P(A — E) denotes the set of paths from A to E.
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Theorem (Karlin-McGregor, Lindstrom, Gessel-Viennot, Fisher,

John—Sachs, Gronau—Just-Schade—Scheffler—Wojciechowski)

Let G be an acyclic, directed graph, and let A1, A, ..., A, and
Ei, Ep, ..., E, be vertices in the graph with the property that, for
i <j and k < I, any (directed) path from A; to E; intersects with
any path from A; to E,. Then the number of families

(P1, P2, ..., Pn) of non-intersecting (directed) paths, where the
i-th path P; runs from A; to E;, i =1,2,...,n, is given by

et (IP(4; ~ E))

where P(A — E) denotes the set of paths from A to E.

Remark

There holds as well a weighted version, in which every edge e is
assigned a weight w(e), and where the weight of a path (family)
P is defined as the product [[..p w(e), with the product running
over all edges in the path (family).
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Sketch of Proof
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Sketch of Proof

det (|P(A; = E)) =Y sgno [ IP(Ar) — E))l
i=1

1<ij<n
ceS,

= Z sgno.

(07P17~-'7Pn)
oc6,
P,'ZAO.(,-)—>E,'

Christian Krattenthaler Combinatorial Determinants



A sign-reversing involution
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A sign-reversing involution
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A sign-reversing involution
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In our enumeration problem:
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In our enumeration problem:
We have A;=(i—1,—i+1), Ei=(a+i—1,c—i+1),
i=1,2,...,n.
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In our enumeration problem:

We have Ai=(i—1,—-i+1), Ef=(a+i—1,c—i+1),
i=1,2,...,n.

Hence: the number of rhombus tilings of a hexagon with side
lengths a, b, c, a, b, c is given by

det A
1<ij<b at+i—j
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In our enumeration problem:

We have Ai=(i—1,—-i+1), Ef=(a+i—1,c—i+1),
i=1,2,...,n

Hence: the number of rhombus tilings of a hexagon with side
lengths a, b, c, a, b, c is given by

det A
1<ij<b at+i—j

It is not very difficult to evaluate this determinant (but this is a
different story ...):

a+tc i+j+ k-1
det
1<i3<b<<a+/—>> HHHI+J+k—2

i=1j=1k=1
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Hence:
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Hence:

Theorem (MacMahon)

The number of rhombus tilings of a hexagon with side lengths
a,b,c,a,b,c is given by

i+j+k—-1
(I

i=1j=1 k=1
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Combinatorics evaluates determinants
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Combinatorics evaluates determinants
PROBLEM: Evaluate the determinant

e ()
0<ij<n—1 i

Christian Krattenthaler Combinatorial Determinants



Combinatorics evaluates determinants
PROBLEM: Evaluate the determinant

e ()
0<ij<n—1 i

EXAMPLE: n=3:

det

= =
W N =
S W

Il

Il

—
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Warning;:
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Warning: This is very beautiful, but normally it is the other way
round.
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Warning: This is very beautiful, but normally it is the other way
round.

(l.e., one wants to solve a combinatorial problem, obtains a
determinant, and then one has a hard time to evaluate the
determinant .. .)
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The general form of the non-intersecting lattice path theorem
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The general form of the non-intersecting lattice path theorem

Theorem (Lindstrom, Gessel-Viennot)

Let G be an acyclic, directed graph, and let Ay, Ay, ..., A, and
Ey, Ep, ..., E, be vertices in the graph. Denote by PT(A — E) the
set of all families (P, P, ..., P,) of non-intersecting (directed)
paths, such that the i-th path P; runs from A; to E;,
i=1,2,....,n. Then

> (sgno)-|PH(A; = E)| = det (|P(A; — E)),
oES, SR

where Ay = (As(1), As(2)) - - - » Ac(n))-
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The general form of the non-intersecting lattice path theorem

Theorem (Lindstrom, Gessel-Viennot)

Let G be an acyclic, directed graph, and let Ay, Ay, ..., A, and
Ey, Ep, ..., E, be vertices in the graph. Denote by PT(A — E) the
set of all families (P, P, ..., P,) of non-intersecting (directed)
paths, such that the i-th path P; runs from A; to E;,
i=1,2,....,n. Then

> (sgno)-|PH(A; = E)| = det (|P(A; — E)),
oES, SR

where Ay = (As(1), As(2)) - - - » Ac(n))-

Again, there holds as well a weighted version.
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Is this good for anything?
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Is this good for anything?

Yes!

Christian Krattenthaler Combinatorial Determinants



ristian Kratte









3 ° [C} °
Az
3 [C, ° °
Al A5 E5
@ . . @ @ ° .
A4 E4
] . p . . ~— . . .
E;
] . ® . . . .

Christian Krattenthaler Combinatorial Determinants



So, at least for even m, the number of rhombus tilings of a
hexagon with sides a, b+ m, c,a+ m, b, c + m, with an equilateral
triangle of side m removed from its center is given by

(reim) e

b—i+j ==

1<.d.§t b+c+J

<igy<a+m 2 .
<b+a l—l—J) a+1<i<a+m
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Theorem (with Ciucu, Eisenkdlbl, Zare)

The number of rhombus tilings of the hexagon minus triangle is
given by

H(a+ m)H(b+ m)H(c + m)H(a+ b+ c + m)
H(a+ b+ m)H(a+ c+ m)H(b+ c + m)
H(m + [#535€]) H(m + | =5*<])
H(252 + m) H(Z5€ + m) H(E5< + m)
H([$DH(ZDHASD R3] H( 3] H( 5D
H(3 -+ [31) H(3 + [E]) H(3 + [5]) H(3 + [2]) H(B + [B) HE | [3])
H(%)2 H(a—i—%—&-m)z H(a+c2+m)2 H(b+62+m)2

H(Z + [ZE5EST) H(Z + [ZEEE2 ) H(ZE) H(E) HEES)

X

\Slle}

where H(n) := Z;%l) F(k+1) forn an integer,
w2 T(k+21) forn a halfinteger.
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Non-intersecting Lattice Paths and Pfaffians
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We encounter a new problem:
Given starting points A1, Az, ..., A, and end points E1, Ep, ..

c

count families (P1, Pa, ..., Pp) of non-intersecting lattice paths,
where the i-th path P; runs from A; to one of the E;’s,
i=1,2,...,n.
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The non-intersecting lattice path theorem with variable end points
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The non-intersecting lattice path theorem with variable end points

Theorem (Okada, Stembridge)

Let G be an acyclic, directed graph, and let A1, A, ..., As, and
Eq, Ep, ... be vertices in the graph with the property that, for i < j
and k < I, any (directed) path from A; to E; intersects with any
path from A; to E,. Then the number of families (Py, Pa, ..., P2,)
of non-intersecting (directed) paths, where the i-th path P; runs
from A; to one of the E;’s, i = 1,2,...,2n, is given by

Pfi<ij<2n(Qij),

where

Qij= Y (IP(Ai = E)IIP(A; = Er)|-P(A; = E5)-IP(A = &)|).

1<s<t
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The non-intersecting lattice path theorem with variable end points

Theorem (Okada, Stembridge)

Let G be an acyclic, directed graph, and let A1, A, ..., As, and
Eq, Ep, ... be vertices in the graph with the property that, for i < j
and k < I, any (directed) path from A; to E; intersects with any
path from A; to E,. Then the number of families (Py, Pa, ..., P2,)
of non-intersecting (directed) paths, where the i-th path P; runs
from A; to one of the E;’s, i = 1,2,...,2n, is given by

Pfi<ij<2n(Qij),

where

Qij= Y (IP(Ai = E)IIP(A; = Er)|-P(A; = E5)-IP(A = &)|).

1<s<t

Again, there holds as well a weighted version.
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What is a Pfaffian?
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What is a Pfaffian?

COMBINATORIALLY:
Pf(A) — Z (_1)#(crossings of ) H AIJ~
m perfect matching of {1,...,2n} (ig)en,i<j
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What is a Pfaffian?

COMBINATORIALLY:
Pf(A) — Z (_1)#(crossings of ) H Aij~
m perfect matching of {1,...,2n} (ig)en,i<j

A perfect matching of {1,2,...,6} with 2 crossings:
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What is a Pfaffian?

COMBINATORIALLY:
Pf(A) — Z (_1)#(crossings of ) H Aij~
m perfect matching of {1,...,2n} (ig)en,i<j

A perfect matching of {1,2,...,6} with 2 crossings:

1 2 3 4 5 6

ALGEBRAICALLY: Given a (2n) x (2n) skew symmetric matrix A,

(Pf(A))? = det A.
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In our problem, this leads to the Pfaffian
2n+s 2n+t
Pfi<i; E
1<”J<2”( <<S+J'—1) <t+i—1>

—n<s<t<2x
2n+s 2n+t
s+i—1)\t+j—-1 ’
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In our problem, this leads to the Pfaffian
2n+s 2n+t
Pfi<i; E
s ( <<s +j— 1) (t +i— 1)

—n<s<t<2x
2n+s 2n+t
s+i—1)\t+j—-1 ’

The number of vertically symmetric rhombus tilings of a hexagon
with side lengths 2n,2n,2x,2n,2n,2x is equal to

Theorem (Andrews)

n

(x+2),, H (2x + 25)an—4s+1
(%)2n s=1 (25)4n—4s+1

)

where (&), == a(a+1)---(a+m—1) form>1, and (a)p := 1.

v
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What about some fixed and some variable end points,
at the same time?
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Theorem (Stembridge)

Let {Al, Ao, ..., Ap, 51,%,..., Sq} and E = {El, Es, ... } be finite
sets of lattice points in the integer lattice Z2. Then the number of

families (P1, P>, ..., Pp) of non-intersecting lattice paths, with Py
running from Ay to Sy, for k =1,2,...,q, and to Ej,, for

k=q+1,q9+2,...,p, the indices being required to satisfy
Jg+1 <Jg+2 < -+ <Jp, is given by

Q H
Pf (_ it 0> )
where Q; ; is defined as before, and where the matrix
H = (Hij)i<i<p, 1<j<q is defined by

Hij = |P(Ai — $)I.
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Theorem (with Ciucu)

The number of rhombus tilings of the half hexagon minus triangle
of size 2 at distance 2k from the free boundary is equal to

<4k + 1> : (n+ k)! lﬂ[ (2X + 25)4n—_as+1

2k x+n—Koks1y (25)an—as+1

n—

< 3
2
% 12_% (n—k—i—=DP(n+k—i+1),_
1

(n+k—i+1);(2n—i+3);
0 <(X),' (X + i+ ].)n,k,,',l (X +n+ k+ l)n,k

— (X)pk (X + 1tk + D) pit (x+ 20— i+ 1),~).
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The Minor Summation Formula of Ishikawa and Wakayama
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The Minor Summation Formula of Ishikawa and Wakayama

Theorem (Ishikawa—Wakayama)

Let n, p, q be integers such that n+ q is even and 0 < n— q < p.
Let G be any n x p matrix, H be any n x q matrix, and
A = (ajj)1<ij<p be any skew-symmetric matrix. Then we have

. _ GA'G H
g 1 - (45 ).

where K runs over all (n — q)-element subsets of [1, p|, AK is the
skew-symmetric matrix obtained by picking the rows and columns
indexed by K and Gk is the sub-matrix of G consisting of the
columns corresponding to K.
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Hankel Determinants and Orthogonal Polynomials
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Hankel Determinants and Orthogonal Polynomials

Definition

A sequence (pn(x))n>0 of polynomials is called (formally)
orthogonal if pp(x) has degree n, n=0,1,..., and if there exists a
linear functional L such that L(pp(x)pm(x)) = dmncn for some
sequence (cp)n>0 of nonzero numbers, with 6, , denoting the
Kronecker delta (i.e., 0mn =1 if m = n and §,, , = 0 otherwise).

v
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Hankel Determinants and Orthogonal Polynomials

Definition

A sequence (pn(x))n>0 of polynomials is called (formally)
orthogonal if pp(x) has degree n, n=0,1,..., and if there exists a
linear functional L such that L(pp(x)pm(x)) = dmncn for some
sequence (cp)n>0 of nonzero numbers, with ., , denoting the
Kronecker delta (i.e., 0mn =1 if m = n and §,, , = 0 otherwise).

Theorem (Favard)

Let (pn(x))n>0 be a sequence of monic polynomials, the
polynomial p,(x) having degree n, n=10,1,.... Then the
sequence (pn(x)) is (formally) orthogonal if and only if there exist
sequences (ap)n>1 and (bn)n>1, with b, # 0 for all n > 1, such
that the three-term recurrence

Pnt+1(x) = (x — an)pn(x) — bapn—1(x), forn>1, (1)

holds, with initial conditions po(x) =1 and p1(x) = x — ap. Ol




Moments of Orthogonal Polynomials and Motzkin Paths
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Moments of Orthogonal Polynomials and Motzkin Paths
A (generalised) Motzkin path is a lattice path consisting of steps
from {(1,1),(1,0),(1,—1)} (up-steps, level-steps, down-steps)
that does not pass below the x-axis.
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Moments of Orthogonal Polynomials and Motzkin Paths
A (generalised) Motzkin path is a lattice path consisting of steps
from {(1,1),(1,0),(1,—1)} (up-steps, level-steps, down-steps)
that does not pass below the x-axis.

For each of the three kinds of steps, we define a weight:

w((1,1)) =1, w((1,0)) = ap, w((1,-1)) = bp,
where h is the height of the starting point of the step. The weight

w(P) of a Motzkin path P is the product of all the weights of its
steps.
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Moments of Orthogonal Polynomials and Motzkin Paths
A (generalised) Motzkin path is a lattice path consisting of steps
from {(1,1),(1,0),(1,—1)} (up-steps, level-steps, down-steps)
that does not pass below the x-axis.

For each of the three kinds of steps, we define a weight:

w((1,1)) =1, w((1,0)) = ap, w((1,-1)) = bp,
where h is the height of the starting point of the step. The weight
w(P) of a Motzkin path P is the product of all the weights of its
steps. In our example we have
W() = 32b28121b3b2.



Proposition (Viennot)

The moments p, := L(x") of orthogonal polynomials are given by
> w(P),
P

where the sum is over all Motzkin paths from (0,0) to (n,0).
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Proposition (Viennot)

The moments p, := L(x") of orthogonal polynomials are given by

>_w(P),

P

where the sum is over all Motzkin paths from (0,0) to (n,0).

Theorem (Viennot)

Given a sequence of monic orthogonal polynomials (pn(x)), we
have

L(X" pk(X) p/(X)) =by---by- Z W(P)7

P

where the sum is over all Motzkin paths from (0, k) to (n, /).

\
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Theorem (Heilermann)

Let (puk)k>0 be the moments for a monic sequence of orthogonal
polynomials. Then the Hankel determinant deto<; j<n—1(pti+})
equals b b0 2 .. b2 ,b, 1.
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Another one picture proof
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Another one picture proof
Without loss of generality, we assume that uo = 1. We must prove:

—1,n-2 2
oot (i) = B2 g,
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Another one picture proof
Without loss of generality, we assume that uo = 1. We must prove:

—1,n-2 2
oot (i) = B2 g,

® ® oo o ° ®
As As A A1 Ao Ei E> E3 E,4
Eo
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Another one picture proof
Without loss of generality, we assume that uo = 1. We must prove:

—1,n-2 2
oot (i) = B2 g,

® ® I’y
As As A A1 Ao Ei E> E3 E,4
Eo
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Another one picture proof
Without loss of generality, we assume that uo = 1. We must prove:

det (isj) = b b3 2+ B2 obya.

0<ij<n—1
°
e o o
°
o o °
/4.4 /?3 A A /‘To ST =) E.3 E.4

Eo
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Another one picture proof
Without loss of generality, we assume that uo = 1. We must prove:

—1,n-2 2
oot (i) = B2 g,

® I’y
As As A A1 Ao Ei E> E3 E,4
Eo
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Another one picture proof
Without loss of generality, we assume that uo = 1. We must prove:

—1,n-2 2
oot (i) = B2 g,

I’y
As As A A1 Ao Ei E> E3 E,4
Eo
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Another one picture proof
Without loss of generality, we assume that uo = 1. We must prove:
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An Application:
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An Application:
In a certain problem of rhombus tiling enumeration, Markus
Fulmek and myself needed to compute the determinant (among
others)

det  (Bis;
0<%, 1 (Biviv2);

where By denotes the k-th Bernoulli number. (The Bernoulli
numbers are defined via their generating function,

Yico Bezk /K = z/(eF — 1))
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Solution:
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Solution:
ASKEY SCHEME OF HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS
http://aw.twi.tudelft.nl/ koekoek/research.html

4F3 ’Wilson\ \ Racah\

Conti Conti
3F> dzgllaiif OL;?]L:]OUS ‘Hahn‘ ’dual Hahn‘
F. Meixner = \Jacobi \ \ Meixner\ \ Kravchouk\
2 Pollaczek

2F1/2Fo Laguerre Charlier
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We need the continuous Hahn polynomials (they have the “right”
moments).
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We need the continuous Hahn polynomials (they have the “right”
moments).

If one works everything out, then, according to Heilermann's

theorem, we obtain:
) fr‘f< ey
)

| =

0<ij,<n—1

n—1

det  (Biyji2) = (1)) (
1

i+ 1)1 (i +2)!
2,+2 ) (2i +3)1

I=1
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Of course, there is much more ...
You may criticise that | have entirely left out another important
application of determinants in combinatorics:

the Kasteleyn determinants and Pfaffians

for the enumeration of perfect matchings in planar graphs. In fact,
these stand at the beginning of the beautiful asymptotic analysis of
planar tiling and matching models due to Cohn—Kenyon—Propp,
respectively, in greater generality, to Kenyon—Okounkov—Sheffield.
However, that would again be a story by itself ...
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