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The number of involutions in S,

Let /, denote the number of permutations 7 with 72 = id.
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The number of involutions in S,

hoo = 240533474383334789536224332430282328129641198\
25419485684849162710512551427284402176
= 225.59 . 616793 - 5258867 - 25964908703
- 144465705221072755757819
- 998597411042931968793034681

Christian Krattenthaler and Thomas W. Miiller p-Divisibility of arithmetic functions



The number of “p-volutions” in S,

Let /,(p) denote the number of permutations 7 with 7P = id.
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6337 - 297704663832071017

29 -3691 - 2973379 - 1363570115322601

61-113 - 567485839 - 226086986570652945943

523 - 12893 - 259150543 - 341203128319 - 996775402919

1459 - 211931 - 299883046539737627 - 33582096306940408147
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The number of “p-volutions” in S,

Let /,(p) denote the number of permutations 7 with 7P = id.
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The number of “p-volutions” in S,
Let /,(p) denote the number of permutations 7 with 7P = id.

A fancy way to express I,(p) is the following:
In(p) = |Hom(Cp, Sh)l,

where Cy denotes the cyclic group with N elements.
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Theorem (Katsurada, Takegahara, Yoshida)

Let Cy denote the cyclic group with N elements. Furthermore, for
a finitely generated group G let h,(G) :=|Hom(G, S,)|. Then

vo(hn(Coe)) > i UJ ) L)["HJ :

Jj=1

and the bound is sharp for n = 0 (mod p‘*1).

Here, vp(a) denotes the p-adic valuation of o, i.e., the largest
exponent e such that p€ divides «.
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Theorem (Katsurada, Takegahara, Yoshida)

Let Cy denote the cyclic group with N elements. Furthermore, for
a finitely generated group G let h,(G) :=|Hom(G, S,)|. Then

vo(hn(Coe)) > i UJ ) L)["HJ :

Jj=1

and the bound is sharp for n = 0 (mod p‘*1).

Here, vp(a) denotes the p-adic valuation of o, i.e., the largest
exponent e such that p€ divides «.

In particular, for £ = 1 we get
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Theorem (Katsurada, Takegahara, Yoshida)

Let Cy denote the cyclic group with N elements. Furthermore, for
a finitely generated group G let h,(G) := |Hom(G, S,)|. Then, for
{ > m, we have

(G ) 2 3 5] - - m]|

and the bound is sharp for n = 0 (mod p‘*1), except if £ = m and
p=2.
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Theorem (Katsurada, Takegahara, Yoshida)

Let Cy denote the cyclic group with N elements. Furthermore, for
a finitely generated group G let h,(G) := |Hom(G, S,)|. Then, for
{ > m, we have

(G ) 2 3 5] - - m]|

and the bound is sharp for n = 0 (mod p‘*1), except if £ = m and
p=2.

What can one say about:

Vo (An(Cpr X Cpao X -+ X Cpar)) 7
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Let us return to the number [, of involutions in S,,. Recall that

n n

wall) = a(m(@) = 5] - [3]-
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Let us return to the number [, of involutions in S,,. Recall that

n n

wall) = a(m(@) = 5] - [3]-

How to not prove this:
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Let us return to the number [, of involutions in S,,. Recall that

ot =) = 2] - 2]

How to not prove this:
Everybody knows that

0 2
Z V4
E /,,— =explz+—=].
n! 2
n=0

Consequently, by comparison of coefficients of z"/n!:

n!
I, = —_,
Z 2k kI (n — 2k)!

k>0
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Let us return to the number [, of involutions in S,,. Recall that

n n

wall) = a(m(@) = 5] - [3]-

How to not prove this:
Everybody knows that

Consequently, by comparison of coefficients of z"/n!:

n!
I, = —_,
Z 2k kI (n — 2k)!

k>0

Now, we “just” have to analyse the 2-divisibility of this sum ...
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How to actually do this:
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How to actually do this:

Lemma (Dieudonné, Dwork)

For a prime number p, let S(z) and H(z) be formal power series
with coefficients in Q, related by

H(z) = exp (5(2)).

Then H(z) has all coefficients in Z, if, and only if,

5(2°) — p5(2) € pZp|[2]]- (1)
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How to actually do this:

Lemma (Dieudonné, Dwork)

For a prime number p, let S(z) and H(z) be formal power series
with coefficients in Q, related by

H(z) = exp (5(2)).
Then H(z) has all coefficients in Z, if, and only if,

5(2°) — p5(2) € pZp|[2]]- (1)

v

What does it mean? Let S(z) =} ., * z". The condition (1)
says that:

o if ptn, then &2 € Z,;

o if p| n, then (s,/p — sn) € Zp.
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How to actually do this:

Lemma (Dieudonné, Dwork)

For a prime number p, let S(z) and H(z) be formal power series
with coefficients in Q, related by

H(z) = exp (5(2)).
Then H(z) has all coefficients in Z, if, and only if,

5(zP) — pS(z) € pZy|[z]].
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How to actually do this:

Lemma (Dieudonné, Dwork)

For a prime number p, let S(z) and H(z) be formal power series
with coefficients in Q, related by

H(z) = exp (5(2)).
Then H(z) has all coefficients in Z, if, and only if,

5(zP) — pS(z) € pZy|[z]].

Important special case: the Artin—Hasse exponential

P
explz+-—+ -5+
P P

has all its coefficients in Zp!
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How to actually do this:
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How to actually do this:

We have
o0 n 2
Zlnﬁ = exp (Z + 2>
n=0
NE AN
—expl|lz+ — + —
P 2 "4
e A 8
o | —2- 2 _ ...
P\AT% " 8
o0 4 3
: 4 V4
:ZH,'OZlOXeXp<_4—8—“’>,
ip=0
with H,'0 € ZLo.
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How to actually do this:
We have

with Hj, € Zj. Hence,
n! (_1)i4+is+---

e Z iy 4 g1 B
iot+4is+8ig+--=n
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How to actually do this:
Hence,

| (—1)ietio+
/n - Z H —n ( )

L = Ioi4!4i4 I,3|8’8
io+4is+8ig+---=n
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How to actually do this:
Hence, o
nl (_1)l4+ls+-~-

) . - 14_44/8!8’8...

io+4is+8ig+---=n
We now look at the 2-adic valuation of each summand individually.
It is not difficult to see that "“the worst that can happen” is in the
case where iy is as large as possible, that is, iy = [n/4]:

nl (—1)ktist n!
V2<H"° il diigign. ) = 2\ iaijgige ..
n n n
> o) =2 larw) 213
>1 >1

2] [&)

v

v
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Back to our problem:

Theorem (Katsurada, Takegahara, Yoshida)

Let Cy denote the cyclic group with N elements. Furthermore, for
a finitely generated group G let h,(G) :=|Hom(G, S,)|. Then, for
? > m, we have

vo(hn(Cye X Con)) > ; L’;J — (¢~ m) LJZ"HJ :

and the bound is sharp for n =0 (mod p‘*1), except if £ = m and
p=2.

What can one say about:

Vo (An(Cpar X Cpoo X -+ X Cpar)) 7
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Back to our problem:

Theorem (Dey)

Let T be a finitely generated group, h,(I') :== Hom(I', S,), and let
sn(l") be the number of subgroups of I' of index n. Then

ha(T) sn(l)
O

n>0 ’ n>1
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Back to our problem:

Theorem (Dey)

Let T be a finitely generated group, h,(I') :== Hom(I', S,), and let
sn(I") be the number of subgroups of I' of index n. Then

ha(T) sn(l)
O

n>0 ’ n>1

For example, in the case ' = C,, we have s,(I") = 1 for

i=0,1,...,¢ and s,(I') = 0 otherwise. Hence,

ha(Ce 2P P ¥
Z"(|P)Z":exp<z—|—+2+"'+g .
=0 n! p P
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Back to our problem:

Theorem (Dey)

Let T be a finitely generated group, h,(I') :== Hom(I', S,), and let
sn(I") be the number of subgroups of I' of index n. Then

ha(T) sn(l)
O

n>0 ’ n>1

For example, in the case ' = C,, we have s,(I") = 1 for

i=0,1,...,¢ and s,(I') = 0 otherwise. Hence,

hn(sz) N P ZF zP'
Y mexp (2t e |
= o p P p

We see very well that this is a truncated Artin—Hasse exponential.
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Theorem

For a prime number p, let S(z) = >_,~; %2z" be a formal power
series with s, € Qp, for all n, and let H(z) = -, bnz" be the
exponential of S(z). Given non-negative integers | and m with

m < [, we assume that )

zP /+1
S5(zP) — pS(z) = pJ(z) + (Sp/71 — Sp/)p,_l + 0 (zP )
with J(z) € Zp[z], that

— m
Spi-1 =Sy mod p"'Zp,

and that
7 _ p\_logp i|=1_ 1
) 2 == m) | | + i) = B =
for all i > p!, where \; = s; ifi/p"P(") > pland \j = s; — Si/pe
otherwise, where e is minimal such that i/p® < p'.
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Then
/-1 n
>Y |5 -u-m-v 3]
s=1 p

for all n. If s,-1 # s, mod p™t1Z,, then the bound is sharp for
all n =0 (mod p').
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Then L
n
A RG]
s=1 P
for all n. If s,-1 # s, mod p™t1Z,, then the bound is sharp for
all n =0 (mod p').

Idea of proof.
We write 5
5(2) = 5(2) + R(2),
where 5(z) satisfies the Dieudonné-Dwork condition (1) and R(z)
is a series of order O(zP"). Subsequently, we decompose

H(z) = exp(S(2)) = exp(5(2)) exp(R(z)).

By tkle lemma of Dieudonné and Dwork, we have
exp(5(z)) € Zp[[z]]. It then remains to estimate the “error”
created by exp(R(z)). O
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Corollary

For a prime number p, let S(z) =3, -, %2z" be a formal power
series with spe € Zp, for all non-negative integers e and s, = 0
otherwise, and let H(z) =3, -0 %z” be the exponential of S(z).
Given non-negative integers | and m with m < |, we assume that
p Zpl pl+1
S(z*) = pS() = pI(2) + (551 = 85) g + O (24
with J(z) € Zp[z],

—_ m
Spi-1 =Sy mod p"'Zp,

and

e—/
e—| p

=1
Vp(Spe — spi-1) = —(/ — m)p =1 +e+1l

for all e with | < e < |+ log,(2/ +1). Then

S RAsD

s=1
for all n. If sp—1 # s, mod p™ 17, then the bound is sharp for

all n =0 (mod p').
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Back to our problem:

Theorem (Dey)

Let T be a finitely generated group, hn(T') := Hom(I', S,), and let
sn([") be the number of subgroups of I' of index n. Then

ha(T) a(F) .,
S en | S0

n>0 ’ n>1
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Back to our problem:

Theorem (Dey)

Let T be a finitely generated group, hn(T') := Hom(I', S,), and let
sn([") be the number of subgroups of I' of index n. Then

ha(T) sn(l)
> i e 30 500,

n>0 ’ n>1

We have to control the p-adic valuation
of the numbers s,(G) of subgroups of index n in G!
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Proposition

Let G = Cpar X Cpar X -+ x Cpar with ay > ap > - Then
the number of subgroups in G of type (b1, ba, . . ., ) (/.e., those
isomorphic to Cpey X Cpy X -+ X Cpp, with by > by > -+ > b)

equals
H p°i bi,;(a;—b;) |:a a bll+1:|
i>1 bit

Here,

[n] _ (1 — p")(l — p”fl) A (1 _ pnfk+1)
klp (1=p)1=p1)---(1=p)
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Proposition (Butler)
Let G = Cpar X Cpap X -+ X Cpar withay > ap > --- > a,. Then

Spi(G) — Spifl(G) = pn(a)K(ZAl_,-’,-)ya(p_l), for i S Al,

where K) ,,(t) denotes the Kostka—Foulkes polynomial indexed by
partitions A and u, and where o = (a1, a2, ..., a,),
Ai=(ai+a+--+a)/2 and n(a) =3 _,(i — 1)a;.

Christian Krattenthaler and Thomas W. Miiller p-Divisibility of arithmetic functions



The Hall-Littlewood polynomials Py(x, . .

1
Pa(x1,...,Xn t) = ZW X}

where

., Xp; t) are defined by

An Xi — X
* Xn )
LoXi— X
1<i<y

given that A = (1™, 2m ).
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The Kostka—Foulkes polynomials K ,(t) are the coefficients when
Schur functions sy(xi, ..., xn) are expanded in terms of
Hall-Littlewood polynomials:

s\(x1,- o xn) = Y Kau(t) Polxa, s Xni b)),
M

Here,

s\(x1,- -, xn) = 1<di<3t<r (hx—isj(X1, - - -5 Xn)),

with
hm(x1, ..., Xa) = Z Xiy X+ ** Xipy -

1< < <-<im<n
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The Hall-Littlewood polynomials satisfy:

P.(x;t)P,(x;t) =y (M) =n(n) ”(”)g Lt Py(x; t), where
gl;\ﬂ,( ) is the number of subgroups H in a finite Abelian
p-group G of type A, such that H is of type u and G/H is of
type v;

hn(x) = o5 t" P (x; t);
K,u(t) = 0 unless 1 is less than or equal to A in dominance
order;

in the latter case, K) ,(t) is a monic polynomial in t of degree
n(A) — n(p).
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Theorem

Let G = Cpar X Cpm X -+ x Cpar With ay > @ > -+ > a.
(i) Ifa; > ap+--- + a,, then

s (ha(G)) > z_; M A — L}HJ |

The bound is sharp for all n = 0 (mod p#1+1).
(i) Ifay <ay+---+a,and a; + a» + - - - + a, is even, then

(b ©) > 35 H ,

S
s=1 p

where Ay = (a1 + a2+ --- + a,)/2. The bound is sharp for all
n =0 (mod pT1), except if p = 2.
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(i) Ifag < ap+---+a, and a1 + ax + - - - + a, is odd, then
a N n
(b)) 2 30| 2| - | o .
s=1

where Ap = (a1 + a2+ -+ a, +1)/2. The bound is sharp for all
n=0 (mod ptl).
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Theorem
Let G = Coag X (oap X - -+ X Coar with a1 > ap > -+ > ay,
aa<a+---+a, and a; + a» + - - - + a, being even. Then

Ay
va(ha(G)) > ; [%J + bA?Jer - L2A7+3J ’

where Ay = (a1 + a2+ --- + a,)/2. The bound is sharp for all n
congruent to 0, 24171 and 24112 modulo 2113,
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