Truncated versions of a lemma of Dwork and p-divisibility of arithmetic functions

Christian Krattenthaler and Thomas W. Müller

Universität Wien; Queen Mary, University of London

The number of involutions in S_n

Let I_n denote the number of permutations π with $\pi^2 = id$.

n	I_n
1	1
2	2
3	$4 = 2^2$
4	$10=2\cdot 5$
5	$26 = 2 \cdot 13$
6	$76 = 2^2 \cdot 19$
7	$232 = 2^3 \cdot 29$
8	$764 = 2^2 \cdot 191$
9	$2620 = 2^2 \cdot 5 \cdot 131$
10	$9496 = 2^3 \cdot 1187$

The number of involutions in S_n

 $I_{100} = 240533474383334789536224332430282328129641198 \setminus 25419485684849162710512551427284402176$

 $=2^{25} \cdot 59 \cdot 616793 \cdot 5258867 \cdot 25964908703$

· 144465705221072755757819

+998597411042931968793034681

The number of "p-volutions" in S_n

Let $I_n(p)$ denote the number of permutations π with $\pi^p = id$.

	1 (5)
n	$I_n(5)$
5	$\int 5^2$
10	$5^3 \cdot 17 \cdot 37$
15	$5^3 \cdot 577 \cdot 27197$
20	$5^4 \cdot 11 \cdot 73 \cdot 271 \cdot 1391381$
25	$5^4 \cdot 13 \cdot 281 \cdot 21893792600333$
30	$5^6 \cdot 6337 \cdot 297704663832071017$
35	$5^7 \cdot 29 \cdot 3691 \cdot 2973379 \cdot 1363570115322601$
40	$5^7 \cdot 61 \cdot 113 \cdot 567485839 \cdot 226086986570652945943$
45	$5^8 \cdot 523 \cdot 12893 \cdot 259150543 \cdot 341203128319 \cdot 996775402919$
50	$5^8 \cdot 1459 \cdot 211931 \cdot 299883046539737627 \cdot 33582096306940408147$
50	5° · 1459 · 211931 · 299883040539737027 · 335820903009404081

The number of "p-volutions" in S_n

Let $I_n(p)$ denote the number of permutations π with $\pi^p = \mathrm{id}$.

The number of "p-volutions" in S_n

Let $I_n(p)$ denote the number of permutations π with $\pi^p = \mathrm{id}$.

A fancy way to express $I_n(p)$ is the following:

$$I_n(p) = |\operatorname{Hom}(C_p, S_n)|,$$

where C_N denotes the cyclic group with N elements.

Let C_N denote the cyclic group with N elements. Furthermore, for a finitely generated group G let $h_n(G) := |\operatorname{Hom}(G, S_n)|$. Then

$$u_p(h_n(C_{p^\ell})) \geq \sum_{j=1}^{\ell} \left\lfloor \frac{n}{p^j} \right\rfloor - \ell \left\lfloor \frac{n}{p^{\ell+1}} \right\rfloor,$$

and the bound is sharp for $n \equiv 0 \pmod{p^{\ell+1}}$.

Here, $v_p(\alpha)$ denotes the *p*-adic valuation of α , i.e., the largest exponent *e* such that p^e divides α .

Let C_N denote the cyclic group with N elements. Furthermore, for a finitely generated group G let $h_n(G) := |\operatorname{Hom}(G, S_n)|$. Then

$$u_p(h_n(C_{p^\ell})) \geq \sum_{j=1}^{\ell} \left\lfloor \frac{n}{p^j} \right\rfloor - \ell \left\lfloor \frac{n}{p^{\ell+1}} \right\rfloor,$$

and the bound is sharp for $n \equiv 0 \pmod{p^{\ell+1}}$.

Here, $v_p(\alpha)$ denotes the *p*-adic valuation of α , i.e., the largest exponent *e* such that p^e divides α .

In particular, for $\ell=1$ we get

$$v_p(I_n(p)) \geq \left\lfloor \frac{n}{p} \right\rfloor - \left\lfloor \frac{n}{p^2} \right\rfloor.$$

Let C_N denote the cyclic group with N elements. Furthermore, for a finitely generated group G let $h_n(G) := |\operatorname{Hom}(G, S_n)|$. Then, for $\ell \geq m$, we have

$$v_p\big(h_n(C_{p^\ell}\times C_{p^m})\big)\geq \sum_{j=1}^\ell \left\lfloor\frac{n}{p^j}\right\rfloor-(\ell-m)\left\lfloor\frac{n}{p^{\ell+1}}\right\rfloor,$$

and the bound is sharp for $n \equiv 0 \pmod{p^{\ell+1}}$, except if $\ell = m$ and p = 2.

Let C_N denote the cyclic group with N elements. Furthermore, for a finitely generated group G let $h_n(G) := |\operatorname{Hom}(G, S_n)|$. Then, for $\ell \geq m$, we have

$$v_p\big(h_n(C_{p^\ell}\times C_{p^m})\big)\geq \sum_{j=1}^\ell \left\lfloor\frac{n}{p^j}\right\rfloor-(\ell-m)\left\lfloor\frac{n}{p^{\ell+1}}\right\rfloor,$$

and the bound is sharp for $n \equiv 0 \pmod{p^{\ell+1}}$, except if $\ell = m$ and p = 2.

What can one say about:

$$v_p(h_n(C_{p^{a_1}} \times C_{p^{a_2}} \times \cdots \times C_{p^{a_r}}))$$
?

$$v_2(I_n) = v_2(h_n(C_2)) \geq \left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{n}{4} \right\rfloor.$$

$$v_2(I_n) = v_2(h_n(C_2)) \geq \left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{n}{4} \right\rfloor.$$

How to not prove this:

$$v_2(I_n) = v_2(h_n(C_2)) \geq \left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{n}{4} \right\rfloor.$$

How to not prove this:

Everybody knows that

$$\sum_{n=0}^{\infty} I_n \frac{z^n}{n!} = \exp\left(z + \frac{z^2}{2}\right).$$

Consequently, by comparison of coefficients of $z^n/n!$:

$$I_n = \sum_{k>0} \frac{n!}{2^k \, k! \, (n-2k)!}.$$

$$v_2(I_n) = v_2(h_n(C_2)) \geq \left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{n}{4} \right\rfloor.$$

How to not prove this:

Everybody knows that

$$\sum_{n=0}^{\infty} I_n \frac{z^n}{n!} = \exp\left(z + \frac{z^2}{2}\right).$$

Consequently, by comparison of coefficients of $z^n/n!$:

$$I_n = \sum_{k>0} \frac{n!}{2^k \, k! \, (n-2k)!}.$$

Now, we "just" have to analyse the 2-divisibility of this sum . . .

Lemma (Dieudonné, Dwork)

For a prime number p, let S(z) and H(z) be formal power series with coefficients in \mathbb{Q}_p related by

$$H(z) = \exp(S(z)).$$

Then H(z) has all coefficients in \mathbb{Z}_p if, and only if,

$$S(z^p) - pS(z) \in p\mathbb{Z}_p[[z]]. \tag{1}$$

Lemma (Dieudonné, Dwork)

For a prime number p, let S(z) and H(z) be formal power series with coefficients in \mathbb{Q}_p related by

$$H(z) = \exp(S(z)).$$

Then H(z) has all coefficients in \mathbb{Z}_p if, and only if,

$$S(z^p) - pS(z) \in p\mathbb{Z}_p[[z]]. \tag{1}$$

What does it mean? Let $S(z) = \sum_{n>1} \frac{s_n}{n} z^n$. The condition (1) says that:

- if $p \nmid n$, then $\frac{s_n}{n} \in \mathbb{Z}_p$; if $p \mid n$, then $\frac{1}{n} (s_{n/p} s_n) \in \mathbb{Z}_p$.

Lemma (Dieudonné, Dwork)

For a prime number p, let S(z) and H(z) be formal power series with coefficients in \mathbb{Q}_p related by

$$H(z) = \exp(S(z)).$$

Then H(z) has all coefficients in \mathbb{Z}_p if, and only if,

$$S(z^p) - pS(z) \in p\mathbb{Z}_p[[z]].$$

Lemma (Dieudonné, Dwork)

For a prime number p, let S(z) and H(z) be formal power series with coefficients in \mathbb{Q}_p related by

$$H(z) = \exp(S(z)).$$

Then H(z) has all coefficients in \mathbb{Z}_p if, and only if,

$$S(z^p) - pS(z) \in p\mathbb{Z}_p[[z]].$$

Important special case: the Artin-Hasse exponential

$$\exp\left(z+\frac{z^p}{p}+\frac{z^{p^2}}{p^2}+\cdots\right)$$

has all its coefficients in \mathbb{Z}_p !

We have

$$\sum_{n=0}^{\infty} I_n \frac{z^n}{n!} = \exp\left(z + \frac{z^2}{2}\right)$$

$$= \exp\left(z + \frac{z^2}{2} + \frac{z^4}{4} + \cdots\right)$$

$$\times \exp\left(-\frac{z^4}{4} - \frac{z^8}{8} - \cdots\right)$$

$$= \sum_{i_0=0}^{\infty} H_{i_0} z^{i_0} \times \exp\left(-\frac{z^4}{4} - \frac{z^8}{8} - \cdots\right),$$

with $H_{i_0} \in \mathbb{Z}_2$.

We have

$$\sum_{n=0}^{\infty} I_n \frac{z^n}{n!} = \exp\left(z + \frac{z^2}{2}\right)$$

$$= \exp\left(z + \frac{z^2}{2} + \frac{z^4}{4} + \cdots\right)$$

$$\times \exp\left(-\frac{z^4}{4} - \frac{z^8}{8} - \cdots\right)$$

$$= \sum_{i_0=0}^{\infty} H_{i_0} z^{i_0} \times \exp\left(-\frac{z^4}{4} - \frac{z^8}{8} - \cdots\right),$$

with $H_{i_0} \in \mathbb{Z}_2$. Hence,

$$I_n = \sum_{i_0+4i_4+8i_8+\cdots=n} H_{i_0} \frac{n! (-1)^{i_4+i_8+\cdots}}{i_4! \ 4^{i_4} \ i_8! \ 8^{i_8} \cdots}.$$

Hence,

$$I_n = \sum_{i_0+4i_4+8i_8+\cdots=n} H_{i_0} \frac{n! (-1)^{i_4+i_8+\cdots}}{i_4! \ 4^{i_4} \ i_8! \ 8^{i_8} \cdots}.$$

Hence,

$$I_n = \sum_{i_0+4i_4+8i_8+\cdots=n} H_{i_0} \frac{n! (-1)^{i_4+i_8+\cdots}}{i_4! 4^{i_4} i_8! 8^{i_8}\cdots}.$$

We now look at the 2-adic valuation of each summand individually. It is not difficult to see that "the worst that can happen" is in the case where i_4 is as large as possible, that is, $i_4 = \lfloor n/4 \rfloor$:

$$v_{2}\left(H_{i_{0}}\frac{n!(-1)^{i_{4}+i_{8}+\cdots}}{i_{4}! \ 4^{i_{4}} \ i_{8}! \ 8^{i_{8}}\cdots}\right) \geq v_{2}\left(\frac{n!}{i_{4}! \ 4^{i_{4}} \ i_{8}! \ 8^{i_{8}}\cdots}\right)$$

$$\geq \sum_{\ell \geq 1} \left\lfloor \frac{n}{2^{\ell}} \right\rfloor - \sum_{\ell \geq 1} \left\lfloor \frac{n}{4 \cdot 2^{\ell}} \right\rfloor - 2 \left\lfloor \frac{n}{4} \right\rfloor$$

$$\geq \left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{n}{4} \right\rfloor.$$

Theorem (Katsurada, Takegahara, Yoshida)

Let C_N denote the cyclic group with N elements. Furthermore, for a finitely generated group G let $h_n(G) := |\operatorname{Hom}(G, S_n)|$. Then, for $\ell \geq m$, we have

$$v_p\big(h_n(C_{p^\ell}\times C_{p^m})\big)\geq \sum_{j=1}^\ell \left\lfloor\frac{n}{p^j}\right\rfloor-(\ell-m)\left\lfloor\frac{n}{p^{\ell+1}}\right\rfloor,$$

and the bound is sharp for $n \equiv 0 \pmod{p^{\ell+1}}$, except if $\ell = m$ and p = 2.

What can one say about:

$$v_p(h_n(C_{p^{a_1}}\times C_{p^{a_2}}\times\cdots\times C_{p^{a_r}}))$$
?

Theorem (Dey)

Let Γ be a finitely generated group, $h_n(\Gamma) := \text{Hom}(\Gamma, S_n)$, and let $s_n(\Gamma)$ be the number of subgroups of Γ of index n. Then

$$\sum_{n\geq 0} \frac{h_n(\Gamma)}{n!} z^n = \exp\left(\sum_{n\geq 1} \frac{s_n(\Gamma)}{n} z^n\right).$$

$\mathsf{Theorem}\;(\mathsf{Dey})$

Let Γ be a finitely generated group, $h_n(\Gamma) := \text{Hom}(\Gamma, S_n)$, and let $s_n(\Gamma)$ be the number of subgroups of Γ of index n. Then

$$\sum_{n\geq 0} \frac{h_n(\Gamma)}{n!} z^n = \exp\left(\sum_{n\geq 1} \frac{s_n(\Gamma)}{n} z^n\right).$$

For example, in the case $\Gamma = C_{p^{\ell}}$ we have $s_{p^{i}}(\Gamma) = 1$ for $i = 0, 1, \dots, \ell$, and $s_{n}(\Gamma) = 0$ otherwise. Hence,

$$\sum_{n\geq 0} \frac{h_n(C_{p^\ell})}{n!} z^n = \exp\left(z + \frac{z^p}{p} + \frac{z^{p^2}}{p^2} + \dots + \frac{z^{p^\ell}}{p^\ell}\right).$$

Theorem (Dey)

Let Γ be a finitely generated group, $h_n(\Gamma) := \operatorname{Hom}(\Gamma, S_n)$, and let $s_n(\Gamma)$ be the number of subgroups of Γ of index n. Then

$$\sum_{n\geq 0} \frac{h_n(\Gamma)}{n!} z^n = \exp\left(\sum_{n\geq 1} \frac{s_n(\Gamma)}{n} z^n\right).$$

For example, in the case $\Gamma = C_{p^{\ell}}$ we have $s_{p^{i}}(\Gamma) = 1$ for $i = 0, 1, \dots, \ell$, and $s_{n}(\Gamma) = 0$ otherwise. Hence,

$$\sum_{n\geq 0} \frac{h_n(C_{p^\ell})}{n!} z^n = \exp\left(z + \frac{z^p}{p} + \frac{z^{p^2}}{p^2} + \dots + \frac{z^{p^\ell}}{p^\ell}\right).$$

We see very well that this is a truncated Artin-Hasse exponential.

Theorem

For a prime number p, let $S(z) = \sum_{n \geq 1} \frac{s_n}{n} z^n$ be a formal power series with $s_n \in \mathbb{Q}_p$ for all n, and let $H(z) = \sum_{n \geq 0} \frac{h_n}{n!} z^n$ be the exponential of S(z). Given non-negative integers I and m with m < I, we assume that

$$S(z^p) - pS(z) = pJ(z) + (s_{p^{l-1}} - s_{p^l}) \frac{z^{p^l}}{p^{l-1}} + O\left(z^{p^l+1}\right)$$

with $J(z) \in \mathbb{Z}_p[z]$, that

$$s_{p^{l-1}} \equiv s_{p^l} \mod p^m \mathbb{Z}_p,$$

and that

$$v_p(\lambda_i) \geq -(I-m)\left\lfloor rac{i}{p^I}
ight
floor + v_p(i) - rac{p^{\left\lfloor \log_p i
ight
floor - I} - 1}{p-1} + 1$$

for all $i > p^l$, where $\lambda_i = s_i$ if $i/p^{v_p(i)} \ge p^l$ and $\lambda_i = s_i - s_{i/p^e}$ otherwise, where e is minimal such that $i/p^e < p^l$.

Then

$$v_p(h_n) \geq \sum_{s=1}^{l-1} \left\lfloor \frac{n}{p^s} \right\rfloor - (l-m-1) \left\lfloor \frac{n}{p^l} \right\rfloor$$

for all n. If $s_{p^{l-1}} \not\equiv s_{p^l} \mod p^{m+1} \mathbb{Z}_p$, then the bound is sharp for all $n \equiv 0 \pmod {p^l}$.

Then

$$v_p(h_n) \geq \sum_{s=1}^{l-1} \left\lfloor \frac{n}{p^s} \right\rfloor - (l-m-1) \left\lfloor \frac{n}{p^l} \right\rfloor$$

for all n. If $s_{p^{l-1}} \not\equiv s_{p^l} \mod p^{m+1} \mathbb{Z}_p$, then the bound is sharp for all $n \equiv 0 \pmod {p^l}$.

Idea of proof.

We write

$$S(z) = \tilde{S}(z) + R(z),$$

where $\tilde{S}(z)$ satisfies the Dieudonné–Dwork condition (1) and R(z) is a series of order $O(z^{p^{\ell}})$. Subsequently, we decompose

$$H(z) = \exp(S(z)) = \exp(\tilde{S}(z)) \exp(R(z)).$$

By the lemma of Dieudonné and Dwork, we have $\exp(\tilde{S}(z)) \in \mathbb{Z}_p[[z]]$. It then remains to estimate the "error" created by $\exp(R(z))$.

Corollary

For a prime number p, let $S(z) = \sum_{n \geq 1} \frac{s_n}{n} z^n$ be a formal power series with $s_{p^e} \in \mathbb{Z}_p$ for all non-negative integers e and $s_n = 0$ otherwise, and let $H(z) = \sum_{n \geq 0} \frac{h_n}{n!} z^n$ be the exponential of S(z). Given non-negative integers l and m with m < l, we assume that

$$S(z^p) - pS(z) = pJ(z) + (s_{p^{l-1}} - s_{p^l}) \frac{z^{p^l}}{p^{l-1}} + O\left(z^{p^l+1}\right)$$

with $J(z) \in \mathbb{Z}_p[z]$,

$$s_{p^{l-1}} \equiv s_{p^l} \mod p^m \mathbb{Z}_p,$$

and

$$v_p(s_{p^e}-s_{p^{l-1}}) \ge -(l-m)p^{e-l} - \frac{p^{e-l}-1}{p-1} + e + 1$$

for all e with $l < e < l + \log_p(2l + 1)$. Then

$$v_p(h_n) \ge \sum_{s=1}^{l-1} \left\lfloor \frac{n}{p^s} \right\rfloor - (l-m-1) \left\lfloor \frac{n}{p^l} \right\rfloor$$

for all n. If $s_{p^{l-1}} \not\equiv s_{p^l} \mod p^{m+1} \mathbb{Z}_p$, then the bound is sharp for all $n \equiv 0 \pmod{p^l}$.

Theorem (Dey)

Let Γ be a finitely generated group, $h_n(\Gamma) := \text{Hom}(\Gamma, S_n)$, and let $s_n(\Gamma)$ be the number of subgroups of Γ of index n. Then

$$\sum_{n\geq 0} \frac{h_n(\Gamma)}{n!} z^n = \exp\left(\sum_{n\geq 1} \frac{s_n(\Gamma)}{n} z^n\right).$$

Theorem (Dey)

Let Γ be a finitely generated group, $h_n(\Gamma) := \text{Hom}(\Gamma, S_n)$, and let $s_n(\Gamma)$ be the number of subgroups of Γ of index n. Then

$$\sum_{n\geq 0} \frac{h_n(\Gamma)}{n!} z^n = \exp\left(\sum_{n\geq 1} \frac{s_n(\Gamma)}{n} z^n\right).$$

We have to control the p-adic valuation of the numbers $s_n(G)$ of subgroups of index n in G!

Proposition

Let $G = C_{p^{a_1}} \times C_{p^{a_2}} \times \cdots \times C_{p^{a_r}}$ with $a_1 \geq a_2 \geq \cdots \geq a_r$. Then the number of subgroups in G of type (b_1, b_2, \ldots, b_r) (i.e., those isomorphic to $C_{p^{b_1}} \times C_{p^{b_2}} \times \cdots \times C_{p^{b_r}}$ with $b_1 \geq b_2 \geq \cdots \geq b_r$) equals

$$\prod_{i\geq 1} p^{b'_{i+1}(a'_i-b'_i)} \begin{bmatrix} a'_i - b'_{i+1} \\ b'_i - b'_{i+1} \end{bmatrix}_p.$$

Here,

$$\begin{bmatrix} n \\ k \end{bmatrix}_{p} = \frac{(1-p^{n})(1-p^{n-1})\cdots(1-p^{n-k+1})}{(1-p^{k})(1-p^{k-1})\cdots(1-p)}.$$

Proposition (Butler)

Let
$$G = C_{p^{a_1}} \times C_{p^{a_2}} \times \cdots \times C_{p^{a_r}}$$
 with $a_1 \geq a_2 \geq \cdots \geq a_r$. Then

$$s_{p^i}(G) - s_{p^{i-1}}(G) = p^{n(\alpha)} K_{(2A_1-i,i),\alpha}(p^{-1}), \quad \text{for } i \leq A_1,$$

where $K_{\lambda,\mu}(t)$ denotes the Kostka–Foulkes polynomial indexed by partitions λ and μ , and where $\alpha=(a_1,a_2,\ldots,a_r)$,

$$A_1 = (a_1 + a_2 + \cdots + a_r)/2$$
, and $n(\alpha) = \sum_{i=1}^r (i-1)a_i$.

The Hall–Littlewood polynomials $P_{\lambda}(x_1,\ldots,x_n;t)$ are defined by

$$P_{\lambda}(x_1,\ldots,x_n;t) = \frac{1}{v_{\lambda}(t)} \sum_{w \in S_n} w \left(x_1^{\lambda_1} \cdots x_n^{\lambda_n} \prod_{1 \leq i < j} \frac{x_i - tx_j}{x_i - x_j} \right),$$

where

$$v_{\lambda}(t) = \prod_{i \geq 1} \prod_{j=1}^{m_i} \frac{1-t^j}{1-t}$$

given that $\lambda = (1^{m_1}, 2^{m_2}, ...)$.

The Kostka–Foulkes polynomials $K_{\lambda,\nu}(t)$ are the coefficients when Schur functions $s_{\lambda}(x_1,\ldots,x_n)$ are expanded in terms of Hall–Littlewood polynomials:

$$s_{\lambda}(x_1,\ldots,x_n)=\sum_{\mu}K_{\lambda,\mu}(t)P_{\nu}(x_1,\ldots,x_n;t).$$

Here,

$$s_{\lambda}(x_1,\ldots,x_n) = \det_{1 \leq i,j \leq r} (h_{\lambda_i-i+j}(x_1,\ldots,x_n)),$$

with

$$h_m(x_1,...,x_n) = \sum_{1 \le i_1 \le i_2 \le ... \le i_m \le n} x_{i_1} x_{i_2} \cdots x_{i_m}.$$

The Hall-Littlewood polynomials satisfy:

- $P_{\mu}(\mathbf{x};t)P_{\nu}(\mathbf{x};t) = \sum_{\lambda} t^{n(\lambda)-n(\mu)-n(\nu)} g_{\mu,\nu}^{\lambda}(t^{-1})P_{\lambda}(\mathbf{x};t)$, where $g_{\mu,\nu}^{\lambda}(p)$ is the number of subgroups H in a finite Abelian p-group G of type λ , such that H is of type μ and G/H is of type ν ;
- $h_n(\mathbf{x}) = \sum_{\lambda} t^{n(\lambda)} P_{\lambda}(\mathbf{x}; t);$
- $K_{\lambda,\mu}(t)=0$ unless μ is less than or equal to λ in dominance order;
- in the latter case, $K_{\lambda,\mu}(t)$ is a monic polynomial in t of degree $n(\lambda) n(\mu)$.

Theorem

Let $G = C_{p^{a_1}} \times C_{p^{a_2}} \times \cdots \times C_{p^{a_r}}$ with $a_1 \ge a_2 \ge \cdots \ge a_r$.

(i) If $a_1 > a_2 + \cdots + a_r$, then

$$\nu_p\big(h_n(G)\big) \geq \sum_{s=1}^{a_1} \left\lfloor \frac{n}{p^s} \right\rfloor - (a_1 - a_2 - \cdots - a_r) \left\lfloor \frac{n}{p^{a_1+1}} \right\rfloor.$$

The bound is sharp for all $n \equiv 0 \pmod{p^{a_1+1}}$.

(ii) If $a_1 \leq a_2 + \cdots + a_r$ and $a_1 + a_2 + \cdots + a_r$ is even, then

$$v_p(h_n(G)) \geq \sum_{s=1}^{A_1} \left\lfloor \frac{n}{p^s} \right\rfloor,$$

where $A_1 = (a_1 + a_2 + \cdots + a_r)/2$. The bound is sharp for all $n \equiv 0 \pmod{p^{A_1+1}}$, except if p = 2.

(iii) If
$$a_1 \leq a_2 + \cdots + a_r$$
 and $a_1 + a_2 + \cdots + a_r$ is odd, then

$$v_p(h_n(G)) \geq \sum_{s=1}^{A_2} \left\lfloor \frac{n}{p^s} \right\rfloor - \left\lfloor \frac{n}{p^{A_2+1}} \right\rfloor,$$

where $A_2 = (a_1 + a_2 + \cdots + a_r + 1)/2$. The bound is sharp for all $n \equiv 0 \pmod{p^{A_2+1}}$.

Theorem

Let
$$G = C_{2^{a_1}} \times C_{2^{a_2}} \times \cdots \times C_{2^{a_r}}$$
 with $a_1 \ge a_2 \ge \cdots \ge a_r$, $a_1 \le a_2 + \cdots + a_r$, and $a_1 + a_2 + \cdots + a_r$ being even. Then

$$v_2(h_n(G)) \geq \sum_{s=1}^{A_1} \left\lfloor \frac{n}{2^s} \right\rfloor + \left\lfloor \frac{n}{2^{A_1+2}} \right\rfloor - \left\lfloor \frac{n}{2^{A_1+3}} \right\rfloor,$$

where $A_1 = (a_1 + a_2 + \cdots + a_r)/2$. The bound is sharp for all n congruent to $0, 2^{A_1+1}$, and 2^{A_1+2} modulo 2^{A_1+3} .