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Cyclic sieving (Reiner, Stanton, White)

Ingredients:

— a set M of combinatorial objects,

— a cyclic group C = 〈g〉 acting on M,

— a polynomial P(q) in q with non-negative integer coefficients.

Definition

The triple (M,C ,P) exhibits the cyclic sieving phenomenon if

|FixM(gp)| = P
(

e2πip/|C |
)
.
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Example:

M =
{
{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 3}, {2, 4}

}
g : i 7→ i + 1 (mod 4)

P(q) =

[
4
2

]
q

= 1 + q + 2q2 + q3 + q4

|FixM(g0)| = 6 = P(1) = P
(

e2πi ·0/4
)
,

|FixM(g1)| = 0 = P(i) = P
(

e2πi ·1/4
)
,

|FixM(g2)| = 2 = P(−1) = P
(

e2πi ·2/4
)
,

|FixM(g3)| = 0 = P(−i) = P
(

e2πi ·3/4
)
.
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Cyclic sieving: equivalent characterisations

Fact

The triple (M,C ,P) exhibits the cyclic sieving phenomenon if and
only if

P(q) ≡
|C |−1∑
j=0

ajq
j mod q|C | − 1,

where aj is the number of C -orbits for which the stabilizer order
divides j.

Fact

Let g be a generator of the cyclic group C , and let V (j) denote the
(one-dimensional) irreducible representation of C given by
g · v = e2πi j/|C |v. Furthermore, let P(q) =

∑
j≥0 pjq

j . Then the
triple (M,C ,P) exhibits the cyclic sieving phenomenon if and only
if CM is isomorphic to

⊕
j≥0 pjV

(j).
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History of Cyclic sieving

early 1990s: “(−1)-phenomenon” for plane partitions (John
Stembridge)

2004: “The cyclic sieving phenomenon” (Vic Reiner, Dennis
Stanton, Dennis White)

Instances of cylic sieving were discovered for permutations, for
tableaux, for non-crossing matchings, for non-crossing
partitions, for triangulations, for dissections of polygons, for
clusters, for faces in the cluster complex, . . .
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Non-crossing partitions (Kreweras)

16

5

4 3

2

1

A non-crossing partition of {1, 2, 3, 4, 5, 6}
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Non-crossing partitions (Kreweras)

The non-crossing partitions of {1, 2, . . . , n}, say NC (n), can be
(partially) ordered by refinement.

• NC (n) is a ranked poset.

• NC (n) is in fact a lattice.

• NC (n) is self-dual (→ Kreweras complement).

• |NC (n)| =
1

n + 1

(
2n

n

)
.

• There exist nice formulae for Möbius function, zeta
polynomial, . . .
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m-divisible non-crossing partitions (Edelman)

1
2

3

4

5
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8

9

10
1112

13

14

15

16

17

18

19

20

21

1

A 3-divisible non-crossing partition of {1, 2, . . . , 21}
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m-divisible non-crossing partitions (Edelman)

The m-divisible non-crossing partitions of {1, 2, . . . ,mn}, say
NCm(n), can again be (partially) ordered by refinement.

• NCm(n) is a ranked poset.
• NCm(n) is a join-semilattice.

• |NCm(n)| =
1

n

(
(m + 1)n

n − 1

)
.

• There exist nice formulae for Möbius function, zeta
polynomial, . . .
• In particular, the number of elements of NCm(n) all block

sizes of which are equal to m is

1

n

(
mn

n − 1

)
.
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polynomial, . . .
• In particular, the number of elements of NCm(n) all block

sizes of which are equal to m is

1

n

(
mn

n − 1

)
.

Christian Krattenthaler Cyclic Sieving



m-divisible non-crossing partitions (Edelman)

The m-divisible non-crossing partitions of {1, 2, . . . ,mn}, say
NCm(n), can again be (partially) ordered by refinement.

• NCm(n) is a ranked poset.
• NCm(n) is a join-semilattice.

• |NCm(n)| =
1

n

(
(m + 1)n

n − 1

)
.

• There exist nice formulae for Möbius function, zeta
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A cyclic action: rotation
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A cyclic action: rotation
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Non-crossing partitions and cyclic sieving I

Take:

— M = m-divisible non-crossing partitions of {1, 2, . . . ,mn},
— C = 〈rotation〉,

— P(q) =
1

[n]q

[
(m + 1)n

n − 1

]
q

.

Claim: The triple (M,C ,P) exhibits the cyclic sieving
phenomenon.
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Non-crossing partitions and cyclic sieving II

Take:

— M = non-crossing partitions of {1, 2, . . . ,mn} all block sizes
of which are equal to m,

— C = 〈rotation〉,

— P(q) =
1

[n]q

[
mn

n − 1

]
q

.

Claim: The triple (M,C ,P) exhibits the cyclic sieving
phenomenon.
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Non-crossing partitions and cyclic sieving II
Take:
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m-divisible non-crossing partitions for complex reflection groups!

(Armstrong, Brady, Watt, Bessis)
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An algebraic point of view

Define the absolute length `T (σ) of a permutation σ ∈ Sn by the
smallest k such that

σ = t1t2 · · · tk ,

where all ti are transpositions.

Define the absolute order ≤T by

σ ≤T π if and only if `T (σ) + `T (σ−1π) = `T (π).

For example,

(1, 2, 4)(3)(5, 6) ≤T (1, 2, 3, 4, 5, 6).
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For example,
(1, 2, 4)(3)(5, 6) ≤T (1, 2, 3, 4, 5, 6).

16

5

4 3

2

1

Indeed, one can show that the non-crossing partitions of
{1, 2, . . . , n} are in bijection with

{σ ∈ Sn : σ ≤T (1, 2, . . . , n)}.
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Complex reflection groups

A complex reflection is a linear transformation on Cn which fixes a
hyperplane pointwise, and which has finite order. In other words, a
complex reflection is a diagonalisable linear transformation on Cn

whose eigenvalues are 1 with multiplicity n − 1, and whose
remaining eigenvalue is a root of unity.

A complex reflection group W is a group generated by (complex)
reflections. Here, we consider always finite complex reflection
groups.
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The classification of all finite complex reflection groups

(Shephard and Todd)

All finite complex reflection groups are known!

All irreducible finite complex reflection groups are:

— the infinite family G (d , e, n), where d , e, n are positive
integers such that e | d ,

— the exceptional groups G4,G5, . . . ,G37.

Any finite complex reflection group is a direct product of
irreducible ones.
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The groups G (d , e, n)

Let d , e, n be positive integers such that e | d . The group
G (d , e, n) consists of all n × n matrices, in which:

• exactly one entry in each row and in each column is non-zero;

• this non-zero entry is always some d-th root of unity;

• the product of all non-zero entries is a (d/e)-th root of unity.

Special cases:

• G (1, 1, n) = Sn.

• G (2, 1, n) = Bn.

• G (2, 2, n) = Dn.
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Well-generated complex reflection groups

A complex reflection group W of rank n is called well-generated , if
it is generated by n (complex) reflections.
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The classification of all well-generated complex reflection groups

(Shephard and Todd)

All irreducible well-generated complex reflection groups are:

— the two infinite families G (d , 1, n) and G (e, e, n), where
d , e, n are positive integers,

— the exceptional groups
G4,G5,G6,G8,G9,G10,G14,G16,G17,G18,G20,G21,
G23 = H3,G24,G25,G26,G27, G28 = F4,G29,G30 = H4,G32,
G33, G34,G35 = E6, G36 = E7, G37 = E8.
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Absolute order for complex reflection groups

Given a complex reflection group W , define the absolute length
`T (w) of an element w ∈W by the smallest k such that

w = t1t2 · · · tk ,

where all ti are (complex) reflections.

Define the absolute order ≤T by

u ≤T w if and only if `T (u) + `T (u−1w) = `T (w).
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Non-crossing partitions for reflection groups

The degrees d1 ≤ d2 ≤ · · · ≤ dn of a (complex) reflection group W
are the degrees of a system of homogeneous polynomial generators
of the invariant ring of W . The largest degree, dn, is called
Coxeter number, and is denoted by h.

A regular element (in the sense of Springer) is an element w ∈W
which has an eigenvalue, ζ say, such that the corresponding
eigenvector lies in no reflection hyperplane. If this eigenvalue ζ is a
primitive h-th root of unity, then w is called a Coxeter element.
We always write c for Coxeter elements.

The non-crossing partitions for a well-generated complex reflection
group W are defined by

NC (W ) := {w ∈W : w ≤T c},
where c is a Coxeter element in W .
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Non-crossing partitions for reflection groups

Everything generalises to NC (W ):

— order relation: ≤T

— NC (W ) is a ranked poset:

rank of w = `T (w)

— NC (W ) is a lattice

— NC (W ) is self-dual:
“Kreweras-complement” is w 7→ cw−1

— Catalan number for W : if W is irreducible then

|NC (W )| =
n∏

i=1

h + di

di
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m-divisible non-crossing partitions for reflection groups (Armstrong)

The m-divisible non-crossing partitions for a complex reflection
group W are defined by

NCm(W ) =
{

(w0; w1, . . . ,wm) : w0w1 · · ·wm = c and

`T (w0) + `T (w1) + · · ·+ `T (wm) = `T (c)
}
,

where c is a Coxeter element in W .

In particular,
NC 1(W ) ∼= NC (W ).
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Combinatorial realisation in type A (Armstrong)

NCm(W ) =
{

(w0; w1, . . . ,wm) : w0w1 · · ·wm = c and

`T (w0) + `T (w1) + · · ·+ `T (wm) = `T (c)
}
,

Example for m = 3, W = A6(= S7):
w0 = (4, 5, 6), w1 = (3, 6), w2 = (1, 7), and w3 = (1, 2, 6).
Now “blow-up” w1,w2,w3:

(1, 2, . . . , 21) (7, 16)−1 (2, 20)−1 (3, 6, 18)−1

= (1, 2, 21) (3, 19, 20) (4, 5, 6) (7, 17, 18) (8, 9, . . . , 16).
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Properties of NCm(W )

— order relation:

(u0; u1, . . . , um) ≤ (w0; w1, . . . ,wm)

if and only if u1 ≥ w1, . . . , um ≥ wm;

— NCm(W ) is a join-semilattice;

— NCm(W ) is ranked :

rank of (w0; w1, . . . ,wm) = `T (w0)
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The Fuß–Catalan numbers for reflection groups

Theorem (Athanasiadis, Bessis, Corran, Chapoton,
Edelman, Reiner)

If W is irreducible then

|NCm(W )| =
n∏

i=1

mh + di

di
.
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Let φ : NCm(W )→ NCm(W ) be the map defined by

(w0; w1, . . . ,wm)

7→
(
(cwmc−1)w0(cwmc−1)−1; cwmc−1,w1,w2, . . . ,wm−1

)
.

It generates a cyclic group of order mh.
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The action combinatorially (type A)
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Let φ : NCm(W )→ NCm(W ) be the map defined by

(w0; w1, . . . ,wm)

7→
(
(cwmc−1)w0(cwmc−1)−1; cwmc−1,w1,w2, . . . ,wm−1

)
.

It generates a cyclic group of order mh.

Furthermore, let

Catm(W ; q) :=
n∏

i=1

[mh + di ]q
[di ]q

,

where [α]q := (1− qα)/(1− q).

Theorem (with T. W. Müller)

The triple (NCm(W ), 〈φ〉,Catm(W ; q)) exhibits the cyclic sieving
phenomenon.

(Originally conjectured by Armstrong, Bessis and Reiner)
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then, in types A, B and D, we are talking about non-crossing partitions
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The two cyclic sieving phenomena for NCm
(
G (d , 1, n)

)
follow

from the following result.

Theorem

Let m, n, r be positive integers such that r ≥ 2 and r | mn. For
non-negative integers b1, b2, . . . , bn, the number of m-divisible
non-crossing partitions of {1, 2, . . . ,mn} (in the sense of Edelman)
which are invariant under the rotation i 7→ i + mn

r mod mn and
have exactly rbi non-zero blocks of size mi, i = 1, 2, . . . , n, is given
by (

b1 + b2 + · · ·+ bn

b1, b2, . . . , bn

)(
mn/r

b1 + b2 + · · ·+ bn

)
if b1 + 2b2 + · · ·+ nbn ≤ bn/rc, and it is zero otherwise.

Christian Krattenthaler Cyclic Sieving



In order to establish the cyclic sieving phenomena for
NCm

(
G (e, e, n)

)
, one proves analogous enumeration results for

m-divisible non-crossing partitions on an annulus.

For the exceptional groups, we do a (lengthy) computer
verification.
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