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Taylor coefficients of f3(7) at 7 =/

In a talk at a Workshop on “Computer Algebra and
Combinatorics” at the Erwin Schrodinger Institute in Vienna in
November 2017, Dan Romik presented his investigations on Taylor
coefficients of Jacobi's theta function #3(7) at 7 = i.
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Taylor coefficients of f3(7) at 7 =/

In a talk at a Workshop on “Computer Algebra and
Combinatorics” at the Erwin Schrodinger Institute in Vienna in
November 2017, Dan Romik presented his investigations on Taylor
coefficients of Jacobi's theta function 03(7) at 7 = /.

The setup:

Jacobi's theta function 03 is defined by

03(7) = Z q"2, with g = ™.

n=—oo

The Taylor expansion that Romik was interested in is
1-z _ > d(n)
0 —0 1 1/2 d" 2n
(i152) =8a)a+ 2 > G

where ® = I8(1/4)/(1287*) and 63(i) = 7/*/I(3/4).
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Taylor coefficients of f3(7) at 7 =/

Jacobi's theta function 63 is defined by

00 s )
= Z qg", withg=1¢""

n=—oo

The Taylor expansion that Romik was interested in is

1 )12
93<1+ >_93 Y14z Z2n ,

where ® = I8(1/4)/(1287*) and 63(i) = 7/*/I(3/4).
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Taylor coefficients of f3(7) at 7 =/

Jacobi's theta function 63 is defined by

00 s )
= Z qg", withg=1¢""

n=—oo

The Taylor expansion that Romik was interested in is

1 )12
93<1+ >_93 Y14z Z2n ,

where ® = I8(1/4)/(1287*) and 63(i) = 7/*/I(3/4).
The first few values turn out to be

1,1,-1,51,849, —26199, 1341999, 82018251, 18703396449,
— 993278479599, —78795859032801, 38711746282537251, . ..

Indeed, Romik showed that the sequence (d(n))n>0 is a sequence
of integers. B
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Taylor coefficients of f3(7) at 7 =/

At the end of his talk, based on computational data, Romik
reported that the sequence (d(n)) seemed to satisfy interesting
congruence properties.

@ d(n) eventually vanishes modulo any prime power p€ with

n>0

p =3 (mod 4),
@ d(n) is eventually periodic modulo any prime power p¢ with
p=1(mod 4);

@ d(n) is purely periodic modulo any 2-power 2€.
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Taylor coefficients of f3(7) at 7 =/

At the end of his talk, based on computational data, Romik
reported that the sequence (d(n)) seemed to satisfy interesting
congruence properties.

@ d(n) eventually vanishes modulo any prime power p€ with

n>0

p =3 (mod 4),
@ d(n) is eventually periodic modulo any prime power p¢ with
p=1(mod 4);

@ d(n) is purely periodic modulo any 2-power 2€.

@ Scherer [2019] proved Item 1 for primes (i.e., for e = 1).

e Guerzhoy, Mertens and Rolen [2019] proved Item 2 in the
more general context of Taylor coefficients of modular forms
of half integer weight at complex multiplication points.

e Wakhare [2020] revisited Item 2 for primes (i.e., for e = 1)
and proved fine results on period lengths.
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Taylor coefficients of f3(7) at 7 =/

At the end of his talk, based on computational data, Romik
reported that the sequence (d(n)) seemed to satisfy interesting
congruence properties.

@ d(n) eventually vanishes modulo any prime power p¢ with

n>0

p =3 (mod 4);
@ d(n) is eventually periodic modulo any prime power p® with
p=1 (mod 4);

@ d(n) is purely periodic modulo any 2-power 2€.
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Taylor coefficients of f3(7) at 7 =/

At the end of his talk, based on computational data, Romik
reported that the sequence (d(n)) seemed to satisfy interesting
congruence properties.

@ d(n) eventually vanishes modulo any prime power p¢ with

n>0

p =3 (mod 4);
@ d(n) is eventually periodic modulo any prime power p® with
p=1 (mod 4);

@ d(n) is purely periodic modulo any 2-power 2€.

In a sense, periodicity was actually known (but very hidden).
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At the end of his talk, based on computational data, Romik
reported that the sequence (d(n)) seemed to satisfy interesting
congruence properties.

@ d(n) eventually vanishes modulo any prime power p¢ with

n>0

p =3 (mod 4);
@ d(n) is eventually periodic modulo any prime power p€ with
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Taylor coefficients of f3(7) at 7 =/

At the end of his talk, based on computational data, Romik
reported that the sequence (d(n)) seemed to satisfy interesting
congruence properties.

@ d(n) eventually vanishes modulo any prime power p¢ with

n>0

p =3 (mod 4);
@ d(n) is eventually periodic modulo any prime power p€ with
p =1 (mod 4);

@ d(n) is purely periodic modulo any 2-power 2€.

In a sense, periodicity was actually known (but very hidden).

@ Rodriguez Villegas and Zagier [1993] described a procedure
that produces a recursive scheme to compute the Taylor
coefficients of modular forms.

@ O'Sullivan and Risager [2013] showed that coefficients
produced by such a recursive scheme are (eventually) periodic
modulo any fixed integer M.
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Periodicity of Taylor coefficients of modular forms

In a sense, periodicity was actually known (but very hidden).

e Rodriguez Villegas and Zagier [1993] described a procedure
that produces a recursive scheme to compute the Taylor
coefficients of modular forms.

e O’Sullivan and Risager [2013] showed that coefficients
produced by such a recursive scheme are (eventually) periodic
modulo any fixed integer M.
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Periodicity of Taylor coefficients of modular forms

In a sense, periodicity was actually known (but very hidden).
e Rodriguez Villegas and Zagier [1993] described a procedure

that produces a recursive scheme to compute the Taylor
coefficients of modular forms.
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Periodicity of Taylor coefficients of modular forms

Square roots of central values of Hecke L-series

by FERNANDO RODRIGUEZ VILLEGAS and DON ZAGIER

§1. Introduction

In [2] numerical examples were produced suggesting that the “algebraic” part of central
values of certain Hecke L-series are perfect squares. More precisely, let 1, be the grossen-
character of Q(v/-7) defined by

m+722\/—_7€Z[1+\/—_7]

b= (Fa i a=(a) a= >

7

and consider the central value L(\bfk'l, k) of the L-series associated to an odd power of ;.
This value vanishes for k even by virtue of the functional equation, but for k¥ odd one has

(2”/\/7)k Q2k-1 Al

—1 T2 (4
0 Lt =2 SRS 4y, = TOEONG),

2

with A(1) = 1/4, A(3) = A(5) = 1, A(7) = 9, A(9) = 49, ..., A(33) = 447622863272552,
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Periodicity of Taylor coefficients of modular forms

In a sense, periodicity was actually known (but very hidden).
e Rodriguez Villegas and Zagier [1993] described a procedure
that produces a recursive scheme to compute the Taylor
coefficients of modular forms at complex multiplication points.
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Periodicity of Taylor coefficients of modular forms

In a sense, periodicity was actually known (but very hidden).
e Rodriguez Villegas and Zagier [1993] described a procedure
that produces a recursive scheme to compute the Taylor
coefficients of modular forms at complex multiplication points.

Given a modular form f(7) and complex multiplication point 7o,
this procedure constructs a sequence (p,,(t))n>0 via a recurrence
of the form -

pn+1(t) = an(t)p;(t) + bn(t)pn(t) + Cn(t)pn—l(t)7 n>2,

where a,(t), bn(t), cn(t) are polynomials in t and n with integer
coefficients.
The Taylor coefficients of f(7) at 7 = 79 are then given by

pn(0), n=0,1,2,...,

up to some renormalisation.
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Periodicity of Taylor coefficients of modular forms

Back to 63:

Romik's Taylor expansion at 7 = i:

11—z . - d(n) n_2n
03 </1+Z> :93(1)(1—1—2)1/2”2:[:)(2”)!4) 22",

where ® = I8(1/4)/(1287*) and 03(i) = 7/4/I(3/4).
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Periodicity of Taylor coefficients of modular forms

Back to 63:
Romik's Taylor expansion at 7 = i:

11—z

, o d(n) o 20
05 </1+Z> :03(/)(1—1—2)1/2”2:[:)(2”)!4) 22",

where ® = I8(1/4)/(1287*) and 03(i) = 7/4/I(3/4).
The procedure of Rodriguez Villegas and Zagier yields

Prsa(t) = (& — 96£2)p)(t) + 16(4n + 1)tp, ()

— n(n — $)(256t* + 3)pn_1(t),

with p_1(t) = 0 and po(t) = 1, and we have pz,+1(0) = 0 and

d(n) = 27" p2,(0).
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Periodicity of Taylor coefficients of modular forms

In a sense, periodicity was actually known (but very hidden).
e Rodriguez Villegas and Zagier [1993] described a procedure

that produces a recursive scheme to compute the Taylor
coefficients of modular forms.
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Periodicity of Taylor coefficients of modular forms

In a sense, periodicity was actually known (but very hidden).

e Rodriguez Villegas and Zagier [1993] described a procedure
that produces a recursive scheme to compute the Taylor
coefficients of modular forms.

e O’Sullivan and Risager [2013] showed that coefficients
produced by such a recursive scheme are (eventually) periodic
modulo any fixed integer M.
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Periodicity of Taylor coefficients of modular forms
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DOI 10.1007/511139-012-9374-x

Non-vanishing of Taylor coefficients and Poincaré series

Cormac O’Sullivan - Morten S. Risager
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Abstract We prove recursive formulas for the Taylor coefficients of cusp forms, such
as Ramanujan’s Delta function, at points in the upper half-plane. This allows us to
show the non-vanishing of all Taylor coefficients of Delta at CM points of small
discriminant as well as the non-vanishing of certain Poincaré series. At a “generic”
point, all Taylor coefficients are shown to be non-zero. Some conjectures on the Tay-
lor coefficients of Delta at CM points are stated.
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1,0,2,0,6,0,1,0,5,0,0,0,4,0,0,0,4,0,0,0,2,0,0,0,0,0,0,0,... (6.2)

for m > 0 with all further terms = 0 mod 7. Hence gy ;_, (0) mod 7 has period 1 for
m > 21. We next prove that (6.1), (6.2) are typical. (In what follows, by a period we
always understand the least eventual period of a sequence.)

Theorem 6.1 Let [ be in Z>1 and 3 = 3p a CM point.

(i) The sequence g, ;(0) mod IOk becomes periodic.

(i) If qm,;(0) mod IOk is periodic from m = o with period B then a + p <
1Ok 10k |*.

Proof Recall (5.16) and the map Ok [1] — R; given by p > Pp. Since %t’ =0mod!

we see that g,,(t) also satisfies the recursion (1.10) which depends only on n mod /;

see Remark 3. We can therefore conclude that if, for some rational integers i < jo,

TGO =700, T (O=Tjps1 (), io=jomodl, (63
then ;) (1) =q 4, (t) for all n € Z>o. But since
@i Tig41:10)s @jy Tjo10 J0) € R X (Z/1D),
the box principle implies that (6.3) is true for some 0 < ip < jo < |72,2 X (Z]1Z)| =
I|OK/I(9K\2[. Therefore, g,,(0) mod [ is periodic from at most m = iy with period

dividing jo — io. ad

&) Springer
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Periodicity of Taylor coefficients of modular forms

In a sense, periodicity was actually known (but very hidden).
e O'Sullivan and Risager [2013] showed that coefficients

produced by such a recursive scheme are (eventually) periodic
modulo any fixed integer M.
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Periodicity of Taylor coefficients of modular forms

In a sense, periodicity was actually known (but very hidden).
e O'Sullivan and Risager [2013] showed that coefficients

produced by such a recursive scheme are (eventually) periodic
modulo any fixed integer M.

Consider the sequence (pn(t)) >0 Of polynomials
Pn(t) = Y 4=0 Pnkt™ given by
pn+1(t) = an(t)p;(t) + bn(t)pn(t) + Cn(t)pnfl(t)a

where a,(t), bn(t), cn(t) are given polynomials in ¢t and n with
integer coefficients.
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Periodicity of Taylor coefficients of modular forms

In a sense, periodicity was actually known (but very hidden).
e O'Sullivan and Risager [2013] showed that coefficients
produced by such a recursive scheme are (eventually) periodic
modulo any fixed integer M.

Consider the sequence (pn(t))
Pn(t) = Y 4=0 Pnkt™ given by
pn+1(t) = an(t)p;(t) + bn(t)pn(t) + Cn(t)pnfl(t)a

where a,(t), bn(t), cn(t) are given polynomials in ¢t and n with
integer coefficients.

>0 of polynomials

Claim. For considering (pn(t) modulo I\/I)n>0 (coefficient-wise), it
suffices to consider the above recurrence modulo M for the
sequence (p,gM)(t))pO of truncated polynomials

M—-1

pM () = > (Pnk mod M) - t¥.
k=0
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Periodicity of Taylor coefficients of modular forms

The truncated polynomials:

M—1
(t = Z Pn.x mod /\/l) -tk
k=0
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Periodicity of Taylor coefficients of modular forms

The truncated polynomials:
p,(,M)(t) = (Pnx mod M) - t¥

We consider now the map

¢ : (nmod M p(M)( t), Pr(wM)(t)) — (n+1 mod M Pn (t) Pn+1( )

defined via the recurrence

M M M
P (E) = an(t) (p"(1)) +bn( )08 (£)+cn(D)PSM) (£)  mod (M, t).
This defines a map on a finite space, namely on

(Z/MZ) x (Z/MZ)[1]/(t")) x ((Z/MZ)[t]/(¢")).

More precisely, this space has M?M+1 elements.
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Periodicity of Taylor coefficients of modular forms

The truncated polynomials:
Py (t) = > (pnk mod M) - t*.

We consider now the map

¢« (nmod M, p{™) (1), b (2)) = (n+1 mod M, pi™ (1), (1))

n—1

defined via the recurrence
p(E) = an() (P (1)) +ba()Ph™ (1) +en(t)pM)(8)  mod (M, ™).
This defines a map on a finite space, namely on

(Z/MZ) x (Z/MZ)[e]/(t")) x ((Z/MZ)[t]/(t")).
More precisely, this space has M?M+1 elements.
Consequently, the map ¢ must be (eventually) periodic, and thus
also
(Pa(0) mod M) = piM(0),
which gives our Taylor coefficients modulo M.
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Periodicity of Taylor coefficients of modular forms

In a sense, periodicity was actually known (but very hidden).

e Rodriguez Villegas and Zagier [1993] described a procedure
that produces a recursive scheme to compute the Taylor
coefficients of modular forms.

e O’Sullivan and Risager [2013] showed that coefficients
produced by such a recursive scheme are (eventually) periodic
modulo any fixed integer M.
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Periodicity of Taylor coefficients of modular forms

In a sense, periodicity was actually known (but very hidden).

e Rodriguez Villegas and Zagier [1993] described a procedure
that produces a recursive scheme to compute the Taylor
coefficients of modular forms.

e O’Sullivan and Risager [2013] showed that coefficients
produced by such a recursive scheme are (eventually) periodic
modulo any fixed integer M.

On the other hand:

@ Obtain only astronomic bounds on period length
(namely M2M+1),

@ The argument cannot decide whether the Taylor coefficients
eventually vanish modulo M, or when.
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Taylor coefficients of f3(7) at 7 =/

Again back to 63:

Conjecture

@ d(n) eventually vanishes modulo any prime power p¢ with

p =3 (mod 4);
@ d(n) is eventually periodic modulo any prime power p® with
p=1 (mod 4);
@ d(n) is purely periodic modulo any 2-power 2€.
We have
d(n) = 2""p2n(0),
where

prea(t) = (4 — 968)p) () + 16(4n + 1)tpn(1)
—n(n—1)(256t2 + 3)pp-1(t),
with p_1(t) = 0 and po(t) = 1.
The previous argument proves periodicity of d(n) modulo p€ for
primes p different from 2 and 3.
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Taylor coefficients of f3(7) at 7 =/

Again back to 63:

Conjecture

@ d(n) eventually vanishes modulo any prime power p¢ with

p =3 (mod 4);
@ d(n) is eventually periodic modulo any prime power p€ with
p =1 (mod 4);

@ d(n) is purely periodic modulo any 2-power 2€.

We have
d(n) = 27"pan(0),
where
prea(t) = (& — 962)p(1) + 16(4n + 1)tpy(2)
—n(n—1)(256t2 + 3)pp-1(t),
with p_1(t) = 0 and po(t) = 1.
The previous argument proves periodicity of d(n) modulo p€ for
primes p different from 2 and 3.
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Taylor coefficients of f3(7) at 7 =/

Theorem

(1) Let p be a prime number with p = 3 (mod 4), and let e be a
positive integer. Then d(n) =0 (mod p¢) for n > [ep 1.

(2) Let p be a prime number with p =1 (mod 4), and let e be a
positive integer. Then the sequence ( (n)) n>etl is purely periodic
modulo p with (not necessarily minimal) period length

1 e-1 _1)2

7P (p— 1)

(3) Let e be a positive integer. The sequence (d(n))n>0, when
taken modulo any fixed 2-power 2¢ with e > 3, is purely periodic
with (not necessarily minimal) period length 26=1. Modulo 4, the
sequence is purely periodic with period length 4, the first few
values of the sequence (modulo 4) being given by

1,1,3,3,1,....
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Recall the expansion

1 1/2 d(n
b (1152 ) =a)1 4 2) /Z

where ® = 8(1/4)/(1287*) and 63(i) = 771/4/I_(3/4).
We start by writing

(2) 1 0 11—z

z) = i

03 /71 = 3 1 +z )
or, equivalently,

. 2 1—x
03(ix) =/ 17573 <1+x>'
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Romik's setup
We found
. 2 1—x
ba(5) = |/ 75573 <1+x> '
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Romik's setup
We found
) 2 1—x
03(ix) = \/ 17573 <1+x> '

where G(t) = 2K(+/t) with

We have

1 dx
= /o VI3 (I - k)

Substitution of x = G(1 — t)/G(t) in the first line yields

Voo @3 T 28 - 3) = VG0 + 61— 1)
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Our last identity:

\603<223+251 ) VG(t)+ G(1—1).
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Our last identity:

V2o <28 T 28 = 3) = V/G(t)+ G(1—1).

Romik has shown that

21
6(t)+ 611 = in [‘1";‘:4 (- 5)2] -

Now we need to define some auxiliary sequences.
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We define the sequences (u(n))n>0 and (v(n))a>0 by

2F1{

Blw

3 2
1 4.
3 45]
2

: 452]

i

1

b)
2F1 |41
3

and
1/2

(9= 3 o =2 o]

Romik has shown that (u(n))n>0 and (v(n))n>o are integer
sequences.
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We define the sequences (u(n))n>0 and (v(n))a>0 by

Blw

3
2F1 |: %4 452:|
2

i

1 .
2F 41 ,452:|
2

and

n 11 1/2
V(S) = Z 2n((2,3) 2F1 |:47; ,452:| .

Romik has shown that (u(n))n>0 and (v(n))n>o are integer
sequences.
Our last identity can then be written in the form
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Our last identity can then be written in the form

3 Zmd((z”z)!w"(s) = V(s).

n=0
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Our last identity can then be written in the form

3 2:’((2”3)! UAn(s) = V(s).

n=0

Define the lower-triangular matrix (R(n, k)) by

n,k>0
|
R(n, k) = 2<H>/2% (s") UX(s).
It is not difficult to see that R(n, k) is always an integer.
Comparison of coefficients of %kk), yields
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We found )
> R(2k,2n)d(n) = v(k).
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We found
R(2n,2k)d(k) = v(n).
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Romik's setup

We found

3

R(2n,2k)d(k) = v(n).
k=0

Theorem (ROMIK)

The sequence (d(n))n>0 is a sequence of integers. Moreover, the
d(n)’s can be computed via the relation

n—1

d(n) = v(n) =Y R(2n,2k)d(k) and d(0) =1,

k=0

or by
d(n) = R Y(2n,2k)v(k).
k=0
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Romik’s setup — Summary

Define auxiliary sequences (u(n))n>0 and (v(n))n,>0 and the matrix
(R(n, k))n,kZO by

33
2F1 [4’34;452}
U(S) — Z (2 U(n)l I52n-i-1 =5 121 ,
= 21 1) 2F1 [4’1“:452}
2
11 1/2
49 4

V(n) 2n |: ) 2:|
s"=5F 145 ,
;) 27(2n)! :

R(n, k) = 209020 (57) UK (s).

Then the sequence (d(n)),>0 can be computed by

d(n) = v(n) — z_: R(2n,2k)d(k) and d(0) =
or by k=0
ZR (2n, 2k)v(k).
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The auxiliary sequence (u(n)),>o
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The auxiliary sequence (u(n)),>o

The sequence (u(n))n>o is defined by

u(n)  2n
2 (2n—|—1)!52 t=s

n>0
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The auxiliary sequence (u(n)),>o

The sequence (u(n))n>o is defined by
2F1

Z (2:(:)1) 2n+1 _ %

Hlw

3
4’; ;452]
2

11 )
4714
1,45]
2

._Tl

2
An equivalent, recursive, definition is

H(‘U 12— Z o) (3 1) I

n—m

1:[ , with u(0) =1.

j=1

.
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The auxiliary sequence (u(n)),>o

The sequence (u(n))n>o is defined by

33 )
2F1 [454;45 ]
Z u(n) $2ntl _ 2
| o 11 )
= (2n+1)! JF, [4,14;452]
An equivalent, recursive, definition is 2

ﬁ (4j—3)%, with u(0) = 1.

H(‘U 12— 2 o) ()

Proposition

Given an odd prime p and a positive integer e, the number u(n) is
divisible by p€ for n > L%’ﬁj
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The auxiliary sequence (u(n)),>o

The sequence (u(n))n>o is defined by

33 )
2F1 [454;45 ]
Z u(n) $2ntl _ 2
| o 11
= (2n+1)! JF, [4,14;452]
An equivalent, recursive, definition is 2

|
3

H(‘U 1)2- Z u(m )(2”“) (4/-3)2,  with u(0) = 1.

Jj=1

Proposmon

Given an odd prime p and a positive integer e, the number u(n) is
divisible by p€ for n > L%’ﬁj

Proposition

| 5

Given a prime p =1 (mod 4) and a positive integer e, the number
u(n) is divisible by p® for n > [2].

\
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The auxiliary sequence (v(n)),>0
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The auxiliary sequence (v(n)),>0

The sequence (v(n))n>0 is defined by

1/2
v(n) 2n _ %7%. 2
ZQ”(Qn)!S —2F1|: % 14s .
n>0
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The auxiliary sequence (v(n)),>0

The sequence (v(n))n>0 is defined by

v(n) 2n _ %7%. 2
ZQ”(Qn)!S —2F1|: % 14s
n>0

An equivalent, recursive, definition is

n n—1
v(n) = 2" H(4j—3)2—; Z <2n> v(m)v(n—m), with v(0) = 1.

2m
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The auxiliary sequence (v(n)),>0

The sequence (v(n))n>0 is defined by

1/2
v(n) 2n _ %7%. 2
ZQ”(Qn)!S —2F1|: % 14s .
n>0

An equivalent, recursive, definition is

n n—1
v(n) = 2" H(4j—3)2—; Z <2n> v(m)v(n—m), with v(0) = 1.

2m

Proposition

Given an odd prime p and a positive integer e, the number v(n) is
2
divisible by p¢ for n > [<5-].
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The auxiliary sequence (v(n)),>0

The sequence (v(n))n>0 is defined by

1/2
v(n) 2n _ %7%. 2
ZQ”(Qn)!S —2F1|: % 14s .
n>0

An equivalent, recursive, definition is

n n—1
v(n) = 2" H(4j—3)2—% Z <2n> v(m)v(n—m), with v(0) = 1.
j=1

2m
m=1

Proposition

Given an odd prime p and a positive integer e, the number v(n) is
2
divisible by p¢ for n > [<5-].

Proposition

| \

Given a prime p =1 (mod 4) and a positive integer e, the number
v(n) is divisible by p¢ for n > [2].
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The auxiliary matrix (R(n, k)) k>0
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The auxiliary matrix (R(n, k))n.k>0
The matrix (R(n, k))n k>0 is defined by
|
R(n, k) 1= 2(n=R)/2" (gny k(s),

k!
where

Blw

3
u(n) R3]
Ue) = 0 g L3 L
nzo( nt ) 2F1 |:4§|_4;4S2:|
2
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The auxiliary matrix (R(n, k)) k>0

The matrix (R(n, k))n k>0 is defined by

where

: u(n)  opi1
U(S):st + =S 11 .
n>0 2F1 |:4714;4S2:|
Expanded out, this is 2

2n
2n)! . ,
2= (=K R(2n,2k) = ECIN y IS “
( ) Z leil i!CiCi! P ( 2 )

where the sum > is over all tuples (c1, ¢, ..., con) of
non-negative integers c;, where cp; = 0 for all j, and

ca+c+--+ cn1 =2k,
a+3a+--+(2n—1)cp_1 = 2n.

Christian Krattenthaler and Thomas W. Miiller
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The auxiliary matrix (R(n, k)) k>0

The case where p = 3 (mod 4).
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The auxiliary matrix (R(n, k)) k>0

The case where p = 3 (mod 4).

Let N, K, e, f be non-negative integers with N > K, and let p be a
prime number with p = 3 (mod 4). If N > ep? and K < fp?, then

e I C

<l
(c,')EP,‘\’,KH’ 117G o

e—f+1

is divisible by p
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The auxiliary matrix (R(n, k))n k>0

The case where p =3 (mod 4).

Let N, K, e, f be non-negative integers with N > K, and let p be a
prime number with p = 3 (mod 4). If N > ep? and K < fp?, then

is divisible by pe~f+1.

In the special case where N = 2n and K = 2k we conclude:

Let n, k,e, f be non-negative integers with n > k, and let p be a

2 2
prime number with p =3 (mod 4). If n > [¥5-] and k < [%1,
then R(2n,2k) is divisible by pe~+1.
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Taylor coefficients of #3(7) at 7
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Taylor coefficients of f3(7) at 7 =/

Theorem

(1) Let p be a prime number with p = 3 (mod 4), and let e be a
positive integer. Then d(n) =0 (mod p¢) for n > [ep 1.

(2) Let p be a prime number with p =1 (mod 4), and let e be a
positive integer. Then the sequence ( (n)) n>etl is purely periodic
modulo p with (not necessarily minimal) period length

1 e-1 _1)2

7P (p— 1)

(3) Let e be a positive integer. The sequence (d(n))n>0, when
taken modulo any fixed 2-power 2¢ with e > 3, is purely periodic
with (not necessarily minimal) period length 26=1. Modulo 4, the
sequence is purely periodic with period length 4, the first few
values of the sequence (modulo 4) being given by

1,1,3,3,1,....
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Taylor coefficients of f3(7) at 7 =/

Theorem

(1) Let p be a prime number with p = 3 (mod 4), and let e be a
positive integer. Then d(n) =0 (mod p¢) for n [—}

(2) Let p be a prime number with p =1 (mod ) and let e be a
positive integer. Then the sequence ( (n)) n>etl is purely periodic
modulo p with (not necessarily minimal) period length

1 e-1 _1)2

7P (p— 1)

(3) Let e be a positive integer. The sequence (d(n))n>0, when
taken modulo any fixed 2-power 2¢ with e > 3, is purely periodic
with (not necessarily minimal) period length 26=1. Modulo 4, the
sequence is purely periodic with period length 4, the first few
values of the sequence (modulo 4) being given by

1,1,3,3,1,....
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Taylor coefficients of f3(7) at 7 =/

(1) Let p be a prime number with p = 3 (mod 4), and let e be a

s - 2
positive integer. Then d(n) =0 (mod p®) for n > [<5-].
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Taylor coefficients of f3(7) at 7 =/

(1) Let p be a prime number with p = 3 (mod 4), and let e be a

s - 2
positive integer. Then d(n) =0 (mod p®) for n > [<5-].

Proof.

2
We do an induction on n. Let n > [%5-]. Recall that

n—1
d(n) = v(n) = > R(2n,2k)d(k) and d(0) =1,

k=0
Under the above assumption, we know that v(n) is divisible by p€.
On the other hand, consider some k with [W] <k< [%2]

We have

vo(R(2n,2K)d(K)) > (e — F+ 1)+ (F —1) =e. [I

Here, v,(a) = maximal j3 such that p° | a.
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The inverse of the auxiliary matrix (R(n, k))nx>0

The case where p =1 (mod 4).
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The inverse of the auxiliary matrix (R(n, k))nx>0

The case where p =1 (mod 4).
Recall that

n— n! n
R(n, k) := 2 kV?ﬂ (s") UK(s).
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The inverse of the auxiliary matrix (R(n, k))nx>0

The case where p =1 (mod 4).
Recall that I
R(n. k) := 20=R/2 T (s7) UK (s).
By Lagrange inversion, we obtain

R~(n, k) = 2(”—k)/2H <t—k> U,
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The inverse of the auxiliary matrix (R(n, k))nx>0

The case where p =1 (mod 4).
Recall that nl
R(n, k) == 2=RK2 = (s") UK(s).
By Lagrange inversion, we obtain
—1)!
R1(n, k) = 2t—ky2{n = ! <t_k> U"(t).

(k—1)!
Expanded out, this is

R7'(2n+k k) =" Z/(_l)m(2n+ m+k—1)2n+m+k—2)---k

e n!'(2n — 1N
. (20) T (422)
2les gl 4loscgl - - (2n) 1ty q ! P i '
where the sum >/ is over all tuples (0,0, ¢3,0, ¢s5,0,...,0, c2pt1)

of non-negative integers c¢; with

3+ C+ -+ Copt1 = M,
3C3—|—5C5+~--+(2n—i—1)c2,,+1:2n—|—m.
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The inverse of the auxiliary matrix (R(n, k))nx>0

The case where p =1 (mod 4).
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The inverse of the auxiliary matrix (R(n, k))nx>0

The case where p =1 (mod 4).

Proposition

Let p be a prime with p =1 (mod 4). Then, for all positive
integers n, k, and e, we have

pl2k/pl g1 (2n + p*~ Yp—1), 2k)
= uP" (B52) - (~1)PO/4pl2K/PIRT1 (20, 2k)  (mod p?),

forn>e—+1.
In particular, the sequence (pl2</P!R=1 (2n, 2k) )n>e+1, when
taken modulo any fixed p-power p® with e > 1, is purely periodic

with (not necessarily minimal) period length p®~(p — 1)2.
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Taylor coefficients of #3(7) at 7
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Taylor coefficients of f3(7) at 7 =/

Theorem

(1) Let p be a prime number with p = 3 (mod 4), and let e be a
positive integer. Then d(n) =0 (mod p¢) for n > [ep 1.

(2) Let p be a prime number with p =1 (mod 4), and let e be a
positive integer. Then the sequence ( (n)) n>etl is purely periodic
modulo p with (not necessarily minimal) period length

1 e-1 _1)2

7P (p— 1)

(3) Let e be a positive integer. The sequence (d(n))n>0, when
taken modulo any fixed 2-power 2¢ with e > 3, is purely periodic
with (not necessarily minimal) period length 26=1. Modulo 4, the
sequence is purely periodic with period length 4, the first few
values of the sequence (modulo 4) being given by

1,1,3,3,1,....
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Taylor coefficients of f3(7) at 7 =/

Theorem

(1) Let p be a prime number with p = 3 (mod 4), and let e be a

3(
positive integer. Then d(n) =0 (mod p¢) for n > [ep 1.
(2) Let p be a prime number with p =1 (mod 4), and let e be a
positive integer. Then the sequence ( (n))n> 41 is purely periodic
modulo p¢ with (not necessarily minimal) period length
P Hp— 1)
(3) Let e be a positive integer. The sequence (d(n))n>0, when
taken modulo any fixed 2-power 2¢ with e > 3, is purely periodic
with (not necessarily minimal) period length 26=1. Modulo 4, the
sequence is purely periodic with period length 4, the first few
values of the sequence (modulo 4) being given by

1,1,3,3,1,....
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Taylor coefficients of f3(7) at 7 =/

(2) Let p be a prime number with p =1 (mod 4), and let e be a
positive integer. Then the sequence (d(n)) __ L1 Is purely periodic
modulo p with (not necessarily minimal) period length

ipH(p— 1)
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Taylor coefficients of f3(7) at 7 =/

Theorem

(2) Let p be a prime number with p =1 (mod 4), and let e be a
positive integer. Then the sequence (d(n)) __ L1 Is purely periodic
modulo p with (not necessarily minimal) period length

ips (P — 1)

Recall that
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Taylor coefficients of f3(7) at 7 =/

Theorem

(2) Let p be a prime number with p =1 (mod 4), and let e be a
positive integer. Then the sequence (d(n)) __ L1 Is purely periodic
modulo p with (not necessarily minimal) period length

lepe 1(p 1)2_

Proof
Recall that

| A

ZR (2n, 2k)v (k).

We know that v(k) = 0 (mod p¢) for k > [F]. Consequently, we
may truncate the sum on on the right-hand side when we consider
both sides modulo p€,

Lep/2]
Z R™(2n,2k)v(k) (mod p®).
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Taylor coefficients of f3(7) at 7 =/

Proof (continued).

We have lep/2)
d(n)= Y_ R7(2n,2k)v(k) (mod p°).
k=0
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Taylor coefficients of f3(7) at 7 =/

Proof (continued).

We have lep/2)
= Z R=1(2n,2k)v(k) (mod p°).

We know that v(k) = 0 (mod p¢) for k > [£]. In other words,
we have v(k) = pl?%/PlV/(k, p), where V(k,p) is an integer.
Altogether, this leads to

lep/2]

Z R=Y(2n,2k)p?*/Plv(k,p) (mod p¢), forn>1.

By the preV|ous theorem, the sequence (ppk/"’JR L(2n, 2k))n>e+1

is purely periodic when taken modulo p® with (not necessarily
minimal) period length %pe_l(p— 1)2.

Since, by the above congruence, the sequence (d(n)), .., when
taken modulo p€, is a finite linear combination of the sequences
(pl2/pl R™Y(2n,2K)) oo 1o k =1,2,..., it has the same
periodicity behaviour. L]
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The auxiliary sequence (v(n)),>0

The case where p = 2.
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The auxiliary sequence (v(n)),>0

The case where p = 2.
The sequence (v(n))n>0 is defined by

11
Z V(n) S2n:2F1 4;[4;452
2”(2”)' 5

n>0
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The auxiliary sequence (v(n)),>0

The case where p = 2.
The sequence (v(n))n>0 is defined by

V(n) 2n |:17
s =oF |4
;) 27(2n)! 3

i

1/2
; 452] .

Proposition

Let x(j), j =0,1,2,..., be a sequence of integers with x(0) = 1,
x(1) and x(2) odd. Then the coefficients vx(n) in the expansion

(n) 1/2
2nx(2 < " Z t2j>

are integers. Moreover, for all integers e > 3, the sequence
(vx(n))n>0 is purely periodic modulo 2¢ with (not necessarily
minimal) period length 21,
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The inverse of the auxiliary matrix (R(n, k))n.x>0

The case where p = 2.
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The inverse of the auxiliary matrix (R(n, k))n.x>0

The case where p = 2.
Recall that

R~(n, k) = 2<n—k>/2H <t—k> U ().
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The inverse of the auxiliary matrix (R(n, k))nx>0

The case where p = 2.
Recall that

Proposition

For fixed n and any 2-power 2¢, the sequence (R™*(k + 2n, k))k>0
is purely periodic modulo 2¢ with (not necessarily minimal) period
length 2°€.
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Taylor coefficients of #3(7) at 7
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Taylor coefficients of f3(7) at 7 =/

Theorem

(1) Let p be a prime number with p = 3 (mod 4), and let e be a
positive integer. Then d(n) =0 (mod p¢) for n > [ep 1.

(2) Let p be a prime number with p =1 (mod 4), and let e be a
positive integer. Then the sequence ( (n)) n>etl is purely periodic
modulo p with (not necessarily minimal) period length

1 e-1 _1)2

7P (p— 1)

(3) Let e be a positive integer. The sequence (d(n))n>0, when
taken modulo any fixed 2-power 2¢ with e > 3, is purely periodic
with (not necessarily minimal) period length 26=1. Modulo 4, the
sequence is purely periodic with period length 4, the first few
values of the sequence (modulo 4) being given by

1,1,3,3,1,....
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Taylor coefficients of f3(7) at 7 =/

Theorem

(1) Let p be a prime number with p = 3 (mod 4), and let e be a
positive integer. Then d(n) =0 (mod p¢) for n > [ep 1.

(2) Let p be a prime number with p =1 (mod 4), and let e be a
positive integer. Then the sequence ( (n)) n>etl is purely periodic
modulo p with (not necessarily minimal) period length

1 e-1 _1)2

7P (p— 1)

(3) Let e be a positive integer. The sequence (d(n))n>0, when
taken modulo any fixed 2-power 2¢ with e > 3, is purely periodic
with (not necessarily minimal) period length 26~1. Modulo 4, the
sequence is purely periodic with period length 4, the first few
values of the sequence (modulo 4) being given by

1,1,3,3,1,....
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Taylor coefficients of f3(7) at 7 =/

(3) Let e be a positive integer. The sequence (d(n))n>0, when
taken modulo any fixed 2-power 2¢ with e > 3, is purely periodic
with (not necessarily minimal) period length 26~ 1.

Christian Krattenthaler and Thomas W. Miiller Congruence properties of Taylor coefficients of modular forms



Taylor coefficients of f3(7) at 7 =/

Theorem

(3) Let e be a positive integer. The sequence (d(n))n>0, when
taken modulo any fixed 2-power 2¢ with e > 3, is purely periodic
with (not necessarily minimal) period length 26~ 1.

Recall that
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Taylor coefficients of f3(7) at 7 =/

Theorem

(3) Let e be a positive integer. The sequence (d(n))n>0, when
taken modulo any fixed 2-power 2¢ with e > 3, is purely periodic
with (not necessarily minimal) period length 26~ 1.

Proof
Recall that

ZR (2n, 2k)v (k).

From the definition of R~1(2n, 2k), we see that
R=1(2n,2k) = 0 (mod 2¢) for n > k + e. Thus, from the above
relation we obtain

e—1
d(n) = Z R=Y(2n,2n — 2k)v(n— k) (mod 2°).
k=0
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Taylor coefficients of f3(7) at 7 =/

Proof (continued).

We have

e—1
d(n)=>_ R '(2n,2n—2k)v(n— k) (mod 2°).
k=0
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Taylor coefficients of f3(7) at 7 =/

Proof (continued).

We have
e—1
d(n)=>_ R '(2n,2n—2k)v(n— k) (mod 2°).
k=0
We know:

e the sequence (v(n))n>0 is (purely) periodic modulo 2¢ with
period length 2671,

o the sequence (R™1(2n,2n — 2k))s>0 is (purely) periodic
modulo 2¢ with period length 261

This implies that each summand on the right-hand side is (purely)
periodic modulo 2¢ with (not necessarily minimal) period

length 26~ 1. Since these are finitely many summands, the same
must hold for d(n). O
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Taylor coefficients of f3(7) at 7 =/

Theorem

(1) Let p be a prime number with p = 3 (mod 4), and let e be a
positive integer. Then d(n) =0 (mod p¢) for n > [ep 1.

(2) Let p be a prime number with p =1 (mod 4), and let e be a
positive integer. Then the sequence ( (n)) n>etl is purely periodic
modulo p with (not necessarily minimal) period length

1 e-1 _1)2

7P (p— 1)

(3) Let e be a positive integer. The sequence (d(n))n>0, when
taken modulo any fixed 2-power 2¢ with e > 3, is purely periodic
with (not necessarily minimal) period length 26=1. Modulo 4, the
sequence is purely periodic with period length 4, the first few
values of the sequence (modulo 4) being given by

1,1,3,3,1,....
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Taylor coefficients of modular forms

What else?
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Taylor coefficients of 05(7) at 7
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Taylor coefficients of O,(7) at 7 =/

Jacobi's theta function 65 is defined by

o0

ba(r) = > ¢, with g = &

n=—oo

The Taylor expansion that we are interested in is

1 1/2 nn
92(1+>_92 )(1+ 2) Z .w

where W = I*(1/4)/(1672) and 65(i) = [(1/4)/(2m)3/*.
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Taylor coefficients of O,(7) at 7 =/

Jacobi's theta function 65 is defined by

o0

ba(r) = > ¢, with g = &

n=—oo

The Taylor expansion that we are interested in is

1 1/2 nn
92(1+>—92 )(1+ 2) Z Jyn,

where W = I*(1/4)/(1672) and 65(i) = [(1/4)/(2m)3/*.
The first few values turn out to be

1,-1,3,17,9,111, —2373,12513, 86481, 146079, 9806643,
81727857,81072729, —22284691569, 142745006187,
— 751645880127, 38512100339361, 305713085239359, . ..

One can again show that the c(n)’s are always integers.
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Taylor coefficients of O,(7) at 7 =/

Our expansion:

11—z 1/2 ”) ngn
= E —ynz
b2 (Il—i-z) G2(i)(1 + 2)

where W = I(1/4)/(1672) and 65(i) = F(1/4)/(27r)3/4.
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Taylor coefficients of O,(7) at 7 =/

Our expansion:

11—z 1/2 ”) ngn
= E —ynz
02 (Il—i-z) G2(i)(1 + 2)

where W = I(1/4)/(1672) and 65(i) = F(1/4)/(27r)3/4.
One can show using similar reasoning that

> 2n( n)l U"(s) = (1 +2s)Y4V(s),
n=0

where, as before,

U(s) := ;) (2:(_:)1)!52”1 =5

and
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Taylor coefficients of O,(7) at 7 =/

Our expansion:

11—z 1/2 ”) ngn
= E —ynz
02 (Il—i-z) G2(i)(1 + 2)

where W = I(1/4)/(1672) and 65(i) = F(1/4)/(27r)3/4.
One can show using similar reasoning that
S O yn(s) = (1 +25)74V(s),

2" nl
n=0

where, as before,

U(s) := ;) (2:(_:)1)!52”1 =5

and
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Taylor coefficients of f3(7) at 7 =/

For comparison:

1-z /2 d(n
03<1+>—03 1+Z/Z

where ® = 8(1/4)/(1287*) and 63(i) = 771/4/I_(3/4).
We had earlier shown that

3 2nd((2”3)l Un(s) = V(s).
n=0 ’

where

and
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Taylor coefficients of O,(7) at 7 =/

Theorem

(1) Let p be a prime number with p = 3 (mod 4), and let e be a
positive integer. Then c(n) =0 (mod p¢) for n > ep?.

(2) Let p be a prime number with p =1 (mod 4), and let e be a
positive integer. Then the sequence (c(n)) <, , is purely
periodic modulo p® with (not necessarily minimal) period length
1 e-1 _1)2

P (p— 1)

(3) Let e be a positive integer. The sequence (c(n))n>0, when
taken modulo any fixed 2-power 2¢ with e > 3, is purely periodic
with (not necessarily minimal) period length 2. Modulo 4, the
sequence is purely periodic with period length 4, the first few
values of the sequence (modulo 4) being given by

1,1,3,3,1,....
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Taylor coefficients of modular forms

What else?
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The Eisenstein series E4 and Eg
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The Eisenstein series E4 and Eg

The classical Eisenstein series are defined by

4k 2k—1 4n .
Ex(r)=1— — Z 7,71 — qCL ., with g = ™7,

where By is a Bernoulli number.
In particular,

= 1+2402 =1- 5042

n>1 n>1

2imT

n, with g = e
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The Eisenstein series E4 and Eg

The classical Eisenstein series are defined by

4k 2k—1 4n .
Ex(r)=1— — Z d qCL . with g = &>,

where By is a Bernoulli number.

In particular,
= 1+2402 =1- 5042 n, with g = €2,
n>1 n>1
We have
Eq(7) = 65() — 63(7)63(7) + 65(7)
and

Eo(r) = 5 (64(r) + 63(7)) (264(r) — 63(7)) (64(r) — 264(r) .
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Taylor coefficients of E4(7) at 7
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Taylor coefficients of E4(7) at 7 =i

The Eisenstein series E, is defined by

nq" 2i
Ea(m) =1+240) o with g = €27,

n>1

The Taylor expansion that we are interested in is

4 _ . 40064(n) n_n
Ey <Il+z> = E4(i)(1 4+ 2) ;)M\U z",

where E4(i) = 3M8(1/4)/(2r)°, with W the same as before.
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Taylor coefficients of E4(7) at 7 =i

The Eisenstein series E, is defined by

nq" 2i
Ea(m) =1+240) o with g = €27,

n>1

The Taylor expansion that we are interested in is

E4 <.1—Z> _ E4(/.)(1+Z)4Z§4'(::|)wnzn’
n=0 ’

Il—i—z

where E4(i) = 3M8(1/4)/(2r)°, with W the same as before.
The first few values turn out to be

3, 0, 80, 0, 1920, 0, 184320, 0, 9338880, 0, 2194145280, 0,
245178040320, 0,83119696773120, 0, 14017452551700480, 0,
9277412311805460480, 0, ...

One can again show that the e4(n)’s are always integers.
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Taylor coefficients of E4(7) at 7 =i

The Eisenstein series E,4 is defined by

1

n3qn ] 0
Es(t) =1+ 2402 ——, with g=e""".
n>1 q

The Taylor expansion that we are interested in is

11—z _ . 40064(’7) n_n
E4 (I1—|—Z> —E4(/)(1+Z) ;)M\U z,

where E4(i) = 3M8(1/4)/(2r)°, with W the same as before.
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Taylor coefficients of E4(7) at 7 =i

The Eisenstein series E,4 is defined by

1

n3qn ] 0
Es(t) =1+ 2402 ——, with g=e""".
n>1 q

The Taylor expansion that we are interested in is

11—z _ : 4 = e4(n) n_n
E4 (I1—|—Z> == E4(/)(1+Z) ;)M\U z,
where E4(i) = 3M8(1/4)/(2r)°, with W the same as before.

One can show that

3 ‘;“n(,’:? U™(s) = (3 + 4s2) V(s).
n=0 ’
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Taylor coefficients of E4(7) at 7 =i

The Eisenstein series E,4 is defined by

1

n3qn ] 0
Es(t) =1+ 2402 ——, with g=e""".
n>1 q

The Taylor expansion that we are interested in is

11—z _ : 4 = e4(n) n_n
E4 (I1—|—Z> == E4(/)(1+Z) ;)M\U z,
where E4(i) = 3M8(1/4)/(2r)°, with W the same as before.

One can show that

3 ‘;“n(,’:? U™(s) = (3 + 45%)VE(s).
n=0 ’
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Taylor coefficients of E4(7) at 7 =i

Theorem

(1) Let p be a prime number with p = 3 (mod 4), and let e be a
positive integer. Then e4(n) =0 (mod p¢) for n > ep?.

(2) Let p be a prime number with p =1 (mod 4), and let e be a
positive integer. Then the sequence (ea(n)),-,,. , is purely
periodic modulo p® with (not necessarily minimal) period length

3P Hp— 1)
(3) Given a positive integer n, the number e4(2n) is divisible by
22n=1 while e4(2n — 1) = 0 for n > 1.
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Taylor coefficients of E4(7) at 7 =i

Theorem

(1) Let p be a prime number with p = 3 (mod 4), and let e be a
positive integer. Then e4(n) =0 (mod p¢) for n > ep?.

(2) Let p be a prime number with p =1 (mod 4), and let e be a
positive integer. Then the sequence (ea(n)),-,,. , is purely
periodic modulo p® with (not necessarily minimal) period length

3P p— 1)
(3) Given a positive integer n, the number e4(2n) is divisible by
227=1 while e4(2n — 1) =0 for n > 1.
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Taylor coefficients of E4(7) at 7
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Taylor coefficients of Eg(7) at 7 =i

The Eisenstein series Eg is defined by
n°q" 2i
— H _ ITT
E6(T)_1—504ng>ll_qn, with g = e“'"".

The Taylor expansion that we are interested in is

Es <i1 — z) = c6(1 + 2)° i (1) yynn

|
1+~z — nl

where g6 = —32(1/4)/(277%), with W the same as before.

Christian Krattenthaler and Thomas W. Miiller Congruence properties of Taylor coefficients of modular forms



Taylor coefficients of Eg(7) at 7 =i

The Eisenstein series Eg is defined by
g 2inr
E6(T):1—504zl_7qn, with g = e“'™".
n>1
The Taylor expansion that we are interested in is
Es <,1 J_r i) = c6(1+2)° i) e‘isl")w"z”,

where g6 = —32(1/4)/(277%), with W the same as before.
The first few values turn out to be

0, 3, 0, 112, 0, 10752, 0, 903168, 0, 179601408, 0, 28339863552,
0, 9094123487232,0, 2243952774217728, 0,
1140973440312803328,0, 403435727694166228992, ...

One can again show that the eg(n)’s are always integers.
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Taylor coefficients of Eg(7) at 7 =i

Theorem

(1) Let p be a prime number with p = 3 (mod 4), and let e be a
positive integer. Then es(n) =0 (mod p¢) for n > ep?.

(2) Let p be a prime number with p =1 (mod 4), and let e be a
positive integer. Then the sequence (es(n)), -, , is purely
periodic modulo p® with (not necessarily minimal) period length

3P P — 1)
(3) Given a positive integer n, the number eg(2n+ 1) is divisible by
22" while eg(2n) = 0 for n > 1.
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Taylor coefficients of even weight modular forms at 7 =/
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Taylor coefficients of even weight modular forms at 7 =/

Let f(7) be a modular form of weight 2m which can be expressed
as

vr f(1) = Pr(Ea(7), Eo(7)),

for a certain positive integer ¢, and for a polynomial P¢(a, b) in a
and b with integer coefficients.

The expansion that we are interested in is

11—z _ 2m - ef(n) n_n
f(/1+z>—8m(1+z) Z vz"

. nl
n=0 e

where €, = [*M(1/4)/(27)3™, with W as before.

Christian Krattenthaler and Thomas W. Miiller Congruence properties of Taylor coefficients of modular forms



Taylor coefficients of even weight modular forms at 7 =/

Theorem

(1) Let p be a prime number with p = 3 (mod 4), and let e be a
positive integer. Then ef(n) =0 (mod p¢) for n > ep?.

(2) Let p be a prime number with p =1 (mod 4), and let e be a
positive integer. Then the sequence (ef(n)),-,,., is purely
periodic modulo p® with (not necessarily minimal) period length
1 e-1 _1)2

5P (p— 1)

(3) Given a positive integer n, the number ef(n) is divisible by
2n—s2(m)=llogz2(m/3)]=1 " and e(n) = 0 for n # m (mod 2). Here,
s2(m) denotes the sum of the digits in the 2-adic representation
of m.

This covers all Eisenstein series, the modular discriminant, ...
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Open problems
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Open problems

Recall:

(1) Let p be a prime number with p = 3 (mod 4), and let e be a

Sc - 2
positive integer. Then d(n) =0 (mod p®) for n > [<5-].
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Open problems

Recall:

(1) Let p be a prime number with p = 3 (mod 4), and let e be a

Sc - 2
positive integer. Then d(n) =0 (mod p®) for n > [<5-].

If p =3 (mod 4), we have d(n) =0 (mod p¢) for n > [%"2]
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Open problems
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Open problems

Recall:

(2) Let p be a prime number with p =1 (mod 4), and let e be a

positive integer. Then the sequence (d(n)) is purely periodic

n>e+1
modulo p¢ with (not necessarily minimal) period length

P p—1)%
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Open problems

Recall:

(2) Let p be a prime number with p =1 (mod 4), and let e be a

positive integer. Then the sequence (d(n)) petl is purely periodic
modulo p with (not necessarily minimal) period length

P p—1)%

Conjecture

(1) If p=1 (mod 4), the sequence (d(n))nzp
(eventually) periodic with (not necessarily minima ) period length
1 e-1 -1 2

gpS(p—1)%
(2) If p=1 (mod 4), there exists a constant Cp, . such that:

(i) d(n+ peilgp_l)) = Cp.ed(n) (mod p®) for all n > 1;

(ii) C,gf)e_l)/z =1 (mod p®).

taken modulo p¢, is
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Open problems
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Open problems

Recall:

(3) Let e be a positive integer. The sequence (d(n))n>0, when
taken modulo any fixed 2-power 2¢ with e > 3, is purely periodic
with (not necessarily minimal) period length 26~1.
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Open problems

Recall:

(3) Let e be a positive integer. The sequence (d(n))n>0, when
taken modulo any fixed 2-power 2¢ with e > 3, is purely periodic
with (not necessarily minimal) period length 26~1.

From computer data, this seems to be the correct period length.
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Open problems

Christian Krattenthaler and Thomas W. Miiller Congruence properties of Taylor coefficients of modular forms



Open problems

Can we handle Taylor expansions at other complex multiplication
points by a similar approach?
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