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The star of this talk

Z qz' (2i-1)k H 0 _,-; p)2 g(aqk,'-i—kj; p)2

0<ki<kp<---<k,<m 1<i<j<r

Xﬁ G(aqzk"; p)(a,b,c,d, e, f,Xag> "™ ef ,q™™; q, p)k,
0(a; p)(q,aq/b, aq/c,aq/d, aq/e, aq/f, efq" 1=/, ag*™; q, p),

B H (b,c,d,ef/a;q,p)i—
e} /\b/a Ac/a,Ad/a,ef /) q, p)
" H (ag; q, p (aq/ef; q, P)m+1-r (Aq/e,Aq/F; q, P)m—it1
=1 (Mg 9, p)m (Aq/ef; q, P)mi1-r (aq/e,aq/f: q, P)m—it1
« Z S (2i—1)k H e(qk k ()\qk+kj p)2
O§k1<k2<-~~<k,§m 1<i<j<r

Xﬁ 0(\g> i, p) (\,Ab/a,\c/a,\d/a, e, f, \ag> """ [ef . g™ q, p)k,
=1 0(X\;p)(q.aq/b,aq/c,aq/d, Aq/e,\q/f, efq"1="/a, Aqg"T™; q, p)i;

2 2—r
where A = a°¢°~"/bcd.
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The star of this talk: notation

Given a complex number p with |p| < 1, we define
[o.¢]

0(x; p) H (1—p/x)(1—pt1/x).
j=0

Note: 6(x;0) =1 — x.
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The star of this talk: notation

Given a complex number p with |p| < 1, we define
[o.¢]

0(x; p) = [ (1 = Px)(1 = p/*1/x).
j=0

Note: 6(x;0) =1 — x.
Out of this, we build “shifted factorials’:
(a; q, p)m = 9(3; P) H(Qq; p) - Q(qu_l; P),

Note: (a;q,0)m = (1 —a)(1 —aq)--- (1 —ag™ ') = (a;q)m.
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The star of this talk: notation

Given a complex number p with |p| < 1, we define
0(x; p) = [ (1 = Px)(1 = p/*1/x).
j=0
Note: 6(x;0) =1 — x.
Out of this, we build “shifted factorials’:

(a; q, p)m = 9(3; P) H(Qq; p) - Q(qu_l; P),

Note: (a;q,0)m = (1 —a)(1 —aq)--- (1 —ag™ ') = (a;q)m.

We also employ the short notation

(a1, a2, -, a9, P)m = (a1 9, P)m (32: 4, P)m - - - (3K G, P) m-

Christian Krattenthaler A transformation formula for elliptic hypergeometric series



The star of this talk

Z qz' (2i-1)k H 0 _,-; p)2 g(aqk,'-i—kj; p)2

0<ki<kp<---<k,<m 1<i<j<r

Xﬁ G(aqzk"; p)(a,b,c,d, e, f,Xag> "™ ef ,q™™; q, p)k,
0(a; p)(q,aq/b, aq/c,aq/d, aq/e, aq/f, efq" 1=/, ag*™; q, p),

B H (b,c,d,ef/a;q,p)i—
e} /\b/a Ac/a,Ad/a,ef /) q, p)
" H (ag; q, p (aq/ef; q, P)m+1-r (Aq/e,Aq/F; q, P)m—it1
=1 (Mg 9, p)m (Aq/ef; q, P)mi1-r (aq/e,aq/f: q, P)m—it1
« Z S (2i—1)k H e(qk k ()\qk+kj p)2
O§k1<k2<-~~<k,§m 1<i<j<r

Xﬁ 0(\g> i, p) (\,Ab/a,\c/a,\d/a, e, f, \ag> """ [ef . g™ q, p)k,
=1 0(X\;p)(q.aq/b,aq/c,aq/d, Aq/e,\q/f, efq"1="/a, Aqg"T™; q, p)i;

2 2—r
where A = a°¢°~"/bcd.
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The star of this talk: g-case

Z qzlle(Zi—l)k,- H (1 - qk,-—kj)Z (1 _ aqk,--i-kj)Z

0<k1<k2< <kr<m 1<i<j<r

_ 2k; f)\ 2—r+m f.g—m: )
XH (1 —ag®")(a, b,c,d,e, f,Aaqg Jef,q™™; q)k

(1 - a)( q,aq/b ag/c,aq/d, aq/e, aq/f, efq—1=m /X ag"*™; q),.

B (b,c,d,ef/a;q)i-1
H (Ab/a,Ac/a,Ad/a,ef /\; q)i-1

" H (ag; q)m (aq/ef; @) mi1-r (Aq/ €, Aq/F; @) m—it1
1 (Mg q)m (Aa/ef; q)mr1-r (aq/e,aq/f; Q) m—it1
% Z q25:1(2i71)k,' H (1 o qkffkj)z (1 o Aqk,'+kj)2

0<ki<kp<--<kr<m 1<i<j<r
r

XH (1- )\qzk") (A, Ab/a,Ac/a,Ad/a, e, f, )\aq2_r+m/ef, a " q)k
1 (1=X)(q,29/b,aq/c,aq/d, Aq/e, Aq/f, efq""1 7" /a, Ag' T q);

where \ = a?¢®>~"/bcd.
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The star of this talk: g-case, r =1

U (1 —ag®*)(a, b,c,d,e, £, ag*t™/ef, g~ ™; q)k
Z 9 (1—a)(q,aq/b,aq/c,aq/d,aq/e,aq/f,efq—™/X\, agt*™; q)
_ (aq,aq/ef,A\q/e,\q/f; q)m
~ (A\g,Aq/ef,aq/e,aq/f; q)m
XZ k 1—)\q2k) (A, Ab/a, \c/a,\d/a, e, f, aq ™™ /ef ,q™™; q)«
A\ (g,aq/b,aq/c,aq/d, \q/e, \q/f, efq=™/a, A\g1T™; q)«’

where \ = a?¢®>~"/bcd.
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The star of this talk: g-case, r =1

Z"’:qk (1—ag**)(a,b,c,d,e, f,Nag" ™™ /ef ,q~™; q)«
— " (1—2a)(q,aq/b,aq/c,aq/d, aq/e, aq/f,efq=™/\, aqr™™; q)«
_ (ag,aq/ef Aq/e, Aq/f: q)m
(Mg, Aq/ef ,aq/e,aq/f; q)m
XZ k 1—)\q2k) (A, Ab/a, \c/a,\d/a, e, f, aq ™™ /ef ,q™™; q)«
A\ (g,aq/b,aq/c,aq/d, \q/e, \q/f, efq=™/a, A\g1T™; q)«’
where \ = a?¢®>~"/bcd.

This is Bailey's very-well-poised 19¢g-transformation formula!
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The star of this talk

(big expression) = (another big expression)
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The star of this talk

(big expression) = (another big expression)

This identity was discovered conjecturally by Ole Warnaar in 2000,
and later proved independently by Rains and by Coskun and
Gustafson.
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3 applications
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3 applications

@ Enumeration of standard tableaux of skew shape
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3 applications

@ Enumeration of standard tableaux of skew shape

@ Discrete analogues of Macdonald—Mehta integrals
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3 applications

@ Enumeration of standard tableaux of skew shape
@ Discrete analogues of Macdonald—Mehta integrals

© Best polynomial approximation
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The first application: Counting standard Young tableaux

(joint work with MICHAEL SCHLOSSER)
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The first application: Counting standard Young tableaux

(joint work with MICHAEL SCHLOSSER)

JOHN STEMBRIDGE (25 May 2011):

My student Elizabeth DeWitt has found a closed
formula for the number of standard Young tableaux of
skew shape, where the outer shape is a staircase and
the inner shape a rectangle. Have you seen this
before?
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The first application: Counting standard Young tableaux

Let A = (A1, A2,...,An) and p = (p1, 2, - .., ptn) be two n-tuples
of non-negative integers which are in non-increasing order and
satisfy \; > u; for all /.

A standard Young tableau of skew shape \/u is an arrangement of
the numbers 1,2,.... 3" (\; — ;) of the form

7Tn“un+]_ ............ 7[',77/\"

such that numbers along rows and columns are increasing.
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The first application: Counting standard Young tableaux

A standard Young tableau of skew shape A/u is an arrangement of
the numbers 1,2,..., 3" (A; — p;) of the form

Tlpug4+1 e T,
7T2,/,L2+1 e 7T2’H1+1 PP 71'27)\2

Tnpup+1 e T, n

such that numbers along rows and columns are increasing.
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The first application: Counting standard Young tableaux

A standard Young tableau of skew shape A/u is an arrangement of
the numbers 1,2,..., 3" (A; — p;) of the form

Tlpug4+1 e T,
7T2,/,L2+1 e 7T2’H1+1 PP 71'27)\2

Tnpup+1 e T, n
such that numbers along rows and columns are increasing.

A standard Young tableau of shape (6,5,4,3,2,1)/(3,3,0,0,0,0):

2 5 13
39
1 4 8 12
6 11 15
7 14
10

Christian Krattenthaler A transformation formula for elliptic hypergeometric series



The first application: Counting standard Young tableaux

JOHN STEMBRIDGE (25 May 2011):

My student Elizabeth DeWitt has found a closed
formula for the number of standard Young tableaux of
skew shape, where the outer shape is a staircase and
the inner shape a rectangle. Have you seen this
before?
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The first application: Counting standard Young tableaux

JOHN STEMBRIDGE (25 May 2011):

My student Elizabeth DeWitt has found a closed
formula for the number of standard Young tableaux of
skew shape, where the outer shape is a staircase and
the inner shape a rectangle. Have you seen this
before?
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The first application: Counting standard Young tableaux

We shall do something more general here:

(1) We shall enumerate all standard Young tableaux of a skew
shape, where the outer shape is a (possibly incomplete) staircase
and the inner shape is a rectangle.
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The first application: Counting standard Young tableaux

We shall do something more general here:

(1) We shall enumerate all standard Young tableaux of a skew
shape, where the outer shape is a (possibly incomplete) staircase
and the inner shape is a rectangle.

(2) We shall consider a g-analogue.
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The first application: Counting standard Young tableaux

Our goal: Let N, n, m, r be non-negative integers. Consider all
standard Young tableaux of shape (N,N —1,....N—n+1)/(m"),
where (m") stands for (m, m,..., m,0,...,0) with r components
m).

N
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The first application: Counting standard Young tableaux

Our goal: Let N, n, m, r be non-negative integers. Consider all
standard Young tableaux of shape (N,N —1,....N—n+1)/(m"),
where (m") stands for (m, m,..., m,0,...,0) with r components
m).

N

\

Compute )" + g™ T where T ranges over all these standard
Young tableaux.
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The first application: Counting standard Young tableaux

Our goal: Let N, n, m, r be non-negative integers. Consider all
standard Young tableaux of shape (N,N —1,...,N—n+1)/(m"),
where (m") stands for (m,m, ..., m,0,...,0) with r components
m).

Compute Y + g™ T where T ranges over all these standard
Young tableaux.
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The first application: Counting standard Young tableaux

Our goal: Let N, n, m, r be non-negative integers. Consider all
standard Young tableaux of shape (N,N —1,...,N—n+1)/(m"),
where (m") stands for (m,m, ..., m,0,...,0) with r components
m).

Compute Y + g™ T where T ranges over all these standard
Young tableaux.

The major index maj T of T is the sum of all j such that i +1
appears in a lower row than i.

2 5 13
39
1 4 8 12
6 11 15
7 14
10

We have maj(.) =2+3+5+6+9+ 13 =38.



The first application: Counting standard Young tableaux

Folklore Formula (MACMAHON, STANLEY)

The generating function ) + g™ T where T ranges over all

standard Young tableaux of shape \/u equals

[i(ki - u;)L! SR, (P\f —i —1NJ +f]q!> ’

i=1
where [m]q! := [m]q[m —1]q - - - [1]q with
[elg=1+q+a*+---+¢*1=FL.
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The first application: Counting standard Young tableaux

We substitute in the formula:

1

- N+1-2i—m+j],!
[(N+1)_(N £+1)_mr}qllgdi§t§n [ 1' m+Jjlq

J<r

[N+ 1—2i+ ]! §=>r
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The first application: Counting standard Young tableaux

We substitute in the formula:

1

_ N+1—2i—m+jg!
() = (g —mr] 1 e | QN2

J<r

[N+ 1—2i+ ]! §=>r

We now do a Laplace expansion with respect to the first r columns:

(M3 = () =]

NGOy !
D DI S A\ 2k —m gl

1<ki<--<ker<n

1
. det — .
1<i<n, ig (ki ko) ([N +1-2i +J]q!>
r+1<j<n
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The first application: Counting standard Young tableaux

(5 = () =]

_ (r+1)+ZI{: k; ]_
X Z (=12 ' 1§die,jt§r [N +1—2ki — m+ jlg!

1<k <--<k;<n

1
. det .
1<i<n, i¢e{k1,...,k,} ([N +1-2j —i—j]q!>
r+1<j<n
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The first application: Counting standard Young tableaux

(5 = () =]

_ (r+1)+ZI{: k; ]_
X Z (=12 ' 1§die,jt§r [N +1—2ki — m+ jlg!

1<k <--<k;<n

1
. det .
1<i<n, i¢e{k1,...,k,} <[N +1-2j —i—j]q!>
r+1<j<n

Both determinants can be evaluated by means of

det #
13;355 [(Xi +jlg!

S
_ 2oL .
=qs =t H H [Xi — Xilq,
i—1 [Xi + s]q! 1<i<j<s
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The first application: Counting standard Young tableaux

After a lot of simplification, one arrives at

(DB Atq)E - (1-g) D

s g5 20T )HINFL=m) () +(N+ 140 (7)) =4 ("3 )+ 2r () -2

05 - () -]

[ — 12! - [N+ n—1],
XghN+n+1q2¢ﬂ£{mu¢uNm:ru4

X Z qf2zlf:1(2ffl)k,' H (1 _ qu(k,-fkj))z
0<k <<k, <n—1 1<i<j<r
r (qN—m—i-r—l; q_z)k,- (qN—m+r—2; q—2)k; (q2n—2; q_z)k,-

il;Il (@"+1¢72), (4" " 2472), (a2 Dy

)
i
where [2a]q!! = [2a]q4 [200 — 2]4 - - - [2]g, and, by convention,
kr+1 =n-+ 1.



The first application: Counting standard Young tableaux

In the elliptic transformation formula of
Warnaar—Rains—Coskun /Gustafson, we let p =0, d — aq/d,

f — aq/f, and then a — 0. Next we perform the substitutions
b — qP, ¢ — q°, etc.
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The first application: Counting standard Young tableaux

Corollary

For all non-negative integers m, r and s, we have

Z qu:1(2"—1)k,' H (1 _ qk;—kj)2

0<k <ka<---<k <m 1<i<j<r
T (dg"%; q)s (b; @)k, (G ™ @)k,
11
P (g 9)w; (f: q)x

q(’“)+(’§1)+5(£)—m(’“) 10 (b: @)1 (bg*+=™=1/F: )11
O (g a7, i (@=m/f; @Q)m—i+1

. ’ﬁl g q), 1 (9:9 m'ﬁl (dg*~"/b: q);
i=1 i=r qqr+s:1(dq)lf(fq1rs/bq)

« Z gE@Ds T (1- ity

0< 0 <lr< - <ls<rts—1 1<i<j<s

(diq)e (fa'~"*/bi @)e, (' %1 q)e,
,1;]1: (' )i(dql r/bvq)i( ;q)li .
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The first application: Counting standard Young tableaux

Corollary

For all non-negative integers m, r and s, we have

Z qu:1(2"—1)k,' H (1 _ qk;—kj)2

0<k <ka<---<k <m 1<i<j<r
T (dg"; q)s (b; @)k, (G ™ @)k,
11
P (g 9)w; (f: q)x

q(’“)+(’§1)+5(£)—m(’“) 10 (b: @)1 (bg*+=™=1/F: )11
O (g a7, i (@=m/f; @Q)m—i+1

. ’ﬁl g q), 1 (9:9 m'ﬁl (dg*~"/b: q);
i=1 i=r qqr+s:1(dq)lf(fq1rs/bq)

« Z gE@Ds T (1- ity

0< b <lr< - <li<rts—1 1<i<j<s

(diq)e (fa'~"*/bi @)e, (' %1 q)e,
,1;]1: (' )i(dql r/bvq)i( ;q)li .
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The first application: Counting standard Young tableaux

If N — n is even, the generating function )+ q™(T) for standard
Young tableaux T of shape (N,N —1,...,N —n—+1)/(m") equals

(1)) R N=m g 4 ) B (M) =g gy (MRF) =)

>< q%mr(r+m72n)+%r(an)(%(N73n)7m+1)+("§1)+(N7n)((g)+((N72")/2))
NA1y  (N—n+ly | Ry
[ = () = mr] [IM/2(; — 1.
[r+ 7N—2'7—2]q2!(N*n)/2 [7N+g—2]q2!(N*")/2 [T [N —n+2i—1]!
r N—n 2 o n+m—r+2i. o2
><1_[[T—Fl—l]qz![n—l—m—r—|—21—1]q!(q+ A 'q)(an)/z
- [m+i—1]p!' [N—m—r+2i—1]!

X
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The first application: Counting standard Young tableaux

If N — n is even, the generating function )+ q™(T) for standard
Young tableaux T of shape (N,N —1,...,N —n—+1)/(m") equals
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The first application: Counting standard Young tableaux

If N — n is even, the generating function )+ q™(T) for standard
Young tableaux T of shape (N,N —1,...,N —n—+1)/(m") equals

(1)) R N=m g 4 ) B (M) =g gy (MRF) =)

>< q%mr(r+m72n)+%r(an)(%(N73n)7m+1)+("§1)+(N7n)((g)+((N72")/2))
NA1y  (N—n+ly | Ry
[ = () = mr] [IM/2(; — 1.
[r+ 7N—2'7—2]q2!(N*n)/2 [7N+g—2]q2!(N*")/2 [T [N —n+2i—1]!
r N—n 2 o n+m—r+2i. o2
><1_[[T—Fl—l]qz![n—l—m—r—|—21—1]q!(q+ A 'q)(an)/z
- [m+i—1]p!' [N—m—r+2i—1]!

X

to be continued . ..
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The first application: Counting standard Young tableaux

Y e ] ek

0< by <lo <o <Ly jo <r+ N=p=2 1<igj< e

N—n

: N—2”—2 +r 2—N—n, 2 n+m—r—2i+1. 2
: H (; . (a g )z,- (g g )r+iff,-71
= q

(qN—m—r—2i+2; q2) SO )
)

' (qN+m7r72i+2; q2)r+i7€,-71

and there is a similar statement if N — n is odd.
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The first application: Counting standard Young tableaux

In the case of a full staircase (i.e., n = N), the formula reduces to
DeWitt's original result.

Corollary

The generating function q™i(T) for standard Young tableaux
T of shape (n,n—1,...,1)/(m") equals

gim (2 ()1 4 g) @ [(°5) — ]
[,_1]q2| 1—1 2[n+m—r+2i—1]q!
H 120 = 1]q 'H [m—l—:—1]q2![n—m—r+2i—1]q!'
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The first application: Counting standard Young tableaux

The "next” case (N = n+1):

Corollary

The generating function Z qmaJ T) for standard Young tableaux
T of shape (n+1,n,...,2)/(m") equals
(1 + q)( ) (m— 1)" mr(r+m 2n+2)+r(1—n— m)+(”‘§1)+('2’)

N [i — 1] 0!
< |8 = mr 1] 'H 2,

r [i—l} |[n—|—m—r+2l—l]q
. 13 [m+i— 1]l [n—m—r+2i,]
r (_1)rq2nl1 r

(1-4q)" |:£:| 92
. (q—Zn; q2)e (qn—l—m—r; q2)r_£ (qn—m—r+1; q2)r_e
(qn+m—r+1; q2)r_€ .
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The first application: Counting standard Young tableaux

In general:

The generating function for standard Young tableaux of shape
(N,N—1,...,N—n)/(m") equals an [(N — n)/2]-fold
hypergeometric sum.
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The first application: Counting standard Young tableaux

JOHN STEMBRIDGE;:
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The first application: Counting standard Young tableaux

JOHN STEMBRIDGE;:

I think her approach is much simpler;
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The first application: Counting standard Young tableaux

JOHN STEMBRIDGE:
I think her approach is much simpler;

but I don’t think it would extend to the ¢ ‘next
case’’ you mention.
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The second application: Discrete M—M-integrals

(joint work with RICHARD BRENT and OLE WARNAAR)
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The second application: Discrete M—M-integrals

(joint work with RICHARD BRENT and OLE WARNAAR)

Ole Warnaar (15 May 2015):
Together with Richard Brent, I have recently been

looking at sums of the form
2n
e ()
n—i—k,-

2 | 1L =49
which we call "discrete Mehta-type integrals'.

ki,....ke€Z ' 1<i<j<r
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The second application: Discrete M—M-integrals

(joint work with RICHARD BRENT and OLE WARNAAR)

Ole Warnaar (15 May 2015):
Together with Richard Brent, I have recently been

looking at sums of the form
2n
e ()
n—i—k,-

2 | 1L =49
which we call "discrete Mehta-type integrals'.

ki,....ke€Z ' 1<i<j<r

At least, for a,vy € {1,2} and small §, we believe that
these sums can be evaluated in closed form.
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The second application: Discrete M—M-integrals

The Mehta integral
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The second application: Discrete M—M-integrals

The Mehta integral

(2m)~"/? /R ,

11

1<i<j<r

¥ r
t;) I_Ie‘tiz/2 dty -+ dt,
i=1

r

—

(1+iv/2)
(1+~/2)

—
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The second application: Discrete M—M-integrals

The Mehta integral

(2m)~"/? /R ,

11

¥ r
t;) I_Ie‘tiz/2 dty -+ dt,
i=1

1<i<j<r
ﬁ (1+iv/2)
3 T(1+7/2)
“Discrete Mehta integrals”
T 2n
S w-0f I (7))
e . 1
Ky ke €71 1<i<j<r i=1
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The second application: Discrete M—M-integrals

The Mehta integral

(2m)~1/? /R ,

11

1<i<j<r

¥ r
g)| [[et/2du--dt
i=1

r

H M1+ iv/2)

3 T(1+7/2)

“Discrete Mehta-type integrals”

Vﬁ“ﬂ'\d 0 )
n+ k;

i=1

D

ki,...,kr €L

H (qu_qu)

1<i<j<r
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The second application: Discrete M—M-integrals

The Mehta integral

(2m)~"/? /R ,

11

1<i<j<r

¥ r
t;) I_Ie‘tiz/2 dty - dt,
i=1

r

H M1+ iv/2)

3 T(1+7/2)

“Discrete analogues of Macdonald—Mehta integrals”

Vﬁ“ﬂ'\(s 0 )
n+ k;

i=1

D

ki,...,kr €L

H (qu_qu)

1<i<j<r
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The second application: Discrete M—M-integrals

Ole Warnaar:

Needless to tell you that the case =1, y=2, §=0
follows from specialising a rectangular Schur
functions in two sets of variables.
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The second application: Discrete M—M-integrals

Ole Warnaar:

Needless to tell you that the case =1, y=2, §=0
follows from specialising a rectangular Schur
functions in two sets of variables.

Indeed,

= I TG

ki, ke €Z1<i<j<r

—H(,_1)2(,-"‘_”1)(,2T1)<2m+2n—f—r+2>

can be proved in various ways, one of which is by the use of Schur
functions (and a g-analogue as well), as | pointed out in a paper
15 years ago.
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The second application: Discrete M—M-integrals

Ole Warnaar:

Needless to tell you that the case =1, y=2, §=0
follows from specialising a rectangular Schur
functions in two sets of variables.

Indeed,

= I fIG))

ki, ke €Z1<i<j<r

—H(,_1)2(,-"‘_”1)(,2T1)<2m+2n—f—r+2>

can be proved in various ways, one of which is by the use of Schur
functions (and a g-analogue as well), as | pointed out in a paper
15 years ago.
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The second application: Discrete M—M-integrals

Indeed,

S I w1177

ki, ke €Z 1<i<j<r i=1

_ H(:- 1)2(,'2—”1) <I_2_m1>(2m—|—2n—i— r+2)1 (i — 1)15.,
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The second application: Discrete M—M-integrals

Indeed,
a 2m
Z H (ki — k; 2H< >( )
ki, ke €Z1<i<j<r o\t ki) \m -k
2
2n 2m

B —i- (i — 1)1°.

H(l—l) (i—1)<i_1>(2’"+2” i—r+2)t(i-1)
But, say,

4 2 2
> 11 (k?—"f'2>2i[llk?<n+"k,) ()=

ki, ke €Z 1<i<j<r
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The second application: Discrete M—M-integrals

Indeed,
a 2m
Z H (ki — k; 2H< >( )
ki, ke €Z1<i<j<r o\t ki) \m -k
2
2n 2m

B —i- (i — 1)1°.

H(l—l) (i—1)<i_1>(2’"+2” i—r+2)t(i-1)
But, say,

4 2 2
> 11 (k?—"f'2>2i[llk?<n+"k,) ()=

ki, ke €Z 1<i<j<r

And what about a g-analogue?
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The second application: Discrete M—M-integrals

Our discrete analogue of Macdonald—Mehta integrals:

> | I e 1Iwr(,7,)

ki, ke €2 | 1<i<j<r
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The second application: Discrete M—M-integrals

Our discrete analogue of Macdonald—Mehta integrals:
> | I e 1Iwr(,7,)

Kiyeoke €2 1 1<i<j<r
We found (and proved) closed form evaluations in the following

cases:
a7y 0 G
1 1 0 Ay
1 2 01 Arq, -
2 1 012 D,, B, -
2 2 01,23 D, - B, -
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The second application: Discrete M—M-integrals
Our discrete analogue of Macdonald—Mehta integrals:
T 2n
a a 10
> I we-w) TIwe(,2, )

Kiyeoke €2 1 1<i<j<r
We found (and proved) closed form evaluations in the following
cases:

o G
0 Arfl
0,1 A, g, -
0,1,2 D, B, -
0,1,2,3 D,, - B,, -

NN~ RO
N R N (2

We also (eventually) found g-analogues in most cases.
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The second application: Discrete M—M-integrals

| shall concentrate in this talk on the discrete analogues of
Macdonald—Mehta integrals

§: ]I “?_W)

ki,...k€Z V 1<i<j<r

Wf“hﬁ 2n .
paley n—+ ki

with v = 2.
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The second application: Discrete M—M-integrals

How to approach:

For all non-negative integers or half-integers m and n and a
positive integer r, we have

£ I he(n))

ki,....kr=—n 1<i<j<r

(et yr=3(71) ! (2n)! (2m)!
e i il_[1(2n—2i+1)!(2m—2i+1)!

2i—1)'2m+2n—2i—2r+1)I!
(m+n—i+1)!
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The second application: Discrete M—M-integrals

How to evaluate

. 2 2
> 11 (k?—kf>2£[lk?<n+”ki) ()=

ki, ke €Z 1<i<j<r
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The second application: Discrete M—M-integrals

How to evaluate

4 2 2
Z H (k- kj2)2 ,1;[1 K (” +nki> (m fki> ="

ki, ke €Z 1<i<j<r

The above sum is equivalent to

r
2n 2m
" rl k? — k2)? 11 «? =77
2" r Z H(’ J)H1’n+kf m+k’
1=

0<hky <<k, 1<i<j<r
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The second application: Discrete M—M-integrals

How to evaluate

4 2 2
Z H (k- kj2)2 ,1;[1 K (” +nki> (m fki> ="

ki, ke €Z 1<i<j<r

The above sum is equivalent to

r
2n 2m
" rl k? — k2)? 11 «? =77
2" r Z H(’ J)H1’n+kf m+k’
1=

0<hky <<k, 1<i<j<r

How can one generate

T (& -k)? H K? 7
i=1

1<i<j<r
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The second application: Discrete M—M-integrals

How to evaluate

4 2 2
Z H (k- kj2)2 ,1;[1 K (” +nki> (m fki> ="

ki, ke €Z 1<i<j<r

The above sum is equivalent to

r
2n 2m
" rl k? — k)2 11 «? =77
2" r Z H(’ J)H1’n+kf m+k’
1=

0<hky <<k 1<i<j<r

How can one generate

r

II & -« [k 7

1<i<j<r i=1
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The second application: Discrete M—M-integrals

How can one generate
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The second application: Discrete M—M-integrals

How can one generate

Our first idea: By non-intersecting lattice paths!
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The second application: Discrete M—M-integrals

We shall be concerned with paths in the integer lattice consisting
of up-steps (1,1) and down-steps (1, —1).
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The second application: Discrete M—M-integrals

We shall be concerned with paths in the integer lattice consisting
of up-steps (1,1) and down-steps (1, —1).

A family of paths is called non-intersecting if no two paths in the
family meet in a lattice point.
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The second application: Discrete M—M-integrals

Theorem (Karlin-McGregor, Lindstrom, Gessel-Viennot, Fisher,

John—Sachs, Gronau—Just-Schade-Scheffler—Wojciechowski)

Let G be an acyclic, directed graph, and let A1, Ao, ..., A, and
Ei, Es, ..., E, be vertices in the graph with the property that, for
i <j and k < I, any (directed) path from A; to E; intersects with
any path from A; to E,. Then the number of families

(P1, P2, ..., P,) of non-intersecting (directed) paths, where the
i-th path P; runs from A; to E;, i =1,2,...,r, is given by

det (|P(A; — Ej)l),

1<ij<r

where P(A — E) denotes the set of paths from A to E.
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The second application: Discrete M—M-integrals

Let A; =(0,2i —1) and E; = (n, ki — 1), i =1,2,...,r, with

ki = n (mod 2). Here, the non-intersecting lattice paths that we
consider have the the additional property that paths never run
below the x-axis.
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The second application: Discrete M—M-integrals

Let A; =(0,2i —1) and E; = (n, ki — 1), i =1,2,...,r, with

ki = n (mod 2). Here, the non-intersecting lattice paths that we
consider have the the additional property that paths never run
below the x-axis.
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The second application: Discrete M—M-integrals

Let A; =(0,2i —1) and E; = (n, ki — 1), i =1,2,...,r, with

ki = n (mod 2). Here, the non-intersecting lattice paths that we
consider have the the additional property that paths never run
below the x-axis.

By the K-McG,L,G-V,F,J-S,G-J-5-S-W theorem on
non-intersecting lattice paths, the number of families of these
non-intersecting lattice paths is again given by a determinant. The
individual entries are obtained by the reflection principle:

1sdii't§r <</ + é(rrlr - ki)) - <—J +1 +n§(" - ki))) '
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The second application: Discrete M—M-integrals

This determinant

1§di(3t§r ((J + é(,’; - ki)> N <—J +1 +n§(” - ki)>>
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The second application: Discrete M—M-integrals

This determinant can be evaluated:
det n — n
1<ij<r \\J + 3(n — ki) —j+1+3(n—k)
=TI Gl k)Gl + & —2)

(ki —1)(n+2i —2)!
Pl (3(n— ki) + r)! (%(nqL ki) +r—1)1

(ADC1, Theorem 30; dimension formula for irreducible
representations of Spa,(C) in disguise)

Christian Krattenthaler A transformation formula for elliptic hypergeometric series



The second application: Discrete M—M-integrals

This determinant can be evaluated:

1§di(3t§r ((J + é(,’; - ki)> N <—J +1 +n§(” - ki)>>

= ] G- k)G(k+k—2)

1<i<j<r
’ (ki —1)(n+2i —2)!
Pl (3(n— ki) + r)! (%(n + ki) +r—1)1

X

(ADC1, Theorem 30; dimension formula for irreducible
representations of Spa,(C) in disguise)

One can “smell” the type B Vandermonde product: one only needs
to replace k; by 2k; + 1 (which you need to take if n is odd).
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The second application: Discrete M—M-integrals

Here is the one-picture proof of

S qesriie ()

0<ki<-<k, 1<i<j<r

_ 2(m+n)r—3("*2'1) ]j (2n)! (2m)|
pa (2n—=2i+ 1)1 (2m —2i +1)!
2i—1)'2m+2n—2i—2r+ 1)
(m+n—i+1)!
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The second application: Discrete M—M-integrals
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The second application: Discrete M—M-integrals
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The second application: Discrete M—M-integrals

This did prove that identity, but we did not manage to “tweak”
this approach to produce a g-analogue.
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The second application: Discrete M—M-integrals

Hence:
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The second application: Discrete M—M-integrals

Hence:
Our second idea: brute force!
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The second application: Discrete M—M-integrals

Hence:
Our second idea: brute force! Here applied to:

For all non-negative integers m and n and a positive integer r, we
have

Z I G kj)2ili[1 i (” inki> <m2fki>

Lkr=—n 1<i<j<r
[£/2] r2(/)F(2n + 1)
= H (r(n—/+2)r(n—/+1)
' rem+1)r(m+n—i—|[r/2]+2) )
f(m—i+2)I[(m—i+1)T(m+n—i+2)
FrG+1)r@n+1)rCm+1)r(m+n—i—|r/2] +1)
H Pn—i+1)Pm—i+1)I((m+n—i+2) '
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The second application: Discrete M—M-integrals

How to evaluate

> eI ) (27)

ki,.kre=—n 1<i<j<r
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The second application: Discrete M—M-integrals

How to evaluate

2 I et ()

kiye.o,ke=—n 1<i<j<r

Write
IT (ki—k)

1<i<j<r

_ (22 (2 12 2 U 2\((ho1\2_ 12
1<d/3t<r(1 ki (P—k2) ki(nP—k?) (n?—k?)((n—1)>—K?) )
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The second application: Discrete M—M-integrals

In other words,

II (k- k) =+det M(N),

1<i<j<r
where M(N) = (M"J(N))lgi,jgr is the r x r matrix defined by
M j(N) = (=120 D200 &) (L N— k) 1y ja) (= N4k G-1)/2),
Here, x(A) =1 if A is true and x(A) = 0 otherwise, and the

Pochhammer symbol (a), is defined by
(@)m =a(a+1)---(a+m—1)for m>1, and () := 1.
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The second application: Discrete M—M-integrals

So,
II (ki — k)? = det M(n) - det M(m).

1<i<j<r

Thus, our sum becomes

sgnoT (]k | kX i) even)+x(7(i) even)
el S

) (2n)!
(n+ ki — [(o(i) = 1)/2])! (n — ki — [(o(i) — 1)/2])!

y (2m)! )
(m+ki — [(7(i) = 1)/2])V (m — ki = [(r(i) = 1)/2])!) )
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The second application: Discrete M—M-integrals

So,
II (ki — k)? = det M(n) - det M(m).

1<i<j<r

Thus, our sum becomes

Z sgn O'TH ( Z (’k | kx i) even)-+x(7(i) even)

o,TES, ki=—o0
(2n)!

“ ki~ (o)~ D20 — ki — (o) — D/2])!

) (2m)! )
(m+ & — ()~ D/2)) (m— ki — [(n() ~ D721 )

The point here is that the inner sum is a single sum, which can be
evaluated.
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The second application: Discrete M—M-integrals

The point here is that the inner sum is a single sum, which can be
evaluated.
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The second application: Discrete M—M-integrals

The point here is that the inner sum is a single sum, which can be
evaluated.

CASE 1. o(i) and 7(i) are both odd. The sum can be evaluated
by means of the hypergeometric summation formula ( “Dixon’s
summation”)

a,b,—N (1+a)(1+3 b)w

F. 1 = ,
2 14+a—bl+a+tN 1+ 2)v(I+a—b)y

where N is a non-negative integer.
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The second application: Discrete M—M-integrals

The point here is that the inner sum is a single sum, which can be
evaluated.

CASE 1. o(i) and 7(i) are both odd. The sum can be evaluated
by means of the hypergeometric summation formula ( “Dixon’s
summation”)

a,b,—N (1+a)(1+3 b)w

F. 1) = ,
2 14+a—bl+a+tN 1+ 2)v(I+a—b)y

where N is a non-negative integer.

CASE 2. o(i) and 7(i) have different parity. In this case, the sum
vanishes for trivial reasons.
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The second application: Discrete M—M-integrals

The point here is that the inner sum is a single sum, which can be
evaluated.

CASE 1. o(i) and 7(i) are both odd. The sum can be evaluated
by means of the hypergeometric summation formula ( “Dixon’s
summation”)

a,b,—N (1+a)(1+3 b)w

F. 1) = ,
2 14+a—bl+a+tN 1+ 2)v(I+a—b)y

where N is a non-negative integer.

CASE 2. o(i) and 7(i) have different parity. In this case, the sum
vanishes for trivial reasons.

CASE 3. o(i) and 7(i) are both even. Here, Dixon's summation
applies again after the application of a contiguous relation.
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The second application: Discrete M—M-integrals

After substituting all this, and also simplifying the sum over the
two summations over ¢ and 7, one obtains the determinant of a
checkerboard matrix

| .
" 1§di§'t§r(A”J)’
with
1 2n)! 2m)! :
(mtn—K=0) (n—K)?(Z)—K—l)! : (m—L)(! (,;nn)—L—l)!’ if k, 1 odd,
_ 1 (2n)! (2m)! .
Ak = (mtn—K—L—1)(m+tn—K—-L)  (n—=K—1)12 ~ (m—L-1)12° if k, [ even,
0, otherwise,

where K = [(k—1)/2] and L= |(/ —1)/2].
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The second application: Discrete M—M-integrals

Rows and columns of a checkerboard matrix can be reordered
simultaneously, so that it becomes a block matrix, and therefore its
determinant factors into the product of two determinants:

det (A;;) = det Asi_12i-1) - det Asioi).
193‘9( J) 1§i,j§[r/2l( 2i-12j-1) 1§i,jftr/2J( 2i2i)
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The second application: Discrete M—M-integrals

Rows and columns of a checkerboard matrix can be reordered
simultaneously, so that it becomes a block matrix, and therefore its
determinant factors into the product of two determinants:

det (A;;) = det Asi_12i-1) - det Asioi).
193‘9( J) 1§i,j§[r/2l( 2i-12j-1) 1§i,jftr/2J( 2i2i)

Aside from some factors, the first determinant is

1
det — )
1<ij<fr/2l\m+n—i—j+2

while the second is

1
det .
1<i<lr/2) ((m+ n—i—j+1)(m+ n—i—j+2)>
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The second application: Discrete M—M-integrals

Rows and columns of a checkerboard matrix can be reordered
simultaneously, so that it becomes a block matrix, and therefore its
determinant factors into the product of two determinants:

det (A;;) = det Asi_12i-1) - det Asioi).
193‘9( J) 1§i,j§[r/2l( 2i-12j-1) 1§i,jftr/2J( 2i2i)

Aside from some factors, the first determinant is

1
det — )
1<ij<fr/2l\m+n—i—j+2

while the second is

1
det .
1<i<lr/2) ((m+ n—i—j+1)(m+ n—i—j+2)>

Both are easy to evaluate.
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The second application: Discrete M—M-integrals

This gives the claimed theorem:

For all non-negative integers m and n and a positive integer r, we
have

Zn: I (k- kj)ziljl kil (n ink:) (sz:nki)

ki,...,kr=—n 1<i<j<r
[1/2] r2(/)F(2n + 1)
= H (r(n—/+2)r(n—/+1)
' rem+1)r(m+n—i—[r/2]+2) )
F(m—i+2)T(m—i+1)T(m+tn—it2)

FTGE+1)r2n+1)rCm+1)r(m+n—i—|r/2] +1)
<11 F2(n—i+1)[2(m—i+1)[(m+tn—i+2) ‘
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The second application: Discrete M—M-integrals

The method also works in the previous case, and in further cases.
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The second application: Discrete M—M-integrals

The method also works in the previous case, and in further cases.

Alas, we failed another time to “put g in”.
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The second application: Discrete M—M-integrals

Let us go back to, say,

. 2 2
> 11 (k?—kf>2£[lk%<n+”ki) ()=

iy, ke €Z 1<i<j<r
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The second application: Discrete M—M-integrals

Let us go back to, say,

. 2 2
> 11 (k?—kf>2£[lk%<n+”ki) ()=

iy, ke €Z 1<i<j<r

How would a g-analogue look like? Wouldn't it contain

Z H (1 — gh75)2(1 — gh14)2 x stuff ?

ki, k€L 1<i<j<r
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The second application: Discrete M—M-integrals

How did our gigantic transformation formula (with p = 0) look
like?
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The second application: Discrete M—M-integrals
How did our gigantic transformation formula (with p = 0) look
like? C i1k e -,
Z q>i-1(2i=1)k; H (1— ghiH)2 (1 — aghith)?

0<k1<k2< <k <m 1<i<j<r

XH (1 —ag®i)(a, b, c,d,e, f, ag> "™ /ef, g™ q)«

i

(1-2a)(q,aq/b,aq/c,aq/d,aq/e, aq/f, efq""1=m /X, ag**™; q)x,

B (b,c,d,ef/a;q)i-1
H (Ab/a,\c/a,Ad/a,ef /\; q)i—1

" H (ag; g)m (ag/ef; @)mi1-r (Ag/€, Aq/F; q)m—i+1
1 (Mg q)m (Ag/ef; @) mi1-r (aq/€,aq/F; Q) m-i41
0<ki<kp<:-<kr<m 1<i<j<r

r

XH (1 — Ag?ki) (N, Ab/a,Ac/a,\d/a, e, f,Naq?> "™ /ef .q~™; q)«.
1 (1=X)(q.2q/b,aq/c,aq/d, Aq/e,\q/f, efq"1="/a, Aq"t™; q)
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The second application: Discrete M—M-integrals

So,
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The second application: Discrete M—M-integrals
So, if one chooses a = q2, d= ql_”, e= ql_’", and f = q2 in this
transformation formula and one gets:

For all non-negative integers m and n and a positive integer r, we
have

> I [k — ki3 lki+ K2

Kiyeoke=—n 1<i<j<r
2m
ki
ettl], L) ),

,
.Hqi_
i=1
—r‘( 2 )r (r+1) (H—I)H( rq(2nﬂ>1) . Fq(2m.+1)
[2]q : Fg(n—/+1) F%,(m—:—{—l)
. Fq(i)rq(i—i—l)rq(m—i—n—i—r+1)>.
Fg(m+n—i+2)




The second application: Discrete M—M-integrals

However: we still don't know a g-analogue of:

For all non-negative integers m and n and a positive integer r, we
have

Zn: I (k- kj)ziljl kil (n ink:) (sz:nki)

ki,...,kr=—n 1<i<j<r
[1/2] r2(/)F(2n + 1)
= H (r(n—/+2)r(n—/+1)
' rem+1)r(m+n—i—[r/2]+2) )
F(m—i+2)T(m—i+1)T(m+tn—it2)

FTGE+1)r2n+1)rCm+1)r(m+n—i—|r/2] +1)
<11 F2(n—i+1)[2(m—i+1)[(m+tn—i+2) ‘
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The third application: Best polynomial approximation

(joint work with HAN FENG and YUAN XU)
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The third application: Best polynomial approximation

(joint work with HAN FENG and YUAN XU)

YUuaN XU (26 August 2017):

In work in approximation theory, I encountered a
certain determinant (see the attachment). On the
basis of computer experiments, I believe that this
determinant can be evaluated in closed form. Have
you seen it before?
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The third application: Best polynomial approximation

The determinant

Let

f(s1, 80,1, 0,j) == (J r )( (s1+1)j—i

— 51+52—|-i+j—l)j,f(51+52+r+2l')j,,'.

Form the matrix
M(r) := f(s1,92,r.1,)) for0<i<r
T \(=1Y " f(sa, 81,10 — 1) forr<i<2r

Then det M(r) seems to be “nice”.

)0<i,j<2r—1
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The third application: Best polynomial approximation

The determinant

For example, the matrix M(2) is

1 251 si(s1+1) 0
(5)(5+2) (5+1)(5+2)%(5+3)
0 1 2(51+1) (51+1)(51+2)
(5+2)(5+4) (5+3)(5+4)%(5+5)
1 — 2sp s2(sp+1) 0 ’
5)(512) (s+1)(s+2)285+3)
O 1 2(52+1 (52+1)(52+2)

T 5+2)(5+4) (5+3)(5+4)2(5+5)
with S = 51 + 5.
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The third application: Best polynomial approximation

A generalised determinant

Let

f(s1, 80,1, 0,j) == (J r )( (s1+1)j—i

— 51+52—|-i+j—l)j,f(51+52+r+2l')j,,'.

Form the matrix
f(s1,80,r1,1,j) for0<i<n
M(r,r) = | (=1Y"""2f(s2, 51, 2,0 — 12, )

forn<i<n+n 0<ij<n i1

Then det M(ry, r2) seems to be “nice”.

Christian Krattenthaler A transformation formula for elliptic hypergeometric series



The third application: Best polynomial approximation

Where does this come from?
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The third application: Best polynomial approximation

Where does this come from?

Consider the triangle
ANc={(x,y): x>0,y >0, x+y <1}
Define the Jacobi-type weight function
@D, y) =xY (L=x—y), afy> -1
Define
En(f)apy = En(f)i2(wa 5,) = I0FIF = plli2(e, 5 ),

where the minimum is over all polynomials in two variables of
degree at most n.
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The third application: Best polynomial approximation

The main theorem

Theorem

Let a, B,y > —1, and let r be a positive integer. For
f € Wy (wa,p), we have

c r r
En(f)a,ﬂ,w < F [En—r(al f)a+r,ﬁ,'y+r + En—r(azf)a,ﬁ—i-r,w—i-r

+ Enfr(a’gf)oz—&-r,,@—f—r,w}

for n > 3r, where c is a constant independent of n and f. Here,
W; (wa,p,~) is a certain Sobolev space.
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The third application: Best polynomial approximation

Which are the main ingredients?
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The third application: Best polynomial approximation

Which are the main ingredients?

(1) The polynomials

JOT(x,y) = (x+y)<J »5< )Jﬁf’;a+ﬁ+l’7(1—2x—2y),

0< k<n,

Xty

are orthogonal for the 2-dimensional Jacobi-type weight @, g~ on
the triangle A, where

) =

(n+a+pB+1),

P (1),

with P the usual Jacobi polynomials.
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The third application: Best polynomial approximation

Which are the main ingredients?
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The third application: Best polynomial approximation

Which are the main ingredients?
(2) The following determinant evaluation:

Theorem
With f(s1,s2,r,i,j) as defined before and

M(r) = < f(s1,82,r,1,)) for0§i<r>
' (=1Y~"""f(sp,s1,r,i —r,j) forr<i<2r 0<ij<2r—1 '
the determinant of M(r) equals

r

1
(51+52—|—2r+j—2)r'

(=1)

=
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The third application: Best polynomial approximation

Let

f(517527r7 Ia./) = <j

r > (s1+1)j—i
—i)(si+s2+i+j—1)j_i(s1+s+r+2i);

and

f(517527r17i7.j) for0<i<n
M(ri, ) = | (1Y """f(sz, 51, 2,0 — 12, )

forn<i<n-+n 0<ij<nir-1
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The third application: Best polynomial approximation

Let

(1,521, 7,]) = Q ' > : (514 )i

—i)(si+s2+i+j—1)ji(s1+s2+r+2i);;

and

f(517527r17i7.j) for0<i<n
M(ri, ) = | (1Y """f(sz, 51, 2,0 — 12, )

forn<i<n+n 0<ij<nir-1

How to calculate the determinant of M(ry, r2)?

Christian Krattenthaler A transformation formula for elliptic hypergeometric series



The third application: Best polynomial approximation

Let

(1,521, 7,]) = Q ' > : (514 )i

—i)(si+s2+i+j—1)ji(s1+s2+r+2i);;

and

f(517527r17i7.j) for0<i<n
M(ri, ) = | (1Y """f(sz, 51, 2,0 — 12, )

form<i<n+n 0<ij<nir-1

How to calculate the determinant of M(ry, r2)?

Laplace expansion again!
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The third application: Best polynomial approximation

Laplace expansion
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The third application: Best polynomial approximation

Laplace expansion

Write M for M(ry, r2) for short.

Then
r ro kr.
det M = S (~1) (DR K et my Ry
0§k0<-~-<k,2,1§r1+r2—1
lr 1
detM -1

where MZII’:_'."Z: denotes the submatrix of M consisting of rows

ai,...,ar and columns by,..., b, and {l,...,l,_1} is the
complement of {ko,..., kp—1}in {0,1,....1 +rn —1}.
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The third application: Best polynomial approximation

Laplace expansion

Write M for M(ry, r2) for short.

Then
r ro kr.
det M = S (~1) (DR K et my Ry
0§k0<-~-<k,2,1§r1+r2—1
lr 1
detM -1

where MZII’:_'."Z: denotes the submatrix of M consisting of rows

ai,...,ar and columns by,..., b, and {l,...,l,_1} is the
complement of {ko,..., kp—1}in {0,1,....1 +rn —1}.

Also here, it turns out that it is not difficult to evaluate the minors
which appear in this sum.
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The third application: Best polynomial approximation

After a lot of simplification, one arrives at
rn+mn—1

-1me ] (s2)i(s1+s+i—2)(i+s+s—1)
i=0 (51+52+2i—2)!(r1+r2—i—l)!(51+52+r1+r2+i_2)!
rn—1

y H (51+52+r1+2i—2)!(51+52+r1—|—2i—1)!(r1—|—i)!
)i +o+n+i—2(n+r—1)(s+9)n1

rn—1

(s1+s2+n+2i—2)(s1+s2+rn+2i—1)(rn+i)
(52),-(51+52+r2+i—2)!

x 3 (—1)S20 K I1

0§ko<”~<kr271§r1+r2—1

o

i

(kj—k,')z(k,'—l-kj—i-sl—l—Sz—l)z
0<i<j<r—1
rn—1

I (s1+5—142k) (si+5—1k(s1)k(—n—r+1)
pale (51 + s — 1) k;! (52)k; (51 +s+n+nrn-— l)k,.
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The third application: Best polynomial approximation

After a lot of simplification, one arrives at
rn+mn—1

-1me ] (s2)i(s1+s+i—2)(i+s+s—1)
i=0 (51+52+2i—2)!(r1+r2—i—l)!(51+52+r1+r2+i_2)!
rn—1

y H (51+52+r1+2i—2)!(51+52+r1—|—2i—1)!(r1—|—i)!
)i +o+n+i—2(n+r—1)(s+9)n1

rn—1

(s1+s2+n+2i—2)(s1+s2+rn+2i—1)(rn+i)
(52),-(51+52+r2+i—2)!

x 3 (—1)S20 K I1

0§ko<”~<kr271§r1+r2—1

o

i

(kj—k,')z(k,'—l-kj—i-sl—l—Sz—l)z
0<i<j<r—1
rn—1

I (s1+5—142k) (si+5—1k(s1)k(—n—r+1)
pale (51 + s — 1) k;! (52)k; (51 +s+n+nrn-— l)k,.

Now apply the p =0, g — 1 case of the transformation formula.
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Epilogue
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Epilogue

© With Gaurav Bhatnagar, | have largely generalised the
previous determinant evaluation; being on the elliptic level, it
features in addition several more parameters.
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Epilogue

© With Gaurav Bhatnagar, | have largely generalised the
previous determinant evaluation; being on the elliptic level, it
features in addition several more parameters.

© That work suggested that it may be possible to prove the
Warnaar—Rains—Coskun/Gustafson transformation formula
using determinant manipulations. Rosengren has actually
done this recently.
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Epilogue

© With Gaurav Bhatnagar, | have largely generalised the
previous determinant evaluation; being on the elliptic level, it
features in addition several more parameters.

© That work suggested that it may be possible to prove the
Warnaar—Rains—Coskun/Gustafson transformation formula
using determinant manipulations. Rosengren has actually
done this recently.

© In particular, a g-analogue of the determinant evaluation
exists. Is there a g-analogue of the best approximation result?
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Epilogue

© With Gaurav Bhatnagar, | have largely generalised the
previous determinant evaluation; being on the elliptic level, it
features in addition several more parameters.

© That work suggested that it may be possible to prove the
Warnaar—Rains—Coskun/Gustafson transformation formula
using determinant manipulations. Rosengren has actually
done this recently.

© In particular, a g-analogue of the determinant evaluation
exists. Is there a g-analogue of the best approximation result?

@ s there a g-analogue of this one discrete Macdonald—Mehta
integral?
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