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Abstract. The topic of the paper are developments of n-dimensional Coxeter

polyhedra. We show that the surface of such polyhedron admits a canonical
cutting such that each piece can be covered by a Coxeter (n− 1)-dimensional
domain.

1. Introduction. Coxeter groups

1.1. Coxeter groups in spaces of constant curvature. Consider a Riemannian
space M

n of constant curvature, i.e., a Euclidean space R
n, a sphere S

n−1, or a
Lobachevsky space L

n (on geometry of such spaces, see [4]).
Let C ⊂ M

n be an intersection of a finite or locally finite collection of half-
spaces1.

Consider reflections of C with respect to all (n − 1)-dimensional faces. Next,
consider “new polyhedra” and their reflections with respect to their faces. Etc.
The domain C is said to be a Coxeter domain if we get a tiling of the whole space
in this way. The group of isometries generated by all such reflections is said to be
a reflection group or a Coxeter group (in a narrow sense, see below). We say that
a Coxeter group is cocompact if the initial domain C is compact. In this case, we
say that C is a Coxeter polyhedron.

Evidently, if C is a Coxeter domain, then the dihedral angles between two neigh-
boring faces of C are of the form π

m
, where m > 2 is an integer. In particular, they

are acute, i.e., 6 90◦.
Denote the faces of the polyhedron C by F1, . . . , Fp, denote by s1, . . . , sp

the corresponding reflections. Denote by π/mij the angles between adjacent faces.
Evidently,

(1) s2j = 1, (sisj)
mij = 1.

1.2. More terminology. Consider a Coxeter tiling of Mn. Below a ”chamber” is
any (n-dimensional) polyhedron of the tiling. A “face” or “facet” is an (n − 1)-
dimensional face of some chamber; a hyperedge is an (n − 2)-dimensional edge; a
stratum is an arbitrary stratum of codim > 1 of some chamber; a vertex is a vertex.
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Also “mirrors” are hyperplanes of reflections. They divide the space M
n into

chambers. The group G acts on the set of chambers simply transitively. We denote
the reflection with respect to a mirror Y by sY .

Each facet is contained in a unique mirror.

1.3. General Coxeter groups. Take a symmetric p× p matrix M with positive
integer elements, set mjj = 1; we admit mij = ∞. An abstract Coxeter group is a
group with generators s1, . . . , sn and relations (1).

For such a group we draw a graph (we use the term “Coxeter scheme”) in the
following way. Vertices of the graph correspond to generators. We connect i and
j-th vertices by (mij−2) edges. In fact, we draw a multiple edge if k 6 6, otherwise
we write a number k on the edge.

This rule also assign a graph to each Coxeter polyhedron.

1.4. Spherical Coxeter groups. By definition, a spherical Coxeter group, say Γ,
acts by orthogonal transformations of the Euclidean space Rn+1. A group Γ is said
to be reducible if there exists a proper Γ-invariant subspace in R

n+1. Evidently, the
orthogonal complement to a Γ-invariant subspace is Γ-invariant.

The classification of irreducible Coxeter groups is well known2, see Bourbaki
[8]. The list consists of Weyl groups of semisimple Lie algebras (= Killing’s list of
root systems) + dihedral groups + groups of symmetries of the icosahedron and
4-dimensional hypericosahedron (the table is given Section 3).

This also gives a classification of reducible groups.

1.5. Coxeter equipments. Next, consider an arbitrary Coxeter polyhedron in
R

n, Sn, or L
n. Consider a stratum H of codimension k, it is an intersection of k

faces, H = Fi1 ∩ · · · ∩ Fik . The reflections with respect to the faces Fi1 , . . . , Fik

generate a Coxeter group, denote it by Γ(H) = Γ(Fi1 , . . . , Fik).
This group is a spherical Coxeter group. Namely, for x ∈ H consider the or-

thocomplement in the tangent space at x to the stratum H and the sphere in this
orthocomplement. Then Γ(H) is a reflection group of this Euclidean sphere.

If H ⊂ H ′, then we have the tautological embedding

ιH′,H : Γ(H ′) → Γ(H).

If H ⊂ H ′ ⊂ H ′′, then

ιH′′,H = ιH′,HιH′′,H′ .

Such a collection of groups and homomorphisms is said to be a Coxeter equipment.

1.6. Cocompact Euclidean Coxeter groups. Here classification is also simple
and well known, see Bourbaki [8]. Any such group Γ contains a normal subgroup
Z
n acting by translations and Γ/Zn is a spherical Coxeter group.

2Actually, these objects were known to Ludwig Schläfli and Wilhelm Killing in XIX century.
In 1924, Hermann Weyl identified these groups as reflection groups, in 1934 Harold Coxeter gave
a formal classification and also classified Euclidean groups.
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1.7. Coxeter groups in Lobachevsky spaces. We report from Vinberg [21],
Vinberg, Shvartsman, [22]. The situation differs drastically.

a) Coxeter polygons on Lobachevsky plane are arbitrary k-gons with angles of
the form π/mj . The sum of exterior angles must satisfy

∑
(π − π/mj) > 2π. If

k > 5 this condition holds automatically. For k = 4 this excludes rectangles, also
few triangles are forbidden (in fact, spherical and Euclidean triangles). A Coxeter
k-gon with prescribed angles depends on (k − 3) parameters.

b) In dimensions n > 2 Coxeter polyhedra are rigid. There are many Coxeter
groups in spaces of small dimensions (n = 3, 4, 5), but for n > 30 there is no
Coxeter group with compact fundamental polyhedron at all. For n > 996 there is
no Coxeter group of finite covolume (Prokhorov, Khovanskii, 1986, see [13]); the
maximal dimensions of known examples are: 8 for compact polyhedra (Bugaenko),
and 21 for a polyhedron of finite volume (Borcherds). For n = 3 there is a nice
Andreev’s description [5] of all Coxeter polyhedra, it is given in the following two
subsections.

1.8. Acute angle polyhedra in L
3. First, we recall the famous (and highly non-

trivial) Steinitz Theorem (see, e.g., [15]) about possible combinatorial structure of
convex polyhedra in R

3.
Since the boundary of a polyhedron is a topological sphere S2, edges form a

connected graph on the sphere, it divides the sphere into polygonal domain (we use
the term ’face’ for such a domain). There are the following evident properties of
the graph:

— each edge is contained in 2 faces;

— each face has > 3 vertices;

— the intersection of any pair of faces can by the empty set, a vertex, or an
edge.

Theorem. (Ernst Steinitz) Any graph on the sphere S2 satisfying the above
conditions can be realized as a graph of edges of a convex polyhedron.

Our next question is the existence of a convex polyhedron in L
3 of a given

combinatorial structure where each dihedral (i.e., between two adjacent faces) angle
is a given acute angle (’acute’ or also ’non-obtuse’ means 6 π/2) There are the
following a priori properties of such polyhedra:

1) All spatial angles are simplicial, i.e., each vertex of the graph is contained in
3 edges. The angles ϕ1, ϕ2, ϕ3 in a given vertex satisfy

(2) ϕ1 + ϕ2 + ϕ3 > 2π.

2) At each vertex, the set of all dihedral angles determines all other angles in each
face at this vertex (by the spherical cosine theorem). A face must be a Lobachevsky
polygon, i.e., the sum of its exterior angles must be > 2π. Since all dihedral angles
are acute, angles in each face are also acute. Therefore our conditions forbid only
rectangles and some triangles.

3) The following restriction is non-obvious: We say that a k-prismatic element
of a convex polyhedron C is a sequence

F1, F2, . . . , Fk, Fk+1 := F1
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Figure 1. The following configuration with dihedral angles = π/2
on thick edges is forbidden in the Andreev Theorem. In this case,
we would get a quadrangle with right angles, but such quadrangles
do not exist in Lobachevsky space.
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Figure 2. We draw all possible types of vertices of an Andreev
polyhedron. We present the labels mj on the edges and flat angles

in faces. Here ψ = arctan
√
2 and α, β, γ are explicit angles with

α+β+γ = π/2. Evaluations of all these angles are given in figures
in Section 2.

We draw a thick line iff the label is even.

of faces such that Fk and Fk+1 have a common edge, and all triple intersections
Fi ∩ Fj ∩ Fk are empty.

Lemma. (Andreev) For any prismatic element in an acute angle polyhedron, the
sum of exterior dihedral angles is > 2π.

Theorem. (Andreev) Consider a Steinitz-admissible 3-valent spherical graph
with > 4 vertices3. Prescribe a dihedral acute angle to each edge in such a way
that:

— the inequality (2) in each vertex is satisfied;

— all 3- and 4-prismatic elements satisfy the previous lemma;

— we forbid the configuration given on Figure 1.

Under these assumptions, there exists a unique convex polyhedron ⊂ L
3 of the

given combinatorial structure and with the given acute angles.

The uniqueness is a rigidity theorem of Cauchy type (see [1],[15]). The existence
is a deep unusual fact; it is a special case of a theorem of Aleksandrov type [1]
obtained by Rivin, see [16], [14].

For some applications of the Andreev and Rivin Theorems to elementary geom-
etry, see Thurston [19], Rivin [17].

3Simplices are exceptions. However, their examination is simple, Lanner, 1950, see, e.g., [22].
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1.9. Andreev polyhedra. Andreev’s Theorem provides us a description of all
Coxeter polyhedra in L

3. Now all angles have the form π/mij with integer mij > 1.
We simply write the labels mij on the corresponding edges.

Below the term “Andreev polyhedron” will mean a compact Coxeter polyhedron
in L

3.

All possible pictures at vertices of Andreev polyhedra are given in Figure 2.

1.10. Results of the paper. Consider a convex polyhedron C in a space M
n of

constant curvature. Following Alexandrov [1], we regard the boundary Ξ = ∂C of
C as an (n − 1)-dimensional manifold of constant curvature with singularities. In
the case n = 3, we get a two-dimensional surface with conic singularities of negative
curvature (see e.g. Figure 2, in all the cases the sum of angles at a singularity is
< 2π).

Now, cut Ξ along hyperedges with even labels (i.e., hyperedges with dihedral
angles π/2k). Let Ω1, Ω2, . . . be the connected pieces of the cut surface.

Theorem 1.1. The universal covering Ω∼
j of each Ωj is a Coxeter domain in

M
n−1.

Proof for Andreev polyhedra. We simply look to Figure 2. In all the
cases, angles between thick edges are Coxeter. �

We also describe tilings of mirrors, groups of transformations of mirrors induced
by the initial Coxeter group (Theorem 2.10) and the Coxeter equipments of Ω∼

j

(Theorem 3.2).

The addendum to the paper contains two examples of ’calculation’ of develop-
ments, for an Andreev prism ⊂ L

3 and for a Coxeter simplex ⊂ L
4. The proof of the

Andreev Theorem is nonconstructive. In various explicit cases, our argumentation
allows to construct an Andreev polyhedron from the a priori information about its
development. Our example illustrates this phenomenon.

On the other hand, there arises a natural problem of elementary geometry:

— Which Andreev polyhedra are partial developments of 4-dimensional Coxeter
polyhedra? Is it possible to describe all 3-dimensional polyhedra that are faces of
4-dimensional Coxeter polyhedra?

Our main argument (Rolling Lemma 2.1) is very simple, it is valid in a wider
generality, we briefly discuss such possibilities in the next two subsections.

1.11. Polyhedral complexes and projective Coxeter polyhedra.

Theorem. (Tits) Any Coxeter group can be realized as a group of transformations
of an open convex subset of a real projective space RP

n which is generated by a
collection of reflections s1, . . . , sp with respect to hyperplanes4 intersecting the
subset. The closure of a chamber is a convex polyhedron.

See also Vinberg [20].

4a reflection is determined by a fixed hyperplane and a reflected tranversal line
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F H

C

I

Yα

F
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H

Figure 3. Even and odd labels. Proof of Rolling Lemma.

1.12. A more general view. Nikolas Bourbaki5 proposed a way to build topo-
logical spaces from Coxeter groups. M. Davis used this approach in numerous
papers (see e.g. [9], [10]) and the book [11]; in particular he constructed nice
examples/counterexamples in topology.

Also it is possible to consider arbitrary Riemannian manifolds equipped with a
discrete isometric action of a Coxeter group such that the set of fixed points of each
generator is a (totally geodesic) hypersurface, and such that the generators act as
reflections with respect to these submanifolds. In this context, a chamber itself can
be a topologically non-trivial object, see [11], [3].

2. Rolling of chamber

In this section, Mn is a space L
n, Sn, Rn of constant curvature equipped with a

Coxeter group Γ or, more generally, any space described in Subsection 1.11.
Fix a mirror Xn−1 in M

n. Consider intersections of Xn−1 with other mirrors Yα.
The set X

n−1 \ ⋃
Yα is a disjoint union of open facets. Thus, we get a tiling of

X
n−1 by facets.
Our aim is to describe this tiling in the terms of the geometry of a chamber.

2.1. Rolling lemma.

Lemma 2.1. Let I ⊂ X
n−1 be an (n−2)-dimensional hyper-edge of our tiling. Let

F , H ⊂ X
n−1 be the facets adjacent to I.

a) If the label mI of I is even, then I is contained in a certain mirror Yα or-
thogonal to X. In particular sYα

F = H.

b) Let the label m be odd. Let C be a chamber adjacent to the facet F . Let G be
another facet of C adjacent to the same hyper-edge I. Then G is isometric to H.
More precisely, there is γ ∈ Γ fixing all the points of I such that γG = H.

Proof is given in figure 3.

2.2. Algorithm generating the tiling. Let C be a chamber adjacent to a facet
F ⊂ X

n−1. Consider an hyper-edge I of C lying in X
n−1.

Operation 1. Let the hyper-edge I be odd. Consider a facet G 6= F of C
adjacent to I, consider the corresponding γ from Lemma 2.1 and draw γG on
X

n−1.

Operation 2. If the hyper-edge I is even, then we reflect F in X
n−1 with

respect to I.

We perform all the possible finite sequences of such operations. By the Rolling
Lemma, we get the whole tiling of the mirror Xn−1.

5Apparently, he used the work by Jacque Tits [18]; the latter text is inaccessible for the authors.
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A B

CD

A B

CD

MIROR

trace of miror

trace of miror

Figure 4. Example of rolling: the reflection group A3 in R
3. The

mirrors are planes passing through opposite edges of the cube.
There are 24 Weyl chambers, which are simplicial cones with di-
hedral angles π/3, π/3, π/2 (we draw them as simplices). Rolling
of a Weyl chamber by the mirror ABCD produces a half-plane.

We can also regard A3 as a reflection group on the 2-dimensional
sphere S

2.

Remark. Let Mn = R
3, S3, L3 be a usual 3-dimensional space of constant cur-

vature. Operation 1 corresponds to rolling of a polyhedron C along the hyperplane
X

n−1 ∼ M
2 over the edge I. �
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Figure 5. Example of rolling: the icosahedral group H3. It is
generated by reflections with respect to bisectors of segments con-
necting midpoints of opposite edges of the icosahedron. The bi-
sectors separate R

3 into 120 simplicial cones with dihedral angles
π/2, π/3, π/5. In the figure the simplicial cones are cut by the
surface of the icosahedron.

We show an admissible rolling of a Weyl chamber along a mirror.
The final chamber in the mirror is a quadrant.

2.3. The group preserving the mirror X
n−1. For a mirror Xn−1, consider the

group Γ∗ = Γ∗(X
n−1) of all the isometries of Xn−1 induced by elements of Γ pre-

serving X
n−1.

If γ ∈ Γ preserves Xn−1, then sXn−1γ also preserves Xn−1 and agrees with γ on
X

n−1. Thus each element of Γ∗ is induced by two different elements of Γ.
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A

C

B

D

π/3 π/3

π/3π/3

π/2
π/2

A B A B A

C D C D

Figure 6. Example of rolling: the (affine) Euclidean reflection

group Ã4 in R
3. A chamber is the simplex ABCD. Rolling through

AB and CD is forbidden. Deleting these edges from the surface
of the simplex, we get a non-simply connected surface. Hence, the
process of rolling is infinite. The arrow shows the deck transfor-
mation induced by the generator of the fundamental group.

A B

C

D

π/5

π/3

π/3

A B D B

A

C

π/5π/3

Figure 7. Example of rolling: the hypericosahedral group H4 act-
ing on the 3-dimensional sphere S3. The chamber is is the spherical
simplex drawn in the figure (we omit all labels π/2 on edges).
The angle = π on the development at D was evaluated in figure

4. The right angle at C was evaluated in figure 5.
The spherical triangle ABC is present on the circumscribed

sphere in the next figure (in spite of the absence of the sphere
itself).

Observation 2.2. Let F1, F2 ⊂ X
n−1 be equivalent facets. There is a unique

element µ ∈ Γ∗(X
n−1) such that µF1 = F2.

2.4. Reflections in mirrors and the new chamber. Consider all the mirrors
Zα ⊂ M

n orthogonal to our mirror X
n−1. The corresponding reflections sZα

gen-
erate a reflection group on X

n−1; denote this group by ∆ = ∆(Xn−1).

Observation 2.3. ∆ is a normal subgroup in Γ∗(X
n−1).

Indeed, if s is a reflection, then γ−1sγ is a reflection. �

Consider a chamber C of Mn lying on X
n−1 (i.e., having a facet in X

n−1) and
consider all possible sequences of admissible rollings, i.e., we allow Operation 1
of Algorithm 2.2 and we forbid Operation 2. Denote by B ⊂ X

n−1 the domain
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Figure 8. Example of rolling: the hypericosahedral group H4 act-
ing in R

4. The figure presents the tiling of a mirror, i.e., of R3,
by simplicial cones. We draw intersections of simplicial cones with
the boundary of the icosahedron. Consider 3 types of ’axes’ of the
icosahedron:

A) segments connecting midpoints of opposite edges;
B) segments connecting central points of opposite faces;
C) diagonals connecting opposite vertices.
Consider bisectors of all such segments. Type A bisectors are

mirrors. They divide R
3 into 120 simplicial chambers. Six cham-

bers are presented in the front face of the icosahedron.
Adding bisectors of type B and C we obtain a partition of R3

into 480 simplicial cones. This is the desired tiling.
In this figure, we present subdivisions of two chambers. A proof

of this picture is contained on figure 7
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B
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B

C

B

C

B

C

D

A

D

A

D

A

Figure 9. Example. A Coxeter simplex in L
3. Its development is

an infinite ’strip’ ⊂ L
2 bounded by two infinite polygonal curves,

interior angles between segments of polygonal curves are π/2 and
π.

obtained by rolling, tiled by the traces of facets of C making contact with X
n−1

during rolling.

Theorem 2.4. B is a chamber of the reflection group ∆(Xn−1).

Proof. We can not roll further if and only if we meet a “vertical” mirror. �

Examples of rolling. Some examples of rolling corresponding to the usual
spherical Coxeter groups

A3 : H3: H4:

Euclidean group Ã4: and hyperbolic group

are given in figure 4-9. In these figures, we also evaluate the new chamber B. �

Lemma 2.5. Each (n− 3)-dimensional stratum of our tiling of Xn−1 is contained
in a mirror of the group ∆(Xn−1).

Proof. This stratum is equipped with a finite 3-dimensional Coxeter group
(i.e., A3, BC3, H3, A1 ⊕ G

m
2 , A1 ⊕ A1 ⊕ A1, see Table below). For each mirror of

such a group there exists an orthogonal mirror. �

2.5. Rolling scheme. Denote by Ξ(C) the surface of the initial chamber C, let
Ξ′(C) be the surface with all even edges deleted.

Lemma 2.6. Ξ′ does not contain (n− 3)-dimensional strata of C.

This is rephrasing of Lemma 2.5. �

Consider the graph, whose vertices are the facets of Ξ′; vertices are connected
by an edge if the corresponding facets are neighbors in Ξ′. We call this graph the
Rolling scheme. In fact, the Rolling scheme is the Coxeter scheme 1.3 with removed
even (and infinite) edges.

Proposition 2.7. The surface Ξ′ is homotopically equivalent to the Rolling scheme.
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a)

Aj

BkBm

b)

Aj

Bk

P1

P2

Figure 10. Proof of Lemma 2.8.
a) n = 3. Graph on a surface of a 3-dimensional polytop and a

retraction. Recall that we have removed vertices.
b) n = 4. A piece of a 3-face of 4-dimensional polyhedron.

Recall that 1-dimensional edges are removed. Inside a simplex
P1P2AjBk the retraction is the projection to AjBk with center on
the segment P1P2. Note that all segments connecting AjBk and
P1P2 are pairwise non-intersecting.

2.6. Proof of Proposition 2.7. Let U be a convex polyhedron in R
n, denote by

Ξ its surface. Choose a point Aj in interior of each (n−1)-dimensional face. Choose
a point Bk in interior of each (l− 2)-dimensional boundary stratum (hyperedge) of
U .

Draw the segment [Aj , Bk] iff the face contains the hyperedge. Thus we get a
graph T on the surface of the polyhedron C whose vertices are enumerated by faces
of U and edges are enumerated by hyperedges of U . Denote by Ξ▽ the surface of
the polyhedron S without boundary strata of dimension (n− 3).

Lemma 2.8. The graph T is a deformation retract of Ξ▽. Moreover, it is possible
to choose a homotopy that preserves all faces and all hyperedges.

Proof. See figure 10. �

Proposition 2.7 follows from Lemma 2.8. �

2.7. Action of the fundamental group on mirror. Let F be a facet in X
n−1,

let C be a chamber of M
n lying on F , and let B ⊃ F be the chamber of the

reflection group ∆(Xn−1) obtained by rolling C, as described in subsection 2.4.
Let Ω be a connected component of Ξ′ containing the facet F .
Let F1, . . . , Fr be facets ⊂ Ω. We can think that each facet has its own color;

thus the mirror X
n−1 is painted in r colors. Moreover, for each facet H ∈ X

n−1

there is a canonical bijection (’parametrization’) from the corresponding Fi ⊂ Ω
to H. We say that a bijection X

n−1 → X
n−1 (or B → B) is an isomorphism if it

preserves the coloring and commutes with the parameterizations.

Proposition 2.9. a) The chamber B ⊂ X
n−1 is the universal covering of Ω.

b) Any deck transformations of B is an isomorphism B → B and admits a
unique extension to an isomorphism of the mirror X

n−1.

c) Each isomorphism µ ∈ Γ∗(X
n−1) preserving B is induced by a deck transfor-

mation.
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Figure 11. A graph of vicinity of (n − 1)-dimensional facets in
the new (n− 1)-dimensional chamber B is a tree.

H

Vα

DH

Figure 12. Subdivision of the cone normal to a stratum.

Proof. a) Denote by Ω∼ the universal covering of Ω. The chamber B was
constructed as the image of Ω∼. Moreover, the map Ω∼ → C is locally bijective.
On the other hand, a chamber on a simply connected manifold is simply connected
see (see [3], 2.14); therefore B ≃ Ω∼.

b) A deck transformation B → B is an isometry by the rolling rules. Let a deck
transformation send a facet F to F ′. Then the facets F , F ′ are Γ-equivalent, and
the corresponding map in Γ is an isometry of Xn−1.

c) Let F ⊂ X
n−1 be a facet. We take the deck transformation sending F to F ′.

2.8. Description of Γ∗(X
n−1).

Theorem 2.10. The group Γ∗(X
n−1) is a semidirect product Deck(B)⋉∆(Xn−1).

Proof. Indeed, the group ∆(Xn−1) acts simply transitively on the set of cham-
bers in X

n−1; the group Deck(B) acts simply transitively on the set of facets of a
given type in the chamber B. �

3. Reduction of equipment

We keep the notation of the previous section. Our aim is to describe the Coxeter
equipment of the new chamber B.

3.1. Combinatorial structure of the tiling of the chamber. Consider a graph
F whose vertices are enumerated by (n − 1)-facets lying in B, two vertices are
connected by an edge if they have a common (n−2)-dimensional stratum (a former
hyperedge in M

n).

Observation 3.1. F is a tree.
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Table. Reduction of spherical Coxeter schemes

An : 7→ An−2 ⊕ R

BCn : 7→ A1 ⊕ Dn−2 or BCn−1

Dn : 7→ A1 ⊕ Dn−2

E6 : 7→ A5

E7 : 7→ D6

E8 : 7→ E7

F4 : 7→ BC3 or BC3

G
(m)
2 :

m
7→

{
A1 or A1 if m is even

R, if m is odd

H3 : 7→ A1 ⊕ A1

H4 : 7→ H3

Proof. Indeed, the universal covering of a graph is a tree. �

If the initial rolling scheme is a tree, then we get the same tree. If the rolling
scheme contains a cycle, then we get an infinite tree (examples: Figures 6, 9, the
rolling schemes contain 1 cycle).

3.2. New equipment. All the strata of B of dimension < (n − 2) are contained
in the boundary of B. These strata of B have their own equipments (in the sense
of the Coxeter manifold X

n−1).
For a boundary stratum H of B and some point y ∈ H, denote by NH ⊂ TyX

n−1

the normal subspace to H ⊂ X
n−1. The normal cone DH ⊂ NH is the cone

consisting of vectors looking inside B. Some of (n− 2)-dimensional strata (former
hyperedges) Vα contain H and thus we get the subdivision of the normal cone DH

by tangent spaces to (n− 2)-dimensional strata, see figure 12.
We wish to describe the equipment of B ⊂ X

n−1 and the subdivisions of normal
cones DH .

3.3. Finite Coxeter groups. Let Γ be a finite Coxeter group acting in R
n. Let

X
n−1
j be the mirrors, let vj be the vectors orthogonal to the corresponding mirrors.

For a vector vk denote by R = Rk the set of all i such that vi is orthogonal to vk.
The reflection group ∆(Xn−1

k ) is generated by reflections with respect to mirrors

X
n−1
i , where i ranges in R.

A. Let the Coxeter group Γ be irreducible. We come to the list given in the Table.
Some comments:
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1) G
(m)
2 denotes the group of symmetries of a regular plane m-gon, R denotes

the one-element group acting in R
1; all other notations are standard, see [8].

2) In some cases, there are two Γ-nonequivalent mirrors, then we write both
possible variants.

The rolling scheme (see 2.5) is the Coxeter scheme without even edges.

Example. a) For the Weyl chamber E8, its complete development is the Weyl
chamber E7.

b) For the Weyl chamber BCn, one of the facets is the Weyl chamber BCn−1.
All the remaining facets are connected by the rolling graph; the development is the
Weyl chamber A1 ⊕ Dn−2.

Proof of Table is a case-by-case examination of root systems; for the groups
H3 and H4 the proofs are given Figures 5, 7, 8 (on the other hand the reader can
find a nice coordinate description of the hypericosahedron in [8].

B. If the Coxeter group Γ be reducible,

Γ = Γ1 × Γ2 × . . .

then its Weyl chamber is the product of the Weyl chambers for the corresponding
chambers C = C1 ×C2 × . . . . The Coxeter scheme of Γ is the union of the Coxeter
schemes of Γj , hence the rolling graph of Γ is the union of the rolling graphs for all
the Γj . Now we reduce one of factors Cj 7→ Bj according to the rules given in the
Table, and we get a Weyl chamber Bj ×

∏
i6=j Ci.

3.4. Reduction of equipment. Let H be an (n − k)-dimensional stratum of C
(k > 3), let ΓH(C) be the corresponding Coxeter group, and let NH(C) be its
chamber in the normal cone. Denote by ΓH(B) the corresponding group of the
equipment of B and by NH(B) the corresponding chamber in the normal cone.

Theorem 3.2. The group ΓH(B) is obtained by reduction of the group ΓH(B) and
the subdivision of NH(B) is a partial development of the Weyl chamber NH(C)

Proof is obvious. We consider rollings of C with fixed hyperedge H. The
subdivision of the cone DH is obtained by rolling with respect to the hyperedges
containing H. �

4. Addendum. Elementary geometry of Andreev polyhedra

4.1. Rolling of Andreev polyhedra and billiard trajectories in Coxeter
polygons. Firstly, our construction gives some information about developments of
Andreev polyhedra.

Let us roll an Andreev polyhedron ⊂ L
3 along a mirror ≃ L

2. In this case, the
chamber B of a mirror is a convex plane Coxeter domain. By construction, B is
subdivided into several convex polygons by a certain family of lines.

Proposition 4.1. All the possible variants of meetings of lines of the subdivision
and the boundary of B are presented in figure 13.

Proof. We watch all the possible variants of reduction of 3-dimensional finite
Coxeter groups to a mirror. The parts a), b), c), d) of figure 13 correspond to

G
2k+1
2 , BC3, A3 = D3, H3, respectively. �
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a) 2 2

2k + 1

b)
ψ 4

2 3

c)
ψ2 2

3 3

d)

2

2

3

5

Figure 13. Subdivisions of a Coxeter polygon on the Lobachevsky
plane (we also draw the labels on lines). There only 4 possible vari-
ants of meetings between lines of a subdivision and the boundary.
Here tanψ =

√
2; for case d) see figure 5.

In cases c) and d), the corresponding trihedral angle of the An-
dreev polytope is covered by our bended polygon.

π/3

π/3

π/3

π/3

A

C

D

B

F

E

ℓ1

ℓ2

F

F

E

E

E

F

B

A C

D

Figure 14. An example of an Andreev polyhedron in L
3; we label

the dihedral angles π/3, all other dihedral angles are π/2.
Its development is a (nonregular) 6-gon, whose angles are π/2.

The lines ℓ1, ℓ2 are axes of symmetry. The polygonal curve
ABDCA is a billiard trajectory.

It is easy to reconstruct the lengths of edges of the prism from
the combinatorial structure of the development and the billiard
trajectory. Indeed, we know the angles of the triangle AEC and
of the “trapezoids“ ABFE, and the equiangular quadrangle
ABDC.
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B D

C
E

A

B

C

D

π/5 π/5

π/3

π/3

B
A

B

D

B
D

E

D

B

D

Figure 15. This prism in L
3 is a complete development of the

Coxeter simplex ABCDE in L
4 described in 4.2. It carries all 2-

dimensional hyperedges of the initial simplex.
The development of the prism is the regular 10-gon with right

angles (it also carries all 1-dimensional strata of the 4-dimensional
simplex).

Observation 4.2. The surface of an Andreev polyhedron is glued from several
bended Coxeter polygons; the rules of bending and the rules of glueing are very
rigid.

Examples of rolling of a 3-dimensional Coxeter polyhedron are given in figures
9 and 14. �

4.2. Example: Rolling along Andreev polyhedra. Secondly, take a Coxeter
polyhedron in L

4. Rolling it along 3-dimensional Lobachevsky space, we obtain a
Coxeter polyhedron in L

3 and also some strange subdivision of this polyhedron.
We present an example. Consider the simplex Σ in L

4 defined by the Coxeter
scheme

(3)
A B C D E

.

By A,. . . , E we denote the vertices of the simplex opposite to the corresponding
faces. See figure 15.

Comments to Figure 15. The development of Σ is a prism drawn in figure 15.
We write labels for the dihedral angles 6= π/2. Below a “stratum” means a stratum
of the tiling; in particular, the vertical “edge” AB consists of two 1-dimensional
strata BC and CA and three 0-dimensional ones, A, B, and C.
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1) This is a development. Hence any two strata (segments, triangles) having the
same notation are equal (for instance CD = CD, CE = CE, △CBE = △CBE,
etc.).

2) Each stratum (a vertex, a segment) is equipped with a Coxeter group (this
group is visible from its dihedral angles)

3) Subdivision of the normal cone DH to a stratum H (a vertex, a segment) is
determined by the reduction procedure from subsection 3.3.

For instance, in the vertex A we have the subdivision of the spherical triangle
H3 drawn in figure 7,

B C D E 7→ H3.

In the normal cone to the edge-stratum DE of the prism, we have the icosahedral
subdivision, see figure 8,

A B C 7→ A1 ⊕A1.

The normal cone to the segment AE is drawn in figure 4; in particular, both
angles of incidence are arctan

√
2,

B C D 7→ A1 ⊕ R.

The “front” face ABDB is orthogonal to the sections CDE and ADE (since the
lines CD and AD of intersection are equipped with the group A1 ⊕ A1).

A B E 7→ R⊕ A1

Etc., etc.

4) The prism has two planes of symmetry. This is by chance, partially this
is induced by a symmetry of the initial Coxeter scheme 3. The latter symmetry
implies the equality of strata:

AB = DE, AC = CE, AD = BC, BC = CD.

5) Our prism generates a reflection group in L
3. The reader can easily imagine

a neighborhood of our prism in L
3. For instance, near the vertex A we have the

picture drawn in figure 8

6) The development of the prism is a regular 10-gon having right angles; the
reflection of the “billiard trajectory” ABEDA is of type d) on figure 13. The
regularity property follows by reduction from L

4, but it is not self-obvious from the
picture of the 3-dimensional prism. Obviously, diagonals6 AB are orthogonal to
diagonals DE at the points of intersection (see the left side of the figure; but this
is not a self-obvious property of this regular 10-gon).

7) We observe the second copy of the polygonal line ADEBA in the development.
Bending the 10-gon by this line, we obtain a prism congruent to our prism.

In fact, our 10-gon is the picture on the intersection of two mirrors, denote them
by Y1, Y2. We can roll the simplex Σ along each mirror Y1, Y2 and then we roll it
again over the intersection Y1 ∩ Y2. We obtain two different pictures on the 10-gon
and both are present in the figure 15.

6There are two diagonals AB.
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