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Abstract

We define and study the theory of derivation-based connections
on a recently introduced class of bimodules over an algebra which
reduces to the category of modules whenever the algebra is commu-
tative. This theory contains, in particular, a noncommutative gener-
alization of linear connections. We also discuss the different noncom-
mutative versions of differential forms based on derivations. Then we
investigate reality conditions and a noncommutative generalization of
pseudo-riemannian structures.

1 Introduction and notations

There are several noncommutative generalizations of the calculus of differen-

tial forms and, more generally, of the differential calculus of classical differ-

ential geometry, e.g. [2 to 11]. As stressed in [3], the extension of classical

tools to the noncommutative setting is never straightforward. This means

that, in order to produce relevant objects, one must have in mind a lot of

examples coming both from mathematics and from physics. In this paper,

we concentrate on the differential calculus based on derivations as generaliza-

tion of vector fields, [4]. It was shown in [5] that this differential calculus is

natural for quantum mechanics in the sense that with it, quantum mechanics

has the same relation to noncommutative symplectic geometry as classical

mechanics to classical symplectic geometry. For finite quantum spin systems

this was already pointed out in [6]. Furthermore it is also worth noticing

that this differential calculus was used in [7] (see also in [5] for a review) to

produce a first non-commutative extension of classical gauge theory in which

the Higgs fields appear as the components of the gauge potential (i.e. the

connection) in the “noncommutative directions”.

In this paper, A is an associative algebra over K = R or C with a unit 1l. The

algebra A is to be considered as the generalization of the algebra of smooth
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functions and the Lie algebra Der(A) of all derivations of A as the generaliza-

tion of the Lie algebra of smooth vector fields. The Lie algebra Der(A) is also

a module over the center Z(A) of A and furthermore Z(A) is stable by the

action of Der(A). The corresponding Lie algebra homomorphism of Der(A)

into the Lie algebra Der(Z(A)) factorizes through the Lie algebra Out(A) of

all derivations of A modulo the ideal Int(A) of all inner derivations of A; the

Lie algebra Out(A) is also a Z(A)-module. Notice that if A is commutative,

A = Z(A) and Der(A) = Out(A); so Out(A) is also a generalization of the Lie

algebra of vector fields and this is a good generalization for a theory of “invari-

ants”. Indeed in general one has H0(A,A) = Z(A) and H1(A,A) = Out(A),

(whereas Der(A) = Z1(A,A)), where H(A,A) is the Hochschild cohomology

of A with value in A. So Z(A) and Out(A) are Morita invariant as well as

the homomorphism of Out(A) into Der(Z(A)). We now recall the relevant

generalizations of differential forms in this context [4], [10]. As for the com-

mutative case [12], the notions of differential forms can be extracted from the

differential algebra C(Der(A), A) of Chevalley-Eilenberg cochains of the Lie

algebra Der(A) with values in the Der(A)-module A. There are two natural

generalizations of the graded differential algebra of differential forms which

use Der(A) as generalization of vector fields : A minimal one, ΩDer(A), which

is the smallest differential subalgebra of C(Der(A), A) which contains A and

a maximal one, ΩDer(A), which consists of all cochains in C(Der(A), A) which

are Z(A)-multilinear.

As mentioned above, it is also useful to use Out(A) as generalization of vec-

tor fields. The corresponding generalizations of differential forms ΩOut(A)

and ΩOut(A) are respectively graded differential subalgebras of ΩDer(A) and

ΩDer(A). To obtain them, one notices that there is a canonical opera-

tion, in the sense of H. Cartan [1], X 7→ iX for X ∈ Der(A), of the

3



Lie algebra Der(A) in the graded differential algebra C(Der(A), A) defined

by iXα(X1, . . . , Xn−1) = α(X,X1, . . . , Xn−1) for Xk ∈ Der(A) and α ∈
Cn(Der(A), A). Both ΩDer(A) and ΩDer(A) are stable by the iX , X ∈ Der(A),

and ΩOut(A) and ΩOut(A) are defined to be the respective differential subal-

gebras which are basic with respect to the corresponding operation of Int(A),

i.e. one has:

ΩOut(A) = {α ∈ ΩDer(A)|iXα = 0 and LXα = 0, ∀X ∈ Int(A)}

ΩOut(A) = {α ∈ ΩDer(A)|iXα = 0 and LXα = 0, ∀X ∈ Int(A)},

where LX = diX + iXd as usual. One has the inclusions of graded differential

algebras
ΩDer(A) ⊂ ΩDer(A)⋃ ⋃
ΩOut(A) ⊂ ΩOut(A)

In the case where A is the algebra of smooth functions on a finite-dimensional

paracompact smooth manifold, all these graded differential algebras coincide

with the graded differential algebra of differential forms. In general, there is

a differential calculus for A in ΩDer(A) and in ΩDer(A). However if A is not

commutative, i.e. A 6= Z(A), then ΩOut(A) and ΩOut(A) do not contain A

and are not A-modules. So they do not carry a differential calculus for A.

The differential algebra ΩOut(A) can be identified with the differential alge-

bra CZ(A)(Out(A), Z(A)) of Z(A)-linear cochains of the Lie algebra Out(A)

with values in Z(A). So ΩOut(A) is a Morita invariant generalization of dif-

ferential forms. We shall use ΩDer(A) for the differential calculus and then,

the “invariants” will be closed elements in the subalgebra ΩOut(A) leading to

Morita-invariants in the cohomology HOut(A).

In this paper, we wish to extend, for A noncommutative, the theory of con-

nections (derivation laws) on A-modules for A commutative as formulated
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in [12]. There are several noncommutative generalizations of the notion of

module over a commutative algebra. First one can consider the notion of

right (or left) A-module, that was in particular the point of view adopted

in [7] . Alternatively, one can remember that a module over a commutative

algebra is canonically a bimodule of a very specific kind and we speak of the

induced structure of bimodule. There are several reasons to prefer a notion

of bimodule rather than that of right or left module. The first one is that, for

any differential calculus for A, the one-forms constitute such a bimodule and

that we wish to be able to define linear connections (e.g. to produce non-

commutative versions of general relativity). A second very general reason,

which is connected with reality in noncommutative geometry, is explained

in Section 8. In [9], we introduced the notion of central bimodule: This is

just a A-bimodule such that the underlying structure of Z(A)-bimodule is

induced by a structure of Z(A)-module, i.e. multiplication by elements of

Z(A) on both sides coincide. This notion is stable by arbitrary projective

and inductive limits and by tensor products over A or over Z(A). When A is

commutative, a central bimodule is just a module (for the induced bimodule

structure). It is for this notion that we define and study connections in this

paper. In [9] and [10] we also introduced the more restrictive notion of diag-

onal bimodule: This is a bimodule isomorphic to a subbimodule of AI , for

some set I, where A is equipped with its canonical structure of A-bimodule.

A diagonal bimodule is central and, if A is commutative, a diagonal bimodule

is just a module such that the canonical mapping into its bidual is injective.

Both ΩDer(A) and ΩDer(A) are diagonal and therefore central; this is why the

notion of connection considered here includes a generalization of the notion

of linear connection. Furthermore, and this was the very reason diagonal bi-

modules were introduced, it was shown in [9] that the derivation (differential)
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d : A → Ω1
Der(A) is universal for derivations of A into diagonal bimodules:

i.e. for any derivation δ : A→M of A into a diagonal bimodule M , there is

a unique bimodule homomophism iδ : Ω1
Der(A)→M such that δ = iδ ◦ d.

Finally we shall need, to describe torsion for instance, the generalization of

vector valued differential forms. It was shown in [10] that the right spaces to

generalize the Frölicher-Nijenhuis bracket were the space Der(A,ΩDer(A)) of

derivations of A into ΩDer(A) if one uses ΩDer(A) as generalization of differen-

tial forms and the space Der(A,ΩDer(A)) if one uses ΩDer(A) as generalization

of differential forms. In this paper it is this latter generalization that will be

considered. If N and M are A-bimodules, we use the notation HomA
A(N,M)

to denote the space of bimodule homomorphisms of N into M . This is a

Z(A)-bimodule which is in fact a Z(A)-module whenever M is central.

The plan of the paper is the following. In Section 2 we define the notion of

derivation-based connection on central bimodules. In Section 3 we describe

some constructions which allow to produce new connections from given con-

nections. In Section 4 we define linear connections and their torsions. In

Section 5 we give some basic examples. In Section 6 we introduce and study

a duality between bimodules and modules over the center. In Section 7 we

apply this duality to the one-forms showing, in particular, that Ω1
Der(A) is the

bidual of Ω1
Der(A) for this duality. In Section 8 we study reality conditions for

the case of ∗-algebras. Finally, in Section 9 we investigate a noncommutative

generalization of pseudo-riemannian structures in our framework.

2 Connections on central bimodules

Let M be a central bimodule over A, a connection on M is a linear mapping

∇, X 7→ ∇X , of Der(A) into the linear endomorphisms of M such that one
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has {
∇zX(m) = z∇X(m)
∇X(amb) = X(a)mb+ a∇X(m)b+ amX(b)

∀m ∈M, ∀X ∈ Der(A),∀z ∈ Z(A) and ∀a, b ∈ A.

Given ∇ as above, the curvature R of ∇ is the bilinear antisymmetric map-

ping (X, Y ) 7→ RX,Y of Der(A) × Der(A) into the linear endomorphisms of

M defined by

RX,Y (m) = ∇X(∇Y (m))−∇Y (∇X(m))−∇[X,Y ](m),

∀X, Y ∈ DerA, ∀m ∈M.

One has the following properties{
RzX,Y (m) = zRX,Y (m),
RX,Y (amb) = aRX,Y (m)b

∀m ∈M, ∀X, Y ∈ Der(A),∀z ∈ Z(A), ∀a, b ∈ A.
Thus R is an antisymmetric Z(A)-bilinear mapping of Der(A)×Der(A) into

the Z(A)-module HomA
A(M,M) i.e.

R ∈ HomZ(A) (Λ2
Z(A)Der(A),HomA

A(M,M)).

From its very definition and from the Jacobi identity, it follows thatR satisfies

the Bianchi identity

[∇X , RY,Z ] + [∇Y , RZ,X ] + [∇Z , RX,Y ] = R[X,Y ],Z +R[Y,Z],X +R[Z,X],Y .

There is another way to describe all that. Let Ωn
Der(A,M) be the space

(in fact the Z(A)-module) of antisymmetric Z(A)-multilinear mappings of

(Der(A))n into M , i.e. one has

Ωn
Der(A,M) = HomZ(A)(Λ

n
Z(A)Der(A),M).
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The spaces Ωn
Der(A,M) as well as

ΩDer(A,M) = ⊕
n

Ωn
Der(A,M)

are canonically A-bimodules which are central bimodules. Then a connection

∇ as above on M is simply a linear mapping of M into Ω1
Der(A,M) which

satisfies

∇(amb) = da⊗
A
mb+ a∇(m)b+ am⊗

A
db, ∀a, b ∈ A and ∀m ∈M,

where the canonical bimodule homomorphisms

Ω1
Der(A)⊗

A
M → Ω1

Der(A,M) and M⊗
A

Ω1
Der(A)→ Ω1

Der(A,M)

have been used.

More generally, by using the canonical bimodule homomorphisms

Ωm
Der(A)⊗

A
Ωn

Der(A,M)→ Ωm+n
Der (A,M)

and

Ωn
Der(A,M)⊗

A
Ωm

Der(A)→ Ωm+n
Der (A,M),

one equips ΩDer(A,M) with a structure of graded ΩDer(A)-bimodule. Let us

extend ∇ : Ω0
Der(A,M) → Ω1

Der(A,M) to an endomorphism, again denoted

by ∇, of ΩDer(A,M) with ∇(Ωn
Der(A,M)) ⊂ Ωn+1

Der (A,M) by the following

definition

(∇ϕ)(X0, . . . , Xn) =
∑

0≤k≤n

(−1)k∇Xk
ϕ(X0,

k
∨. . ., , Xn)

+
∑

0≤r<s≤n

(−1)r+sϕ([Xr, Xs], X0,
r
∨. . .

s
∨. . ., Xn)
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for ϕ ∈ Ωn
Der(A,M) and Xk ∈ Der(A), where

k
∨. means omission of Xk. One

has, for α ∈ Ωa
Der(A), β ∈ Ωb

Der(A) and ϕ ∈ Ωn
Der(A,M):

∇(αϕβ) = (dα)ϕβ + (−1)aα∇(ϕ)β + (−1)a+nαϕdβ.

It follows that ∇2 which is the canonical extension of the curvature satisfies

∇2(αϕβ) = α∇2(ϕ)β, i.e. it is a homomorphism of ΩDer(A)-bimodules (and

of graded ΩDer(A)-bimodules) of ΩDer(A,M) into itself, (the Bianchi identity

now reads ∇(∇2) = (∇2)∇).

3 Associated connections

There exist central bimodules which do not admit connections. For instance,

in [12], J.L. Koszul gives the following example: take A = K[≈], i.e. the

commutative algebra of polynomials in t, and M = A/N where N is the

ideal of polynomials without constant term; then M is a central bimodule

since it is an A-module with A commutative and there is no connection on

M because if ∇ is such a connection and if e denotes the class of 1l in A/N ,

one must have

0 = ∇∂/∂t(te) = e+ t∇∂/∂t(e) = e,

i.e. a contradiction. However, if X 7→ ∇X is a connection on a central bimod-

ule M and if X 7→ ΓX is a Z(A)-linear mapping of Der(A) into HomA
A(M,M)

then X 7→ ∇X + ΓX is also a connection on M and all connections on M

are of this form; i.e. if the set of connections on a central bimodule M is

not empty, it is an affine space modelled on HomZ(A)(Der(A),HomA
A(M,M)).

Notice that, for M = A, ∇X(a) = X(a) (∀a ∈ A, ∀X ∈ Der(A)) is a connec-

tion on A with vanishing curvature which will be referred to as the canonical

connection on A. In this section, we will describe connections on central
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bimodules associated with bimodules which admit connections. These con-

nections will be accordingly called associated connections.

Let M be a central bimodule equipped with a connection ∇ and let N be a

subbimodule of M . Assume that ∇XN ⊂ N for any X ∈ Der(A). Then the

restriction of ∇ to N , ( i.e. of the ∇X , X ∈ Der(A)), is a connection on N

and ∇ induces a connection on the quotient bimodule M/N . In both cases,

we shall speak of the induced connections by ∇ to design these connections

on N and on M/N .

Let (Mi)i∈I be a family of central bimodules equipped with connections ∇i.

Then ∇X((mi)i∈I) = (∇i
X(mi))i∈I , for mi ∈ Mi and X ∈ Der(A), defines a

connection on the product
∏
i∈I

Mi. By restriction, one obtains a connection on

the direct sum ⊕
i∈I
Mi, ∇X(

∑
imi) =

∑
i∇i

Xmi, since ∇X(⊕
i∈I
M) ⊂ ⊕

i∈I
Mi for

any X ∈ Der(A). These connections will be called product and direct sum

of the connections ∇i. One defines similarily projective limits and inductive

limits of connections when the appropriate stability conditions are satisfied.

LetM andM ′ be two central bimodules equipped with connections∇ and∇′.
For X ∈ Der(A), consider the linear endomorphisms ∇X ⊗ idM ′ + idM ⊗∇′X
of M ⊗M ′. The bimodule M ⊗M ′ is not central in general, however the

subbimodules generated, respectively by the

ma⊗m′ −m⊗ am′, a ∈ A, m ∈M, m′ ∈M ′

and by the

mz ⊗m′ −m⊗ zm′, z ∈ Z(A), m ∈M, m′ ∈M

are stable by the above endomorphisms (remembering that

Der(A)(Z(A)) ⊂ Z(A)), so they define endomorphisms of M⊗
A
M ′ and of
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M ⊗
Z(A)

M ′ which are easily seen to be connections on M⊗
A
M ′ and M ⊗

Z(A)
M ′,

respectively. These connections will be called tensor product of ∇ and ∇′

over A and over Z(A), respectively. By induction, one defines the tensor

product (over A or over Z(A)) of a finite family of connections on a finite

family of central bimodules. This tensor product is associative in an obvious

sense.

In particular, if M is a central bimodule with a connection ∇, then by ap-

plying the above construction, one obtains a connection ∇⊗ on the tensor

algebra of M over A, TA(M) = ⊕n(⊗nAM), satisfying ∇⊗X(a) = X(a) for

a ∈ A = T 0
A(M) and X ∈ Der(A). One has ∇⊗X(tt′) = ∇⊗X(t)t′ + t∇⊗X(t′) for

t, t′ ∈ TA(M), X ∈ Der(A).

Let M be a central bimodule, then HomA
A(M,M) is an algebra over Z(A).

The group of invertible elements of HomA
A(M,M) will be called the group

of gauge transformations of M . Given a connection X 7→ ∇X and a gauge

transformation g on M , X 7→ g ◦ ∇X ◦ g−1 is again a connection which will

be referred to as the gauge transform of ∇ by g. Two connections belonging

to the same orbit will be called gauge equivalent connections.

4 The case M = Ω1
Der

(A): Linear connections

The bimodule Ω1
Der(A) is diagonal and therefore central. A connection ∇ on

Ω1
Der(A) will be called a linear connection. There is a canonical bimodule

homomorphism µ : Ω1
Der(A,Ω

1
Der(A)) → Ω2

Der(A) which extends the product

Ω1
Der(A)⊗

A
Ω1

Der(A) → Ω2
Der(A), namely µ(ϕ)(X, Y ) = ϕX(Y ) − ϕY (X) for

X, Y ∈ Der(A) and ϕ ∈ Ω1
Der(A,Ω

1
Der(A)). Given a linear connection ∇, one

defines a linear mapping T of A into Ω2
Der(A) by setting T (a) = −µ ◦ ∇(da)

for a ∈ A. One has T (ab) = T (a)b + aT (b) for a, b ∈ A, therefore T is
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an element of Der(A,Ω2
Der(A)) which will be called the torsion of the linear

connection ∇. Since Ω2
Der(A) is a diagonal bimodule, it follows from the

universal property of the derivation d : A → Ω1
Der that there is a unique

bimodule homomorphism iT : Ω1
Der(A) → Ω2

Der(A) such that T = iT ◦ d.

The explicit form of iT is easy to write, one has iT = d − µ ◦ ∇ which

extends as a bimodule homomorphism of Ω1
Der(A) into Ω2

Der(A). We shall

frequently identify the torsion T ∈ Der(A,Ω2
Der(A)) with this element of

HomA
A(Ω1

Der(A),Ω2
Der(A)).

5 Examples

5.1 The case where A is commutative

In the case where A is commutative, a central bimodule is simply an A-

module and the notion of connection defined here reduces to the usual one,

i.e. to the notion of derivation laws of [12]. One obtains the classical notion

of connection on a smooth vector bundle E of finite rank over a smooth

finite-dimensional paracompact manifold V by taking the algebra C∞(V ) of

smooth functions on V for A and by taking the module Γ(E) of smooth

sections of E, i.e. a typical finite projective module over A = C∞(V ). Since

the canonical mapping of Γ(E) into its bidual is injective, the underlying

bimodule is not only central but it is also a diagonal bimodule.

Now we investigate cases which are of “opposite side”.

5.2 The case where Out(A) = 0

Let us now assume that A is a noncommutative algebra which has only inner

derivations, i.e. Int(A) = Der(A) or, equivalently Out(A) = 0. In this case,

every central bimodule M admits a canonical connection
c

∇ with vanishing
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curvature defined by:
c

∇ad(x)(m) = xm − mx, ∀x ∈ A and ∀m ∈ M . The

other connections on M are of course of the form ∇ad(x) =
c

∇ad(x) + Γad(x)

where Γ ∈ HomZ(A)(Int(A),HomA
A(M,M)). Since the curvature of

c

∇ van-

ishes one cannot have a non trivial theory of characteristic classes using the

above notion of connection for such algebras. This also partly explains why,

in the general case, one has to factorize the inner derivations out in order to

get a good theory of invariants.

For M = Ω1
Der(A),

c

∇ is a linear connection. Its torsion T is given by

T (a)(ad(x), ad(y)) = −ad[x, y](a) = −[[x, y], a], or iT (ω)(ad(x), ad(y)) =

−ω(ad([x, y])), for x, y, a ∈ A, ω ∈ Ω1
Der(A).

5.3 The case where A has a trivial center Z(A) = K.1l

In this case, Z(A)-linearity reduces to K-linearity, so in particular the Lie

derivative X 7→ LX = iXd + diX is a connection on any of the central

bimodules Ωn
Der(A) and Ωn

Der(A). These connections have vanishing curva-

tures since the Lie derivative is a homomorphism of Lie algebras. Acting

on Ω1
Der(A) the Lie derivative is then a linear connection with a torsion T

given by T (a)(X, Y ) = [X, Y ](a), or iT (ω)(X, Y ) = ω([X, Y ]), for a ∈ A,

X, Y ∈ Der(A), ω ∈ Ω1
Der(A).

Notice that if one has also Out(A) = 0, then both
c

∇ and L are connections

with zero curvature on the Ωn
Der(A) and Ωn

Der(A) but in general they are not

gauge equivalent, except for n = 0 where they coincide with the canonical

connection on A. In particular, on Ω1
Der(A) they are linear connections with

opposite torsion and therefore 1
2
(
c

∇+ L) is (on Ω1
Der(A)) torsion-free.
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Remarks

A priori, examples 5.2 and 5.3 are independent (Morita invariant) classes

of algebras. For instance if C is a unital commutative algebra which is

different from K.1l and which has no nonzero derivation, e.g. C = Kn with

n ≥ 2, then the matrix algebra MN(C) has a non-trivial center, C, and all its

derivations are inner; on the other hand, if E is a vector space of dimension

≥ 2, the tensor algebra T (E) of E has a trivial center but any non vanishing

endomorphism of E extends uniquely as a derivation of T (E) which is never

inner. However since here A is the analog of the algebra of smooth functions,

one could prefer to choose A in such a way that it has “many” derivations.

From this point of view, it is natural to introduce the following class C∞,0:
A belongs to the class C∞,o if X(a) = 0, ∀X ∈ Der(A) for a ∈ A implies

a ∈ K.1l. It is worth noticing here that this condition might not be sufficient

to ensure the existence of “many” derivations: For instance let A = ⊕An

be a Z-graded algebra with A0 = K.1l, then the degree derivation defined by

deg(a) = na if a ∈ An is such that deg(a) = 0 implies a ∈ K.1l, so A is in

C∞,0 but it is easy to construct examples such that the only derivations are

the multiple of deg. In any case, any A in C∞,0 such that Out(A) = 0 has a

trivial center (i.e. examples 5.2 in C∞,0 are contained in examples 5.3).

6 Duality and diagonal bimodules

Let M be a central bimodule over A, then the space HomA
A(M,A) of all

bimodule homomorphisms of M into A is a module over the center Z(A) of

A, i.e. it is a Z(A)-module which will be denoted by M∗A and called the dual

of the bimodule M when no confusion arises. The reader must be aware of
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the fact that M∗A is not the dual of M as A ⊗ Aop-module or as A ⊗
Z(A)

Aop-

module. Conversely, let N be a Z(A)-module then the space HomZ(A)(N,A)

is canonically a bimodule over A which is diagonal, and therefore central,

since it is a subbimodule of AN . This diagonal bimodule will be denoted

by N∗A and called the dual of the Z(A)-module N . Thus one has a duality

between central bimodules over A and modules over Z(A) which obviously

refers to A; this duality is similar to the duality between left and right A-

modules. In fact, when A is commutative all these four notions coincide with

the notion of A-module. Notice that if M is a central bimodule, the duality

(M,M∗A) is separated if and only if M is diagonal; another way to say the

same thing is to remark that there is a canonical bimodule homomorphism

cM : M → M∗A∗A and that this canonical homomorphism is injective if

and only if M is diagonal. Dually, if N is a Z(A)-module, then there is a

canonical Z(A)-module homomorphism cN : N → N∗A∗A which is in general

not injective nor surjective; a sufficient condition for the injectivity of cN is

that the canonical mapping of N into its Z(A)-module bidual N∗Z(A)∗Z(A) is

injective. A Z(A)-module N will be said to be A-diagonal, or simply diagonal

if no confusion arises, whenever the canonical mapping cN is injective or,

which is the same, whenever it is separated by N∗A = HomZ(A)(N,A); this

means that it is isomorphic to a Z(A)-submodule of AI for some set I.

Thus the dual M∗A of any central bimodule M is diagonal. More generally,

a duality between a central bimodule M and a Z(A)-module N will be a

bimodule homomorphism 〈, 〉 of M ⊗
Z(A)

N into A, (m,n) 7→ 〈m,n〉; the duality

〈, 〉 is separated in M if and only if 〈m,n〉 = 0 ∀n ∈ N implies m = 0, it

is separated in N if and only if 〈m,n〉 = 0 ∀m ∈ M implies n = 0 and it

is separated if and only if it is separated both in M and in N . We already
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know that if 〈, 〉 is separated in M , then M is diagonal and if 〈, 〉 is separated

in N then N is diagonal.

Finally a central bimodule M will be said to be reflexive whenever M =

M∗A∗A , which implies that M is diagonal, and a Z(A)-module N will be said

to be A-reflexive, or simply reflexive, whenever N = N∗A∗A , which implies

that N is diagonal. If M is reflexive then M∗A is reflexive and if N is reflexive

then N∗A is reflexive.

Remark

In fact the duality between central bimodules and Z(A)-modules comes from

a duality between bimodules and Z(A)-modules. Indeed, if M is an arbitrary

bimodule over A, then M∗A = HomA
A(M,A) is again canonically a module

over the center Z(A) of A. Furthermore M∗A∗A = HomZ(A)(M
∗A , A) is still a

diagonal bimodule and one has again a canonical bimodule homomorphism

cM : M →M∗A∗A which is, as a homomorphism of M onto cM(M), the func-

tor Diag defined and studied in [9] and [10] of the category of bimodules into

the category of diagonal bimodules. The very reason why we here restrict

attention to central bimodules is that only central bimodules reduce canoni-

cally to modules whenever A is commutative. From the point of view of the

above duality, the diagonal bimodules and the A-diagonal Z(A)-modules are

favoured and of course, even more favoured are the reflexive bimodules and

the A-reflexive Z(A)-modules.

After having introduced a notion of connection for central bimodules, it is

natural to define a dual notion for Z(A)-modules. Let N be a Z(A)-module,

a connection on N related to A, or simply a connection on N when no con-

fusion arises, is a linear mapping ∇, X 7→ ∇X , of Der(A) into the linear
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endomorphisms of N such that one has{
∇zX(n) = z∇X(n)
∇X(zn) = X(z)n+ z∇X(n)

∀n ∈ N, ∀X ∈ Der(A) and ∀z ∈ Z(A).

One defines, as in §2, the curvature R of ∇ by RX,Y = [∇X ,∇Y ] − ∇[X,Y ]

and R is now an antisymmetric Z(A)-bilinear mapping of Der(A)× Der(A)

into the Z(A)-module HomZ(A)(N,N). The set of connections on N is, if not

empty, an affine space modelled on

HomZ(A)(Der(A),HomZ(A)(N,N)).

The above definition is justified by the following lemma.

LEMMA 1 Let M be a central bimodule with a connection ∇. Then, there

is a unique connection, again denoted by ∇, on the Z(A)-module M∗A which

satisfies

X(µ(m)) = ∇X(µ)(m) + µ(∇X(m)), ∀X ∈ Der(A), ∀µ ∈M∗A ,∀m ∈M.

Dually, let N be a Z(A)-module with a connection ∇. Then there is a unique

connection, again denoted by ∇, on the central bimodule N∗A which satisfies

X(ν(n)) = ∇X(ν)(n) + ν(∇X(n)), ∀X ∈ Der(A), ∀ν ∈ N∗A , ∀n ∈ N.

Proof. Define ∇X(µ) for X ∈ Der(A) and µ ∈ M∗A by ∇X(µ)(m) =

X(µ(m))−µ(∇X(m)), then it is easy to show that ∇X(µ) ∈M∗A and that ∇
is a connection on M∗A in the above sense. On the other hand ∇ is obviously

unique under the condition of the lemma. The proof of the dual statement

is similar. �
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In the case where M (resp. N) is reflexive then the affine space of all con-

nections on M (resp. N) and the affine space of all connections on M∗A

(resp.N∗A) are isomorphic under the above mapping.

More generally, let 〈, 〉 be a duality between a central bimodule M and a

Z(A)-module N , then a pair (∇,∇′) of a connection ∇ on M and a con-

nection ∇′ on N will be said to be compatible with the duality 〈, 〉 if one

has X(〈m,n〉) = 〈∇X(m), n〉 + 〈m,∇′X(n)〉, ∀X ∈ Der(A), ∀m ∈ M and

∀n ∈ N . If the duality is separated in M (resp. N) then given ∇′ (resp. ∇),

if ∇ (resp. ∇′) exists it is unique.

7 Derivations and forms

As an illustration of the notions introduced in the latter section, let us in-

vestigate the duality, between Ω1
Der(A) and Der(A) and between Der(A) and

Ω1
Der(A). We summarize the result in the following theorem.

THEOREM 1 One has Ω1
Der(A) = (Ω1

Der(A))∗A∗A. More precisely, one has

canonically:

a) Ω1
Der(A))∗A = Der(A) and the duality is separated,

b) (Der(A))∗A = Ω1
Der(A) and the duality is separated.

Proof. By the universal property of d : A → Ω1
Der(A), [9], we know that

we have canonically HomA
A(Ω1

Der(A),M) = Der(A,M) for any diagonal bi-

module M ; so the equality of a) follows by taking M = A. The corre-

sponding duality is separated since Ω1
Der(A) is diagonal (in fact this follows

directly from the definitions). On the other hand, the equality b) is just

the definition of Ω1
Der(A) and the corresponding duality is separated because

a) implies that the Z(A)-module Der(A) is A-diagonal. (Actually this last
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statement also follows directly from the fact that if X ∈ Der(A) is such that

ω(X) = 0, ∀ω ∈ Ω1
Der(A), then da(X) = X(a) = 0, ∀a ∈ A, which means

X = 0). �

This theorem shows exactly in what sense the minimal bimodule of derivation-

based one-forms Ω1
Der(A) is “dense” in the maximal one Ω1

Der(A). Applied

to the case where A is the Heisenberg algebra, it implies that the algebra

Ω̂Der(A) introduced in [5] in connection with the noncommutative symplectic

structure of quantum mechanics is just ΩDer(A) (and in fact all the cochains

in this case).

In Section 4, we have defined a linear connection to be a connection on

Ω1
Der(A). Part b) of the theorem shows that there is a more restrictive notion

of linear connection, namely a connection relative to A on the Z(A)-module

Der(A) because by applying the second part of lemma 1, to such a con-

nection corresponds a unique connection on Ω1
Der(A) and this mapping is

affine and injective. In fact, given a connection ∇ on Der(A) the torsion of

the corresponding linear connection can be identified with the element T of

HomZ(A)(Λ
2
Z(A)Der(A),Der(A)) defined by

TX,Y = ∇X(Y )−∇Y (X)− [X, Y ], ∀X, Y ∈ Der(A).

Part a) of the theorem combined with lemma 1 shows that there is an even

more restrictive notion of linear connection, namely a connection on Ω1
Der(A).

8 Reality and hermitian structures

In this section A is a unital ∗-algebra over C. An involutive bimodule or a

∗-bimodule over A is a bimodule M equipped with an antilinear involution

m 7→ m∗ such that (amb)∗ = b∗m∗a∗, ∀m ∈ M and ∀a, b ∈ A. Dually an
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involutive Z(A)-module is a Z(A)-module N equipped with an antilinear in-

volution n 7→ n∗ such that (zn)∗ = z∗n∗, ∀n ∈ N and ∀z ∈ Z(A). Given an

involutive bimodule M then the Z(A)-module HomA
A(M,A) is an involutive

Z(A)-module with involution µ 7→ µ∗ given by µ∗(m) = (µ(m∗))∗, ∀µ ∈
HomA

A(M,A) and ∀m ∈ M . Given an involutive Z(A)-module N then the

diagonal bimodule N∗A = HomZ(A)(N,A) is an involutive bimodule with in-

volution ν 7→ ν∗ given by ν∗(n) = (ν(n∗))∗, ∀ν ∈ N∗A and ∀n ∈ N . Elements

of such sets satisfying λ = λ∗ are called hermitian or real. The Z(A)-module

Der(A) is an involutive Z(A)-module with involution X 7→ X∗ defined by

X∗(a) = (X(a∗))∗, ∀X ∈ Der(A) and ∀a ∈ A. Ω1
Der(A) and Ω1

Der(A) are

therefore involutive bimodules. More generally one extends the involution

to ΩDer(A) and ΩDer(A) by setting ω∗(X1, . . . , Xk) = (ω(X∗1 , . . . , X
∗
k))∗ for

ω ∈ Ωk
Der(A), (or Ωk

Der(A)) and Xi ∈ Der(A). With this involution ΩDer(A)

is a differential graded ∗-algebra in the sense that one has d(ω∗) = (dω)∗ and

(αβ)∗ = (−1)k`β∗α∗ for ω ∈ ΩDer(A) and α ∈ Ωk
Der(A), β ∈ Ω`

Der(A); the

subspace ΩDer(A) is a differential graded ∗-subalgebra.

It is more or less well known that from the point of view of quantum theory

as well as from the point of view of spectral theory the good generalization

of the notion of algebra of real functions is not the notion of real associative

algebra but is the notion of the real Jordan algebra of all hermitian elements

of an involutive complex algebra, i.e. ∗-algebra, which plays the role of the

noncommutative generalization of the algebra of complex functions. It fol-

lows that what must generalize the module of sections of a real vector bundle

for instance, or more generally the notion of module over an algebra of real

functions is not the notion of right or left module or a notion of bimod-

ules over a real noncommutative algebra but the set of real (i.e. hermitian)
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elements of a ∗-bimodule over a ∗-algebra which plays the role of the sec-

tions of the complexified vector bundle. Thus the natural category at hand

is the category of involutive central bimodules over a ∗-algebra, and even

more, if one thinks of real vector bundles for instance, the category of invo-

lutive diagonal bimodules and for the finite case the category of involutive

reflexive bimodules over a ∗-algebra, (with some other conditions replacing

projectivity). Notice also that one can alternatively use the dual notion of

the real elements of an involutive Z(A)-module or of an involutive diago-

nal or involutive reflexive Z(A)-module. In fact, there is a more restrictive

notion of involutive diagonal and involutive reflexive which we call diagonal

involutive and reflexive involutive which we now define. For any ∗-algebra

A and any set I, AI is canonically an involutive bimodule. A diagonal in-

volutive bimodule over A, (resp. a A-diagonal involutive Z(A)-module), is

a A-bimodule (resp. a Z(A)-module) which is isomorphic to an involutive

subbimodule (resp. sub-Z(A)-module) of AI for some set I. These notions

are A-dual and therefore if M is diagonal involutive M∗A∗A is also so, and if

furthermore M = M∗A∗A we say that M is reflexive involutive. Notice that

ΩDer(A),Der(A) and ΩDer(A) are diagonal involutive.

Recall that a hermitian form on a right A-module E, [2], [3], is a sesquilinear

mapping h : E × E → A such that h(ϕa, ψb) = a∗h(ϕ, ψ)b and (h(ϕ, ψ))∗ =

h(ψ, ϕ), ∀ϕ, ψ ∈ E and ∀a, b ∈ A.

For a bimodule M , [15], a right-hermitian form on M , or simply a hermitian

form on M when no confusion arises, will be a sesquilinear mapping h : M ×
M → A such that h(ma, nb) = a∗h(m,n)b and (h(m,n))∗ = h(n,m), ∀m,
n ∈ M and ∀a, b ∈ A, as above, and h(m, cn) = h(c∗m,n), ∀m,n ∈ M

and ∀c ∈ A. The reason why the latter condition has been included is
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that it allows to compose hermitian forms on right modules with (right-)

hermitian forms on bimodules. Namely if E is a right module with a her-

mitian form hE and if M is a bimodule with a right-hermitian form hM

then one defines a hermitian form h on the right module E⊗
A
M by setting

h(ϕ⊗m,ψ ⊗ n) = hM(m,hE(ϕ, ψ)n)(= hM(hE(ψ, ϕ)m,n)), ∀ϕ, ψ ∈ E and

∀m,n ∈ M . It is also clear that if E is a bimodule and if hE is a right-

hermitian form then the above definition gives a right-hermitian form h on

the bimodule E⊗
A
M . Furthermore, this composition of (right-) hermitian

forms is associative in an obvious sense. Assume now that the positive cone

A+ = {
∑

i a
∗
i ai|ai ∈ A} of A is strict i.e. that one has A+

⋂
(−A+) = {0},

then a (right-) hermitian form h on a right module or a bimodule E is posi-

tive if h(ϕ, ϕ) ∈ A+, ∀ϕ ∈ E and strictly positive if furthermore h(ϕ, ϕ) = 0

implies ϕ = 0.

Let M be an involutive bimodule and let g be a bimodule homomorphism

of M ⊗
A
M into A, i.e. g ∈ HomA

A(M ⊗
A
M,A), such that (g(m,n))∗ =

g(n∗,m∗) then (m,n) 7→ h(m,n) = g(m∗, n) is a right-hermitian form on

M . Conversely, if h is a hermitian form on M then one defines a g ∈
HomA

A(M ⊗
A
M,A) by setting g(m,n) = h(m∗, n) and one has (g(m,n))∗ =

g(n∗,m∗). Such a g ∈ HomA
A(M ⊗

A
M,A) satisfying (g(m,n))∗ = g(n∗,m∗)

will be called a real inner product on the involutive bimodule M ; g(m,m)

is real whenever m is real. We shall say that g is positive (resp. strictly

positive) whenever the corresponding hermitian form is so.

Let M be a bimodule and let M ′ = HomA(M,A) be the left A-module dual

of M as a right A-module. The left module M ′ is in fact a bimodule if

one defines α.a for α ∈ M ′ and a ∈ A by (α.a)(m) = α(am), ∀m ∈ M .

If M is a central bimodule, then M ′ is also a central bimodule since, for

α ∈ M ′, m ∈ M and z ∈ Z(A), one has (zα)(m) = zα(m) = α(m)z =
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α(mz) = α(zm) = (αz)(m). Assume now that M is an involutive bimodule

equipped with a real inner product g. One defines a bimodule homomor-

phism g] ∈ HomA
A(M,M ′) by setting g](m)(n) = g(m,n) ∀m,n ∈ M . The

real inner product g on M will be said to be nondegenerate whenever g] is

injective. If g is strictly positive, then g is nondegenerate.

Given an involutive central bimodule M , a connection ∇ on M will be said

to be real if (∇X(m))∗ = ∇X∗(m
∗). If g is a real inner product on M , a real

connection ∇ on M will be said to be compatible with g if one has

X(g(m,n)) = g(∇Xm,n) + g(m,∇Xn), ∀m,n ∈M, ∀X ∈ Der(A).

With obvious notations the above condition also reads

Xg(m⊗
A
n) = g(∇⊗2

X (m⊗
A
n)) or X ◦ g = g ◦ ∇⊗2

X .

Notice that a nondegenerate real inner product g on Ω1
Der(A) is not yet a

complete noncommutative generalization of the notion of pseudo-riemannian

structure (and of riemannian structure whenever g is strictly positive); indeed

the noncommutative generalization of the symmetry is still missing.

9 Noncommutative (pseudo-)riemannian

structures

In this section A is again a unital ∗-algebra over C. We wish to investigate

what kind of additional symmetry one has to impose on a nondegenerate real

inner product on Ω1
Der(A) in order that it can be considered as a noncommu-

tative generalization of a pseudo-riemannian metric. Although the solution

is quite obvious in simple situations, for instance if A is finite-dimensional,
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this is not the case for a general ∗-algebra A as we shall see. Fortunately, by

taking a dual point of view, there is a natural generalization of the notion of a

pseudo-riemannian metric on the Z(A)-module Der(A). We define a pseudo-

metric to be a symmetric Z(A)-bilinear mapping g∗ of Der(A)×Der(A) into

A, i.e. g∗ ∈ (S2
Z(A)Der(A))∗A , which is real, i.e. (g∗(X, Y ))∗ = g∗(X

∗, Y ∗),

and which is nondegenerate in the sense that the corresponding mapping

g]∗ : Der(A) → Ω1
Der(A) defined by g]∗(X)(Y ) = g∗(X, Y ) is injective. A con-

nection ∇ relative to A on the Z(A)-module Der(A) which is torsion-free,

i.e. which satisfies ∇X(Y ) − ∇Y (X) = [X, Y ], and which is such that one

has Z(g∗(X, Y )) = g∗(∇Z(X), Y ) + g∗(X,∇X(Y )) for X, Y, Z ∈ Der(A) will

be called a Levi-Civita connection for g∗. Summing over the cyclic permuta-

tions of the last equation with signs + +− and using the symmetry and the

vanishing of the torsion one obtains

2g∗(∇X(Y ), Z) = X(g∗(Y, Z)) + Y (g∗(X,Z))− Z(g∗(X, Y ))
+g∗([X, Y ], Z)− g∗([Y, Z], X) + g∗([Z,X], Y ).

So if there exists such a Levi-Civita connection for g∗, then it is unique

since g∗ is nondegenerate. It follows from the reality of g∗ and from the

uniqueness that a Levi-Civita connection for g∗ is real, i.e. that one has

(∇X(Y ))∗ = ∇X∗(Y
∗). As pointed out in Section 7, such a connection can

be identified with a connection on Ω1
Der(A) (i.e. with a linear connection)

which is torsion-free and the above reality condition implies that it is a

real connection on Ω1
Der(A) in the sense of Section 8. We are now in a

position to discuss the additional symmetry that one has to impose on a

nondegenerate real inner product on Ω1
Der(A) in order that it generalize a

pseudo-riemmannian metric. Both Ω1
Der(A)⊗

A
Ω1

Der(A) and (S2
Z(A)Der(A))∗A

are sub-bimodules of the diagonal bimodule (Der(A) ⊗
Z(A)

Der(A))∗A of all

Z(A)-bilinear mappings of Der(A) × Der(A) into A. One defines a bi-
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module automorphism σ of (Der(A) ⊗
Z(A)

Der(A))∗A by setting σ(b)(X, Y ) =

b(Y,X) for b ∈ (Der(A) ⊗
Z(A)

Der(A))∗A and X, Y ∈ Der(A). The set of

all σ-invariant elements constitutes the bimodule (S2
Z(A)Der(A))∗A whereas

Ω1
Der(A)⊗

A
Ω1

Der(A) is not stable by σ in general. The latter point is the

only draw back to writing the additional symmetry on the nondegener-

ate real inner product on Ω1
Der(A). Indeed, suppose that A is such that

Ω1
Der(A)⊗

A
Ω1

Der(A) is stable by σ, for instance assume that

Ω1
Der(A)⊗

A
Ω1

Der(A) = (Der(A) ⊗
Z(A)

Der(A))∗A

which is the case when A is finite-dimensional, then one can take the pseudo-

metrics in Ω1
Der(A)⊗

A
Ω1

Der(A). One sees, by duality, that in order that a non-

degenerate real inner product g be a generalization of a pseudo-riemannian

metric, it must be σ-invariant, i.e. g = g ◦ σ. In any case, in our frame-

work, we can content ourself with the above definition of pseudo-metric. It

is worth noticing that it has been suggested in [14] that one can generalize

our definition of linear connections in the case where ΩDer(A)⊗
A

ΩDer(A) is σ-

invariant to other differential calculi (non derivation-based) by generalizing

the bimodule homomorphism σ. This latter approach has been used in two

simple cases [8],[13].

Conclusion

This paper is the first one of a series. Here we essentially introduce the

basic definitions and motivations without paying attention to the existence

problems. Also we have not introduced characteristic classes but we have

contented ourself with some comments on what they cannot be, (factorization

of inner derivations etc.). It must be clear that, in order to define such classes
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as well as to develop a corresponding K-theory, one must restrict attention

to a class of bimodules (and Z(A)-modules) which is smaller than the class

of all central bimodules (and all Z(A)-modules). It is also obvious that the

(finite projective) right and left modules together with their tensor products

and their tensor products with the appropriate bimodules have to be taken

into account. It is also worth noticing here that many notions introduced

in this paper do not refer to the specific differential calculus (derivation-

based) that we use and could be applied to other differential calculi. Finally

here we have worked in the purely algebraic setting; but one can easily put

everything in the setting of convenient vector spaces in order to eventually

take into account topologies as in [10].
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