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DIFFERENTIABLE PERTURBATION

OF UNBOUNDED OPERATORS

Andreas Kriegl, Peter W. Michor

Abstract. If A(t) is a C1,α-curve of unbounded self-adjoint operators with com-

pact resolvents and common domain of definition, then the eigenvalues can be pa-

rameterized C1 in t. If A is C∞ then the eigenvalues can be parameterized twice
differentiably.

Theorem. Let t 7→ A(t) for t ∈ R be a curve of unbounded self-adjoint operators
in a Hilbert space with common domain of definition and with compact resolvent.

(A) If A(t) is real analytic in t ∈ R, then the eigenvalues and the eigenvectors
of A(t) may be parameterized real analytically in t.

(B) If A(t) is C∞ in t ∈ R and if no two unequal continuously parameterized
eigenvalues meet of infinite order at any t ∈ R, then the eigenvalues and
the eigenvectors can be parameterized smoothly in t, on the whole parameter
domain.

(C) If A is C∞, then the eigenvalues of A(t) may be parameterized twice differ-
entiably in t.

(D) If A(t) is C1,α for some α > 0 in t ∈ R, then the eigenvalues of A(t) may
be parameterized in a C1 way in t.

Part (A) is due to Rellich [10] in 1940, see also [2] and [6], VII, 3.9. Part (B) has
been proved in [1], 7.8, see also [8], 50.16, in 1997; there we gave also a different
proof of (A). The purpose of this paper is to prove parts (C) and (D).

Both results cannot be improved to obtain a C1,β-parameterization of the eigen-
values for some β > 0, by the first example below. In our proof of (D) the assump-
tion C1,α cannot be weakened to C1, see the second example. For finite dimensional
Hilbert spaces part (D) has been proved under the assumption of C1 by Rellich [11],
with a small inaccuracy in the auxiliary theorem on p. 48: Condition (4) must be
more restrictive, otherwise the induction argument on p. 50 is not valid, since the
proof on p. 52 relies on the fact that all values coincide at the point in question.
A proof can also be found in [6], II, 6.8. We need a strengthened version of this
result, thus our proof covers it also.
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hints.
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Definitions and remarks. That A(t) is a real analytic, C∞, or Ck,α curve of
unbounded operators means the following: There is a dense subspace V of the
Hilbert space H such that V is the domain of definition of each A(t), and such that
A(t)∗ = A(t). Moreover, we require that t 7→ 〈A(t)u, v〉 is real analytic, C∞, or
Ck,α for each u ∈ V and v ∈ H. This implies that t 7→ A(t)u is of the same class
R → H for each u ∈ V by [8], 2.3 or [5], 2.6.2. This is true because Ck,α can be
described by boundedness conditions only; and for these the uniform boundedness
principle is valid. A function f is called Ck,α if it is k times differentiable and for
the k-th derivative the expression f(k)(t)−f(k)(s)

|t−s|α is locally bounded in t 6= s.
A sequence of continuous, real analytic, smooth, or twice differentiable functions

λi is said to parameterize the eigenvalues, if for each z ∈ R the cardinality |{i :
λi(t) = z}| equals the multiplicity of z as eigenvalue of A(t).

The proof will moreover furnish the following (stronger) versions:
(C1) If A(t) is C3n,α in t and if the multiplicity of an eigenvalue never exceeds

n, then the eigenvalues of A may be parameterized twice differentiably.
(C2) If the multiplicity of any eigenvalue never exceeds n, and if the resolvent

(A(t)− z)−1 is C3n into L(H,H) in t and z jointly, then the eigenvalues of
A(t) may be parameterized twice differentiably in t.

(D1) If the resolvent (A(t)− z)−1 is C1 into L(H,H) in t and z jointly, then the
eigenvalues of A(t) may be parameterized in a C1 way in t.

(D2) In the situations of (D) and (D1) the following holds: For any continuous
parameterization λi(t) of all eigenvalues of A(t), each function λi has right
sided derivative λ(+)

i (t) and left sided one λ(−)
i (t) at each t, and {λ(+)

i (t) :
λi(t) = z} equals {λ(−)

i (t) : λi(t) = z} with correct multiplicities.

Open problem. Construct a C1-curve of unbounded self-adjoint operators with
common domain and compact resolvent such that the eigenvalues cannot be ar-
ranged C1.

Applications. Let M be a compact manifold and let t 7→ gt be a smooth curve
of smooth Riemannian metrics on M . Then we get the corresponding smooth
curve t 7→ ∆(gt) of Laplace-Beltrami operators on L2(M). By theorem (C) the
eigenvalues can be arranged twice differentiably.

Let Ω be a bounded region in Rn with smooth boundary, and let H(t) = −∆ +
V (t) be a C1,α-curve of Schrödinger operators with varying potential and Dirichlet
boundary conditions. Then the eigenvalues can be arranged C1.

Example. This is an elaboration of [1], 7.4. Let S(2) be the vector space of
all symmetric real (2 × 2)-matrices. We use the general curve lemma [8], 12.2:
There exists a converging sequence of reals tn with the following property: Let An ∈
C∞(R, S(2)) be any sequence of functions which converges fast to 0, i.e., for each
k ∈ N the sequence nkAn is bounded in C∞(R, S(2)). Then there exists a smooth
curve A ∈ C∞(R, S(2)) such that A(tn + s) = An(s) for |s| ≤ 1

n2 , for all n.
We use it for

An(t) :=
( 1

2n2
t

2n

t
2n − 1

2n2

)
=

1
2n2

(
1 t

sn
t
sn
−1

)
, where sn := 2n−n

2
≤ 1
n2
.
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The eigenvalues of An(t) and their derivatives are

λn(t) = ± 1
2n2

√
1 + ( t

sn
)2, λ′n(t) = ± 2n

2−2nt√
1 + ( t

sn
)2
.

Then

λ′(tn + sn)− λ′(tn)
sαn

=
λ′n(sn)− λ′n(0)

sαn
= ±2n

2−2nsn

sαn
√

2

= ±2n(α(n−1)−1)

√
2

→∞ for α > 0.

By [1], 2.1, we may always find a twice differentiable square root of a non-negative
smooth function, so that the eigenvalues λ are functions which are twice differen-
tiable but not C1,α for any α > 0.

Note that the normed eigenvectors cannot be chosen continuously in this example
(see also example [9], §2). Namely, we have

A(tn) = An(0) =
1

2n2

(
1 0
0 −1

)
, A(tn + sn) = An(sn) =

1
2n2

(
1 1
1 −1

)
.

Resolvent Lemma. If A is Ck,α for some 1 ≤ k ≤ ∞ and α > 0, then the
resolvent (t, z) 7→ (A(t)− z)−1 ∈ L(H,H) is Ck on its natural domain.

By C∞,α we mean C∞.

Proof. By definition the function t 7→ 〈A(t)v, u〉 is of class Ck,α for each v ∈ V
and u ∈ H. Then by [4], 5 or [8], 2.3 (extended from Ck,1 to Ck,α with essentially
the same proof), the curve t 7→ A(t)v is of class Ck,α into H.

For each t consider the norm ‖u‖2t := ‖u‖2 + ‖A(t)u‖2 on V . Since A(t) = A(t)∗

is closed, (V, ‖ ‖t) is again a Hilbert space with inner product 〈u, v〉t := 〈u, v〉 +
〈A(t)u,A(t)v〉.

(1) Claim. All these norms ‖ ‖t on V are equivalent, locally uniformly in t.
We then equip V with one of the equivalent Hilbert norms, say ‖ ‖0.

Note first that A(t) : (V, ‖ ‖s) → H is bounded since the graph of A(t) is
closed in H ×H, contained in V ×H and thus also closed in (V, ‖ ‖s) ×H. For
fixed u, v ∈ V , the function t 7→ 〈u, v〉t = 〈u, v〉 + 〈A(t)u,A(t)v〉 is Ck,α since
t 7→ A(t)u is it. Thus it is also locally Lipschitz (C0,1 = Lip0). By the multilinear
uniform boundedness principle ([8], 5.18) or [5], 3.7.4) the mapping t 7→ 〈 , 〉t
is C0,1 into the space of bounded bilinear forms on (V, ‖ ‖s) for each fixed s. By
the exponential law [5], 4.3.5 for Lip0 the mapping (t, u, v) 7→ 〈u, v〉t is C0,1 from
R × (V, ‖ ‖s) × (V, ‖ ‖s) → R for each fixed s. Therefore and by homogeneity
in (u, v) the set {‖u‖t : |t| ≤ K, ‖u‖s ≤ 1} is bounded by some LK,s in R. Thus
‖u‖t ≤ LK,s‖u‖s for all |t| ≤ K, i.e. all Hilbert norms ‖ ‖t are locally uniformly
equivalent, and claim (1) follows.

By [4], 5 and the linear uniform boundedness theorem we see that t 7→ A(t) is
a Ck,α-mapping R → L(V,H), and thus is Ck in the usual sense, again by [4], 5.
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Alternatively, if reference [4] is not available, one may use [8], 2.3, extended from
Ck,1 to Ck,α with essentially the same proof, and note that it suffices to test with
linear mappings which recognize bounded sets, by [8], 5.18. Alternatively again,
one may use [5], 3.7.4 + 4.1.12, extended from Ck,1 to Ck,α.

If for some (t, z) ∈ R× C the bounded operator A(t)− z : V → H is invertible,
then this is true locally and (t, z) 7→ (A(t)− z)−1 : H → V is Ck, by the chain rule,
since inversion is smooth on the Banach space L(V,H). �

Since each A(t) is Hermitian with compact resolvent the global resolvent set
{(t, z) ∈ R×C : (A(t)−z) : V → H is invertible} is open and connected. Moreover,
(A(t) − z)−1 : H → H is a compact operator for some (equivalently any) (t, z) if
and only if the inclusion i : V → H is compact, since i = (A(t)− z)−1 ◦ (A(t)− z) :
V → H → H.

Resolvent example. The resolvent lemma cannot be improved. We describe a
curve A(t) of self adjoint unbounded operators on `2 with compact resolvent and
common domain V of definition, such that t 7→ 〈A(t)v, u〉 is C1 for all v ∈ V and
u ∈ `2, but t 7→ A(t) is even not differentiable at 0 into L(V, `2).

Let λ1 ∈ C∞(R,R) be nonnegative with compact support and λ′1(0) = 0. We
consider the multiplication operator B(t) on `2 given on the standard basis en by
B(t)en := (1 + 1

nλ1(nt))en =: λn(t)en which is bounded with bounded inverse.
Then the function t 7→ 〈B(t)x, y〉 is C1 with derivative 〈B1(t)x, y〉, where B1(t) is
given by B1(t)en = λ′n(t)en = λ′1(nt)en, since for fixed t we have that

µn(s) :=
λn(t+ s)− λn(t)

s
− λ′n(t) =

λ1(nt+ ns)− λ1(nt)
ns

− λ′1(nt)

converges to 0 for s→ 0 pointwise in n and is bounded uniformly in n:

∣∣∣∑
n

µn(s)xnyn
∣∣∣ ≤ ∞∑

n=N+1

|µn(s)xnyn|+
N∑
n=1

|µn(s)xnyn| ≤ sup
n
|µn(s)|ε+ ε‖x‖‖y‖.

Moreover, 〈B1(t)x, y〉 is continuous in t since λ′n(t+s)−λ′n(t) = λ′1(nt+ns)−λ′1(nt)
also converges to 0 for s → 0 pointwise in n and is bounded uniformly in n. But
t 7→ B(t) is not differentiable at 0 into L(`2, `2) since∥∥∥B(t)−B(0)

t
−B1(0)

∥∥∥ = sup
n

∣∣∣λn(t)− λn(0)
t

−λ′n(0)
∣∣∣ = sup

n

∣∣∣λ1(nt)− λ1(0)
nt

−λ′1(0)
∣∣∣

is bounded away from 0, for t → 0. Finally, let C : `2 → `2 be the compact
invertible given by Cen = 1

nen. We take V = C(`2), and A(t) = B(t) ◦ C−1.

Proof of the theorem. By the resolvent lemma, (D1) implies (D), and likewise
(C2) implies (C) and (C1).

Proof of (D1).
(2) Claim. If f : (a, b)→ R is continuous and if f(t) has only finitely many clus-

ter points for t→ b then the limit limt↗b f(t) exists. Otherwise, by the intermediate
value theorem, we have a whole interval of cluster points.
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(3) Claim. Let z be an eigenvalue of A(s) of multiplicity N . Then there exists an
open box (s− δ, s+ δ)× (z− ε, z+ ε) and C1-functions µ1, . . . , µN : (s− δ, s+ δ)→
(z − ε, z + ε) which parameterize all eigenvalues λ with |λ − z| < ε of A(t) for
|t− s| < δ with correct multiplicities.

We choose a simple closed smooth curve γ in the resolvent set of A(s) for fixed
s enclosing only z among all eigenvalues of A(s). Since the global resolvent set is
open, no eigenvalue of A(t) lies on γ, for t near s. Since

t 7→ − 1
2πi

∫
γ

(A(t)− z)−1 dz =: P (t, γ) = P (t)

is a C1 curve of projections (on the direct sum of all eigenspaces corresponding
to eigenvalues in the interior of γ) with finite dimensional ranges, the ranks (i.e.
dimension of the ranges) must be constant: it is easy to see that the (finite) rank
cannot fall locally, and it cannot increase, since the distance in L(H,H) of P (t) to
the subset of operators of rank ≤ N = rank(P (s)) is continuous in t and is either 0
or 1. So for t near s, say t ∈ I := (s− δ, s+ δ), there are equally many eigenvalues
in the interior of γ, and we may call them λi(t) for 1 ≤ i ≤ N (repeated with
multiplicity), so that each λi is continuous (this is well known and follows easily
from the proof of (C2)).

Then the image of t 7→ P (t, γ), for t near s, describes a C1 finite dimensional
vector subbundle of R × H → R, since its rank is constant. For each t choose
an orthonormal system of eigenvectors vj(t) of A(t) corresponding to these λj(t).
They form a (not necessarily continuous) framing of this bundle. For any t near s
and any sequence tk → t there is a subsequence again denoted by tk such that each
vj(tk) → wj(t) where the wi(t) form again an orthonormal system of eigenvectors
of A(t) for the sum P (t)(H) of the eigenspaces of the λi(t) (Here we use the local
triviality of the vector bundle). Now consider

(4)
A(t)− λi(t)

tk − t
vi(tk) +

A(tk)−A(t)
tk − t

vi(tk)− λi(tk)− λi(t)
tk − t

vi(tk) = 0.

For t = s we take the inner product of (4) with each wj(s), note that then the
first summand vanishes since all λi(s) agree, and let k → ∞ to obtain that (for
j 6= i) the wi(s) are a basis of eigenvectors of P (s)A′(s)|P (s)(H) with eigenvalues
(for j = i) limk

λi(tk)−λi(s)
tk−s . By (2),

lim
h↘0

λi(s+ h)− λi(s)
h

= ρi,

where the ρi are the eigenvalues of P (s)A′(s)|P (s)(H) (with correct multiplicities).
So the right handed derivative λ(+)

j (s) of each λj exists at s. Similarly the left

handed derivative λ(−)
j (s) exists, and they form the same set of numbers with the

correct multiplicities. Thus there exists a permutation σ of {1, . . . , N} such that
the

(5) νi(t) :=
{
λi(t) for t ≤ s
λσ(i)(t) for t ≥ s
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parameterize all eigenvalues in the box by continuous functions which are differen-
tiable at s.

For t 6= s, take the inner product of (4) with wi(t) to conclude that

(6) λ
(+)
i (t) = 〈A′(t)wi(t), wi(t)〉 for a unit eigenvector wi(t) of A(t) with eigen-

value λi(t).

Now we show claim (3) by induction on N . Let t1 ∈ I be such that not all λi(t1)
agree. Then {1, . . . , N} decomposes into the subsets {i : λi(t1) = w}. Then for i
and k in different subsets λi(t) 6= λk(t) for all t in an open interval I1 containing
t1. Thus by induction on each subset (3) holds on I1.

Next let I2 ⊆ I be an open interval containing only points t1 as above. Let J be
a maximal open subinterval on which (3) holds. Assume for contradiction that the
right (say) endpoint b of J belongs to I2, then there is a C1-parameterization of
all N eigenvalues on an open interval Ib containing b by the argument above. Let
t2 ∈ J ∩ Ib. Renumbering the C1 parameterization to the right of t2 suitably we
may extend the C1 parameterization beyond b, a contradiction. Thus (3) holds on
I2.

Now we consider the closed set E = {t ∈ I : λ1(t) = · · · = λN (t)}. Then
I \ E is open, thus a disjoint union of open intervals on which there exists a C1-
parameterization µi of all eigenvalues. Consider first the set E′ of all isolated points
in E. Then E′ ∪ (I \ E) is again open and thus a disjoint union of open intervals,
and for each point t ∈ E′ we apply in turn the following arguments: extending
all µi’s by the single value at t we get a continuous extension near t. Then by
(5), we may renumber the µi to the right of t in such a way that they fit together
differentiably at t. The derivatives are also continuous at t: They have only finitely
many clusterpoints for tk → t by applying (6) to tk and choosing a subsequence
such that the wi(tk) converge. Now we apply the arguments surrounding (4) with
the vj(tk) replaced by wj(tk) to conclude that (6) converges to ρi(t) = µ′i(t). Thus
(3) holds on E′ ∪ (I \ E).

We extend each µi to the whole of I by taking the single continuous function on
E \ E′. Let t ∈ E \ E′. Then for the parameterization νi of (5) of all eigenvalues
which is differentiable at t all derivatives ν′i(t) agree since t is a cluster point of E.
Thus also µ′i(t) exists and equals ν′i(t). So all µi are differentiable on I.

To see that µ′i is continuous at t ∈ E\E′, let tn → t be such that µ′i(tn) converges
(to a cluster point or ±∞). Then by (6) we have µ′i(tk) = 〈A′(tk)wi(tk), wi(tk)〉
for eigenvectors wi(tk) of A(tk) with eigenvalue µi(tk). Passing to a subsequence
we may assume that the wi(tk) converge to an orthonormal basis of eigenvectors
of A(t), then 〈A′(tk)wi(tk), wi(tk)〉 converges to some of the equal eigenvalues ρi of
P (t)A′(t)|P (t)(H) which also equal the ν′i(t).

So (3) is completely proved.
(7) Claim. Let I be a compact interval. Let t 7→ λi(t) be a differentiable eigen-

value of A(t), defined on some subinterval of I. Then

|λi(t1)− λi(t2)| ≤ (1 + |λi(t2)|)(ea|t1−t2| − 1)

holds for a positive constant a depending only on I.
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From (6) we conclude, where Vt = (V, ‖ ‖t),

|λ′i(t)| ≤ ‖A′(t)‖L(Vt,H)‖wi(t)‖Vt‖wi(t)‖H

= ‖A′(t)‖L(Vt,H)

√
‖wi(t)‖2H + ‖A(t)wi(t)‖2H · 1

= ‖A′(t)‖L(Vt,H)

√
1 + λi(t)2 ≤ C + C|λi(t)|,

for a constant C since all norms ‖ ‖t are locally in t uniformly equivalent, see
claim (1) above. By Gronwall’s lemma (see e.g. [3], (10.5.1.3)) this implies claim
(7).

By the following arguments we can conclude that all eigenvalues may be pa-
rameterized in a C1 way. Let us first number all eigenvalues of A(0) (increasingly,
say).

We consider families of C1-functions (µi)i∈α indexed by ordinals α, defined on
open intervals Ii containing some fixed t0, which parameterize eigenvalues.

The set of all these sequences is partially ordered by inclusion of ordinals and
then by restriction of the component functions. Obviously for each increasing chain
of such sequences the union is again such a sequence. By Zorn’s lemma there exists
a maximal family (µi).

We claim that for any maximal family each component function µi is globally
defined: If not let b < ∞ be the (right, say) boundary point of Ii. By claim (7)
the limit limt↗b µi(t) =: z exists. By claim (3) there exists a box (b − δ, b + δ) ×
(z − ε, z + ε) such that all eigenvalues λ with |λ− z| < ε of A(t) for |t− b| < δ are
parameterized by C1 functions λi : (b− δ, b+ δ)→ (z− ε, z+ ε) (with multiplicity).
Consider the µj hitting this box (at the vertical boundaries only). The endpoints
of the corresponding intervals Ij give a partition of (b− δ, b+ δ) into finitely many
subintervals. We apply the lemma below on each subinterval and glue at the ends
of the subintervals in C1-fashion using (5) to obtain an extension of at least µi, so
the family was not maximal.

Finally we claim that any maximal family (µi) parameterizes all eigenvalues of
A(t) with right multiplicities, for each t ∈ R. If not, there is an eigenvalue z of
A(t0) with |{i : µi(t0) = z}| less than the multiplicity of z. By claim (3) and the
lemma below we can then conclude again that the sequence was not maximal. �

Lemma. Suppose that λ1, . . . , λN are real-valued C1 (twice differentiable) func-
tions defined on an interval I, and that µ1, . . . , µk for k ≤ N are also C1 (twice
differentiable) functions on I such that |{j : µj(t) = z}| ≤ |{i : λi(t) = z}| for all
t ∈ I and z ∈ R.

Then there exist C1 (twice differentiable) functions µk+1, . . . , µN on I such that
for all t ∈ I and z ∈ R we have |{j : 1 ≤ j ≤ N,µj(t) = z}| = |{i : λi(t) = z}| .

Proof. We treat the case C1 and indicate the necessary changes in brackets for
the twice differentiable case.

We use induction on N . Let us assume that the statement is true if the number
of functions is less than N .

First suppose that for given t1 ∈ I not all λi(t1) agree. Then for i ∈ {k : λ1(t1) =
λk(t1)} 63 j we have λi(t) 6= λj(t) for all t in an open interval I1 containing t1, and
similarly for the µj . Thus by induction for both groups the statement holds on I1.
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Now suppose that for no point t in I we have λ1(t) = · · · = λN (t). Let I1 be a
maximal open subinterval of I for which the statement is true with functions µ1

i for
i > k. Assume for contradiction that the right (say) endpoint b of I1 is an interior
point of I. By the first case, the statement holds for an open neighborhood I2 of
b, with functions µ2

i for i > k. Let t0 ∈ I1 ∩ I2. We may continue each solution µ1
i

in {t ∈ I1 : t ≤ t0} by a suitable solution µ2
π(i) on {t ∈ I2 : t ≥ t0} for a suitable

permutation π: Let tm ↗ t0. For every m there exists a permutation π of {1, . . . , n}
such that µ2

π(i)(tm) = µ1
i (tm) for all i. By passing to a subsequence, again denoted

tm, we may assume that the permutation does not depend on m. By passing again
to a subsequence we may also assume that (µ2

π(i))
′(tm) = (µ1

i )
′(tm) (and in the

twice differentiable case, again for a subsequence, that (µ2
π(i))

′′(tm) = (µ1
i )
′′(tm))

for all i and all m. So we may paste µ2
π(i)(t) for t ≥ t0 with µ1

i (t) for t < t0 to
obtain a C1 (twice differentiable) parameterization on an interval larger than I1, a
contradiction.

In the general case, we consider the closed set E = {t ∈ I : λ1(t) = · · · = λN (t)}.
Then I \E is open, thus a disjoint union of open intervals. By the second case the
result holds on each of these open intervals. Consider first the set E′ of all isolated
points in E. Then E′∪ (I \E) is again open and thus a union of open intervals, and
for each point t ∈ E′ we may renumber the µi to the right of t in such a way that
they fit together C1 (twice differentiable) at t. Thus the result holds on E′∪(I \E).

We extend each µi to the whole of I by taking the single continuous function on
E \E′. Let t ∈ E \E′. Then all λ′i(t) =: λ′(t) agree since t is cluster point of E (and
all λ′′i (t) =: λ′′(t) agree by considering second order difference quotients on points
in E). Thus µi is (twice) differentiable at t with µ′i(t) = λ′(t) (and µ′′i (t) = λ′′(t)).

In the C1 case we have still to check that µ′i is continuous at t ∈ E \ E′: Let
tn → t, then µ′i(tn) = λ′σn(i)(tn)→ λ′(t) = µ′i(t). �

Proof of (C2). By assumption the resolvent (A(t) − z)−1 is C3n jointly in (t, z)
where n may be ∞.

(8) Claim. Let z be an eigenvalue of A(s) of multiplicity N ≤ n. Then there
exists an open box (z − ε, z + ε) × (s − δ, s + δ) and twice differentiable functions
µ1, . . . , µN : (s− δ, s+ δ)→ (z− ε, z+ ε) which parameterize all eigenvalues λ with
|λ− z| < ε of A(t) for |t− s| < δ with correct multiplicities.

We choose a simple closed smooth curve γ in the resolvent set of A(s) for fixed
s enclosing only z among all eigenvalues of A(s). As in the proof of claim (3) we
see that

t 7→ − 1
2πi

∫
γ

(A(t)− z)−1 dz =: P (t, γ) = P (t)

is a C3n curve of projections with finite dimensional ranges of constant rank.
So for t near s, there are equally many eigenvalues in the interior of γ, and we

may call them µi(t) for 1 ≤ i ≤ N (repeated with multiplicity). Let us denote by
ei(t) for 1 ≤ i ≤ N a corresponding system of eigenvectors of A(t). Then by the
residue theorem we have

N∑
i=1

µi(t)pei(t)〈ei(t), 〉 = − 1
2πi

∫
γ

zp(A(t)− z)−1 dz
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which is C3n in t near s, as a curve of operators in L(H,H) of rank N .
(9) Claim. Let t 7→ T (t) ∈ L(H,H) be a C3n curve of operators of rank N in

Hilbert space such that T (0)T (0)(H) = T (0)(H). Then t 7→ Trace(T (t)) is C3n

near 0.
This is claim 2 from [1], 7.8 for C3n instead of C∞. We conclude that the Newton

polynomials

sp(t) :=
N∑
i=1

µi(t)p = − 1
2πi

Trace
∫
γ

zp(A(t)− z)−1 dz

are C3n for t near s. Hence also the elementary symmetric polynomials

σp(t) =
∑

i1<···<iN

µi1(t) . . . µip(t)

are C3n, and thus {µi(t) : 1 ≤ i ≤ N} is the set of roots of a polynomial of degree
N ≤ n with C3n coefficients. By [7] there is an arrangement of these roots such
that they become twice differentiable. So claim (8) follows.

The end of the proof is now similar to the end of the proof of (D1), where one
uses claim (7) (from the proof of (D1)), claim (8) instead of (3), and the lemma
above. �
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[2] Baumgärtel, Hellmut, Endlichdimensionale analytische Störungstheorie, Akademie-Verlag,
Berlin, 1972.
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