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ALGEBRAS 

P. Michor, W. Ruppert, K. Wegenkittl 

In this paper we introduce a general construction which as~ 
sociate~ an algebra A(e,b)with every pair (e,b~ where e is 
a Lie algebra and b is an invariant symmetric bilinear form 
on e. By virtue of this construction several well-known (as
sociative and non-associative)algebras can be dealt with un
der a unified view. We give characterizations of ,those pairs 
(e,b)which generate associative algebras A(e,b) and of those 

algebra~ which can be represented in the form A(t,b). 


1. ?assing from Lie al~~bras to algebras 

1.1. DEFINITION. Let C be a Lie algebra over a (commutat

ive) field k and let b: C X C~ k be an invariant (i.e. 

b([X,Y],Z) =b(X,[y,Z]) for all X,Y,Z€ e) symmetric bilinear 

form on ~. Then we define an a~gebra A(e,b), associate~ with 

the (C,b) as follows: As a vector space, A(C,b) is just 

. the direct sum C+k. The multiplication of A(C,bj is defined' 

by the formula: 

(X,s) (y,t) = ([X,y] +sY + tx, st+b(X,Y). 

Obviously, A(C,b) is an algebra and (O,1)is its identity. 

1.2. PROPOSITION. (i) If char k f: 2 then the algebra A(C,b) 


is commutative if and 'only if C is abelian. If char k 


then A(e,b) is always~~ommutative. 


(ii) ?uppose that' char k f: 2. Then (e,b) ~s isomorphic with 


(C' ,b l
) (i.e. there is a L algebra isomorphism <p: C -+ C' 


with b(X,Y) = b(<p(X;, <PlY») if and only if A(e,b) is iso
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morp9j.c with A(t/b) . :ror char k === 2 there are non-isomor

phic pairs (t,b), (t' ,b') isomorphic algebras 


A ( t, b) and A ( t I , b I ) 
 • 

(iii) A(t/b) is alwals power associative, i.e. we have 

x 2 x ::::: xx 2 for all x€' A(t,b) . 

(iv) We write Ass(x,y,z) for the associator x(yz} - (xy}z of 

three elementsx,y,z. In A(C,b) we have 

Ass«X,s}, (Y ,t), (Z,u» 

where 

U (X , Y , Z ) - - b (X I Y) Z + b (Y , Z ) X + [[ Z , X] ,Y] .
b 


In particular, A(t,b) is as§'ociative if and only if ~(X/Y'Z) 


= ° £or ~ll X,Y,Z et. 


(v) The map u sa,tisfies the identi
b 


ub(X,Y,Z)+ ub(Y,Z,X} + ~(Z,X,y) 0. 


(vi) If char k 1- 2,3 and A(C,b) is alternative (i.e. x(xy) 


x 2 y and (xy)y ~ xy2) then ~t is associative. 


Proof. Assertion (i) follows from the identity (X,s) (y,s)


- (Y, s) (X, t) :: (2[ X I Y] , 0) • 


(i,i) Obviously, any isomorphism <1>: (C,b)- «(',b') induces 

an isomorphism A(t,b} -A{t',b'), (X,s)-(<I>(X},s). Suppose 

now that char k # 2 ,and that w: A(t,b) -A(t',b') is an iso

morphism. Let X e t,\{ O} and write lJ1 (X, s):::;; (X', s' ). Since W 

preserves u:rlits, X' 1- 0. From w( (X,O),2) (W(X,0»2. we conclude 

that 2s'X' = ° and b(X,X) = s' <!+b ' (x',X'), thence Sl = ° and 

b(X,X} == b' (X' ,X'). 'Thus we get the isomorphism we need by defin

, ing lJ1*:t~t', lJi* (X)= XI, if X f. ° and W* (0) == 0. 

To construct a counterexample in case char k ; 2, let k = ~/2 
and choose a Qasis for k2, say { X, YL Then we take C to be 

k 2 with the trivial Lie structure and b = OJ for t' we take 

k 2 with the Lie structure defined by [X, Y] = X + Y; b I is de
. -

fined by stipulating J:)'-(X,X) ;b'(Y,Y) =b'(X,Y} =1. Then f, is 

not isomorphic with CI, but A(t,b) ;;:A(C' ,b'), via the mor

phism 'i':A(;:,b) --+ A(e' ,b') given by '¥(X,O) = (X,1)', 'i'(Y,O) = 

= (Y,1)j '¥(X,1) = (X,O), 'i'(Y,1) = (Y,O). 



3 r-HCHOR et al. 

The proof of assertions (iii) - (v) rest,s on simple computa

tions and is therefore left to the reader. 

(vi) By Bourbaki [2], p. 612, an algebra is alternative if 

and only if its associator is skew-symmetric. Thus if A(C,b) 

is al ternative then a is skew-symmetr ic and hen..:'"' (v) takes
b 


on the form 3a (X,y,Z) = 0, so (iv)implies the assertion.

b 

Remark. Note that in the proof of (v) and (vi)we did not use 

the assumption that b is symmetric. 

1.3. NOTATION. We write K for the Cartan-Killing form, 


K(X,Y; = Tr(adX ad Y). The set {Xc Clb(X,C)= O} is denoted 


with CJ., and {X c C Ib (X, Y) O} with yJ.. 


,Throughout 	the rest of thi~ ~,ection we always assum'e that' 

char k = 0 and that C is Kir:!ite-9imensional. 

1.4. 	LEMMA. Assume that A(C,b) is associative. Then 


(iJ K(X,Y) = (n-1)b(X,Y), where n = dim C·, 


(ii) 	every commutative subalgebra C of C with dim C > 1 lies 

in the ideal CJ.. 

(iii J [CJ. I [C, C]] - O·, 
, (iv) . (ad U)2 V·= b (U,U)V 

Proof. \'1e infer from 1.2 (iv) that 

(*) [X,[Y,Z]] b(X,YjZ - b(Z,XiY for all X,Y,ZE:'C. 

Thus K(X,Y) = Tr(adXadY) = Tr(b(X,YjId b(X,.)Y) =nb(X,y)

- b(X,Y):::: (n-1)b(X,Y), which establishes (i). If in (*) 

we put X :::: Y = U, Z = V, then we get (iv). 

(ii) Let A,B be two linearly independent elements of C. 


'Then by (*) we have for any X E: C 


o == [X, [A,B]] = b(X,A)B - b(B,X)A 

and hence b(X,A) = b(X~_:9) = Oi that is, A,B €' CJ.. Thus (eCL. 

(iii) The right hand side of (*) vanishes whenever Xe:-CL, 


thus [CJ.,[C,C]] = o. 
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1.5. LEMMA. SUPEose that A(C,b) is associative. Then the 

following assertions hold: 

ti) C is either solvable or simple of rank 1. 

(ii) 	If 0# C..l # C then CJ. = [C,C] = [C, [C,C]] and CJ. is com

mutative. Moreover, X€ C..l if and only if b(X,XJ 

(iii) 	If C is solvable then dim C I CJ. < 1. 

Proof. The assertions are obvious for dim C ~ 1, so let us 
-1 

assume that n = dim C > 1. Then we have b = n_1K, by 1.4(i) 

(and hence C..l = 0 if and only if C is,semisimple). 

(i) If £ is semisimple then by 1.4(ii) every Cartan subal

gebra of C has dimension 1,. so C is actually simple of rank 1. 

Assume now that C is not semi5impl~. Then by our assumption 

above, C..l f O. Suppose that $ is a semisimple subalgebra ofC. 

Since $ == [$,$] == [C,C], ,1.4 (iii) yields that [CJ.,C] ,= o. Now 

any non-zero YE CJ. together with any non-zero SE'$ generates 

a two-dimensional commutative Lie subalgebra C of C, which 

l?y 1.4 (ii) is contained in CJ. , so [S,$] [C~[;] =: 0, a con

tradiction. This establishes (~). 

(ii) 	Assume that O-:jZeCJ.. 'I'hen formula (*) of the proof of 

1.4 implies that [X, [Y,ZJ] b(X,Y)Z for all X,YE' £. By 1.4 

(iii) [Y,Z] = O,'and hence b,(X,Y) ==O,whenever Ye[C,C], X€'C. 

'I'hus [C I C] = ' £J.., Conversely, let X, Y E' £ with b (X, Y) f:. O. 

Then Z b(X,y}-1[X; [V ,Z]] E: [C, [C,C]]. Thus [C,C] = C..l = 
[C,[C,C]] = [C,£]; the commutativity of C..l follow~ from 

'1.4(iii}. 

To show the second part of (ii), suppose that b (X, Y) f:. 0, but 

b(X,X) = O. Then [X, [X,Y]] = -b(Y,X)X, hence XE' [C,C] = CJ., 

a contradiction. 

(iii) Suppose that C is solvable and that there are elements 

X, Y € C such that X + CJ. and Y + CJ. are linearly independent 

in CICJ.. Then we get --
b(X,X)X - b(X,Y)Y [X, [X,Y]] e [C,C] = CJ.. 

Thus b(Y,Y) :::: 0 and therefore, by (ii), Y €' [C,£] = CJ., a 


contradiction. 
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1.6. THEOREM. 


1 
:;;::(i) C ~s ~ simple L~~ alg~~~~ of rank 1 and b --K 

n-l ' 
where n;::; dim C. 

(ii) C is nilpotent o~ step 2 (Le. [C, [C,C]] = C) and b = O. 

(iii) dim C ~ 1 (and b is arbitrary). 

(iv) Col = [C, C] and th~re is an el~~ent X E C such t1!at C is 

the ~plit: ext~~sion Col ~ kX of Col w!~h th~ oJ')_~=dime~I'!

sional subspace kX. More~~er, Col i~ comml!.'t:ative and 
. 2 1

(adX) Y::::: b(X,X)Y f<:>E all YE' [C,C]; b:::: n_1K. 

Proof. Suppose first that A(C,b) is associative and that 

dim C >. 1. If C1. = 0 then assertion (i) holds, by 1. 4 (i) and 

1..5 (i). If Col -I 0 then, by 1.4 (iii), (iv) and 1.5.{ii), (iii), 

either C1. == C (which implies (ii» or dim C/Col:;;:: 1 and hence 

(.tv) holds. 

ConveFsely, it is immediate that each of the assertions (ii) 

-(iv) implies that the condition in1.2(iv), ~~O,is satis

fied, so that A(C,b) "is associative~ (Note that 'in case (iv) 

every product [A, [B,C]] vanishes unless A and B, or A and C, 

are contained in kX",,{O}.) In the case of (i) we first 

remark. that we may assume that k = ~, since the condition . . 
u = O,of 1.2(iv) naturally extends to the complexification

b 

(C~.~,b ) and A(C,b) can be considered as ~ subalgebra of the
.a: 
a~gebra A (C ~ 0::: ,ba:)' taken as algebra over k (cf. Bourbaki [3], 

p. 21). Thus we are left to show that A{sl(2,~), iK) is asso

ciative; this will be done in Example2.50f the next section. 
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2. Examples. 

2.1. The trivial cases: 


If dim C A, then b = a and A(O,O) ; k. 


If dim C = 1, then C - k. Let b(X,Y) := oXY for some uLk. 


Then A(C,b) ; k(XJ/<X 2_a> (the isomorphism is given by X~(1,O». 

If k =m, we get for 


(i) a<O the algebra ~ of complex numbers. 

(ii) a=O the commutative associative algebra generated 
. 	 2 

by 1 and 0 with 0 0, sometimes called the algebra 

of dual numbers. 

(iii) a>O the commutative associative algebra generated 

by· 1 and £ with £2 = 1. 

These are all quadratic algebras overm in the sense of Bourbaki 

2.2. 	Let C = sn(3,m) and let b = K, its Cartan - Killing form. 
3LetE be the oriented Euclidean 3 - space with inner product 

<' ,'> and normed determinant function D. 

Define a cross product- "X" in]E3 by stipulating <XxY,Z> = D(X,Y,Z). 

Then sn(3,m) is isomorphic to CE 3 ,x) in such way that [X,YJ = XxY 

and K(X,Y) = -2<X,Y>. To see this, put 

and notice that [Xi ,Xi+1] = Xi +2 ' where we compute the indices 

modulo 3. 

The p~oduct formula in A(sn(3JR),l/2K) is then 

(1) (X,s) (Y,t) = (XxY + sY + tx, st - <X,Y», which yields 

exactly the algebram of quaternions choose a positively 

oriented or.thonormal basis i,j,k in E3 and check that the 

multiplication - table is : 

( 2 ) 

(i ,0) 

(j ,0) 

(k,O) 

(i,O) (j ,a) (k,O) 

(O,-l) (k..~) (-j,O) 

(-k,O) (O,-1) (i ,0) 

(j ,0) (-i,O) (0, -1 ) 
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Then obviously in the algebra A(SO(3JR) ,UK) ,Ufm, we get 

the multiplication 

(3) 

(i ,0) 

(j ,0) 

(k,O) 

table : 


(i,O) (j ,0) (k ,0) 

.. ~~~---

(0 ,-2a) (k,O) (-j,O) 

(-k,O) (O,-2a) (i ,0) 

(j ,0) (-i,O) (0,-2(1 ) 

This is associative if and only if 0.::::: 1/2. 

2.3. Let C = sO(3,~) and let,b ~ K be again its (complex) 

Cartan - Killing form. Then C = ~3, [X,Y) = xx~Y (the 

"complexified vector product" with the same coordinate formula 

as the real one), and K (X, Y) = -21:~ 1Xiyi. As we J'ust ·take the 
c ~= 

product formula 2.2.1 with complex scalars, we get 
, , 

A(SO(3,C) ,1/2 KC) =JH x lRG:: (cf. 2 .. 5.). Likewise the algebra 

A(sn(3,C),UK )for ue¢ is given ~y the multiplication - table 2.2.3., . c 
but now over ~. A(sn(3,<C) ,0.1<:<1:) is associative if and only if 0.= 1/2. 

2.4. Let C, sl (2 JR) and let b = K , the Cartan - KilliIfg form. 

Then £ is the Lie algebra of traceless 2x2 - matrices~ Choose 

the following basis of £: 

X ='1 ( 0 lJ Xl = 1 [~ ~) X =-1 (~ -~)0 2 -1 a 2 2 2 
. . , 

Then [XO 'X1 ] = X2 , [X1 'X2 ] = -XO' [X 2 ,XO ) = Xl' and' 
1 i i 00 11 22' 3-2 ..( LX X., ry Y.) = -x y . + x y + x y • Now let]I. be the 

, 1.. l. 
Lorentzian 3 - space with inner product <.,.> L,with. signature 

+,-,,-.' l?efine the Lorentzian vector product XL ,on]I.3, by 

<XxLY,Z>L -det(X,Y,Z) - For the standard basis eO' e l , one 23 . 
11. we get 

and 

the multiplication formula of 1.1. becomes onL3xm : 

(1) . (X,s) (Y,t) = (X!r.Y + sY + tx, st - <X'Y>L)-
This gives an associative algebra, sometimes called the algebra 

of pseudoquaternions (see Yaglom, [8) : check the multiplication 

table 
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(2) 

(eO'O) 

(e ,O)
l 

(e ,O)
2 

(eO'O) (e ,O) (e ,0)
1 2 

..._--
(O,-l) (e ,O) (-e ,0)

2 1 
(-e ,O) (0,1) (-eO'O)2 
(e ,O) (eO'O) (0,1)

1 

But in fact this algebra is isomorphic to the full algebra 

of 2x2 - matrices : 

(0,1) -+ [~ ~) = ° 0 (eO'O) _[0-1 0"J = i 0 2 

(e1 ,0) -[~ ~J = ° 1 
(e2 ,0) -(~ -~) = ° 3 

gives the same multiplication - table for the matrix - multi

plication. Here the o. are the Pauli matrices, very dear to 

physicists. 'Thus A(s! (2,JR),.~K) ~ L(JR2 ,JR2), the algebra of 

all real 2x2 - matrices. 

A(s! (2,JR) ,aK) gives ,the mUltiplication - table (2) with 

(O,-2a),(O,2a), (0,20) in the main diagonal, associative if 

and only if a = 1/2. 

2.5. Let £ = sl(2,C), Kits Cartan - Killing form. Then we 
c 

can apply the discussion of 2.4. with complex sca'lars and 

conclude that A(S! (2,C) '~KC) ~ A(s! (2,JR) '~K) x JRC equals the 

algebra of complex,2x2 - matrices. This is well known to 

physicists yiathe formula 0iOj = 0ij + v=T EiJkok for the 

Pauli matrices. 

2.6. Let £ be the real 2 - dimensional Lie algebra satisfying 

[X, Y) . = X. (This is the Lie algebra of the "ax + b" - group) 

Then the Cartan -"Killing form K is given by K(X,C) = 0 and 

K(Y,y) = 1. This gives an associative algebra A(C,K) which 

is isomorphic to the real algebra of all upper triangular 

2x2 - matrices : 

r -1 01~(X,O) -(g ~) (Y,O) -·t 0 J 

-
gives the correct multiPlication - table. 
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2.7. The algebra of Cayley numbers is not of the form 

A(C/b) since it is alternative but not associative (cf. 1.2.6). 

But it can be represented in a similar form : we use the 

isomorphism so(3,~) ~ (~3,x ) of 2.3. and consider the usuala:: 
hermitian inner product (.,.) on ~3. Then ~3x~, with mUL~ivli~dtion 

(X,s) (Y,t) = ( Xx y + sY + tX, st - (x,Y))c 

is the algebra of Cayley numbers (see Greub, [3]). 

In chapter 4 we define a concept generalising this product. 

In char k 2 the Cayley numbers are associative. 

2.8. Let C be a nilpotent Lie algebra of step·2. Then 

C = V~W as' a vector space, and [C,W] = {O}, [X,Y] : w(X,Y)E W' 

for X,YEV, whe~e w:VxV-W is an arbitrary skew - symmetric 

bilinear map_ If we want an associative algebra, then b o and 

A(C,O) - VxWxk as a vector space with product 

(v,w,O) (v' ,Wi ,O) (O,w(v,v l ) ,O} 

and (0,0,1) as unit. 

-
-
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3. Pas~jng from algebras to Lie algebr~s 

3.1. PROPOSITION. Let A be an with unit over a commu

commutatortative base field k. Then the [x,y] xy - yx of 

two elements in A satisfies the Jacobi identity it ~~0. only 

if the associator Ass (x,y, z) = x (yz) - (xy) z satisfies 

for all triplets Xl,X2,X3 of elements in A. If char k ~ 2,3 

and A is alternative then (0) ies that A is associative. 

Proof. The proof of the first assertion is an easy computa

tion and therefore left to the reader. For the second we only 

have to note ,that by Bourbaki [2 ], p. 612, A is associative 

if and only, if Ass is skew-symmet,ric; if Ass is skew-symmet

ric then the left side of (0) is just 6 Ass(x, ,X2 ,x). 

3.2~Rernarks. (ij It seems that up to now only conditions stronger 

than (0) have b'een dealt with in the literature; such as 

(cf. Nijenhuis and Richardson [5 ]) 

Ass(x,y,z) ASS(y,x,z), 


Ass(x,y,z) - Ass(x,z,y), 


Ass(x"y,z) Ass(z,y,x). 


None of these conditions is satified for all of the algebras 

A(C.b) in section 1. 

(ii) Proposition 3.1 has an obvious generalization tc graded 

algebras and g'raded Lie algebras. 

3.3. DEFINITION. Let G be a subgroup of $). Then an alge 

bra "A is, call_~qJ;.':- associative if .. _ 


r sgn(cr)Ass(x (1)x (2)x (-\) ::::= o.crcr E:' G cr cr -'J--
3.4. Remarks. (i) By 1.2(v) every algebra A{C,b) is A)-asso

ciative, where A3 denotes the alternating group in three ele

ments. 

'" 
" . 
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(ii) The conditions in 3.2 correspond to ~-associative alge

bras, where G is a two element subgroup of $3

(iii) The {1}-associative algebras are just the associative 

algebras. 

(iv) If ~ c. H then every G-associative algebra is also H-as

sociative. 

(v) Note the formula 


(~) Ass(x,y,z) +Ass(y,x,z)+ Ass(z,x,y) ;:::: [x,yz] + [y,zx] + 


+ [z,xy]. 

Thus 	an algebra A is ~3-associative if and only if 

[x,yz] + [ y,zx] + [z,xy] = 0 for all x,y,z LA. 

3.5. 	For the following, let char k # 2. 

DEFINITION. A Clifford trace T ona unital algebra A over k 

is a k-linear map T: A----+k such that for all x,y€:A: 

(i)T(1) = 1, 

(ii) 	t(xy + yx) = T(xy)1 + T(X)y + T(y)X - 2T(X}T(y)1. 

Writing n for the complement~ry projection to T,"n(x) x

- T(X), (ii) can be written also in the form 

(iii) n(x)n(y) :I- n(y)n(x) = 2T(n(x)n(y»1, 

that is, n satisfies the Clifford" equation. (Note that this 

implies n(xy)= n(yx) and [n(x) ,n(y)] = [x,y].} 

A Clifford trace T is said to be invaripnt if for x,y,zeA 

_ T ( [n (x), n (y) ] n (z» ;:::: T (n (x) [n (y), n( z)] } , 

or, equivalently, if for all x,y,z € ker T the equation 

x(yz} - (xy)z + z(yx) - (zy)x = x(yz)- (yz)x + z(xy)

- (yx)z 

holds. 

3.6. 	THEOREM. Let A be a unital algebra over k with chark t= 2.__ __ ........___M. 	 __
-Then 	the following assertions are equivalent: 

(i) 	 A can be written in the form A = A(C,b) for some Lie al

gebta C and invariant bilinear form b. 

(ii) 	A is $3-associative and admits an invariant Clifford 


trace. 
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(ii) A A)-associative and admits an invariant Clifford 

trace. 

Proof. Suppose first that A = A ( C,b). Then A is 1\3 -a5socia- " 

tive and l:A ~k, T(X,S)= 5, is an invariant Clifford trace. 

In fact, writing 1T{X,S) = (X,O) ~ccording to 3.5), WI..- ;.:'~ 

1I{ X ,s) 1T (Y , t) + 1I( Y , t) 11 (X, s) = (X, 0) (Y , 0) + (Y, 0) (X, 0) 

= 	 (0, 2b (X, y) ) ; 

2 T ( 11 (X, s) 1T (Y , t» = 2 T ( (X, 0) (Y , 0» = 2 T ( ( [X, Y] ,b (X, Y) )) 

= 2b(X,y), 

which establishes our claim. 

Suppose now that (ii) holds. Then m (A, [ ] A) is a LieI 

algebra (by 3. 1). Let, T :A"--. k be the invariant Clifford 

tra,ce... We consider kas one-dimensional (trivial) Lie al

gebra," so lis a Lie homomorphism. We define' to be the Lie 

algebra ker I, provided with the Liebr~cket [ , ] = i[ , ]A' 

and b(X,Y) = T (XY), for all X,Y EC. Since T is invariant," b 

is invariant, too. Let 1T : A --+ ker T = C be the complementary 

projection, 11 (x) = x 1 (x); 1T is also. a Lie algebra morphism_ 

Let X,Ye C. Then (XY denoting the product"in A) 

XY" 	= i(XY - YX) + i(XY + YX) = l[X'Y]A + T(XY) 1 

= [X,Y],+" b(X,Y) 1. 

For arbitrary x,y e:' A we have x = 1T (x) +. T (x) 1, y == 1T (y) + T (y), 

" and we get 
. 

xy = (1T(X)+ 
, 

T(x)1) (1T(Y) +T(y)1} = 

n (x) n (y) + T (x) n (y) + T (y) 1T (x) + T (x) T (y) 1 = 

= [1T(X},1T{y)]£+ T(x)n(y) + T(y)1T(X) + T(X)T(y)1 + 

+ T(n(x)1T(y»1. 

Thus the map A ----:-+ A(C,b), x --+ (1T (x) IT (x)) is the required 

isomorphism. 

Remark. If in the abov~Theorem we drop both the invariance-of T and the invariance of b then the arguments still work. 
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4. 	 final remark. 

The following construction is presented here as a concept 

generalizing the ideas of Definition 1.1. Using this con

struction we can also cover the case of the Cayley algebra 

. (cf. Example 2. 7. ) 

4.1. Let k be a commutative field, and let A be a unital 


(commutative) k - algebra. Let a:A-A be an algebra 

antiautomorphism with a-a = id (which we may view as 


, conjugation) . 

Let C be an a - balanced Lie - module over A, i.e. 

(1) C 	is a Lie algebra over k with bracket [.,.] 

(2) C 	is an A - bimodule 

(3) 	 There is a representation D of C on A via (0 - crossed) 

derivations,a '.Lie algebra homomorphism D:C-Der(a)A, 

X-DX,such that Dx(ab) ~ Dx(a)b + a{a)Dx{b) 

(4) [aX,Y] = a(a) [X,YJ ~ Dy(a)X or ~quivalently 


(4')[X,aY] = a(a) [X,YJ + DX(a)Y 


(5) [X,Ya] = [X,Y]a + YDx(a) 

Furthermore let b:C~C-A be k'- line\~r and equivariant, i.e. 

(6) DX(b(Y,Z» =. b([X,YJ,Z) + bey, [X,ZJ} 

Then we consider the k :... vector space CXA with the 

following product: 

(7) (X,a) (Y,b) := ([X,Yl + aY 	 + b(X,Y».+ '%' ab 

We leave it to the reader to verify that this definition 


yields an al~ebra. 
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