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The Variety A, of n-Dimensional Lie Algebra Structures

A. A. KIRILLOV AND YU. A. NERETIN

1. In many applications of Lie groups and Lie algebras, a situation arises
where the group or algebra involved may depend on the parameters of the prob-
lem. In such cases it is useful to know the structure of the set of all Lie algebras
of a given dimension (at least in a neighborhood of a given point). Of particular
interest would be a description of the possible limit passages between Lie algebra
structures.

One way of making a precise formulation of this problem is the following. We
suppose an n-dimensional space V over a field K, with fixed basis X1,...,X,.
To define a Lie algebra structure on V', we must specify the commutators of the
basis vectors, i.e., the constants cf]- in the equations(?)

[Xi, X;5] = ¢ X (1)

These constants are not arbitrary. They are subject to two sets of conditions:

cf]- = —cfi (skew-symmetry) (2)
and
cﬁjcﬁc‘ + cé-kc{? + cfcic,’;-‘ =0 (Jacobi identity). (3)

Equations (2) and (3) determine a certain algebraic variety in n3-dimensional
affine space with coordinates cfj, 1 <14,7,k < n. We denote this variety by A,
and call it the variety of structure constants of n-dimensional Lie algebras.

By definition, A, lies in the tensor space of type (1,2) over V,ie.,in VQV*®
V*. The group GL(V') = GL(n, K) acts on this space and takes the variety A,
into itself. The orbits of GL(V') in A, correspond to the isomorphism classes of

n-dimensional Lie algebras: two sets of structure constants generate isomorphic

1980 Mathematics Subject Classification (1985 Rewision). Primary 17B05; Secondary 14M99.

Translation of Some Questions in Modern Analysis (V. M. Tikhomirov, editor), Mekh.-Mat.
Fak. Moskov. Gos. Univ., Moscow, 1984, pp. 42-56.

(!)We use the standard technique for writing tensor expressions: a repeated index indicates
summation.

©1987 American Mathematical Society
0065-9290/87 $1.00 + $.25 per page

21



22 A. A. KIRILLOV AND YU. A. NERETIN

Lie algebras if and only if they go into each other under action of the group
GL(V'). The orbit space will be denoted by L.

We are concerned with the structure of the variety A,; in particular, with
answers to the following questions:

(1) What irreducible components does A, fall into?

(2) What are the dimensions and degrees of these components?

(3) What are their generic points?

The answers to these questions would allow us to describe the structures of
the “typical” Lie algebras of dimension n.

Many important characteristics of Lie algebras (e.g., dimension of the center
and of the commutator ideal, solvability or nilpotency class, index, etc.) are
locally constant on A,, and therefore almost constant on each component (i.e.,
constant on the complement of a variety of lower dimension). An explicit com-
putation of these characteristics would also be of considerable interest.

Unfortunately, answers to all these questions are in general unknown. In this
paper we shall give a description of the components for small dimensions (n < 6)
and present certain arguments and estimates for the general case. The ground
field is taken everywhere to be the field C of complex numbers.(?)

2. Complete answers to the questions in §1 are known only in the two simplest
casesn =2 and n = 3.

For n = 2, condition (3) is satisfied automatically, and there remains only the
linear condition (2). Therefore the variety A, is the affine plane C?. Relative
to the action of the group GL(2) this plane splits into two orbits: the origin
{0} and its complement C? \ {0}. Thus, the space Ly consists of two points:
a “large” open point, for which a representative is the Lie algebra aff(1) of the
group of affine transformations of a one-dimensional space; and a “small” closed
point, for which a representative is the commutative algebra C2.

For n = 3, it is convenient to make use of the decomposition of the space
of tensors of the form cfj satisfying condition (2) into a sum of two irreducible
subspaces relative to the action of GL(3).

Namely, consider the space of vectors a,, = cfnk and the space of symmetric
tensors (more precisely, tensor densities)

Kl _ 1(.i5k 1 ijl .k
s7 = 5(e%%¢;; +€7¢yy),

where %% is the standard antisymmetric tensor of rank 3. The original tensor

¢k can be reconstructed from a,, and skt

J

k _ 1/ck k kl
Cz‘]' = 5(6] a; — 6i a]’ +Eij[8 )

In the “coordinates” a,, and s*, condition (3) takes the simple form
s*mam, = 0. (4)

(2)As regards the classification of real Lie algebras, see [1] and (2].
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The variety A3 defined by the system of equations (4) splits into two six-
dimensional components:

Agl):am =0, s* arbitrary.

A§2):det(skl) =0, s*"am, =0.

The first component is given by the linear equations a,, = 0 and is isomor-
phic to the affine space C® (and consequently has degree 1). Relative to the
action of GL(3) the points of this component behave like symmetric tensor
densities and split into four orbits €2;, 0 < ¢ < 3, according to the rank of the
matrix sk,

The dimensions of these orbits are respectively 0, 3, 5, 6. For representatives
we can take the following Lie algebras:

(1) In Q3: the Lie algebra sl(2) of 2 x 2 matrices with zero trace.

(2) In Q2: the Lie algebra m(2) of the group of motions of the euclidean
plane.

(3) In 4: the Heisenberg algebra I's with generators X, Y, Z and commutator
[X,Y]=2Z.

(4) In Qp: the commutative Lie algebra C3.

The second component has degree 7, since the whole variety Ag is given in
the 9-dimensional space with coordinates a,y,, s*! by three independent quadratic
equations and is therefore of degree 8.

Thus, the component A:(f) is seven times more “massive” than the component
Agl). This can be given a precise meaning in two ways (see [3]). First, almost
every three-dimensional linear subvariety in the 9-dimensional space with coor-
dinates a,,, s*' intersects the first component in one point, but intersects the
second in seven. Second, relative to the natural volume form in 8-dimensional
complex projective space, the image of the first component has volume 1; the
image of the second, volume 7.

Let us observe also that the component A(32) is not a complete intersection,
i.e., cannot be given by three independent equations.

The intersection Agl) N Ag") is the union of the orbits (g, {2;, and 12 of the
group GL(3).

On the complement of this intersection in A:(32) the group GL(3) acts so as to
preserve the invariant

_ cf,cfcj _ tr(ad X; ad X) (5)
cfkc;l trad X, trad X,

(It can be verified that this expression is independent of the choice of the indices ¢
and j.) A level surface J = ¢ for ¢ # % is a GL(3)-orbit, for which a representative
is the Lie algebra

(X,Y]=\Y, [X,Z]=uZ, [V,2]=0,
where (A% 4+ u2)/(A + p)? = c. The surface J = 1 splits into two GL(3)-orbits.
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3. For the varieties A, with 4 < n < 6, all that is known is a description of
the irreducible components and their dimensions.(3) We exhibit this result here
in the form of a table. The five columns of this table list respectively:*

(1) The notation for the component A;k) .

(2) The dimension of the component.

(3) The codimension of the generic GL(V )-orbit (i.e., the dimension of the
corresponding component in L,,).

(4) The structure of the nilpotent radical, coinciding with the commutator
ideal [g, g], of the generic Lie algebra g in the given component (when this algebra
is solvable).

(5) A representative of the generic GL(V )-orbit. Note that the number of
parameters on which this representative depends is not always chosen smallest
possible; the smallest number is given in column 3.

The notation for the nilpotent Lie algebras in column 4 is explained in the
next section.

Let us point out also how to find, for a given Lie algebra g, at least one
component A%k) that contains it. If g is not solvable, then it either appears in
column 5 or is isomorphic to sl(2) x C® and then lies in Aél) . If g is solvable,
then its maximal proper nilpotent ideal appears in column 4.

4. The description of the components of A,, for small n is based on certain
properties of solvable and nilpotent Lie algebras of small dimension. We present
the relevant facts in this section.

THEOREM 1. (a) There exist only finitely many nonisomorphic nilpotent Lie
algebras of dimension < 6.

(b) Every such algebra admits a nondegenerate derivation.

A proof of (a) is given in [4]. It was found there that for n < 6 all n-
dimensional nilpotent Lie algebras can be obtained by simple limit passages
from a single Lie algebra T',.

To describe T, consider a graded n-dimensional Lie algebra with homoge-
neous basis {X;}, where the index 4 runs from 1 to n for n < 5 and takes the
values 1, 2, 3, 4, 5, 7 for n = 6. The commutation law is

(Xi, X;5] = aij Xiy;. (6)

The Jacobi identity is satisfied automatically for n < 5, and for n = 6 reduces
to the single relation

a12a34 + aq1a52 = 0. (7)
(})For n = 6 this result is due to Yu. A. Neretin. The case n = 5 was worked out in a

course paper of 8. E. Belkin (1976, unpublished).
* Translator’s note. The numbering of the columns here differs from their order in the table.
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Generic algebra (representation
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Number of par-

k [8,8] dim Ag,k) of the generic GL(V)-orbit) ameters in lek)
Az | 1 C? 2 aff(1) 0
As| 1 - 6 sl(2,C) 0

2 C? 6 X, Yi]=X\Y;, i=1,2 1
Ag| 1 - 12 sl(2,C)® C 0

2 cs 12 X,Y:] = \Y:, 1=1,2,3 2

3 s 12 X,V = \Yi, i=1,2, [V1,Ya] =2 1

4 | c? 12 (X,2] = (M1 + A2)2 0

aff(1) @ aff(1)
As| 1 - 19 sl(2,C) x C? 0
2 - 20 sl(2,C) & aff(1) 0
3 (o) 20 X, V;]=X\Y;, 1<i< 4 3
4 |T'3+C 20 (X, Y] =XNY;, 1<1<4, A1+ A2 = A3 2
(Y1,Y2]) = Y3

5 Ty 20 [X,Y;] = \iY5, 1
A3 = A1+ A2, Ag =21 + A2
[Y1,Y2] = Y3, [Y1,Y3] =Yy

6 T3 20 (X1,Y1] =Yy, [X2,Y2] = Y2 0
[Y1,Y2] = Xy, V3] = [X2, V3] = V3
7 c3 21 [(Xi, Y] =AY, i=1,2, 5 =1,2,3 2
As | 1 - 30 sl(2,C) ®5sl(2,C) 0
2 - 30 | sl2,C)@g geal? 1
3 - 30 aff(2) = gl(2,C) x C? 0
4 - 30 sl(2,C) x T'(3) 0
5 (o 30 X, Ys]=X\Y;, 1<:<5 4
6 |I'3+C2 30 [(X,Yi] = A\iYi, 1<i<5 Az =X + Az 3
[Y1,Y2) = Vs

7 |IT4+C 30 (X, Y] =NY;, 1<9<5, A3 = A1 + A2, 2
Ag = 2X1 + A2, [Yl,Y2] =Ys3, [Yl,Y3] =Yy

8 s 30 (X, Y] =\NY;, 1<i<5, 2
gli +Aa = X2+ A3 = X5
(Y1,Y4] = [Y2,Y3] = Y5

9 Ts,2 30 (X, Y] =NY;, 1<e<5, A1 + A2 = As, 2
A1+ Ag = Xs, [Yl,Y2] =Ys, [Yl,Y4] =Y;

10 I's3 30 (X, Y] = MY, 1<68<5, A1+ A3 = g,
2M1 + A3 = X5, A2 = 2), [Y],Y;;] =Yy,
(Y1,Y4] = Y5, [Yo,Y3]=Y5

11 T's4 30 [X,Y,-]:)\,-Yi, 1<2<95, A3 = A1 + Ao, 1
A =2X1 + A2, A5 = 2X2 + A\
(Y1,Y2] = Y3, [Y1,Y3] =Y, (Yo,Y3]=VY5

12 Tss 30 (X, Y] =NY;, 1<3<5, 1
A=A+ (k—=2)A
(Y1,Yk] = Yiy1, £=2,3,4

13 l-‘5,6 30 [X’ Yk] = kY, [YI’ Y}] = Yi+J' 0

1,7,k=1,2,3,4,5, i<j

14 ct 32 (X3, Y;] = XY, i=1,2, 5=1,2,3,4 4

15 T3 C 31 [X,',Yj] = Aij Y5, [Y1,Y2] = Y3 2

Air+ A2 =3, 1 =1,2, 7=1,2,3,4
16 P4 30 [X],Y1] = Yl, [XQ,YQ] = Y2, 0
[Y1,Y2] = Y3, [Y1,Y3] =Ya,
(X1,Y3] = [X2,Y3] = Y3, [X1,Yy] = 2Yy,
(X2,Y4] =Yy
17 cs 30 aff(1) ® aff (1) @ aff(1) 0
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The homogeneous basis transformation X; — A; X; takes the set {a;;} into the
set {(AiX;/Xivj)ass}. It is easily verified that the group (C*)™~! acts transitively
on the collection of all sets {a;;} for which a;; # 0 for ¢ # 5. This means that
all such sets define the same Lie algebra (up to isomorphism). This algebra is
I'n. All other n-dimensional nilpotent Lie algebras, for n < 5, are obtained by
setting certain a;; equal to zero for ¢ # 7.

Part (b) of the theorem follows for n < 5 from the fact that the mapping
Xk — kXj is a nondegenerate derivation of T',, and of all other Lie algebras of
the type (6). For n = 6 this part is not needed here, and we omit its proof.

We can describe now the sets N,, of isomorphism classes of nilpotent Lie
algebras, of dimension n < 5, by indicating the limit passages between them:

N3:T3 — C8
N4ZF4 —_— Fg@c —_— C4
7 55 [s2
N5s:Ts6 — T'54 s, ——=T39C? — C°
- T3 rseC

Here the I's &, 1 < k < 6, are the indecomposable five-dimensional nilpotent Lie
algebras in Dixmier’s list [5]. They are all obtained from I's ¢ = I's by a so-called
contraction, i.e., by setting equal to zero certain coefficients a;;:

The a;;, 1 < 7, to be
set equal to zero

x~

ai2 and ais
as and a3
a2 Or a;s
ai4
az3
All a;; are nonzero for 7 # j.

S O W N

A similar analysis can be made of Ng (see [4]). One obtains twenty types
of Lie algebras that are contractions of I's. For n = 7, the variety of isomor-
phism classes of nilpotent Lie algebras has positive dimension and consists of
several components (see [6] and [7]). Furthermore, there exist seven-dimensional
nilpotent Lie algebras all of whose derivations are nilpotent [8].

Now let n be a nilpotent Lie algebra of dimension n — k, and C* the k-
dimensional commutative Lie algebra. A Lie algebra g is called an extension of
n by C* if it can be included in an exact sequence

O—»n—»g-»Ck—>O,

The subset of A, that corresponds to all such extensions will be denoted by
L(k,n), and its closure by R(k,n).
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THEOREM 2. For n < 6, the sets R(1,n) are (n? — n)-dimensional compo-
nents of An. Two components R(1,n) and R(1,1') coincide only if n and W' are
isomorphic.

PROOF. Since almost all derivations of the algebra n are nondegenerate, in
L(1,n) an open set consists of those algebras g for which the derived algebra
[g,g] has dimension n — 1 and is isomorphic to n. From this follows the second
assertion. To prove the first, observe that the dimension of the space Dern of
derivations of n is equal to the dimension of the group Autn of automorphisms
of n (since Dern is the Lie algebra of Autn). Denote this dimension by 6(n). The
dimension of R(1,n) is the sum of (1) the dimension of the variety of (n — 1)-
planes in C”, (2) the dimension of the variety of structure constants defining
a Lie algebra isomorphic to n on a given (n — 1)-plane, and (3) the dimension
of all extensions of the Lie algebra structure from the (n — 1)-plane to the n-
dimensional space. This gives in totality the number

n—1+(n—-1)2=6(n) +6(n) =n?—-n.

It remains to verify that R(1,n) cannot lie in R(k,n’) for £ > 1. But this follows
from the fact that, for g in R(k,n’), dim[g,g] < n — k.

THEOREM 3. Any solvable n-dimensional Lie algebra contains a nilpotent
ideal of dimension > n/2.

PROOF. Let n be the maximal nilpotent ideal. Reduce the adjoint represen-
tation of g in n to triangular form. If dimn < codimgn, then there exists an
z € g\ n for which the principal diagonal consists of zeros. This contradicts the
maximality of n.

Thus, every component of A, consisting of solvable Lie algebras is contained
in the union of the R(k,n), where k < n/2.

Analysis of the irreducibility of R(k,n) for £ > 1 leads to an interesting
problem concerning the structure of the variety of sets of k¥ commuting elements
in a given Lie algebra. This problem is discussed in the next section.

The results presented in the table can be derived from the theorems of this
section. A detailed exposition will be published elsewhere.

5. Let g be a Lie algebra. Consider the space Mj(g) whose points are the
sets T1,...,zr of k pairwise commuting elements of g. Clearly, My(g) is an
algebraic variety. Problem: describe the irreducible components of this variety.
An important special case is for g to be the algebra of n X n matrices with the
ordinary definition of commutator. The corresponding variety will be denoted
by Mg . It is proved in [9] that M, , is irreducible for every n. The generic
point of this variety is the pair (A4,p(A)), where A is an arbitrary matrix and p
an arbitrary polynomial of degree n — 1.

For our purposes we need to know the irreducibility of the variety M3 3. This
follows from a more general assertion:
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THEOREM 4. The variety My 3 is irreducible for all k.
The proof is based on the following fact.

LEMMA. In the space of third-order matrices, the mazimal commutative sub-
algebras have dimension 3.

Indeed, suppose (zi,...,2x) € Mk 3. Among the matrices z,...,zx, and 1,
no more than three are linearly independent. Therefore we can suppose that
Ty = ATy + pixe +v; - 1 for 4 > 2.

In view of Gerstenhaber’s result [9], the pair (z1,z2) can be represented as
the limit of pairs of the form (y,p(y)). Then our chosen set is the limit of sets
of the form

(y:0(¥), p3(y); - - - Pr(¥)),

where p;(y) = Ay + pip(y) + v - 1. This implies that My 3 consists of a single
component.

A similar proof shows that My o is irreducible for every k.

The variety My 4 contains at least two components: in one, a dense set consists
of the sets of matrices reducible simultaneously to diagonal form; in the other,

to the form
A1) A

0 |1

with cells of order two.

6. With increasing n, the number s(n) of components of the variety A, in-
creases rather quickly.

THEOREM 6. eV™ < s(n) < 2n'/6.

The upper bound is obtained from trivial considerations: the number of com-
ponents cannot exceed the degree of the whole variety, which in turn cannot
exceed the product of the degrees of the equations defining it.

To obtain the lower bound, observe that if the n-dimensional Lie algebra g
has second cohomology group H?(g,g) equal to zero (i.e., if g has no nontrivial
deformations), then the the set R(0,g) (see §4) is a component of A,. An
example of such an algebra is the semidirect product sl(2,C) x C2V, where
C?2N | regarded as an sl(2)-module, is the sum of even-dimensional irreducible
submodules. (This is connected with the fact that the tensor product of two
even-dimensional irreducible representations of sl(2) splits into a sum of odd-
dimensional irreducible components.) The number of such algebras is equal to
the number p(NV) of partitions of N into unordered summands. By the Hardy-

\Ramanujan formula,
1 /SNT3
N) ~ T 2N/3’
pIN) ~ 73°

which provides the required lower bound if we take n = 2N + 3.
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The dimensions of the irreducible components become more diversified with
increasing n than might appear from our table.

The example of the algebra g = sl(2) x (C?)" shows that A,, has a component
with dimension of order n2 It can be shown that there is no component whose
dimension increases more slowly than 3 in n?.

On the other hand, there exist components of A, whose dimensions are of
order % 351 n3. These are components of the form R(1,n), where n is an extension
of C2N by CVN. A simple calculation shows that dim R(1,n) is of order 2N3,
while g has dimension 3N + 1.

We conjecture that the whole variety A, has dimension of order 22—7n3 for large
n; but up to now no better bound has been obtained for the order of dim A4,, than
the trivial bound n®/2, which follows from the skew-symmetry of the structure
constants.

7. We comment here on some problems closely related to the description of
the variety A,.

First, there is the problem of describing the associative commutative algebra
structures on a given n-dimensional space V.

This problem has been studied in [10] for n <'5.

From the point of view of the theory of representations of a symmetric group,
a Lie algebra structure is dual to an associative commutative algebra structure.

A natural generalization of these two structures is the Lie superalgebra struc-
ture, defined on a Z,-graded space V of dimension (p, q).

A description of the variety of these structures even for small dimensions would
be of great interest, since the Lie superalgebras are more and more frequently
finding applications in current research, both in mathematics and in mathemat-
ical physics. Only the very first steps have been made in this direction.(*)

The problem remains unsolved of computing the degrees of the irreducible
components A&k) for n > 4. For example, for n = 4 all four components Ag,k)
have the same dimension. Therefore the answer to the question of what is the
“typical” 4-dimensional Lie algebra depends on the degrees of these components.

Attempts to compute the Hilbert polynomial for these varieties by the meth-
ods of representation theory have so far not produced any result.
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