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Abstract A multiobjective programming problem characterized by con-
vex goal functions and linear inequality constraints is studied. The investi-
gation aims to the construction of a multiobjective dual problem permitting
the verification of strong duality as well as optimality conditions.

For the original primal problem properly efficient (minimal) solutions
are considered. This allows to deal with the linearly scalarized programming
problem. Different from the usual Lagrange dual problem a dual problem
for the scalarized is derived applying the Fenchel-Rockafellar duality ap-
proach and using special and appropriate perturbations. The dual problem
is formulated in terms of conjugate functions.

That dual problem has the advantage that its structure gives an idea for
the formulation of a multiobjective dual problem to the original problem
in a natural way. Considering efficient (maximal) solutions for that vector
dual problem it succeeds to prove the property of so-called strong dual-
ity. Moreover, duality corresponds with necessary and sufficient optimality
conditions for both the scalar and the multiobjective problems.

Key words multiobjective duality — Pareto-efficiency — optimality con-

ditions — conjugate duality

1 Introduction

The theory of duality in multiobjective optimization has experienced a very
distinct development. Depending on the objective functions and, especially,
on the types of efficiency used, different duality concepts have been studied.

* Research partially supported by the Gottlieb Daimler und Karl Benz Stiftung
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To the first papers devoted to multiobjective duality belong those by Iser-
mann [6] for the case of a linear vector programming problem and Breckner
and Kolumban [1] for convex problems in topological vector spaces. Zowe has
obtained some duality results in spaces with the ’'least upper bound prop-
erty’, considering a notion of efficiency proper for this spaces (cf. [19],[20]).
In the last years, for the notion of effiency introduced by Postolica [9],
Tanino has formulated the conjugate duality (cf. [13]) and, then, Song has
generalized this in the case of set-valued vector optimization (cf. [11]).

The most authors who studied duality in multiobjective optimization
used the so-called Pareto-optimal solutions. In the finite-dimensional case,
Sawaragi, Nakayama and Tanino [10] formulated the Lagrange duality and
the conjugate duality basing on this efficiency concept. Also using the La-
grange formalism, Jahn [7] studied the duality for multiobjective problems
in partially ordered vector spaces. Other duality concepts, we want to re-
call, are the surrogate duality (cf. Martinez-Legaz and Singer [8]) and the
geometric duality (cf. Elster, Gerth and Gopfert [4]). Weir and Mond (in
[18] and together with Egudo in [2]) have formulated two different dual
problems and proved the weak and strong duality results without requiring
a constraint qualification.

The duality results contained in this paper generalize some previous
results established for more special problems, in particular multiobjective
location and control-approximation problems (cf. Tammer and Tammer [12],
Wanka [14], [15], [16]).

For the objective functions within the original (primal) multiobjective
problem we admit general convex functions. But the set of constraints is
assumed to be described by linear inequalities. This allows to make use and
benefit from that linear structure of the constraints to get and prove the
duality results, in particular the strong duality assertion. This is an essential
difference to the considerations and results of other authors who introduced
various duality concepts for more or less general vector optimization prob-
lems (cf. Jahn [7], Sawaragi, Nakayama and Tanino [10]).

The present paper may be observed as a contribution in connection
with the paper [17], where we have proved the weak duality property for
the primal and dual problem under consideration. There the proofs of the
strong duality and of the optimality conditions have been announced to
be published in a forthcoming paper which is now presented together with
the construction of the scalarized dual problem. That is associated to the
scalarized primal problem which arises from the investigation of properly
minimal solutions of the original vector optimization problem. The basic and
useful idea for the later construction of the multiobjective dual problem is to
establish a suitable scalar dual problem by means of the Fenchel-Rockafellar
duality approach (cf. [3]) using special perturbations of the scalar primal
problem different to the usual Lagrange dual problem. The structure of
that dual problem has, in comparison with the Lagrange dual problem, the
advantage to yield an idea in a natural way concerning the structure of a
multiobjective dual problem to the original one.
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For that last dual problem maximal solutions are considered. The main
result of the paper is the conclusion of strong duality for the primal and
dual vector optimization problem. Moreover, as a consequence of the duality,
necessary and sufficient optimality conditions will be deduced.

2 Problem formulation

We consider the following multiobjective optimization problem with convex
objective functions and linear inequality constraints

(P) v —min F(z),
zeA

F('T) = (fl(x)a 7fm(x))Ta

A=Q2zeR":2 20, Az+b <0
Ky K,

Ko CR" and K; C R are assumed to be convex closed cones defining par-
tial orderings according to 1 = x» if and only if 1 — 22 € Ky (analogously
Ko
for K instead of Kj).
The functions f;(z), i = 1,...,m, mapping from R” into R = R U

m
{—00,+0} are convex. Moreover, let be the interior int ( (| dom fl> #0
i=1

i=
and fi(z) > —oo ,Yz € R*, i =1,... ,m, where domf; = {z € R" : fi(z) <
+o0}.

By A is denoted any real [ x n matrix and b € R'.

An element x € A is called admissible for the problem (P) and the set A is
the admissible domain.

The notation ”v — min” refers to a vector minimum problem. This sym-
bolic denotation requires to explain the considered notion of solutions. In
this paper minimal and properly minimal solutions of the problem (P) are
studied. We introduce the well-known solution concept of so-called efficient
or Pareto-optimal solutions.

Definition 1 An element T € A is said to be efficient (or minimal or
Pareto-minimal) if from

F(z) 2 F(z) for ze€ A follows F(x)=F(Z).
R}

Here R” = {z = (z1,... ,2m)T € R™ : 2; > 0,i = 1,... ,m} denotes the
ordering cone of the non-negative elements in R™.

For (P) we are concerned with a sharpened notation, the so-called proper
efficiency.
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Definition 2 An element T € A is said to be properly efficient (or prop-
erly minimal) if there exist positive numbers \;,i = 1,... ,m, such that
m m

D Aifi(Z) <30 Aifi(z), Ve e A
=1 i=1

Of course, a properly efficient element also turns out to be an efficient one
(even if the functions f; are not convex).

By this definition a properly efficient element Z € A is a solution of the
scalarized problem (Py) to (P)

(P inf D Nifi(x).

r€eA i=1

3 The dual of the scalarized problem

Our aim is to construct a multiobjective dual problem to (P). To do so we
want to use a dual problem of the scalarized problem (P}).
But the usual Lagrangian dual problem

(PL*ag) sup inf L(z,p)
p=20 20
RY Ko

with the Lagrangian
L(z,p) =>_ Aifi(z) + p" (Az +b)
i=1

is not a suitable dual problem for our purpose to construct a multiobjective
dual problem to (P).

To overcome this situation we will derive another dual problem by means
of the Fenchel-Rockafellar approach of establishing a dual problem using a
perturbation of the primal problem (Py). This approach permits to form
different dual problems to an original primal problem depending on the
kind of perturbation.

We introduce the following perturbation function &(x, @1, ... ,9m,7),

m

Nifile + @), if 220,Ax+b< vy

45(3379017--- 7(/9?’1177) = =1 Ko K (1)
o0, otherwise

with the perturbation variables
o, €ER" i=1,...,m, andy e R .
So we have the perturbed optimization problem to (P)

(PN%V) zlen]é" @(I,991,-~- a@pmv’Y)a



Multiobjective Duality for Convex-Linear Problems II 5

0=(p1,-..,om) ER?* x ... x R” and v € R..

For ¢; = (0,...,0)7,7 = (0,...,0)T (we agree to write ¢ = 0, v = 0) we
get (Px,0,0) = (Pa). Then (cf. [3]) a perturbed dual problem (P5) to (Py)
may be defined by

* * * * * *
(p/\;z*) sup {_¢ (x s P1oe o s Pmy Y )}
pIER™,
i=1,...m,
~*eR!

using the conjugate function &* to @

P (2™, 01, P YT) = sup {I*Tx + > 0T +
=1

z,0i ER™,
i=1,...m,
’Y*GRl
Ty — o ) (2)
A L, P15 PmsY
There is z*,pf € R", i =1,...,m,7* € R and z* represents the pertur-
bation variable of the dual problem. For z* = (0,... ,0)% (we write as usual
x* = 0) the dual problem (Py) to (Py) is
(Py) sup {=2" (0,07, ... o5, 7))}
©;ER™,
i=1,...m,
'Y*ERZ

To deduce (P5) we replace @ in (2) by means of (1)

m
_ T T
P (2%, 0T, P YT) = sup {fc T+ D @i it
z,p;€ERT, i=1
i=1,...m,
Ax+b é v,z z 0
Ky Ky

Ty — iAifi($+@i)}'

To calculate this expression we introduce new variables y; instead of ; and
z instead of v by
yi=x+@;,i=1,... . m, z=v— Az —b.

This implies

m
(@, 01, oY) = sup {x*Tx+Z¢?T(yi—x) +
‘yiER"7 =1
i=1,...m,
220220

— U,x Z

K1 Ko
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y; ER™

v+ Az +b) — > Nifily:) } 2/\ sup {— nyi—fi(yi)} +
i=1

m
sup {(— Zgof +a+ ATfy*)Tx} + sup v Tz + 7o
z20 i=1 220

Ko K1

We compute the different suprema and get

1 * * 1 * .
sup {r‘pzTyl_fl(yl)} :fz <)\_(102>7 ’L:lv"'ama
y; ER™ 4 i

m
* * * AT * < 0
sup {(-Z@ﬁfv + ATy )va}z E%H i K
220 i=1
= 00, otherwise
Ko
and
o <
sup ’Y*TZ _ 0, if vy :* 0
Kl
220 .
= o0 , otherwise ,
K1

using the dual cones K and K7 to Ko and K1, respectively.

The dual cone K* C R to the cone K C R* is defined by K* = {z* €
RF :2*T2 > 0 for all 2 € K.

Substituting p} = )\igo;* the perturbed dual problem (P5,.) is

(P3zr) sup {—Z)\ifi*(pf) - W*Tb}-
i=1

v <o
K
— > Api+ATy S ot

i=1
Kg
Setting «* = 0 the dual problem (Py) to (P)) is
m
(P3) sup = NS W) =vThy
(Y5 D3 Y* ) EBA i—1

where the set of constraints is given by

Bx=19 (0, »057") i7" 20, Z/\zpz +ATy* 20
K K

Indeed, this is a dual problem that allows to have an idea how the multiob-
jective dual problem to (P) could look like.
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Before introducing the vector dual problem some properties of the above
scalar dual problems (Py) and (Pj) are mentioned.

First we point out that there is weak duality between (Py) and (Py) by
construction (cf. [3]), i. e. sup(Py) < inf(Py).

But, we are interested in the existence of strong duality sup(Py) =
inf(Py) or even max(Py) = min(Py) meaning the existence of solutions to
the problems. One classical assumption assuring the strong duality is that
a constraint qualification (Slater condition) is fulfilled. This means that
there exists an admissible element 2’ € A such that f;(z'), i =1,... ,m,is

m
continuous (i.e. ' € int ((\ dom f;)) fulfilling the inequality Az’ +b< 0
i=1 X
(i.e. Az’ +b € —Kj) in the strict sense Az’ +b € — int K1, also described

by Az’ + b< 0. Obviously, this implies that int K; #@. This condition is
Ky

sufficient for strong duality (cf. [3]) but, as well-known, not necessary. Thus,

other types of constraint qualifications still exist. Moreover, according to the

general duality theory the dual problem (P§) has a solution. Thus we can

formulate the following strong duality theorem.

Theorem 1 Let there exists an element z' € int ( dom f;) fulfilling
=1

(2

2" 2 0 and the constraint qualification Ax' +b € — int Ky. Then the dual
Ko
problem (P5) has a solution and strong duality inf(Py) = max(Py) holds.

Remark 1

If we set m =1, f1 = f, A1 = 1 (the case of single - objective optimization)
and Ky = R, K; = R’ (meaning A = R") we obtain as primal problem

zien]l{" f ($)

and the dual problem takes the form

sup  {—f*(p*) — "0},
(p*,y*)eB

where
B={(p*,v):7" <0, —p*+ATy* < 0}
K7 Ka‘

={(* ) v =0, —p*+ ATy* =0}

={(0,0)}
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because Ki = {0}, K; = {0},ie. sup {—f*(p*) —~*Tb} = —f*(0).
(p* . v*)EB
This is the well-known trivial relation

—F4(0) = inf f(a),

zER™

coming from f*(0) = sup {07z — f(z)} = — inﬂg f(2).
zER™ zER™
For investigating later the multiobjective duality to (P) we need opti-

mality conditions regarding to the scalar problem (P)) and its dual (Py).
These are formulated in the following theorem.

Theorem 2 (a) Under the assumptions of Theorem 1 let T be a solution to

(P») Zx,ﬁ(z) = min {ZAU@(I)} .

Then a tupel (P}, ... ,p5.3"), P € R, i =1,...,m, 7 € R exists
fulfilling the inequalities

TS0, =) Npi+ ATy L0
=1

5

ZIA

such that the following optimality conditions are satisfied
(@) fron+ fi(@) =ptz,i=1,...,m,
m T
(i4) (— > Nipp + AT7*> =0,
i=1
(iii) *T(AZ + b) = 0.
(b) Let & be admissible to (Py) and (Pf,... D5, 7*) be admissible to (Py)
satisfying (i), (i1), (4i1).

Then Z and (P, ..., Ph,.7") turn out to be solutions to (Py) and (Py),
respectively, and strong duality holds:

m m
S oXifi@) ==Y Nfr ;) —3""b.
i=1 i=1

A constraint qualification as in (a) is not required.

Remark 2

(a) As well-known in convex optimization the optimality conditions are nec-
essary and sufficient.

(b) The conditions (i¢) and (iii) have the well-known structure of so-called
complementary slackness conditions.
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(c¢) The tupel (p,...,p5,,7*) in (a) (of Theorem 2) even represents a solu-
tion of the dual problem (P5) (cf. the proof).

(d) The condition (i) shows that the so-called Young inequality f;(xz) +
fr(px) > piTz is fulfilled as equality. This means that p; belongs to
the subdifferential of f; at Z, i.e.pf € O0f;(Z) and vice versa, whence
7 €07 ().

Therefore condition (ii) in case of Ky = R} and Z € int R} may be

written — Z \ipi + AT4* = 0 and hence AT5* € E \iOfi(Z). Anyway,
i=1
if a solution (7, ... , Pk, 7*) to (Py) is known then the condition (4), (i)

and (i41) permit to identify a solution to (Py).

Proof (a) Let Z be a solution to (Py). Then because of Theorem 1 (strong
duality) a solution (p7,. .. ,p},,7*) to (Py) exists and the objective func-
tion values are equal.

This means

ZAifi(fE) = —Z/\ifi(ﬁf) -7*70. (3)

Adding E \ipiTa— Z Nipi T+ (AT Tz — (ATH*) Tz = 0 to (3) yields
i=1 i=1
after some transformations

0=> Y _Nlf;m) + fi@] + 770 = > ATz + ZAmz‘T
=1

ATy Tz — (AT5Y) Z/\ [F: (57) = (57T = fi(@)] +
m T
(— Z AiD; + A%*) (—%) + 7T (Az +b). (4)

Because of the definition of the conjugate function

fr@;) = sup {p;Tx — fi(x)} 2 p;"z~ fi(z)  follows
zeR™

Fwp) — 0"z - fix) 20.

Further, because of Z 2 0 and — Z NP+ AT3* <0 it s
Ko =1 K§

m T
(— S Nip; + ATfy*) (—Z) 2 0 and since 7* < 0 and A7+ b0 <0

=1 K; K,
follows 4*T(AZ+b) = 0. Now (4) implies that all those expressions must
be equal to zero. This gives the optimality conditions (7), (i) and (ii4).
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(b) All calculations and transformations done within part (a) may be carried
out in the inverse direction starting from the conditions (7), (i¢) and (ii4).
Thus the equation (3) results, which is the strong duality, and shows that
Z solves (Py) and (p},....p},,7") solves (P5) . O

4 The multiobjective dual problem

Now, with the above preparation, we are able to formulate a multiobjective
dual problem to (P).

First of all we introduce an usual definition of weak and strong duality
in vector optimization.

Let be given two multiobjective optimization problems, a minimum
problem

v—min F(x) (5)
e A
and a maximum one
v —max G(z) (6)
yEeB

where F(z),G(y) € R™.
Definition 3 Between (5) and (6) there is weak duality if there is no x € A

and no y € B fulfilling G(y) 2 F(x) and G(y) # F(x).

m
+

kel

Remark 3

(a) Here the partial ordering in R™ given by R} is considered. But, of
course, it is possible to underlay another partial ordering in R™ (or
in another objective space Z). Then the definition of efficient solutions
has to be changed by substituting the corresponding partial ordering
(ordering cone, respectively).

(b) Obviously, this definition represents a natural generalization of the so-

called weak duality within the scalar mathematical programming theory
as verified above for (Py) and (Py).

If, under the supposition of weak duality, there are elements z¢ and yq
such that F(z9) = G(yo), thus, as in scalar optimization, we call this strong
duality. The elements xy and yo are then efficient to (5) and (6), respectively,
as can be proved easily (cf. [5]).

But, this strong duality is connected with the point (F(z¢)(= G(yo))
and thus with x¢ and yo. So this strong duality is a local property. It may
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happen that for another efficient solution x; € A there is no y; € B realizing
F(a1) = G(y1).

Therefore, one normally is interested in such a global form of strong
duality where to each properly efficient point x € A of (5) there is a point
y € B (which then necessarily is efficient to (6)) with F(z) = G(y) or vice
versa.

We will later create this global form of strong duality for our original
multiobjective problem (P).

Now a dual multiobjective optimization problem (P*) to (P) is intro-
duced by

(P*) v-—max G(p*,d")

(p*,0*) € B
with
g1(p*,6%) —fr(p;) — 6;7b
G(p*,6*) = : = :
Gm (p*,6%) — @) — 65Lb

with the dual variables
p* = (p},....ph), pr € R, 8% = (6F,...,0%), 6 eRyi=1,... ,m,
and with the set of constraints
B={(p*6*):3IN\; >0,1=1,... ,m, such that
S2 07 S 0. 50 Nt + A7) < 0}, 7
i=1 K: o i=l K

With the symbolic notation ”v-max” we mean again (in an analogous
manner to "v-min” for (P)) efficient solutions, but now in the sense of a
maximum, therefore also called maximal (or Pareto-maximal) elements.

Definition 4 An element (p*,6*) € B is said to be efficient or mazimal (or
Pareto-mazximal) for (P*) if from

G(p*,0") 2 G(p*,0") for (p".6") € B

m
+

=

follows G(p*,8*) = G(p*,5%).

First, we will note that we are entitled to call (P*) a dual problem to (P)
because the weak duality property according to Definition 3 may be pointed
out. Afterwards, strong duality will be established. This follows within the
next section.
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5 Weak and strong duality

The following theorem states the weak duality assertion (cf. Definition 3).

Theorem 3 There is no x € A and no (p*,6*) € B fulfilling G(p*,6*) 2

m
+

=

F(x) and G(p*,6*) # F(x).

For the proof we refer to [17].
The following theorem expresses the strong duality in the global sense
observed in section 4.

m
Theorem 4 Assume the existence of an element x' € int ([ domf;) ful-
i=1

filling ' 20 and Ax' +b € —intK,. Assume b # (0,...,0)T. Let & be a
Ko

properly efficient element to (P). Then an efficient solution (5*,6*) € B to

the dual problem (P*) exists and the strong duality is true F(Z) = G(p*, §").

Proof Assume Z to be properly efficient to (P). From Definition 2 follows
the existence of a corresponding scalarizing vector A = (A\1,...,A\,)T €
intR?} such that Z solves (Py).Theorem 1 assures the existence of an element
(p*,7*) to the dual problem (P5). Theorem 2 and the attached remarks say
that the optimality condition (i), (ii) and (iii) of Theorem 2 are satisfied.
Let us define the elements 67,i = 1,... ,m, by means of Z and (p*, 7*)

55 TE _y i
—,’iyin”y ,if *Th £ 0

o; = (8)
Y = (pTe)ye with 3* e R 3 Th =1, if 7Tb =0.

Of course such a 5* exists, e.g. ¥* = W may be chosen with ||b]| the
Euclidean norm of b € R'. Now it is verified that (p*,6*), 8* = (63,... ,0%,),
is admissible to (P*) and satisfies F'(Z) = G(p*,0*), which claims the strong
duality and the efficiency of (p*,6*) to (P*).

Therefore it will be proved that (5*,0*) € B. First let be *7b # 0. Then
(8), (ii) and (iii) from Theorem 2 imply

> Nibi = 3 Nizery (=0T E)Y”
T
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For 5*Tbh = 0 we obtain in an analogous manner

m _ m 1 m .
NG = 2 N+ L A (P TRY
1=

T

i=1 i=1
=7+ (=L wpp) 27
=5+ (_AT,?*)T T4
=5+ (Tb) 5* = 7*

From (p*,5*) € By follows 7* < 0 and therefore > \;6F <0 as well as
Ky =1 Ky

m _ m —
SN (=pr + AT = 3 N (—pf) + ATH* < 0. This means (p*,8*) € B,
=1 i=1 Kt
i.e. it is admissible to (P*).

Next, we demonstrate the equality of the values of the objective functions
F(Z) and G(p*,6*). Let us start again with the case ¥*Tb # 0. With (8)
and (i) from Theorem 2 holds for i = 1,... ,m

9i(p*,0%) = = f7(p*) — 6;Tb
= —f;(B}) + 5o (57T 2) (7°7D)
= fi@) - p;Tz + P T = fi(7).
In the case ¥*7b = 0 may be calculated
9i(p*,0%) = —f7(p}) — 8; b
—fE 7)) = s VO + (7T 2) (77 TD)
= fi(z) - piTe + pilz = f,(7).

Alltogether, (p*,8*) must be efficient to (P*) and the proof is complete. [

6 Optimality conditions

Finally, let us complete our investigations by the presentation of necessary
and sufficient optimality conditions for the primal and dual multiobjective
problem closely connected with the offered strong duality.

Theorem 5 (a) Let the assumptions of Theorem 4 be fulfilled and let T
and (p*,6*) be associated properly minimal and mazimal solutions to
(P) and (P*), respectively, according to Theorem 4. Let the numbers
Ai, i =1,....m, be the positive numbers belonging to T according to the
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Definition 2 of proper minimality of . Then T and (p*,0*)satisfy the
following necessary optimality conditions

@) ffE)+ i@ =057, i=1,...,m,

(i) > N (pf — AT8) 2 =0,

oF

=1

(i) (i Ai8?)(AT +b) = 0.

(b) Let & € A, (p*,0%) € B with associated numbers \; > 0,i = 1,... ,m,
(cf. (7)) such that the conditions (i), ... , (iii) from the first part of the
theorem hold (with ¢} replaced by o} ).

Then T is properly minimal to (P) and there exists a maximal solution
(p*,0%) for (P*).
_ mo
The element 6* has the representation (8) with 5* = > X\;0f.
i=1
It holds strong duality, i.e. the equality of the objective function values
F(z) = G(p*,0%).
A constraint qualification as in (a) is not required.

Proof (a) Within the proof of Theorem 4 we have pointed out that 3* =
> \id;. Thus (i), ... , (iii) follow immediately from (i), ... , (iii) of The-

i=1
orem 2.

(b) Let us define 5* = 3 A;6. This implies (5*,7*) € By and the conditions

=1
(1), ..., (ii1) of Theorem 2 apply. Due to Theorem 2 (b), Z is a solution
to (Py), (p*,7*) is a solution to (Py) and strong duality holds.
Therefore, Z is properly minimal to (P) by Definition 2 with the associ-
ated scalarizing numbers A\;,7 = 1,... ,m. Now, we may again apply the
considerations within the proof of Theorem 4. In particular, we obtain

- mo
0F inserting ¥* = > A;0f in (8). The proof of Theorem 4 also shows
i=1

7

Z NOF = E )\,6: = 7*. O

Finally, we want to mention that the observations summarized in Remark 2
(complementary slackness conditions etc.) also meet for the interpretation

m —
of Theorem 5 with some evident modifications (replace ¥* by > A;07).

i=1
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