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Abstract

This paper contains a new duality approach for general convex mul-
tiobjective programming problems. The vector objective function of the
dual problem is represented in closed form by the conjugate functions of
the primal objective functions and the functions describing the constraints.

The basic idea is to establish a dual problem for the scalarized primal
problem different from the dual problems usually considered in optimiza-
tion, e.g. the Lagrange dual. But this dual problem based on a special
perturbation and conjugacy has an adapted form allowing to construct
a multiobjective dual problem in a natural way. Weak, strong and con-
verse duality assertions are presented. Finally, some special cases show the
applicability of the general approach.
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1 Introduction

In this paper a new duality approach for general convex multiobjective program-
ming problems (P) is submitted. It may be characterized as a rigorous application
of conjugacy to such problems. In this treatment the objective function of the
dual problem (D) can be represented in a closed form wherein the conjugate goal
functions of the original (primal) problem as well as the conjugates of the func-
tions describing the set of constraints appear in a clear and natural way. Also,
the dual constraints adopt a very clear form of only two conditions, a simple bi-
linear inequality and a scalar product to be zero (cf. (4)). In this representation
our dual problem differs from other known formulations of multiobjective dual
problems as can be found in the optimization literature.
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Among the large number of papers and books dealing with different ap-
proaches to multiobjective duality we mention as a representative selection the
books [8], [10], [11], [15], [16] and the papers [1], [3], [4], [6], [12], [13], [14], [18],
[22], [23], [26] and [27].

Beside presentations in the sense of approaches for general formulated prob-
lems there are a lot of contributions devoted to duality of multiobjective program-
ming problems of special type, as for example linear problems [7], [9], location
and approximation problems [17], [19], [20], [22], portfolio optimization problems
[21], fractional programming problems [2], [25] etc.

In section 2 we introduce the original convex multiobjective problem and give
the basic and well known definition of Pareto-minimal efficient solutions followed
by the definition of properly efficient solutions via linear scalarization.

The main and fruitful idea for construction the multiobjective dual problem
is to use a dual problem (D,) to the scalarized multiobjective problem (P,)
different from dual problems usually considered, in particular, different from the
standard Lagrange dual problem. This dual problem (D,) results from a special
perturbation of the primal problem and applying the Fenchel-Rockafellar duality
concept based on conjugacy and perturbation. We derive strong duality and
optimality conditions which later are used to obtain duality assertions for the
original and dual multiobjective problem.

The scalar dual problem obtained in this way in section 4 really turns out to be
a genuine form adapted for generating in a natural way a conjugate multiobjective
dual problem (D) to the original problem (P) that allows to prove weak an strong
duality (cf. Theorem 3 and Theorem 4).

Moreover, in section 5 a converse duality assertion will be verified (Theorem
5).

Finally, in section 6 some special cases with linear constraints which can be
obtained from the presented general result are summarized.

Thus, from a more general point of view we rediscover and extend former
results (cf. [23], [24]).

It remains an interesting topic for future research to discover the connec-
tions and relations to other duality concepts in multiobjective programming as
developed in the papers mentioned above.

2 Problem formulation

We consider the following optimization problem with convex objective functions
and convex constraints

(P) V&Ienfl‘nf(x),



f(l') = (fl(m)u teey fm(x))Tu

g(m) = (91(37), s 7gk(x))T
The functions f;,i = 1,..., m, mapping from R" into RU{+o0} and the functions
95,3 =1,..., k, mapping from R" into R are convex and proper, with the property

that () ri(domf;) # 0, where ri(domf;) represents the relative interior of the set
i=1

domf; = {x € R" : fi(r) < 400}, i = 1,....,m. K C RF is assumed to be

a convex closed cone with intK # (), defining a partial ordering according to

.’L’lzxg if and only lf.’El — T2 € K.

K

The problem (P) is a multiobjective optimization problem in the form of a
vector minimum problem and for such kind of problems different notions of so-
lutions are known. We will use in our paper the so-called minimal and properly
minimal solutions. Now, let us recall the two solution concepts.

Definition 1. An element © € A is said to be efficient (or minimal or
Pareto-minimal) with respect to (P) if from

f(z) Rsz(:(:) for xe A follows f(z)= f(z).

+

Definition 2. An element T € A is said to be properly efficient (or prop-
erly minimal) with respect to (P) if there exists A = (M,..., \p)T € intRT (i.e.

Ai>0,i=1,...,m) such that > \ifi(z) < > Aifi(x) Vre A
i=1 i=1
In Definition 1, R? = {z = (z1,....2p)" € R" : 2; > 0,4 = 1,...,m}
denotes the ordering cone of the non-negative elements of R™.

By these definitions, a properly efficient element turns out to be also an effi-
cient one.

3 Duality for the scalarized problem

In order to study the duality for the multiobjective problem (P) we will study,
at first, the duality for the scalarized problem

(Py) ;Ielftz; Aifi(),

where A = (A1,..., \y,)7 is a fixed vector in intR7.
To do this let us consider, for the beginning, a general optimization problem

(PG) inf fla).

3



where f : R” — RU {#o0} is a convex and proper function.
We give, now, the dual of (PG) using a Fenchel-Rockafellar approach (cf. [5])
using the perturbation function

flatg) , if g(z)<y
®(z,p,7) = K
400 , otherwise
with the perturbation variables ¢ € R" and v € RF.
We obtain the following dual problem

0G) sup {-7)+ it [+ o)}
gezﬂy(z) xe

Here, f* (p) = sup{p’x — f(x)} represents the value of the conjugate function of
zER™

fatpand K* = {ge R : ¢"z > 0,Vz € K} is the dual cone of K.

Remark 1.

(a) Using this approach it is possible to formulate different dual problems for
(PG), but the problem formulated before is the most convenient one for
the purpose to construct a dual of the multiobjective problem (P).

(b) One of the classical assumptions which assures the existence of strong du-
ality (i.e inf(PG) = max(DG@)) is that a constraint qualification is fulfilled.
There exist different types of constraint qualifications. Let us consider the
following so called Slater condition.

(CQ) | There exists an element z' € () ri(domf;) such that
i=1
g(z") <0 (ie. g(z') = (g1(z"), ..., gm(x'))T € —intK)(cf.
[5])-
(CQ) is sufficient to obtain strong duality for the problems (PG) and (DG).
Returning to (Py), for f(z) = 3. Mifi(z),z € R*, (DG) gives us the dual of
i=1
the scalarized problem
(Dy) sup {—(Z Aifi)*(P) + inf [Tz + ¢ g(2)] } .
pER™ P z€eR

720
K*

Because of, [ ri(domf;) # 0, we have
i=1

(Z Aifi)*(p) = inf {Z(Azfz)*(iﬁz) 3 Ziﬁz‘ = 15}



} |

and the dual (D)) will be then
{— Z(Azfz)*(ﬁz) + ;vieann 57z + ¢ g(x)]

(D)) sup
ﬁeanq 2 0 =1
K*
ﬁiGRnﬁglﬁFﬁ
Because (A fi)*(pi) = Aifi (§),i=1,...,m, we can make the substitutions f\— =
m
pi,i=1,....,mand p= > A\;jp;. Then, omitting p, we obtain for the dual of (P))
x

(D)) sup
piER™i=1,....m
q20
K*
It is well-known that perturbating the primal problem in different ways it is
possible to obtain some other dual problems (including the Lagrange dual) for

(Py). The reason why we considered the dual problem in this form is that, as we
will see in Section 4, (D)) suggests us the form of the dual for the multiobjective

{_ Z Nfr(pi) + xiean" [(Z )\ipi)Tx + ng( )] } .

problem (P).
Theorem 1. Let there exists an element «' € () ri(domf;) such that g(z') €

theorem.
=1
—intK (i.e. the constraint qualification (CQ) is fulfilled). Then the dual problem

According to Remark 1 (a), we can formulate the following strong duality
(D)) has a solution and strong duality inf(Py) = max(D,) holds.

For later investigations we need the optimality conditions regarding to the
scalar problem (P,) and its dual (D,). The following theorem gives us these

X R’n?qz O?
K*

conditions.

Theorem 2.

(a) Let the constraint qualification (CQ) be fulfilled and let T be a solution to

Then there exists (p,q),p = (P1,...,Pm) € R* X

solution for (D)), such that the following optimality conditions are satisfied
1=1,...,m,

(Py)-
fr () + fi(z) = pl'z,

(2)
1" g(z) =0,
(i Aipi)Tx +qhg(z)| = (lil \ipi) Tz

(it)  inf 3



(b) Let T be admissible to (Py) and (p, q) be admissible to (D)) satisfying (i), (ii)

and (iii).

Then T is a solution to (Py), (P, q) is a solution to (D)) and strong duality
holds

Z/\ fi(Z) Z/\ () + 1nf [(Z )\iﬁi)Tx+(jTg(x)] )

Proof.

(a)

(b)

Let = be a solution to (Py). By Theorem 1, there exists a solution (p, ) to
(D)), D= (P1y--yPm), @ 2 0 such that the values of the objective functions

K*
are equal. This means that

f.(r) = — . * 1) 1 .. T =T
z; Aifi(Z) 2; Aif; (pi) + inf [(2 Nipi) x4+ q g(x)] SENEY
After some transformations (1) yields

ZA fi(®@) + 7 (p) = pl 2] + =" g(2)]

{(Z Xipi)TE + ¢ g(T) - ;viefgn [(Z Aipi) T + (?Tg(x)] } - (2)

Because of fi(7) + ff(p;) — ;T > 0,1 = 1,...,m (the so-called Young
inequality) and ¢"g(z) < 0 it follows that all the terms of the sum in (2)
must be equal to zero. This gives us the optimality conditions (i), (ii) and
(ii).

All the calculations and transformations done within part (a) may be carried
out in the inverse direction starting from the conditions (i)-(iii). O

Remark 2. From (iii) in Theorem 2 (a) we have

—(Z o)tz = — ;ggn [(Z Aipi) T+ ‘jTg(x)]
= sup [(— Z)\iﬁi)Tx —(7"9) (37)] :

rER?

This means that

a Z Aipi) = _(Z Aipi)' T (3)



4 The multiobjective dual problem

Now, we are able to formulate a multiobjective dual to (P). The dual (D) will
be a vector maximum problem and therefore the efficient solutions in the sense
of maximum are considered. The aim of this section is to present the weak and
strong duality theorems.

A dual multiobjective optimization problem (D) to (P) is introduced by

D) v- h Mt
(D) Jemax, (p. g, \ 1)

hi(p, g, A t)
h(p.q, A1) = :
P (D, @, A 1)
with

* * 1 - .
J =1

the dual variables

p:(p17"'7pm)7q:(q17"'aqm)a/\:(>\1a"'a/\m)T7t:(t17"'7tm)T7
p €RY, g eR, NeER teR i=1,....,m

and the set of constraints

K*

B:{(p,q,/\,t):)\emtRi > Xigi 20, Zmi:o}. (4)
i=1 i=1

Definition 3. An element (p,q, M\, t) € B is said to be efficient (or mazimal
or Pareto-mazimal) for (D) if from

h(p.q, A\ t) = h(p, 3, A\ T) for (p.q,\t)€B

R
follows h(p,q, \,t) = h(p,q, \ T).

The following theorem states the weak duality assertion for the multiobjective
problem (P).

Theorem 3. There is nox € A and no (p,q, A\, t) € B fulfilling h(p, g, A\, t) =

f(x) and h(p,q, A1) # f(z).

+3



Proof. We assume that there exist z € A and (p,q,A\,t) € B such that
filz) < hi(p.q, A\ t),¥i € {1,....,m} and f;(z) < hj(p,q. A t) for at least one
j €{1,...,m}. This means that

Z Aifi(w) <D Nihi(p, . A t). (5)
i=1
On the other hand we have that
m m m 1 m m
Aihi(p, @, A t) = =y Aifi(pi) — Ni(@f ) (——=> Aipi) + Aiti.
; (P, g, A1) ; £ (p:) ; (qg)(m/\i; pi) ;

For f; and ¢} g, =1,...,m we can apply the inequality of Young

—fi(p) < filw) —piw

- ivi) < 49 ini)"
and so, we obtain
i Aihi(psq, A t) < zm: Aifi(z) — (zm: Aipi) T
i=1 i=1 i=1
+ Z Nilalyg Z ipi)T
= Z Aifi(x Z Nigi) "
< Z Aifi(x).
i=1
The inequality Z Aihi(p, g, A\ t) < Z Aifi(x) contradicts relation (5). O

The followmg theorem expresses the so-called strong duality between the two
multiobjective problems (P) and (D).

Theorem 4. Assume the existence of an element x' € ﬂ ri(domf;) ful-

filling g(z') € —intK. Let T be a properly efficient element to (P) Then an
efficient solution (p,q,\,t) € B to the dual (D) exists and the strong duality

f(Z) = h(p, 3. A\ ?) is true.



Proof. Assume 7 to be properly efficient to (P). From Definition 2 the
existence of a corresponding vector A = (Ay,..., \pn)T € intRY" follows such that
Z solves the scalar problem

P > Ao

The constraint qualification (C'Q)) is fulfilled and, so, Theorem 1 assures the
existence of a solution (p,q) to the dual of (P5). Theorem 2 affirms that the
optimailty conditions (i), (ii) and (iii) are satisfied.

Now, we will construct by means of 7 and (p, §) the efficient solution (p, g, \, )
of (D). Let A = (A1,...,An)T be the vector given by the proper efficiency of
z. We consider for i = 1,...,m,p; = p; and then we have p = (p1,...0m) =
(P - - -Dm) = P. It remains to define § = (G, ... qm) and £ = (f1,...1,)7.

Let fori=1,...,m,

1

i = —qeR
i WA

t; = pz$+ qz

For the new element (p, g, A, ?) it holds A € intRT, > A\;gi = ¢ = 0 and
i=1 K-

Zf; Aty = (lzm; Aipi) T + Em; Ai <m1)\,~ dTg) * (— mlAi in; AiDi)
oA+ 3 Aoy (=Y
- (f; 5PTE + (T70) (- i i
0 (y ()

We proved that the element (p, g, A, t) is feasible for (D). It remains to show that
the values of the objective functions are equal f(z) = h(p,q, A, 1).

Therefore we will prove that f;(Z) = hi(p,q, A\, ) for each i = 1,...,m. For
this we will use the relation (i) from Theorem 2 and the equations (6).



We obtain the following equalities

hi(p,q, A t) = —f7(pi) — \iDi) + 1,
= f (pz) Z Azpz +pz
=+ ZS‘ p1)+pz$_f2( )
The maximality of (p, g, A, t) is given by Theorem 3. 0]

5 The converse duality

In this section we will complete our investigations by the formulation of the
converse duality theorem for (P) and (D).
Therefore we will introduce some new notations. For each A € intR let us

denote
B)\:{puqv Z)\zqz—oz)‘t—o}

K*
p:(p17"'apm)7q:(qla"'7Qm)at:(t17"'7tm)Ta
p; € R™, (]iERk7 t;eR 1=1,...,m.
Further, let be
M = {aeR":3XecntRy, 3I(pq.t) € By

such that Z Aia; = Z Aihi(p,q, A 1)}
i=1 i—1

For the proof of the converse duality theorem we need the following proposi-
tions.

Proposition 1. It holds h(B) NR™ = M.

Proof. Obviously, h(B) NR™ C M. We have to prove the inverse inclusion.
Therefore, let be a € M. Then there exist A € intR7} and (p,q,t) € By such

that > Na; = > Aihi(p, ¢, A, t) or, equivalently,

i=1 i=1
S ha = = N )~ Sy (S A+ D
im1 i=1 i=1 b =



Let us define for i =1,...,m,

1 m
Aipi) € R.
mh;;p)

ti=a;+ ff (i) + (¢} 9)" (—

It is easy to observe that > A\;t; = > Ait; = 0 and this means that (p, ¢, A, t) € B.
i=1 -1

K]
We also have fori =1,...,m,

1 — B
AiDi) + t;
mMZ;p%F

and so, it follows that a = h(p,q, A, t) € h(B). In conclusion, M C h(B) N R™
and the proof is complete. O

a; = _fi*(pi) - (qz'Tg)*(_

Proposition 2. An element a € R™ is mazimal in M if and only if for every
a € M with corresponding \* € intR7Y and (p*, q*,t*) € Bya it holds

zm: )\?di Z Zm: )\?ai. (7)
=1 i=1

Proof. At first we show the sufficiency. Assume the existence of some a € M

such that a € a+ R} \ {0}. For the corresponding A\* € intR7 it holds > Afa; <
i=1

m
> Ala;, which contradicts relation (7).
i=1
To prove the necessity, let us assume that there exists b € R™, b € a+R}"\ {0}

and a € M with corresponding A* € intR7" and (p®, ¢*,1*) € By« such that

S e > 30 A0 ®)
i=1 i=1

We will show that the assumption we made is false.
m

If equality holds in (8), > Afa; = > A¢b;, then b € M and this contradicts
i=1 i=1
the maximality of @ in M.

m m
If > Ala; > > A¢b;, then we can choose ¢ € R™ such that ¢; > a; and

i=1 i=1
C; >bi,Z: 1,...,m.
Because

m m m
D N> Ma; > Y A
i=1 i=1 i=1

there exists r € (0,1) such that > Aa; = > AY[(1 —r)b; +r¢;]. This means that
i=1 i=1
(1—r)b+rce M.

11



On the other hand,
(1—r)b+rc=r(c=>b)+be R\ {0} +a+R!\ {0} Ca+ R\ {0}
Our assumption was false because the last inclusion also contradicts the maxi-
mality of a in M.

Then, for each b € a+ R} \ {0} and a € M with corresponding A" € intR}
and (p%, ¢, t*) € By« we must have

zm: /\?bl > zm: /\fai. (9)
i=1 i=1

From this last relation implies that for each a € M with corresponding A\* €
intR} and (p”, ¢, t") € By it holds

Zm:)\?ai == lnf{zm:)\?bz RS El‘f‘RT \ {0}} Z Zm:)\?aiu
=1 =1 i=1

which finishes our proof. O
We are now so far to formulate the converse duality theorem.

Theorem 5. Assume the constraint qualification (CQ) is fulfilled. Suppose
that for each A € intR the following property holds.

(C) | If irelf‘z/\ifi(x) > —o0, then there exists an element v\, € A
eeAiz]
such that inf > N fi(z) = > Aifi(xy).
T€A =1 i=1

(a) Then, for any efficient solution (p,q, \,T) of (D), h(p.q, \,t) € cl(f(A) +
RT') and there exists a properly efficient solution x5 of (P) such that

Z;\i[fi(fx) — hi(p, 3, M\ )] = 0.

(b) If. additionally, f(A) is R} -closed (i.e. f(A)+ R} is closed), then there
exists a properly efficient to (P) @ € A, such that

Z j\zfz(ij\) = Z j‘zfz(i‘)

and



Proof.

(a) Let us denote @ = h(p,q, A, ). From the maximality of @ in h(B), we have
that a € h(B) NR™. By Proposition 1, it follows that a is maximal in M.

For the beginning, we will prove that a € cl(f(A) + R7}).

Assume the contrary. Because cl(f(A) + R7) is convex and closed , by a
well known separation theorem, there exist A\' € R™ \ {0} and a € R such
that

Y Mai<a< > Nd, Vded(f(A)+R]). (10)
i=1 i=1

From this last inequality it is easy to observe that A' € R7 \ {0}.

That a € M assures the existence of the corresponding A\* € ntR}" and

(p, q*,t*) € Bya such that Y Aa; = > A?h;(p°, ¢, t%). Like in the proof
i=1 i=1

of Theorem 3 it holds

S ONa; =Y Ahi(p" q" ") <Y Nld;, Vd € d(f(A)+RY). (1)
i=1 i=1 i=1

Let now s € (0,1) be fixed. Considering A* = sA! + (1 — s)A® € intR7,
from (10) and (11) follows

> Na <> Ndi, Vded(f(A)+RY)
i=1 i=1

which implies that for each x € A

i=1 i=1

Relation (12) guarantees that the assumption of condition (C') is fulfilled
and this assures the existence of a solution x,+ € A for the problem (Py).
The constraint qualification (C'Q)) is also fulfilled and then we can construct,
like in the proof of Theorem 4, a maximal efficient element (py-, ga-, A*, t\+)
to (D) such that

f(Z')\*) = h(pk*uqk*u)‘*utA*) € h(B) = M.

Using the maximality of a € M, by Proposition 2, we have that
m m
D N> A filaa),
i=1 i=1

13



6

which contradicts the strict inequality (12).

This means that a = h(p,q, A\, 1) € cl(f(A) + R?). Then there exist se-
quences (2" )pen € A and (k")nen € RY with the property that f(z") 4 k"
converges to a.

On the other hand, by the proof of Theorem 3, for each = € A,

m

m

D Afil) =) N

i=1 i=1

Considering, again, condition (C'), there exists a properly efficient solution
m

z5 € A for (P) such that iI€1£Z Nifi(z) =Y Nifi(Ty).
reA =1 i=1

For this solution 75 the following sequence of inequalities holds

Zl: Aia; < z_; Aifi(Z5) = a{gﬁ; Aifi(x)
< Z/\z( (") + k), VYneN
i=1

Letting n — +o0, it follows that

m

D Aifiles) =D Aiai = 3 Aihi(p,a A1)
=1 i=1

i=1
and the first part is proved.

If f(A) +R7 is closed, then, by the first part of the proof, a € cl(f(A) +
R?") = f(A) + R}. According to the weak duality theorem, Theorem 3,
we have @ € f(A) and this implies the existence of an element z € A such
that f(Z) = a = h(p,q, \,f). It is obvoius that Z is properly efficient and

that holds Z Xzfz(i'j\) = Z Xzfz(i') O
i=1 i=1

Some special cases

Recently, in [23] and [24], we studied the duality for a multiobjective optimization
problem with convex objective functions and linear inequality constraints. The
aim of this last section is to show that the dual obtained in the both papers is
actually a special case of the general dual problem (D).

14



6.1 Special case I

Let us consider g : R — R*, defined by g(z) = Az + b, with A being a k x n
matrix and b € R¥ b # 0.
We have now the following primal problem

(Py) vemin f(2)

with
A = {3: eR" :Am+b§0}
K
and
f@) = (fil@),.... fml2)".
Using the linearity of g, we can calculate the conjugate of ¢/ g,i=1,...,m
_ oN\T,. T
4 /\ Z Api) = sup (= ;/\mz) z — qi (Az +b)

1 & !
= —¢'b+sup || —ATg - Aipi |
—qib , if ATgi+ X Aipi =0

i=1
400 , otherwise.

Thus, the dual of (P) is

—fi(p) + @b+t
(Dl) v-1nax h(pu q7)‘7t) = :

(pqu)‘vt)EBl * :

with the set of constraints

By = {(p.g,\1t): )€ intRT, ZAq,_o ZMFQ

K*

Aqu' +

ipi:(], Z:177m}
Next we will prove that the images of h of the sets B; and

Y SR L WU

i=1
m

> N(A"q + p;) = 0}

i=1

15



coincide (i.e. h(By) = h(By)).

It is only to show that h(B;") C h(B;) because the inverse inclusion is obvious.
Therefore, let be (p, ¢, A\, t') € By'. Considering for i =1,...,m, ¢; = -+ > N

=1
m T

and t; = ti + ¢Tb — (# ; )\ti> b, we obtain an element (p, g, \,t) € By such
that h(p,¢', A\, t') = h(p,q, A\, t) € h(By).

The dual of (P;) then is equivalent to the following problem

—fi(p) + "o+t

(D)  v-max h(p, ¢, \t') = :
(p7qlv)‘7tl)661/ % IT )

— [ (Dm) + @b+ 1,

The last step is to show that the dual (D;) actually is the multiobjective opti-
mization problem

i —fi(p1) + 010
(D) v-max hi(p.d,\) = :
e ~Fr(pm) + 0T

with

Bi={(p.0.\): A€intR?, > Xid; =20, Y A(ATS; +pi) =0},

i=1 K> i=1

For ¢, = &; and t} = 0,4 = 1,...,m it is easy to observe that hy(B;) C h(By').

To show the inverse inclusion, let be (p, ¢, A\, t') € B;'. Because b # 0 we can

consider a vector v € R¥ such that v7b = 1. Now, defining for i = 1,...,m,
m m

6 = ¢ + tiy, it holds 67b = ¢Tb +t, and > N\id; = > Nig. This means that
. &

i=1 i=

(p,d. \) belongs to By and that h(p.q', A\, t') = ha (p, 0, A) € iLl(Bl).

6.2 Special case 11

In this part we will consider the same problem like before but for the case b = 0.
The first steps are the same like for the previous case and this means that the
dual for

(P2) v-min f(z)

z€As
with
Ay = {JJGR" :A3:§0}

K
and

f@) = (fi2),..., fm(2))"
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will be
—fi(p) +
(D») ( v—mz)lx hip, ¢ M\ t") = :
4 Mt )EBY!
T i (pm) + i,
with

K*

Bgl _ {(p’ (]l, /\7tl) c)NE intRT, Z/\lq; Z 0, Z)\Zt; = Oa
i=1 i=1

Z Ni(ATq + p;) = 0}.

i=1

Substituting v = > A\;¢} we obtain the equivalent dual problem
i=1

—fi(p1) +ta

(DQ) v-lnax, B2 (pu s )‘7 t) = .
e ~Fn(Pn) +

with

B, = {7, A1) : A€ intRY, v 20, Z/\"ti =0, —ATy= Z)\ipi}.
K~ i=1 i=1

6.3 Special case III

In the last part of the paper we will study the following multiobjective optimiza-
tion problem (cf. [23], [24])

(P;) v-min f(z),

r€As3

Agz{ﬂ:GR" :ar:z(],Aa:—l—bé(]}7
Ko K1
f@) = (f(@), .., fn(2))T
Let A be a k x n matrix, b € R, b # 0, K, C R* and K; C R* two convex

A
> , the vector

closed cones. Considering the (k + n) x n matrix A = < _

b= ( 8 > € R¥7" b £ 0 and the convex closed cone K = K; x K, € R we

can represent the feasible set of (P3) as being A3 = {3: ER": Av +b< 0} and
K

17



then we can reduce the problem (P3) to the problem studied as the special case
L.
The dual of (P3) will be

—f1(p1) + 070

(D3) v-max hg(p,d. \) = :
JNeB S
(p )6 3 —f;;(pm) + z;Lb

with

K*

Bs = {(p.0,\) : X € intRT, Z)\igz' 20, Z)‘z’(ATSi + pi) = 0}
1= =1

and the dual variables p = (p1....,pn) € R*X...xR" and § = (8',6?) € R* xR".
Remarking that 076 = 6}7b and AT6; = AT} — 62,4 = 1,...,m, we obtain
for the dual of (P3) the following problem

—fi(p1) +017b

(D3) v-max _ }_7:3(]7, 61a52a/\) — :
o ~Fiu(pm) + 83T

with

B; = {(p.01.02,A) : A € intRY, Z/\él_o ZA62_0
K3

K37
> A(ATS + py) Z/\ 02}
i=1
or, equivalently,

i —fi(p1) + 07
(Ds) v-max hs(p,0,A) = :
o —F3(pm) + 0T
with
Bs = {(p,d,\) : X € intR™", Zm_o Z)\ (AT8; +p;) = 0}.

K37 i=1 K3

The dual (D3) exactly is the problem obtained in [23] and [24].

Remark 3.

18



(a) For the problem (Ps), the constraint qualification (C'Q)) assumes the exis-

tence of an element 2’ € R” such that 2’ € intKy, and Az’ +b € —intK;.
But, as we have proved in [23] and [24], for strong duality it is enough
to assume the existence of an element 2’ € R" such that 2’ € K, and
Ar' +b € —intK;.

(b) A special case of the problem (Ps) has been considered in [17], the functions

fisi=1,...,m, being norms. The converse duality theorem presented there
is false. The converse duality theorem proved in Section 5 corrects that
theorem and is valid in that very general case.
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