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In this paper we present a duality approach for a multiobjective fractional
programming problem. The components of the vector objective function are
particular ratios involving the square of a convex function and a positive con-
cave function.

Applying the Fenchel-Rockafellar duality theory for a scalar optimization
problem associated to the multiobjective primal, a dual problem is derived.
This scalar dual problem is formulated in terms of conjugate functions and its
structure gives an idea about how to construct a multiobjective dual problem
in a natural way. Weak and strong duality assertions are presented.
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1. INTRODUCTION

C.H. Scott and T. R. Jefferson [11] have investigated the duality of a
particular fractional programming problem having the objective function
consisting of a sum of ratios, where the nominators are squared nonegative
convex functions and the denominators are positive concave functions. This
has to be minimized subject to linear inequality constraints. The method
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they used by the construction of the dual problem is based on geometric
programming duality.

The aim of this paper is the study of duality for a multiobjective program-
ming problem (P) with linear inequality constraints and a finite number
of objective functions represented by ratios of the form described above.
In order to formulate the multiobjective dual problem (D), we study first
the duality for a scalar optimization problem obtained from (P) via linear
scalarization. But, unlike [11], we use in our investigations the Fenchel-
Rockafellar duality approach (cf. [5]). Moreover, we verify strong duality
under some assumptions, concerning the required constraint qualification,
weaker than the ones used in [11].

In the theory of fractional programming the study of duality is a well
developed branch with many theoretical results. In general, these programs
deal with ratios of a convex function and a positive concave function. In
a large number of papers, for these functions various differentiability as-
sumptions have been considered, like in [2], [10] for the scalar optimization
problems and [3], [4] for the multiobjective optimization problems. Among
the contributions devoted to duality for non-differentiable fractional pro-
gramming problems we mention [16] for the scalar case and [7], [15], for
the vector case.

The present paper is structured as follows. In section 2 we introduce the
primal multiobjective problem (P) and remind the well-known definitions
of Pareto-efficiency and proper efficiency.

To the problem (P) we associate, in section 3, a scalar optimization
problem (Py), with A € intR7'. Using the same transformations as in [11],
we write (Py) in a form which is suitable for the investigations within the
following sections.

Applying the Fenchel-Rockafellar concept based on conjugation and per-
turbation (cf. [12], [13], [14]), we obtain in section 4 (D)), a dual problem
to (Py). We derive strong duality and optimality conditions which later are
used to obtain duality assertions for (P) and its multiobjective dual (D).
In comparison with the Lagrange dual problem, the structure of the scalar
dual (Dy) has the advantage to yield an idea concerning the structure of
(D).

The multiobjective dual problem is formulated in section 5 and results
concerning weak and strong duality between the primal (P) and the dual
(D) are proved.

Finally, in section 6, a special case which can be obtained from the
general result is presented.
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2. PROBLEM FORMULATION

We consider the following multiobjective fractional programming prob-
lem with linear inequality constraints

(G 6),

A={z e R": Cx<b}.

The functions f; and g;,7 = 1,....,m, mapping from R" into R, are
assumed to be convex and concave, respectively. For all x € A and 7 =
1,...,m, let fi(x) > 0 and g;(x) > 0 be fulfilled. By C is denoted a real
I x n matrix and let be b € R!.

The problem (P) is a multiobjective optimization problem with the com-
ponents of the objective function being particular ratio functions. These
ratio functions have the property that they are convex (cf. [1]). The solu-
tion concepts we will use in our paper for the problem (P) are the so-called
Pareto minimal and properly minimal solutions. Now let us recall these
notions.

DEFINITION 2.1.  An element T € A is said to be efficient (or minimal

or Pareto-minimal) with respect to (P) if from ’;2((;) > ’;2((;“))7 for x € A,
@ _ @)

follows m = m,izl,...,m.

DEFINITION 2.2.  An element Z € A is said to be properly efficient (or
properly minimal) with respect to (P) if there exists A = (A1,..., \,)T €

intRY (Le. \i > 0,i=1,... m)suchthat - N < S ALE wre
i=1 ‘ i=1 !
A,

By these definitions, a properly efficient element turns out to be also an
efficient one.

Remark 2. 1. For the concept of proper efficiency there exist also
other definitions, like those introduced by Benson, Borwein or Geoffrion
(cf. [9]). But, for the problem (P), because of the convexity of A and of
fi(z)
gi(z)’

i =1,...,m, all these definitions are equivalent with Definition 2.2.
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3. THE SCALAR OPTIMIZATION PROBLEM

In this paper we intend to study the duality for the multiobjective prob-
lem (P). In order to do this, first we will consider the scalarized problem

O £
(F2) zeigA’gi(x)’

where A = (Ar,..., \p)? is a fixed vector in intR7".

Here, R} denotes the ordering cone of the non-negative elements of R™
and it defines the partial ordering ”2>" according to z =y if and only if
x —y € RP. We remark that inf(Py) (the infimum value of (Py)) is finite
under the assumptions we have stated.

To (Py) we will associate now another scalar optimization problem (Pj)
such that inf(Py) = inf(Py). The dual problem of (Py) will then suggest
us how to construct a multiobjective dual problem to (P).

Therefore, let us consider for s = (s1,...,5m)7,t = (t1,...,tm)T € R™,
the following feasible set

A={(z,5t) : Cx<b, t; >0, fi(x) =8 <0, t;—gi(r) <0, i=1,...,m}.
For i = 1,...,m, we consider the functions ®; : R* x R™ x R” — R,

T if (2,5,1) €R* x R™ x intRY,

(ﬁi (I, S, t) =
400, otherwise.

Now, we can introduce the following scalar optimization problem

P inf Ai®;(x, st
( A) (zst)E.AZ )

LEMMA 3.1. It holds inf(Py) = inf(Py).

Proof. Let be (z,s,t) € A. This means that z € A and, because of
fi(z) > 0,Vz € A it holds

i (z,s,t) i)\ —3 i)\ﬁ(z) > in i ’2 (2) = inf(Py)
i=1 T gie) Teeam (@) ’

i=1 9i

which implies that inf(Py) > inf(Py).
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Conversely, let be z € A. Considering s; = fi(x) and t; = g;(x), for
i = 1,...,m, one can observe that (z,s,t) € A. Moreover, we have the
following relations

m 2 m m ~

E )\, fl ((l‘) = E )\,@,(l‘, S, t) Z inf 5 E )\,@,(l‘, S, t) = inf(P)\),
: gi :

=1 =1

x) (z,s,t)€A i1

and this assures that the opposite inequality, inf(Py) > inf(Py), also holds.
In conclusion, inf(Py) = inf(Py). 1

4. DUALITY FOR THE SCALARIZED PROBLEM

In [11], the authors have used an approach based on the theory of geo-
metric programming for finding the dual of a scalar optimization problem
similar to (Py). In this section we will obtain a dual for (Py) using a
completely different approach from that in [11]. Moreover, the regularity
condition considered by us is "weaker” than the Slater condition used in
the paper we mentioned above.

First let us introduce the general convex optimization problem

(PG)  inf  f(u), (1)
g(w)so0

with V' C R” being a nonempty convex set and f ‘R >R, §:R - R
convex functions such that dom f =V.

We can find a dual problem to (PG) using the Fenchel-Rockafellar ap-
proach (cf. [5], [12], [13], [14]), which requires a suitable perturbation of
the original primal problem. Considering as a perturbation function

fluto), ifueV.glu) =7,
U (u,p,7) =
+00, otherwise,

with the perturbation variables o € R¥ and v € R¥, we have the following
perturbed problem to (PG)

P inf ¥ .
(PGyy) uleanv (u,,7)

Setting p and 7 equal to the zero vector of R” and RY, respectively, one
gets the original problem (PG). Now, the dual problem may be defined by

sup {_\IJ*(Ovﬁv Cj)})

pER?,GER™
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where ¥* denotes the conjugate function to V.
A detailed calculation (cf. [12]) yields the following dual problem to
(PG)

(DG)  sup {—f*(ﬁ) + inf [< fu> + < §,§(u) >]} : (2)
PER” ueV
gery

Here, f*() = sup {< p,u> —f(u)} represents the value of the conju-
u€eR?

gate function f * to f at p. For any finite dimensional space R¥ we write
< p,u > to denote the Euclidean scalar product by p = (p1,...,pr)T € RE
k

and u = (uy,...,up)T € RF ie. <p,u>= > pu;.
i=1

i=
Let us point out that between the problems (PG) and (DG) the weak
duality (sup(DG) < inf(PGQ)) always holds (cf. [5]). But, we are interested
in the existence of strong duality (max(DG) = inf(PG)). One of the
classical assumptions which assures the existence of strong duality is the
fulfilment of a constraint qualification.
For §(u) = (§1(u), ..., §w(u))T consider the following sets

L

{i e {1,...,w}: g; is an affine function},

N

{i € {1,...,w} : g is not an affine function} .

Let us consider the following constraint qualification (CQ) (cf. [6])

(CQ) | There exists an element u’ € rintV (the relative interior of V)
such that g;(u’) < 0for 7 € N and g;(u') <0 fori € L.

In [12] we have proved that (C'Q) is a sufficient condition to assure the
existence of strong duality for the problems (PG) and (DG) (cf. Theorem
3, [12]). This result is now formulated by the following theorem.

THEOREM 4.1. Ifinf(PG) is finite and the constraint qualification (CQ)
is fulfilled, then the problem (DG) has a solution and strong duality holds

inf(PG) = max(DG).

We will write now (Py) in the form of (1). In order to do this, we will
take R" = R* x R” x R™, R = R x R™ xR™, V = R" x R™ x intR}"
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(i.e. t; > 0,1 = L...,m),

and

g(xz,s,t) = (Cx — b, f(x) —s,t — g(x)).

It is obvious that V is a nonempty convex set, f is a convex function and
domf = V. From the convexity of f; and the concavity of g;,4 = 1,...,m, it
follows that the function § is also convex. This means that (Py) is actually
a particular case of the general convex optimization problem (PG).

By (2), (DG) yields the dual of the scalar problem (Py), with p =
(p%,p*,pt) and G = (¢%, ¢, ¢*) dual variables,

(l~)>\) sup < — sup [< D, (x,8,t) > —> )\iq)i(x,s,t)} +
PER” (z,s,t)ERY i=1
qery

( iIgGV[< ﬁa (I,S,t) >+ < 67 (Cl’ - b,f(l') - S,t—g(iﬂ)) >]} )

or, equivalently,

(Dy) sup — sup [<p® x>+ <p’ s>
(p®,p°,pt)ER"XR™XR™ (z,8,6) ER™ XR™xR™
(¢%,¢°,q" ) ER X R xR 120,

m 32
+ <pt7t > —Z)\Zt—l
i=1

K2

+ inf <p®—¢°, s>+ inf <p'+4qt>
seR™ teintRY

+ 1en]£ [<p® x>+ <q¢",Co—b>+<q¢, flz)>—- <, g >]}.
seRn

After some transformations we obtain the following dual problem

m 2
t Si
(Dy) sup — > sup [< D5, 8i >+ < pg,ti > —)\ig]
p*E€R™ p°,p'eR™ i=18iER
2Rl 05 steRp™ t;>0
g €R,q7, g €RY

m
— sup < p%,x >+ inf {< P —CTg® 2>+ Y g fi(z) — qul(x)]}
zERn rER” i=1

— <@, b>+ inf <p®—¢°, s>+ in
sER™ tei

f <pt+qt,t>}.
GzntRﬁ:
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Since
0 it p* =
T _ 9 )
f;}éf’n <P { +00, otherwise,
. 0 if p*=4¢°
f S _ S — ) Rk )
seRm SPoahs > { —00, otherwise,
and

0, if p'+4¢'20,

f £t — .
int <p +q,t> {—oo, otherwise,

tEintRT

in order to obtain supremum in (l~)>\)7 we have to take p® = 0, p®* = ¢° and

P +q"20.
Moreover, for i = 1,...,m, we have
2 e (09)? t
S5 AP ) L
sup < pf,si >+ <plt; > —/\i—’} -0 if 4N +pi =0,
s;i€R t; +00, otherwise.
t:>0

After all these considerations, the dual problem of (Py) becomes

(D)) sup {— <q¢*,b>— sup [< —ctg x>
a” R’ .q°,¢'€RT z€R™

p°=¢°.p'+q' 20
- (Z(qffi - q;?yi)) (x)] }
=1

ERY
B pi<0,i=1,..m
or, equivalently, using the definition of the conjugate function,

(Dx) sup {— <q*b>~ <Z§)1(qffi - qﬁgi)>* (—CTq“”)} -
(3)

st. (¢",¢°,q") 20
8\2
(Zi)\)i <d¢i=1,....m

Remark 4. 1.

(a) In (3) the conjugate of the sum can be written in the following form

(cf.[8])
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(Z(ﬁﬁ—ﬁm)) (-C"¢") = inf {Z(quz) (ws) + Y (=datgi)* (v)

i=1 i=1 i=1
m

: Z(“’ +v;) = —C’Tq””} .
i=1

( ) For the positive components of the vectors ¢° and ¢! it holds for
=1,. m,
S * S £* ]‘
(@ fi)" (ui) = &} f; q_suz

and
(—atg)* (vi) = al(~gs)" (ql> .

Here it is important to remark that these formulas can be applied even
if ¢¢ = 0 or ¢ = 0. In this case, in order to obtain supremum in (DA),
we must consider u; = 0, (¢ fi)*(w;) = 0 and v; = 0, (—¢lg:)*(v;) = 0,
respectively. This means that if ¢f = 0 or ¢! = 0, then we have to take in the

objective function of the dual (D ) instead of ¢} £ (iu,) or, respectively,

qt(—gi)* ( : vl), the value 0. Also in the feasible set of the dual problem we

have to consider the additional conditions u; = 0 and v; = 0, respectively.

By Remark 4.1 ((a) and (b)), we obtain the following final form of the
scalar dual problem

Dy s {=<arv> = E s (Fu) - Lt (301) |

st. (¢%,¢°,¢) 20
ql) <gi=1,.

(u,—f-vl) +CT¢* =0

—~

MS%

i=1

Now, according to Theorem 4.1, we can present the strong duality theorem
for the problems (Py) and (D).

THEOREM 4.2. Let be A # 0. Then the dual problem (Dy) has a solution
and strong duality holds

inf(Py) = inf(Py) = max(D,).
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Proof. The set A being nonempty, by Lemma 3.1 we obtain that
inf(Py) = inf(Py) € R. If 2’ € A (i.e. Cz’ <b), then let us consider for
i=1,....m, t; = 2g;(2') > 0 and s} = fi(z') + ¢;, (¢; > 0). The element
u' = (2',5',t') belongs to the relative interior of V' = R" x R™ x intRY'.
Moreover, it satisfies the constraint qualification (C'Q).

So, the hypotheses of Theorem 4.1 are verified. In conclusion, (l~)>\)
has a solution and the equality inf(Py) = inf(Py) = max(Dy) is true. |

In order to investigate the duality for the multiobjective problem (P),
we will use the optimality conditions which result from the equality of
the optimal values in Theorem 4.2. The following theorem gives us these
conditions.

THEOREM 4.3.

(1)Let & be a solution to (Px). Then there exists (1,9,q",q°, q), a solu-
tion to (D)), such that the following optimality conditions are satisfied

(i) @ fr (qLu) Y@ fi(@) =< and>, i=1,...,m,
(1ii) < §®,b—Cz >=0,
m
(iv) E (ﬁ, + f)l) + C'T(jﬂlc =0,
=1

() @ =2ME8. i=1,....m,

(2)Let & be admissible to (Py) and (4,0,4%,¢%,q") be admissible to (D)),
satisfying (i)-(vi). Then % is a solution to (Py), (i,9,¢",q°, G*) is a solution
to (D)) and strong duality holds.

Proof.

(1) Assume that 2 is a solution to (Py). By Theorem 4.2, a solution
(1,9,4%, 4%, ") to (D) exists such that inf(Py) = inf(Py) = max(D,) or,
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equivalently,
O_i/\z 3(x)+< b>+Z ( ) Z (tA>
_ i [ASf (—u,) +4; fi(2)— < ;2 >] Zg’ 7) [Af (Ai)j]

i=1

m

1
+ Z [cﬁ(—gi)* <th > Gtgi(#)— < 0;, 2 >} +<q§,b—-C% >

i=1

m . fz(ﬁ) qu 2 m . ) o
i9i < — . ) 3 ' A
+;Ag(:c)<gi(x) o, +<;(u o)+ CT§, > 1)

By the definition of the conjugate function and Remark 4.1 (b), for i =

1,...,m, the so-called Young inequalities
it () + 02 00) 2< > 5)
1
and
~t * 1
Qz(_gl) (jt ngl( ) >< ’U’MI > (6)
are true.

By the inequalities (5), (6), the feasibility of & to (Py) and the feasibility
of (4,0,4%, 4%, ¢") to (Dy), it follows that the terms of the sum in (4) are
greater or equal to zero. This means that all of them must be equal to zero
and, in conclusion, the optimality conditions ()-(vi) must be fulfilled.

(2) All the calculations and transformations done before may be carried
out in the reverse direction starting from the relations ()-(vi).

5. THE MULTIOBJECTIVE DUAL PROBLEM

With the above preparation, we are able now to formulate a multiobjec-
tive dual problem to (P). The results from the previous sections will help
us prove the weak duality and, especially, the strong duality between the
primal problem (P) and its dual (D).

A dual multiobjective optimization problem (D) is introduced by

D -na h 3 a)‘76a sa ta
D) o X M0 1 007
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hl (U, v, )‘7 65 qs’ qt)
h(u,v,A,6,¢°,q") = :
hm(uv v, >‘a 57 qsv qt)
with

<1 L1
hj(U,’U,)\,(S, qqut) = _Q;fj <q ) q]( g]) (q_tv]> - < 6]56 >,
J J

for j =1,...,m. The dual variables are

U= (U, s Um), V= (V1,...,0m), A\ = ()\1,...7/\m)T,

5: (517"'a5m)7qs = (Qfa"'aqzz)Taqt = (qiv"wqfn)Ta

w, ER"v; ER", N €R G eR g eERG eRi=1,...,m

The set of constraints is defined by
m
B = { (u,v,),6,¢°,¢"): N € intRY, @.q¢ =0, Z)‘i(si

Z)\i(ui+vi+CT6i):0, (¢5)? < 44, i:l,...,m}. (7)
i=1

DEFINITION 5.1.  An element (@, o, A, q') € Bis said to be efficient
(or maximal or Pareto-maximal) for (D from

h(“?’U? >\’ 57 qqut) 2 h(ﬂ’ﬁ’ 5\’ 5’ q_qu_t)v for (u’v’ )\76’ qs’qt) 6 B’

follows h(u,v,\,6,¢%, ¢t) = h(u,v,), 6,3, q).
The following theorem states the weak duality assertion between the

multiobjective problem (P) and its dual (D).
TurOREM 5.1. There is no x € A and no (u,v,\,8,q¢°,qt) € B such that

2(z s - z s
J;Z((x)) < hi(uvvaa(qu 7qt) .fOT 1= 17' sy M and ‘; ((x)) < hj(uvvaa(qu 7qt)
for at least one j € {1,...,m}.
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Proof. Let us assume the contrary. This means that there exist z € A
and (u,v,\,d,¢%,¢") € B such that

Z x<2)\huv)\5q q"). (8)

x
9i i=1

On the other hand, applying the Young inequalities (5) and (6), we have
that

i f ZAh (u,0,0,8,4°,q") i f+<ZA5“b>
=1 =1

Z i=1 Z i=1

+§:/\i [qff{‘ (ém)Jrq,( 9i) (— >] Z“&f

+<ZA 6nb>+ZA —q; fi(@) + ¢Lgi(x)+ < ui + vi, x >]

=< i/\iéhb— Cz > +§:)\i9i(x) [f’?(x) —q file) | Qf]

2 2 2@ ")

>< Z/\i&,b— Cz > +Z/\Z~gi(x) [;’28 - qfﬁz; + (qi)z]

m m 572
—< 3 Adib—Cr >+ Nigi(a) [fi(:c) - q_z'} > 0.

i=1 i=1 gi(z) 2
This contradicts the strict inequality (8). |

The following theorem expresses the so-called strong duality between the
two problems (P) and (D).

THEOREM 5.2. Assume that b # (0,...,0)T. Ifz € Aisa
cient solution to (P), then there emsts an eﬂiczent solution (u,
€ B to the dual (D), such that strong duality J;((;)) = hy(@,,\
1,...,m, holds.

Proof.  jFrom the proper efficiency of Z, by Definition 2.2, we get a
corresponding vector A = (A1,...,A\n)7 € mtRY with the property that »
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solves the scalar optimization problem

o w3 A A

Theorem 4.3 assures the existence of a solution (4,9,4%,§*,¢") for the

dual of (Py) such that the optimality conditions (7)- (m) are satisfied.

Let us now construct by means of # and (4,9, ¢%,¢%, ") a solution for
(D). Therefore, for i = 1,...,m, let be u4; = %ﬁl, v = % oi, @ = §5

Lt

g; = §- and

) —%7<‘g(;;'jgf>(jx, if < §*,b0>#0,

0; =

L ¢ - wﬁ if <@%,b>=0, with § € R :< §,b>=1.
7.1,0,3°,7")

By (i3) and (iv) (cf. Theorem 4.3), for the element (@,
with § = (d1,...,0m), it holds A € intR?, ¢, ¢ >0, E A\id; = ¢* 20 and
Z)\ (u; +v; + CT8;) =

Addltlonally7 by (v) and (vi), we have, for 1 = 1,

a5\ 2 2(4 At
_s q; fi(@ 4q; _
@7 = (%) =4 = -

"m’

and this means that (i, 9, \, 6,3, q") € B, i.e. it is feasible for (D)
Moreover, by (i)-(ii) and (v)-(vi), for i = 1,...,m, it holds

— 1 1 <
Aa57qs7qt) = _qffl* <?ul> - (ﬁ(_gl)* <?vl> — < 6l7b >=

7

§8 1. Gt (1. 1 . . D
_q_,f'* <Tsuz> - EI_Z(_gi) (q_tv ) x < i+ 04, >= %fi(x)
X3

< + 05, F >=
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6. A SPECIAL CASE

In the last section of this paper we will consider the multiobjective opti-
mization problem for one of the two special cases presented in [11] and we
will find out how its dual looks like.

As primal multiobjective problem we consider

zTQuz 2T Qna
(d)Tz4+e” " (dn)TT+em)’

(P1) vomin
A={z e R*: Cx < b},

where Q; is a symmetric positive definite n x n matrix, f;(z) = /2T Q;z
and g;(z) = (d;)Tx + e; are convex functions, for each i = 1,...,m.

Let be d; € R*,e; € R, i =1,...,m, and the polyhedral set A = {x €
R" : Cx < b} selected so that g;(z) = (d;)Tx +e; > 0, for all x € A.

For the conjugate of f; and g; we have, fort=1,...,m,

ffk <lu,> = { 0’ if \/ uzTQ;lul S %S?

1 s .
i +00, otherwise,

and

e 1
(_gi)* lvi — €i, if Evi = _div
qt 400, otherwise.

1
Owing to the general approach presented within section 5, the dual of (P;)
turns out to be

—qiel— < (517b >

(D1) v —max ,
—¢tem— < 6, b >

s.t. (U7U7Aa57qtaqs) €B
with

B = {(uvvaa(qutaqs) tAE intRTvqsaqt 2 072)‘2(“2 + v; +OT51) = 05

RY =1

Oa (qzs)2 §4Qf7 \/U?Q;lui Sqfa ’UZ:—thdz, i:1a~"7m B
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or, equivalently,

—qiel— < (517b >

—qfnem—.< Omy b >
st. (u,\8,¢") €B
with
B={(uAd.q) s AeintRY, o 2 0. g:l)\i(ui ~digt + CTo;) =0,
= &

m
S Nidi 20, ul Qi <4gl, i=1,...,m}.
=1 Rf'_

Remark 6. 1. The problem (P;) also can be considered as a special
case of a general multiobjective fractional optimization problem. For this
class of optimization problems, in [15] and [7] different dual problems have
been presented. But, calculating the multiobjective dual for (P;) by the
methods proposed there, one may find out that (D) is different from the
duals introduced in the papers mentioned above.
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