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Abstract. We treat some duality assertions regarding multiobjective convex semidefinite pro-
gramming problems. Having a vector minimization problem with convex entries in the objective
vector function, we establish a dual for it using the so-called conjugacy approach. In order to
deal with the duality assertions between these problems we need to study the duality properties
and the optimality conditions of the scalarized problem associated to the initial one. Using
these results we present the weak, strong and converse duality assertions regarding the primal
problem and the dual we obtained for it.
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1. Introduction

This paper presents some duality assertions regarding the multiobjective semidefinite
programming problems. The duality model we are considering here has been introduced
by W. Fenchel and R.T. Rockafellar and it consists in attaching to an optimization
problem another problem, called its dual, by means of perturbation functions. This
dual problem is important, because its solutions may reveal us in certain conditions the
solutions of the initial problem. More on this subject may be found in [2], [6], [10], [11].

We deal further with semidefinite programming problems, namely, optimization
problems with positive semidefinite constraints. The duality for the single objective
linear case has already been presented in many papers, such as [1], [4], [5], [8], [9].

The word ”multiobjective” appears in the title because we consider multiple vector
valued objective functions. We treat the duality properties of these multiobjective
functions considering the so-called Pareto-efficiency. The approach we use to treat the
multiobjective dual problems has been introduced in the articles [10] and [11].
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We begin with a problem of minimizing a vector function with convex entries sub-
ject to positive semidefinite inequality constraints. This vector minimization is consid-
ered using the so-called Pareto-efficiency and proper efficiency, whose definitions are
reminded here. Then we take the scalarized problem associated to it and we calculate
its dual. From the duality assertions and optimality conditions, obtained further, we
are able to extract duality properties regarding the primal multiobjective semidefinite
optimization problem and its dual. Next we present the weak, strong and converse
duality assertions regarding these problems. Finally, we derive as special cases the dual
problems of the multiobjective semidefinite programming problem with linear objective
function and of the multiobjective fractional programming problem with linear inequal-
ity constraints. The last one is presented also as a special case of the problem treated
in [12].

2. Problem formulation

Let us consider the following multiobjective semidefinite programming problem with
convex objective functions and convex constraints

(P ) v − min
x∈X

f(x),

where
f = (f1, f2, ..., fk)T ,

X = {x = (x1, x2, ..., xm) ∈ R
m : F (x) ≥Sn

+
0},

and

F (x) = F0 +

m
∑

i=1

xi · Fi.

For each j = 1, ..., k, fj : R
m → R is a real-valued convex function, and also Fi ∈ Sn,

i = 0, ...,m. Here we have denoted by Sn the linear subspace of the symmetric n × n

matrices with real entries, i.e.

Sn = {A ∈ R
n×n | A = AT },

and by Sn
+ the cone of the symmetric positive semidefinite n × n matrices with real

entries, i.e.
Sn

+ = {A ∈ Sn | xT · A · x ≥ 0,∀x ∈ R
n},

which introduces the so-called Löwner partial order on Sn

A ≥Sn
+

B ⇔ A − B ∈ Sn
+, A,B ∈ Sn.

So our constraint F (x) ≥Sn
+

0 means actually that F (x) is a symmetric positive

semidefinite matrix. Also, on Sn
+ we consider the scalar product from Sn

〈A,B〉 =
n
∑

i,j=1

Aij · Bij = Tr
(

AT · B
)

, A,B ∈ Sn,
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where Tr(A) denotes the trace of the matrix A and ”· ” is the well-known product of
matrices.

To deal with the dual properties of the problem (P ), using the method introduced
in [10], we need to reformulate the feasible set by introducing a new function

g : R
m → Sn, g(x) := −F0 +

m
∑

i=1

xi · (−Fi).

In this circumstance, the feasible set of the problem (P ) may be written as X =
{

x ∈ R
m : g(x) ≤Sn

+
0
}

.

There are several notions of solutions for this type of problem, but we use here
so-called Pareto-efficient and properly efficient solutions. Let us remind these notions.

Definition 1. An element x̄ ∈ X is said to be Pareto-efficient with respect to (P )
if from f(x) ≤

R
k
+

f(x̄), x ∈ X , follows f(x) = f(x̄).

Definition 2. An element x̄ ∈ X is called properly efficient with respect to (P )

if there exists λ = (λ1, . . . , λk)T ∈ int(Rk
+) such that

k
∑

i=1

λifi(x̄) ≤
k
∑

i=1

λifi(x), for all

x ∈ X .

Remark 1. We denote by ”≤
R

k
+
” the partial ordering induced by the non-negative

orthant R
k
+ = {x = (x1, x2, ..., xk)T : xi ≥ 0, i = 1, ..., k} on R

k. Hence

int(Rk
+) =

{

λ = (λ1, ..., λk)T ∈ R
k
+ : λi > 0, i = 1, ..., k

}

.

Remark 2. A properly efficient element is also a Pareto-efficient one, with respect
to the optimization problem (P ).

3. The scalarized problem

In order to deal with the properly efficient solutions of (P ) we consider the scalarized
problem attached to it

(P
λ
) inf

x∈X

k
∑

i=1

λifi(x),

where λ = (λ1, . . . , λk)T ∈ int(Rk
+) and then study its duality properties according to

the mentioned approach.

To be able to do this, let us consider first a general semidefinite optimization problem

(Pg) inf
x∈X

f̃(x),

where f̃ : R
m → R is a convex function.
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To obtain the desired dual for (Pg) we use the method described in [10]. So let us
consider the perturbation function

Φ : R
m × R

m × Sn → R,Φ(x, p,Q) =

{

f̃ (x + p) , if g(x) ≤Sn
+

Q,

+∞, otherwise.

Its conjugate function is

Φ∗(x∗, p∗, Q∗) = sup
x,p∈R

m,
g(x)−Q≤Sn

+
0

{〈x∗, x〉 + 〈p∗, p〉 + 〈Q∗, Q〉 − Φ(x, p,Q)}

= sup
x,p∈R

m,
g(x)−Q≤Sn

+
0

{

〈x∗, x〉 + 〈p∗, p〉 + 〈Q∗, Q〉 − f̃(x + p)
}

.

It is well-known that the space Sn is self-dual, i.e. (Sn)
∗

= Sn. In [13] there is

proved that the cone Sn
+ is also self-dual, i.e.

(

Sn
+

)∗
= Sn

+. This last property will be
used later.

The dual of (Pg) is obtained (cf. [2]) calculating the expression

(

P ∗
g

)

sup
p∗∈R

m,
Q∗∈Sn

{−Φ∗(0, p∗, Q∗)} .

To ease our calculation we introduce the following new variables

r := x + p, S := Q − g(x).

The expression of the conjugate function of Φ becomes

Φ∗(x∗, p∗, Q∗) = sup
x,r∈R

m,
S≥Sn

+

0

{

〈x∗, x〉 + 〈p∗, r − x〉 + 〈Q∗, S + g(x)〉 − f̃(r)
}

= sup
S≥Sn

+
0
〈Q∗, S〉 + sup

r∈Rm

{

〈p∗, r〉 − f̃(r)
}

+ sup
x∈Rm

{〈x∗, x〉 − 〈p∗, x〉 + 〈Q∗, g(x)〉} . (3.1)

As required above, we take x∗ = 0,

Φ∗(0, p∗, Q∗) = sup
S≥Sn

+
0
〈Q∗, S〉 + f̃∗ (p∗) + sup

x∈Rm

{〈Q∗, g(x)〉 − 〈p∗, x〉} ,

where f̃∗ (p∗) = sup
r∈Rm

{

〈p∗, r〉 − f̃(r)
}

is the conjugate function of f̃ at p∗. It follows

Φ∗(0, p∗, Q∗) = sup
S≥Sn

+
0
〈Q∗, S〉 + f̃∗ (p∗)
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+ sup
x∈Rm

{

−

m
∑

i=1

xi〈Q
∗, Fi〉 − 〈Q∗, F0〉 −

m
∑

i=1

xip
∗
i

}

= sup
S≥Sn

+
0
〈Q∗, S〉 + f̃∗ (p∗)

+ sup
x∈Rm

{

−〈Q∗, F0〉 −

m
∑

i=1

xi (〈Q∗, Fi〉 + p∗i )

}

= sup
S≥Sn

+
0
〈Q∗, S〉

+f̃∗ (p∗) − 〈Q∗, F0〉 + sup
x∈Rm

{

−

m
∑

i=1

xi(〈Q
∗, Fi〉 + p∗i )

}

.

For the two suprema encountered above, we have

sup
S≥Sn

+
0
〈Q∗, S〉 =

{

0, if Q∗ ≤Sn
+

0,

+∞, otherwise,

and

sup
x∈Rm

{

−

m
∑

i=1

xi(〈Q
∗, Fi〉 + p∗i )

}

=

{

0, if 〈Q∗, Fi〉 + p∗i = 0, i = 1, ...,m,
+∞, otherwise.

As the above infinite values are not relevant for our supremum problem (P ∗
g ), the dual

becomes
(

P ∗
g

)

sup
Q∗≤Sn

+
0,p∗=(p∗

1 ,p∗
2 ,...,p∗

m)∈R
m,

p∗
i =−Tr(Q∗·Fi),i=1,...,m

{

−f̃∗(p∗) + 〈Q∗, F0〉
}

,

which, denoting Q := −Q∗, may be written after some transformations also as

(P ∗
g ) sup

Q≥Sn
+

0

{

−f̃∗ (Tr(Q · F1), T r(Q · F2), ..., T r(Q · Fm)) − Tr(Q · F0)
}

. (3.2)

Remark 3. (P ∗
g ) is the dual problem obtained using the conjugacy approach to

our semidefinite optimization problem with general convex objective function (Pg). For

f̃(x) = 〈c, x〉, x ∈ R
m, it becomes

(P ∗
c ) sup

Q≥Sn
+

0,

Tr(Q·Fi)=ci,i=1,...,m

{−Tr(Q · F0)}.

This is exactly the dual problem already obtained for the linear case in the literature
(see [1], [8], [9], [13]).

So the dual of (Pλ) looks like

(P ∗
λ ) sup

Q≥Sn
+

0,p∗∈R
m,

p∗=(Tr(Q·F1),...,Tr(Q·Fm))

{

−

(

k
∑

i=1

λifi

)∗

(p∗) − Tr (Q · F0)

}

,
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which may be turned, using the formula (cf. [6])

(

k
∑

i=1

λifi

)∗

(p∗) = inf

{

k
∑

i=1

(λifi)
∗(p̃i) :

k
∑

i=1

p̃i = p∗

}

,

into

(P ∗
λ ) sup

Q≥Sn
+

0,p̃i∈R
m,i=1,...,k,

k
∑

i=1

p̃i=(Tr(Q·F1),...,Tr(Q·Fm))

{

−
k
∑

i=1

(λifi)
∗(p̃i) − Tr (Q · F0)

}

.

Knowing that (λifi)
∗(p̃i) = λif

∗
i

(

1
λi

p̃i

)

and denoting pi := 1
λi

p̃i, i = 1, ..., k, the

dual problem may be simplified to

(P ∗
λ ) sup

Q≥Sn
+

0,pi∈R
m,i=1,...,k,

k
∑

i=1

λipi=(Tr(Q·F1),...,Tr(Q·Fm))

{

−

k
∑

i=1

λif
∗
i (pi) − Tr (Q · F0)

}

.

4. Duality for the scalarized problem

The weak and strong duality assertions hold for the linear problem as it is proved in
[9]. The scalarized problem we are currently treating is a natural extension of the linear
problem, so similar duality properties are to be formulated for it. As the proof of the
weak duality theorem is trivial we do not mention it here.

Theorem 1. There holds weak duality between (Pλ) and (P ∗
λ ), i.e.

inf(Pλ) ≥ sup(P ∗
λ ).

In order to prove the strong duality theorem we have to introduce the Slater Con-
straint Qualification

(SCQ)
(

there exists x′ ∈ R
m such that F (x′) >Sn

+
0
)

.

By ” >Sn
+

” we have denoted the partial ordering on Sn introduced by the set of the

symmetric positive definite n × n matrices, which actually coincides with int(Sn
+) (cf.

[8]). We formulate the strong duality theorem for (Pg) from which we obtain the one
regarding (Pλ).

Theorem 2. Let be inf (Pg) > −∞ and (SCQ) be fulfilled. Then the dual problem
(P ∗

g ) has an optimal solution and there is strong duality between (Pg) and (P ∗
g ), i.e.

inf(Pg) = max(P ∗
g ).
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Proof. The convexity of f and g ensures the convexity of Φ. The constraint qual-
ification (SCQ) being fulfilled, there exists x′ ∈ R

m such that F (x′) ∈ int(Sn
+).

Next we prove that the function Φ(x′, ·, ·) is continuous at (0, 0). Proposition 2.3
and Theorem 4.1 in [2] imply in this case the existence of an optimal solution of (P ∗

g )
and state the equality of the optimal objective values of (Pg) and (P ∗

g ). Therefore let be

ε > 0. The function f̃ being continuous over R
m, there exists V1 an open neighborhood

of 0 in R
m such that for all p ∈ V1,

∣

∣

∣f̃ (x′ + p) − f̃ (x′)
∣

∣

∣ < ε.

Because g(x′) = −F (x) ∈ −int(Sn
+), there exists V2 ⊆ Sn an open neighborhood of 0

such that for all Q ∈ V2,

g (x′) ∈ Q − Sn
+ ⇔ g (x′) ≤Sn

+
Q.

Consider V = V1 × V2, that is a neighborhood of (0, 0) in R
m × Sn. For all (p,Q) ∈ V

we have

|Φ(x′, p,Q) − Φ(x′, 0, 0)| =
∣

∣

∣f̃ (x′ + p) − f̃ (x′)
∣

∣

∣ < ε,

which actually means that Φ(x′, ·, ·) is continuous at (0, 0).

Considering f̃ =
k
∑

i=1

λifi, we obtain the strong duality assertion for the scalarized

problem.

Corollary 1. If inf(Pλ) > −∞ and (SCQ) holds, then the dual problem (P ∗
λ ) has

an optimal solution and there is strong duality between (Pλ) and (P ∗
λ
), i.e. inf(Pλ) =

max(P ∗
λ ).

Further we need also the optimality conditions regarding (P
λ
) and its dual (P ∗

λ ), so
we formulate and prove the following theorem.

Theorem 3.

(a) Let (SCQ) be fulfilled and let x̄ ∈ X be a solution to (Pλ). Then there exists
an optimal solution (p̄1, ..., p̄k, Q̄) to (P ∗

λ ) satisfying the following optimality conditions

(i) fi (x̄) + f∗
i (p̄i) = 〈p̄i, x̄〉, i = 1, ..., k,

(ii) Tr
(

Q̄ · F (x̄)
)

= 0.

(b) Let x̄ ∈ X and
(

p̄1, ..., p̄k, Q̄
)

feasible to (P ∗
λ ) satisfying (i) and (ii). Then x̄

turns out to be an optimal solution to (Pλ),
(

p̄1, ..., p̄k, Q̄
)

an optimal solution to (P ∗
λ )

and the strong duality between (Pλ) and (P ∗
λ ) is true,

k
∑

i=1

λifi(x̄) = −
k
∑

i=1

λif
∗
i (p̄i) − Tr

(

Q̄ · F0

)

.
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Proof. (a) As (SCQ) is fulfilled, there exists an optimal solution (p̄1, ..., p̄k, Q̄) to
(P ∗

λ ) such that
k
∑

i=1

λifi (x̄) = −
k
∑

i=1

λif
∗
i (p̄i) − Tr

(

Q̄ · F0

)

.

This may be also written in the following way

k
∑

i=1

λi (f∗
i (p̄i) + fi (x̄)) + Tr

(

Q̄ · F0

)

= 0.

Adding and subtracting in the left-hand side the term

〈

k
∑

i=1

λip̄i, x̄

〉

we get

k
∑

i=1

λi (f∗
i (p̄i) + fi (x̄) − 〈p̄i, x̄〉) +

〈

k
∑

i=1

λip̄i, x̄

〉

+ Tr
(

Q̄ · F0

)

= 0.

As
〈

k
∑

i=1

λip̄i, x̄

〉

= 〈(Tr(Q̄ · F1), ..., T r(Q̄ · Fm)), x̄〉 =

m
∑

i=1

x̄iTr(Q̄ · Fi),

the previous relation becomes

k
∑

i=1

λi (f∗
i (p̄i) + fi(x̄) − 〈p̄i, x̄〉) +

m
∑

i=1

x̄iTr(Q̄ · Fi) + Tr(Q̄ · F0) = 0,

which is equivalent to

k
∑

i=1

λi (f∗
i (p̄i) + fi(x̄) − 〈p̄i, x̄〉) + 〈Q̄, F (x̄)〉 = 0. (4.1)

As x̄ ∈ X , there follows F (x̄) ≥Sn
+

0. Also knowing that Q̄ ≥Sn
+

0, we have

〈Q̄, F (x̄)〉 ≥ 0. (4.2)

From Young’s inequality it stands

f∗
i (p̄i) + fi(x̄) − 〈pi, x̄〉 ≥ 0, i = 1, ..., k, (4.3)

and, as λi > 0, i = 1, ..., k,

k
∑

i=1

λi (f∗
i (p̄i) + fi(x̄) − 〈p̄i, x̄〉) ≥ 0.

Therefore
k
∑

i=1

λi (f∗
i (p̄i) + fi(x̄) − 〈p̄i, x̄〉) + 〈Q̄, F (x̄)〉 ≥ 0. (4.4)

By (4.1) there follows that the inequalities encountered in (4.2) and (4.3) must be
fulfilled as equalities. So the optimality conditions (i) and (ii) are verified.

(b) All the calculations from (a) may be carried out in the reverse direction.
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5. The multiobjective dual problem

Now we are ready to introduce the multiobjective dual problem to the primal problem
(P ),

(D) v − max
(p,Q,λ,t)∈Y







−f∗
1 (p1) −

1
kλ1

Tr (Q · F0) + t1
...

−f∗
k (pk) − 1

kλk
Tr (Q · F0) + tk






,

where

p = (p1, p2, ..., pk) , pi ∈ R
m, i = 1, ..., k,Q ∈ Sn,

λ = (λ1, λ2, ..., λk)
T
∈ R

k, t = (t1, t2, ..., tk)T ∈ R
k,

and

Y =

{

(p,Q, λ, t) : λ ∈ int(Rk
+),

k
∑

i=1

λiti = 0, Q ≥Sn
+

0,

k
∑

i=1

λipi =

(

Tr (Q · F1) , T r (Q · F2) , ..., T r (Q · Fm)

)

}

.

As (D) is a maximum vector optimization problem, we have to specify that we
consider here the so-called Pareto-efficiency in the sense of maximum to distinguish its
solutions. We recall its definition.

Definition 3. An element
(

p̄, Q̄, λ̄, t̄
)

∈ Y is said to be Pareto-efficient for (D) if
for each j = 1, ..., k, and for (p,Q, λ, t) ∈ Y, from

−f∗
j (p̄j) −

1

kλ̄j

Tr
(

Q̄ · F0

)

+ t̄j ≤ −f∗
j (pj) −

1

kλj

Tr (Q · F0) + tj ,

there follows

−f∗
j (p̄j) −

1

kλ̄j

Tr
(

Q̄ · F0

)

+ t̄j = −f∗
j (pj) −

1

kλj

Tr (Q · F0) + tj .

Further we formulate and prove the weak duality assertion for the multiobjective
problems (P ) and (D).

Theorem 4. There is no x ∈ X and no (p,Q, λ, t) ∈ Y such that

fi (x) ≤ −f∗
i (pi) −

1

kλi

Tr (Q · F0) + ti, ∀i = 1, ..., k,

and, for at least one j ∈ {1, ..., k},

fj (x) < −f∗
j (pj) −

1

kλj

Tr (Q · F0) + tj .
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Proof. Let us assume the contrary, i.e. that there exist some x and (p,Q, λ, t)
feasible to our problems fulfilling the conditions mentioned above. Then assembling the
relations given in the hypothesis we obtain

k
∑

i=1

λifi(x) <

k
∑

i=1

λi

(

−f∗
i (pi) −

1

kλi

Tr(Q · F0) + ti

)

. (5.1)

On the other hand,

k
∑

i=1

λi

(

−f∗
i (pi) −

1

kλi

Tr(Q · F0) + ti

)

= −

k
∑

i=1

λif
∗
i (pi) −

k
∑

i=1

λi

kλi

Tr(Q · F0)

+

k
∑

i=1

λiti = −

k
∑

i=1

λif
∗
i (pi) − k

1

k
Tr(Q · F0) = −

k
∑

i=1

λif
∗
i (pi) − Tr(Q · F0).

By Theorem 1 we know

−
k
∑

i=1

λif
∗
i (pi) − Tr (Q · F0) ≤

k
∑

i=1

λifi (x) ,

which implies

k
∑

i=1

λi

(

−f∗
i (pi) −

1

kλi

Tr(Q · F0) + ti

)

≤

k
∑

i=1

λifi (x) .

The last inequality contradicts (5.1), so our presumption is false.

Now we are ready to deal with the strong duality between (P ) and (D).

Theorem 5. Let us assume that there exists an element x′ ∈ R
m such that

F (x′) >Sn
+

0. If x̄ is properly efficient to (P ), then there exists a Pareto-efficient

solution (p̄, Q̄, λ̄, t̄) ∈ Y to (D) and strong duality between (P ) and (D) is fulfilled, i.e.

fi(x̄) = −f∗
i (p̄i) −

1

kλ̄i

Tr
(

Q̄ · F0

)

+ t̄i, i = 1, ..., k.

Proof. The element x̄ being properly efficient to (P ) implies that there exists a
λ̄T ∈ int(Rm

+ ) such that x̄ solves (Pλ̄), i.e.

k
∑

i=1

λ̄ifi (x̄) = min
x∈X

k
∑

i=1

λ̄ifi (x) .

(SCQ) is fulfilled, so there exists an optimal solution to
(

P ∗
λ̄

)

satisfying the optimality

conditions in Theorem 3. Let us denote it by (p̄1, ..., p̄k, Q̄) and define

t̄j := p̄T
j x̄ +

1

kλ̄j

Tr
(

Q̄ · F0

)

∈ R, j = 1, ..., k.
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It follows
k
∑

j=1

λ̄j t̄j =
k
∑

j=1

λ̄j p̄
T
j x̄ +

k
∑

j=1

λ̄j

1

kλ̄j

Tr
(

Q̄ · F0

)

=

〈

k
∑

j=1

λ̄j p̄j , x̄

〉

+ Tr
(

Q̄ · F0

)

=
k
∑

j=1

〈Q̄, Fj〉x̄j + 〈Q̄, F0〉 = 〈Q̄, F (x̄)〉 = 0.

So far we have proved that the element
(

p̄, Q̄, λ̄, t̄
)

belongs to the set Y. Let us show
the remaining requirement, namely, that for all i = 1, ..., k,

fi(x̄) = −f∗
i (p̄i) −

1

kλ̄i

Tr(Q̄ · F0) + t̄i.

According to Theorem 3(i) we have

−f∗
i (p̄i) −

1

kλ̄i

Tr
(

Q̄ · F0

)

+ t̄i = −f∗
i (p̄

i
) −

1

kλ̄i

Tr
(

Q̄ · F0

)

+p̄T
i x̄ +

1

kλ̄i

Tr
(

Q̄ · F0

)

= −f∗
i (p̄

i
) + p̄T

i x̄ = fi(x̄).

With the weak duality (cf. Theorem 4) follows that
(

p̄, Q̄, λ̄, t̄
)

is Pareto-efficient to
(D).

We can also formulate the converse duality theorem, whose proof is not mentioned
here (cf. [10]).

Theorem 6. Assume the constraint qualification (SCQ) being fulfilled and that
for each λ ∈ int(Rn

+) the following property holds

(C) inf
x∈X

k
∑

i=1

λifi(x) > −∞ implies ∃x
λ
∈ X : inf

x∈X

k
∑

i=1

λifi(x) =
k
∑

i=1

λifi(xλ).

(a) Then for any Pareto-efficient solution (p̄, Q̄, λ̄, t̄) of (D) we have






−f∗
1 (p̄1) −

1
kλ̄1

Tr
(

Q̄ · F0

)

+ t̄1

...
−f∗

k (p̄k) − 1
kλ̄k

Tr
(

Q̄ · F0

)

+ t̄k






∈ cl

(

f(X ) + R
k
+

)

and there exists a properly efficient solution to (P ) x̄λ̄ ∈ X such that

k
∑

i=1

λ̄i

[

fi(x̄λ̄) + f∗
i (p̄i) +

1

kλ̄i

Tr
(

Q̄ · F0

)

− t̄i

]

= 0.

(b) If, additionally, f(X ) is R
k
+-closed (i.e. f(X ) + R

k
+ is closed), then there exists

an x̄ ∈ X properly efficient to (P ) such that

k
∑

i=1

λ̄ifi(x̄λ̄) =

k
∑

i=1

λ̄ifi(x̄),

and

fi(x̄) = −f∗
i (p̄i) −

1

kλ̄i

Tr
(

Q̄ · F0

)

+ t̄i, i = 1, ..., k.
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6. Special cases

6.1 Special case I. Let us consider the initial vector minimization problem with the
linear objective function f = (〈c1, x〉, ..., 〈ck, x〉)T . We have

(Pl) v − min
x∈X







〈c1, x〉
...

〈ck, x〉






.

To be able to calculate the dual problem of (P ) using the method presented before,
we have to determine the conjugate function of each of the linear functions fi(x) =
〈ci, x〉, i = 1, ..., k,

f∗
i (pi) = sup

x∈Rm

{〈pi, x〉 − 〈ci, x〉} = sup
x∈Rm

{〈pi − ci, x〉} =

{

0, if pi = ci,
+∞, otherwise.

By this, the dual problem of (Pl) looks like

(Dl) v − max
(Q,λ,t)∈Yl







− 1
kλ1

Tr(Q · F0) + t1
...

− 1
kλk

Tr(Q · F0) + tk






,

where

Yl =

{

(Q,λ, t) : λ ∈ int(Rk
+),

k
∑

i=1

λiti = 0, Q ≥Sn
+

0,

k
∑

i=1

λici =

(

Tr (Q · F1) , T r (Q · F2) , ..., T r (Q · Fm)

)

}

.

Let us denote di := ti −
1

kλi
Tr(Q · F0), i = 1, ..., k. The condition

k
∑

i=1

λiti = 0 becomes

k
∑

i=1

λi

(

di + 1
kλi

Tr(Q · F0)
)

= 0, which implies

k
∑

i=1

λidi = −k
1

k
Tr(Q · F0) = −Tr(Q · F0).

So the dual problem of (Pl) is

(Dl) v − max
(Q,λ,d)∈Yl





d1
...

dk



 ,
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where

Yl =

{

(Q,λ, d) : λ ∈ int(Rk
+),

k
∑

i=1

λidi = −Tr(Q · F0), Q ≥Sn
+

0,

k
∑

i=1

λici =

(

Tr (Q · F1) , T r (Q · F2) , ..., T r (Q · Fm)

)

}

.

6.2. Special case II. The next optimization problem we treat is known as the
multiobjective fractional program with linear inequality constraints. A generalized case
is presented in [12], while its single objective scalar case is mentioned in [9], where it is
treated by means of semidefinite programming. For

(Pf ) v − min
A·x≤

R
p

+

b









〈c1,x〉2

〈d1,x〉

...
〈ck,x〉2

〈dk,x〉









,

with A = (aij) ∈ R
p×m, b ∈ R

p, cj , dj ∈ R
m, j = 1, ..., k, we assume that for all j =

1, ..., k, and each feasible x, 〈dj , x〉 > 0.
To be able to deal with (Pf ) within the framework of the present paper we refor-

mulate it as a semidefinite programming problem. First it is obvious that (Pf ) may be
written also as

(Pf ) v − min
A·x≤

R
p

+

b,

〈cj,x〉2

〈dj,x〉
≤yj ,j=1,...,k







y1
...

yk






.

The system of constraints above is equivalent (cf. [3], [9], [13]) to the semidefiniteness
of the following matrix

F (x, y) =





















diag(b − A · x) 0 0 0

0 H1 0 0

0 0
. . . 0

0 0 0 Hk





















,

with

Hj =

(

yj 〈cj , x〉
〈cj , x〉 〈dj , x〉

)

, j = 1, ..., k.

As we have

A · x =













p
∑

i=1

a1ixi

...
p
∑

i=1

amixi













,
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and cj = (cj
1, ..., c

j
m), dj = (dj

1, ..., d
j
m), j = 1, ..., k, F (x, y) may be written as a sum of

symmetric matrices in the following way

F (x, y) =
m
∑

i=1

xi

































diag(−a1i, ...,−api) 0 0 0 0 0

0 0 c1
i 0 0 0

0 c1
i d1

i 0 0 0

0 0 0
. . . 0 0

0 0 0 0 0 ck
i

0 0 0 0 ck
i dk

i

































+
k
∑

j=1

yj

























0

. . .

1

. . .

0

























+

(

diag(b) 0
0 0

)

≥Sp+2k

+

0.

Let us denote by Fi the matrix multiplied above by xi, i = 1, ...,m, by Fm+j the one
multiplied above by yj , namely, the (p + 2k)× (p + 2k) matrix with all entries equal to
0, but the one in the position (p + 2j − 1, p + 2j − 1) whose value is 1, j = 1, ..., k, and
the last matrix by F0.

One may notice that all the matrices encountered above are symmetric and (Pf )
has been written in the same form as the primal problem (P ). In order to determine the
dual of (Pf ) we need to calculate the conjugates of the entries of the vectorial objective
function. For the functions fj(x, y) = yj , j = 1, ..., k, the conjugates are

f∗
j (u, v) = sup

x∈R
m,

y∈R
k

{〈u, x〉 + 〈v, y〉 − fj(x, y)} = sup
x∈R

m,

y∈R
k

{

m
∑

i=1

uixi +
k
∑

l=1

vlyl − yj

}

=

{

0, if u = 0, vj = 1, vl = 0, l 6= j,
+∞, otherwise.

The previous results lead us to the following dual to (Pf )

(Df ) v − max
(Q,λ,t)∈Yf







− 1
kλ1

Tr(Q · F0) + t1
...

− 1
kλk

Tr(Q · F0) + tk






,
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where

Yf =

{

(Q,λ, t) : λ ∈ int(Rk
+),

k
∑

i=1

λiti = 0, Q ≥Sp+2k

+

0,

T r(Q · Fi) = 0, i = 1, ...,m, Tr(Q · Fm+j) = λj , j = 1, ..., k

}

.

As the matrices Fi, i = 0, ...,m + k, are known and Q’s entries may be denoted by
(qij), i, j = 1, ..., p + 2k, we can develop a simpler shape of the dual problem. So let us
calculate the values of the scalar products between Q and Fi, i = 0, ...,m + k. First we

have Tr(Q · F0) =
p
∑

i=1

qiibi. Then, for each i = 1, ...,m,

Tr(Q · Fi) =

p
∑

i=1

−aliqll + 2

k
∑

j=1

qp+2j−1,p+2jc
j
i +

p
∑

i=1

qp+2j,p+2jd
j
i

and we also have
Tr(Q · Fm+j) = qp+2j−1,p+2j−1, j = 1, ..., k.

Because Tr(Q · Fm+j) = λj , one has

λj = qp+2j−1,p+2j−1, j = 1, ..., k.

So the variables λj may be eliminated from the dual problem whose form becomes

(Df ) v − max
(Q,t)∈Yf







h1(Q, t)
...

hk(Q, t)






,

where

hj(Q, t) = −
1

kqp+2j−1,p+2j−1

p
∑

i=1

qiibi + tj , j = 1, ..., k,

and

Yf =

{

(Q, t) : Q = (qij) ≥Sp+2k

+

0,
k
∑

j=1

qp+2j−1,p+2j−1tj = 0,

qp+2j−1,p+2j−1 > 0, j = 1, ..., k,

AT · (q11, ..., qpp)
T = 2

k
∑

j=1

qp+2j−1,p+2jc
j +

k
∑

i=1

qp+2j,p+2jd
j

}

.

In [12] there is obtained the following dual to the problem (Pf )

(D′
f ) v − max

(λ,δ,qs,qt)∈Y′
f

h′(λ, δ, qs, qt),
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where

h′(λ, δ, qs, qt) =







−〈δ1, b〉
...

−〈δk, b〉






,

and

Y ′
f =

{

(λ, δ, qs, qt) : λ ∈ int(R+
k ), qs, qt ∈ R

k
+, δ = (δ1, ..., δk), δj ∈ R

k,

(qs
j )

2 ≤ 4qt
j , j = 1, ..., k,

k
∑

j=1

λjδj ≥R
p

+
0,

AT ·

(

k
∑

j=1

λjδj

)

+
k
∑

j=1

λj(q
s
j c

j − qt
jd

j) = 0

}

.

In order to find some connections between these two multiobjective dual problems we
study the relation of inclusion between the image sets of their objective functions over
the corresponding feasible sets. Therefore let be d ∈ h′(Y ′

f ). So there exists a tuple

(λ, δ, qs, qt) ∈ Y ′
f such that d = h′(λ, δ, qs, qt). Let us consider

quv :=



































































(

k
∑

j=1

λjδj

)

u

, if u = v = 1, ..., p,

λj , if u = v = p + 2j − 1, j = 1, ..., k,

λjq
t
j , if u = v = p + 2j, j = 1, ..., k,

−
λjqs

j

2 , if (u, v) = (p + 2j, p + 2j − 1) or (u, v) =
(p + 2j − 1, p + 2j), j = 1, ..., k,

0, otherwise,

where by

(

k
∑

j=1

λjδj

)

u

we have denoted the u-th entry of the vector
k
∑

j=1

λjδj . Also let

us introduce tj := −〈δj , b〉 + 1
kλj

〈

k
∑

j=1

λjδj , b

〉

, j = 1, ..., k.

Using the properties of the positive semidefinite matrices (cf. [3], [9], [13]) one may

notice that Q = (quv)u,v=1,...,p+2k ∈ Sp+2k
+ . On the other hand, for each j = 1, ..., k, we

have qp+2j−1,p+2j−1 > 0. Simple calculations give the following relations

k
∑

j=1

qp+2j−1,p+2j−1tj = 0

and

AT · (q11, ..., qpp)
T − 2

k
∑

j=1

qp+2j−1,p+2jc
j −

k
∑

i=1

qp+2j,p+2jd
j = 0.
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By these, (Q, t) ∈ Yf . For each component of the objective function h(Q, t), we have

hj(Q, t) = −
1

kqp+2j−1,p+2j−1

〈

(q11, ..., qpp)
T , b
〉

+ tj

= −
1

kλj

〈

k
∑

j=1

λjδj , b

〉

− 〈δj , b〉 +
1

kλj

〈

k
∑

j=1

λjδj , b

〉

= −〈δj , b〉, j = 1, ..., k.

Hence d = h(Q, t) ∈ h(Yf ), which means that h′(Y ′
f ) ⊆ hf (Yf ). One may notice that

the reverse inclusion does not hold.
A detailed analysis of the relations between different duals introduced in the liter-

ature to a general convex multiobjective problem will be given in a forthcoming paper.
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