
Duality for convex partially separable

optimization problems

G. Wanka, R. I. Boţ and L. Altangerel
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Abstract

This paper aims to extend duality investigations for the convex
partially separable optimization problems. By using the results in
[15] we formulate three dual problems for the optimization problem
with convex inequality and affine equality constraints, which includes
the convex partially separable one. For these duals we give a con-
straint qualification which guarantees the existence of strong duality.
Optimality conditions for the convex partially separable optimization
problem and some particular cases are also obtained.
Key words: Convex partially separable optimization problems, La-
grange and conjugate duality, strong duality, optimality conditions.

1. Introduction

Convexity and monotonicity conditions arising in spline approximation prob-
lems usually lead to the problem of finding u0, u1, ..., un ∈ R

s such that

(ui−1, ui) ∈ Wi ⊆ R
2s, i = 1, n, (1.1)

where Wi are given closed and convex sets. If (1.1) is solvable, the number of
the solutions of (1.1) may be infinite in general. In order to find a preferable
spline we have to introduce a choice function, e.g. the Holliday function.
Therefore we consider the optimization problem

inf
(ui−1,ui)∈Wi

i=1,n

n∑

i=1

Fi(ui−1, ui), (1.2)

which is called a tridiagonally separable one, because the Hessian of the
objective function has a block tridiagonal structure (see [2], [8], [10]).
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Assume that Fi : R
li → R and Gi : R

li → R
m, i = 1, n, are convex functions

and Wi ⊆ R
li , i = 1, n, are convex sets. Let Ai ∈ R

li×(n+1), li ∈ {1, ..., n+1}
be given matrices.
Let us introduce the following optimization problem

(P cps) inf
u∈W

n∑

i=1

Fi(Aiu),

where

W =

{
u = (u0, ..., un)T ∈ R

n+1|
n∑

i=1

Gi(Aiu) ≤
R

m
+

0, Aiu ∈ Wi, i = 1, n

}
.

(P cps) is called the convex partially separable optimization problem and gen-
eralizes the problem (1.2). For x, y ∈ R

m, x ≤
R

m
+

y means y − x ∈ R
m
+ = {z =

(z1, ..., zm)T ∈ R
m| zi ≥ 0, i = 1,m}.

Introducing the auxiliary variables vi = Aiu ∈ R
li , i = 1, n, (P cps) can be

rewritten as

(P cps) inf
v∈V

n∑

i=1

Fi(vi),

where

V =

{
v ∈ R

k|

n∑

i=1

Gi(vi) ≤
R

m
+

0, vi − Aiu = 0, vi ∈ Wi, i = 1, n

}
,

with v = (u, v1, ..., vn) ∈ R
k and k = n + 1 + l1 + ... + ln.

The following problems considered in [8] and in references therein, are also
special cases of (P cps).

(i) The convex partially separable optimization problem with affine con-
straints

inf
n∑

i=1

Fi(Aiu), s.t.
n∑

i=1

BiAiu = b, Aiu ∈ Wi, i = 1, n,

where the matrices Bi ∈ R
m×li , i = 1, n and the vector b ∈ R

m are
given.

(ii) The convex separable optimization problem

inf
n∑

i=1

Fi(ui), s.t.
n∑

i=1

Biui = b, ui ∈ Wi, i = 1, n.
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(iii) The tridiagonally separable optimization problem

inf
n∑

i=1

Fi(ui−1, ui), s.t.
n∑

i=1

(Biui−1 + Ciui) = b, (ui−1, ui) ∈ Wi ⊆ R
2s,

i = 1, n. By taking in the last one Bi = Ci = 0, i = 1, n, and b = 0 we
get (1.2).

The Lagrange dual problems for the above particular cases were established
and strong duality assertions were derived (see [8] and references therein). In
most of these cases, the Lagrange dual problems are unconstrained and if so-
lutions of them are known, then the solutions of the primal problems can be
explicitly computed by the so-called return-formula. This is the idea which
has been applied by solving tridiagonally separable optimization problems
and then by different convex and monotone spline approximations problems.
For details, we refer to [2], [6], [7], [8], [9] and [10].
A comprehensive introduction of the separable optimization including La-
grange duality is presented in [13]. Further investigations of the partial sep-
arability can be found in [4] and [5].
Let us also mention that another duality which has been used by different
spline approximation problems including the convex and monotone interpo-
lation with C1 splines (cf. [2], [6]) is the so-called Fenchel duality.
The purpose of this paper is to obtain different dual problems for the convex
partially separable optimization problem. By using the strong duality result
for the optimization problem with convex inequality and affine equality con-
straints, we derive optimality conditions for the convex partially separable
optimization problem and its particular cases.

2. Duality for the optimization problem with

convex inequality and affine equality

constraints

Let us consider the convex optimization problem

(P ) inf
x∈G

f(x), G = {x ∈ X| g(x) ≤
R

t
+

0, h(x) = 0},

where X ⊆ R
l is a convex set, f : R

l → R, g = (g1, ..., gt)
T : R

l → R
t, h =

(h1, ..., hw)T : R
l → R

w are given such that f, gi, i = 1, t are convex functions
and hj, j = 1, w are affine functions.
Recently, in [15] different dual problems for (P ) have been derived. A general
perturbation approach and the theory of conjugate functions have been used
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there. This leads to the following three dual problems for (P )

(DL) sup
q1 ≥

R
t
+

0

q2∈R
w

inf
x∈X

{f(x) + 〈q1, g(x)〉 + 〈q2, h(x)〉},

(DF ) sup
p∈Rl

{
−f ∗(p) + inf

x∈G
〈p, x〉

}

and

(DFL) sup
p∈R

l,q1 ≥

R
t
+

0

q2∈R
w

{
−f ∗(p) + inf

x∈X
[〈p, x〉 + 〈q1, g(x)〉 + 〈q2, h(x)〉]

}
.

Here f ∗ : R
l → R = R∪ {±} is defined by f ∗(ξ) = sup

x∈Rl

{〈ξ, x〉 − f(x)} and is

called the conjugate function of f. With 〈·, ·〉 we denote the Euclidean scalar
product for the corresponding space Rt, R

w, R
l etc.

The problems (DL) and (DF ) are the classical Lagrange and Fenchel dual
problems, respectively. The dual problem (DFL) is called the Fenchel-Lagrange
dual and it is a ”combination” of the Fenchel and Lagrange dual problems.
By construction weak duality always holds, i.e., the optimal objective values
of the mentioned dual problems are less than or equal to the optimal objec-
tive value of (P ). In order to formulate the strong duality for (P ) we need a
constraint qualification. Because, in this case,

rintX ∩ rint(domf) = rintX ∩ R
l = rintX,

where rintX and domf denotes the relative interior of X and the effective
domain of f, respectively, the constraint qualification looks like (cf. [15])

(CQ) ∃x′ ∈ rintX :




gi(x
′) ≤ 0, i ∈ L,

gi(x
′) < 0, i ∈ N,

hj(x
′) = 0, j = 1, w.

Here
L = {i ∈ {1, ..., t} | gi is an affine function}

and
N = {i ∈ {1, ..., t} | gi is not an affine function}.

Denoting by v(P ) the optimal objective value of (P ) and by v(DL), v(DF ), v(DFL)
the optimal objective values of (DL), (DF ) and (DFL), respectively, we have
the following assertion (cf. [15]).
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Proposition 2.1 (Strong duality)
Assume that the constraint qualification (CQ) is fulfilled. If v(P ) is finite
then (DL), (DF ), (DFL) have solutions and it holds

v(P ) = v(DL) = v(DF ) = v(DFL).

By using the same scheme, in the second part of this section we will formu-
late three other dual problems to (P ). Therefore we reformulate (P ) in the
following equivalent form

(P̃ ) inf
x∈D

(f + δX)(x), D = {x ∈ R
l| g(x) ≤

R
t
+

0, h(x) = 0},

where δX(x) =

{
0, if x ∈ X,
+∞, if x /∈ X

is the indicator function of X. Obviously,

the optimal objective values of (P ) and (P̃ ) coincide. The three dual prob-
lems look like

(D̃L) sup
q1 ≥

R
t
+

0

q2∈R
w

inf
x∈X

{
f(x) + 〈q1, g(x)〉 + 〈q2, h(x)〉

}
,

(D̃F ) sup
p∈Rl

{
− f ∗

X(p) + inf
x∈D

〈p, x〉
}

,

(D̃FL) sup
q1 ≥

R
t
+

0,p∈R
l

q2∈R
w

{
− f ∗

X(p) + inf
x∈Rl

[〈p, x〉 + 〈q1, g(x)〉 + 〈q2, h(x)〉]
}

,

where f ∗
X : R

l → R is defined by f ∗
X(p) = (f + δX)∗(p) = sup

x∈X

{〈p, x〉 − f(x)}

and is called the conjugate of f relative to the set X. Let us observe that
(D̃L) and (DL) have similar formulations.
Since

rint(Rl) ∩ rint(dom(f + δX)) = R
l ∩ rintX = rintX,

we can take the same constraint qualification as for (P ) also for the strong

duality assertion for (P̃ ).

Proposition 2.2 (Strong duality)

Assume that the constraint qualification (CQ) is fulfilled. If v(P̃ ) is finite

then (D̃L), (D̃F ), (D̃FL) have solutions and it holds

v(P̃ ) = v(D̃L) = v(D̃F ) = v(D̃FL).
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Proposition 2.1 and Proposition 2.2 state that, under the assumptions we
made in this section, the optimal objective values of all dual problems, which
introduced above, are equal.

3. The convex partially separable

optimization problem

For the convex partially separable optimization problem (P cps) we obtain the
following dual problems, which follows from (DL), (DF ), (DFL), respectively:

(Dcps
L ) sup

qi∈R
li ,i=1,n

n
P

i=1

AT

i
qi=0

qn+1 ≥
R

m
+

0

{
n∑

i=1

inf
vi∈Wi

[Fi(vi) + 〈qn+1, Gi(vi)〉 + 〈qi, vi〉]

}
,

(Dcps
F ) sup

pi∈R
li ,i=1,n

{
−

n∑

i=1

F ∗
i (pi) + inf

v∈V

n∑

i=1

〈pi, vi〉

}

and

(Dcps
FL) sup

qi,pi∈R
li ,i=1,n

n
P

i=1

AT

i
qi=0

qn+1 ≥
R

m
+

0

{
−

n∑
i=1

F ∗
i (pi) +

n∑
i=1

inf
vi∈Wi

[〈pi + qi, vi〉 + 〈qn+1, Gi(vi)〉]

}
.

The functions F ∗
i are the conjugates of Fi, i = 1, n.

Indeed, let us observe that the convex partially separable optimization prob-
lem (P cps) is a particular case of (P ), namely taking





X = R
n+1 × W1 × · · · × Wn G = V,

f : R
k → R, f(v) =

n∑
i=1

Fi(vi),

g : R
k → R

m, g(v) =
n∑

i=1

Gi(vi),

h : R
k → R

l1 × · · · × R
ln

h(v) = (v1 − A1u, · · · , vn − Anu)T ,
v = (u, v1, ..., vn) ∈ R

n+1 × R
l1 × · · · × R

ln .

(3.1)
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1. Lagrange duality

Substituting (3.1) in (DL), we have

sup
q1 ≥

R
m
+

0

q2∈R
l1×···×R

ln

q2=(q21,...,q2n)

inf
v∈X

{
n∑

i=1

Fi(vi) +
n∑

i=1

〈q1, Gi(vi)〉 +
n∑

i=1

〈q2i, vi − Aiu〉

}

= sup
q1 ≥

R
m
+

0

q2∈R
l1×···×R

ln

inf
u∈R

n+1

vi∈Wi,i=1,n

{ n∑

i=1

Fi(vi) +
n∑

i=1

〈q1, Gi(vi)〉

+
n∑

i=1

〈q2i, vi〉 −
n∑

i=1

〈q2i, Aiu〉
}

= sup
q1 ≥

R
m
+

0

q2∈R
l1×···×R

ln

{
inf

u∈Rn+1

〈
−

n∑

i=1

AT
i q2i, u

〉
+

n∑

i=1

inf
vi∈Wi

[Fi(vi)

+〈q1, Gi(vi)〉 + 〈q2i, vi〉]
}

.

Because of inf
u∈Rn+1

〈
−

n∑

i=1

AT
i q2i, u

〉
=





0, if
n∑

i=1

AT
i q2i = 0,

−∞, otherwise,
(3.2)

we get (Dcps
L ), where we take qi := q2i, i = 1, n and qn+1 := q1.

2. Fenchel duality

For p = (pu, pv1
, ..., pvn

), we calculate f ∗(p) that appears in the formulation
of (DF ). By definition, it holds

f ∗(p) = sup
v∈Rk

{〈p, v〉 − f(v)} = sup
v∈Rk

{
〈p, v〉 −

n∑

i=1

Fi(vi)

}

= sup
u∈R

n+1

vi∈R
li ,i=1,n

{
〈pu, u〉 +

n∑

i=1

〈pvi
, vi〉 −

n∑

i=1

Fi(vi)

}

= sup
u∈Rn+1

〈pu, u〉 +
n∑

i=1

sup
vi∈R

li

{〈pvi
, vi〉 − Fi(vi)}.

Thus, in view of

sup
u∈Rn+1

〈pu, u〉 =

{
0, if pu = 0,
+∞, otherwise,

(3.3)
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and taking into account that inf
v∈V

〈p, v〉 = inf
v∈V

n∑
i=1

〈pvi
, vi〉, (Dcps

F ) is immedi-

ately obtained, where pi := pvi
, i = 1, n.

3. Fenchel-Lagrange duality

As we have seen

f ∗(p) = sup
u∈Rn+1

〈pu, u〉 +
n∑

i=1

F ∗
i (pvi

).

By (3.3), we can omit pu in the second term of (DFL). Thus, this looks like

inf
v∈X

{
n∑

i=1

〈pvi
, vi〉 +

n∑

i=1

〈q1, Gi(vi)〉 +
n∑

i=1

〈q2i, vi − Aiu〉

}

= inf
u∈R

n+1

vi∈Wi,i=1,n

{
n∑

i=1

〈pvi
, vi〉 +

n∑

i=1

〈q1, Gi(vi)〉 +
n∑

i=1

〈q2i, vi〉 −
n∑

i=1

〈AT
i q2i, u〉

}

= inf
u∈Rn+1

〈
−

n∑

i=1

AT
i q2i, u

〉
+

n∑

i=1

inf
vi∈Wi

[〈pvi
+ q2i, vi〉 + 〈q1, Gi(vi)〉].

In view of (3.2) and replacing pvi
, q2i, i = 1, n, and q1 by pi, qi, i = 1, n,

and qn+1, respectively, we get (Dcps
FL).

As in Section 2, for D =
{

v ∈ R
k|

n∑
i=1

Gi(vi) ≤
R

m
+

0, vi − Aiu = 0, i = 1, n
}

and
n∑

i=1

(
Fi(vi)+δWi

(vi)
)

as objective function, we can formulate further dual

problems for (P ).

(D̃cps
L ) sup

qi∈R
li ,i=1,n

n
P

i=1

AT

i
qi=0

qn+1 ≥
R

m
+

0

{
n∑

i=1

inf
vi∈Wi

[Fi(vi) + 〈qn+1, Gi(vi)〉 + 〈qi, vi〉]

}
,

(D̃cps
F ) sup

pi∈R
li ,i=1,n

{
−

n∑

i=1

(Fi)
∗
Wi

(pi) + inf
v∈D

n∑

i=1

〈pi, vi〉
}

,

(D̃cps
FL) sup

pi,qi∈R
li ,i=1,n

n
P

i=1

AT

i
qi=0

qn+1 ≥
R

m
+

0

{
−

n∑

i=1

(Fi)
∗
Wi

(pi) +
n∑

i=1

inf
vi∈R

li

[〈pi + qi, vi〉
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+〈qn+1, Gi(vi)〉]
}

.

Further, we concentrate to the dual problems (Dcps
L ), (Dcps

F ), (Dcps
FL). By using

Proposition 2.1 we derive for (P ) and its duals necessary and sufficient op-
timality conditions . Similar results can be obtained for the other three duals.

Theorem 3.1 (Optimality conditions for (P cps) and (Dcps
L ))

1. Assume that the constraint qualification (CQ) is fulfilled (with the denota-
tions given in (3.1)). Let ū ∈ R

n+1 be a solution for (P cps). Then there exists

an element q̄ = (q̄1, ..., q̄n, q̄n+1) ∈ R
l1×· · ·×R

ln×R
m, q̄n+1 ≥

R
m
+

0,
n∑

i=1

AT
i q̄i = 0

such that the following optimality conditions are satisfied:

(i) Fi(v̄i) + 〈q̄n+1, Gi(v̄i)〉 + 〈q̄i, v̄i〉
= inf

vi∈Wi

{Fi(vi) + 〈q̄n+1, Gi(vi)〉 + 〈q̄i, vi〉}, i = 1, n,

(ii)
〈
q̄n+1,

n∑
i=1

Gi(v̄i)
〉

= 0,

(iii) v̄i = Aiū, i = 1, n.

2. Let ū ∈ W and q̄ = (q̄1, ..., q̄n, q̄n+1) ∈ R
l1 × · · · × R

ln × R
m be feasible

to (Dcps
L ), satisfying (i) − (iii). Then ū and q̄ are solutions for (P cps) and

(Dcps
L ), respectively, and strong duality holds.

Proof: Let ū be a solution for (P cps). Then v(P cps) =
n∑

i=1

Fi(v̄i) ∈ R,

where v̄i = Aiū, i = 1, n. Therefore, by Proposition 2.1, there exists q̄ =
(q̄1, ..., q̄n, q̄n+1) ∈ R

l1×· · ·×R
ln ×R

m, solution for (Dcps
L ) such that q̄n+1 ≥

R
m
+

0,

n∑
i=1

AT
i q̄i = 0, and strong duality holds

n∑

i=1

Fi(v̄i) =
n∑

i=1

inf
vi∈Wi

{Fi(vi) + 〈q̄n+1, Gi(vi)〉 + 〈q̄i, vi〉}.

After some transformations we get

0 =
n∑

i=1

{Fi(v̄i) + 〈q̄n+1, Gi(v̄i)〉 + 〈q̄i, v̄i〉

− inf
vi∈Wi

[Fi(vi) + 〈q̄n+1, Gi(vi)〉 + 〈q̄i, vi〉]}

+
〈
q̄n+1,−

n∑

i=1

Gi(v̄i)
〉

+
〈
−

n∑

i=1

AT
i q̄i, ū

〉
.
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Taking into account that ū, q̄ are feasible to (P cps) and (Dcps
L ), respectively,

and since the inequality

Fi(v̄i)+〈q̄n+1, Gi(v̄i)〉+〈q̄i, v̄i〉 ≥ inf
vi∈Wi

[Fi(vi)+〈q̄n+1, Gi(vi)〉+〈q̄i, vi〉], i = 1, n,

is true, (i) − (iii) follows.
The same calculations can be done in the opposite direction. Therefore we
obtain assertion 2. �

Theorem 3.2 (Optimality conditions for (P cps) and (Dcps
F ))

1. Assume that the constraint qualification (CQ) is fulfilled. Let ū ∈ R
n+1

be a solution for (P cps). Then there exists an element p̄ = (p̄1, ..., p̄n) ∈
R

l1 × · · · × R
ln such that the following optimality conditions are satisfied:

(i) Fi(v̄i) + F ∗
i (p̄i) = 〈p̄i, v̄i〉, i = 1, n,

(ii)
n∑

i=1

〈p̄i, v̄i〉 = inf
v∈V

n∑
i=1

〈p̄i, vi〉,

(iii) v̄i = Aiū, i = 1, n

2. Let ū ∈ W and p̄ ∈ R
l1 × · · · × R

ln be such that (i) − (iii) are satisfied.
Then ū and p̄ are solutions for (P cps) and (Dcps

F ), respectively, and strong
duality holds.

Proof: Let ū be a solution for (P cps). Then v(P cps) =
n∑

i=1

Fi(v̄i) ∈ R,

where v̄i = Aiū, i = 1, n. Therefore, by Proposition 2.1, there exists p̄ =
(p̄1, ..., p̄n) ∈ R

l1 × · · · × R
ln , solution for (Dcps

F ), and it holds

n∑

i=1

Fi(v̄i) = −
n∑

i=1

F ∗
i (p̄i) + inf

v∈V

n∑

i=1

〈p̄i, vi〉.

The last relation can be rewritten as

0 =
n∑

i=1

{Fi(v̄i) + F ∗
i (p̄i) − 〈p̄i, v̄i〉}

+
n∑

i=1

〈p̄i, v̄i〉 − inf
v∈V

n∑

i=1

〈p̄i, vi〉. (3.4)

Since the inequalities

Fi(v̄i) + F ∗
i (p̄i) ≥ 〈p̄i, v̄i〉, i = 1, n (Young inequality),

n∑

i=1

〈p̄i, v̄i〉 − inf
v∈V

n∑

i=1

〈p̄i, vi〉 ≥ 0
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are always true, all terms in (3.4) must be equal to zero. Therefore (i)− (iii)
follows.
In order to get the second part of the theorem one has to make the same
calculations, but in the opposite direction. �

Theorem 3.3 (Optimality conditions for (P cps) and (Dcps
FL))

1. Assume that the constraint qualification (CQ) is fulfilled. Let ū ∈
R

n+1 be a solution for (P cps). Then there exists an element (p̄, q̄), p̄ =
(p̄1, ..., p̄n) ∈ R

l1 × · · · × R
ln , q̄ = (q̄1, ..., q̄n, q̄n+1) ∈ R

l1 × · · · × R
ln ×

R
m, q̄n+1 ≥

R
m
+

0,
n∑

i=1

AT
i q̄i = 0 such that the following optimality conditions

are satisfied:

(i) Fi(v̄i) + F ∗
i (p̄i) = 〈p̄i, v̄i〉, i = 1, n,

(ii) 〈p̄i + q̄i, v̄i〉 + 〈q̄n+1, Gi(v̄i)〉
= inf

vi∈Wi

{〈p̄i + q̄i, vi〉 + 〈q̄n+1, Gi(vi)〉}, i = 1, n,

(iii)
〈
q̄n+1,

n∑
i=1

Gi(v̄i)
〉

= 0,

(iv) v̄i = Aiū, i = 1, n.

2. Let ū ∈ W and (p̄, q̄), p̄ = (p̄1, ..., p̄n) ∈ R
l1×...×R

ln , q̄ = (q̄1, ..., q̄n, q̄n+1) ∈
R

l1×...×R
ln×R

m be feasible to (Dcps
FL), satisfying (i)−(iv). Then ū and (p̄, q̄)

are solutions for (P cps) and (Dcps
FL), respectively, and strong duality holds.

Proof: Let ū be a solution for (P cps). Then v(P cps) =
n∑

i=1

Fi(v̄i) ∈ R, where

v̄i = Aiū, i = 1, n. Therefore by Proposition 2.1, there exists (p̄, q̄), p̄ =
(p̄1, ..., p̄n) ∈ R

l1 × · · · × R
ln , q̄ = (q̄1, ..., q̄n, q̄n+1) ∈ R

l1 × · · · × R
ln × R

m,

solution for (P cps
FL ) such that q̄n+1 ≥

R
m
+

0,
n∑

i=1

AT
i q̄i = 0, and it holds

n∑

i=1

Fi(v̄i) = −

n∑

i=1

F ∗
i (p̄i) +

n∑

i=1

inf
vi∈Wi

{〈p̄i + q̄i, vi〉 + 〈q̄n+1, G(vi)〉}.

The last equality is rewritable as

0 =
n∑

i=1

{Fi(v̄i) + F ∗
i (p̄i) − 〈p̄i, v̄i〉}

+
n∑

i=1

{〈p̄i + q̄i, v̄i〉 + 〈q̄n+1, Gi(v̄i)〉
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− inf
vi∈Wi

[〈p̄i + q̄i, vi〉 + 〈q̄n+1, Gi(vi)〉]}

+
〈
q̄n+1,−

n∑

i=1

Gi(v̄i)
〉

+
〈
−

n∑

i=1

AT
i q̄i, ū

〉
.

Because ū and (p̄, q̄) are feasible to (P cps) and (Dcps
FL), respectively, and since

the inequalities

Fi(v̄i) + F ∗
i (p̄i) ≥ 〈p̄i, v̄i〉, i = 1, n (Young inequality),

〈p̄i + q̄i, v̄i〉 + 〈q̄n+1, Gi(v̄i)〉 ≥ inf
vi∈Wi

[〈p̄i + q̄i, vi〉 + 〈q̄n+1, Gi(vi)〉], i = 1, n,

are true, we obtain (i) − (iv).
The second part of the theorem follows by making the same calculations, but
in the opposite direction. �

4. Special cases of the convex partially

separable optimization problem

4.1 The convex partially separable optimization

problem with affine constraints

Consider the problem

(P lps) inf
u∈W

n∑

i=1

Fi(Aiu),

where

W =

{
u ∈ R

n+1|
n∑

i=1

BiAiu = b, Aiu ∈ Wi, i = 1, n

}

and Bi ∈ Rm×li , i = 1, n, b ∈ R
m are given.

It is obvious that (P lps) is a special case of (P ), whose feasible set containing
only affine constraints. The dual problems of (P lps) look like

(Dlps
L ) sup

qi∈R
li , i=1,n

n
P

i=1

AT

i
qi=0

qn+1∈R
m

{
〈qn+1, b〉 −

n∑

i=1

(Fi)
∗
Wi

(BT
i qn+1 + qi)

}
,

(Dlps
F ) sup

pi∈R
li , i=1,n

{
−

n∑

i=1

F ∗
i (pi) + inf

u∈W

n∑

i=1

〈pi, Aiu〉

}

12



and

(Dlps
FL) sup

qi,pi∈R
li , i=1,n

n
P

i=1

AT

i
qi=0

qn+1∈R
m

{
〈qn+1, b〉 −

n∑

i=1

F ∗
i (pi)

+
n∑

i=1

inf
vi∈Wi

〈pi + qi + BT
i qn+1, vi〉

}
.

As we have seen in Section 3, optimality conditions for all these three dual
problems can be derived. But, further we restrict our work by treating only
the Fenchel-Lagrange dual.

Proposition 4.1 (Optimality conditions for (P lps) and (Dlps
FL))

1. Assume that the constraint qualification (CQ) is fulfilled. Let ū ∈ R
n+1

be a solution for (P lps). Then there exists an element (p̄, q̄), p̄ = (p̄1, ..., p̄n) ∈

R
l1 × · · · × R

ln , q̄ = (q̄1, ..., q̄n, q̄n+1) ∈ R
l1 × · · · × R

ln × R
m,

n∑
i=1

AT
i q̄i = 0

such that the following optimality conditions are satisfied:

(i) Fi(v̄i) + F ∗
i (p̄i) = 〈p̄i, v̄i〉, i = 1, n,

(ii) 〈p̄i + q̄i + BT
i q̄n+1, v̄i〉 = inf

vi∈Wi

〈p̄i + q̄i + BT
i q̄n+1, vi〉, i = 1, n,

(iii) v̄i = Aiū, i = 1, n

2. Let ū ∈ W and (p̄, q̄), p̄ = (p̄1, ..., p̄n) ∈ R
l1×· · ·×R

ln , q̄ = (q̄1, ..., q̄n, q̄n+1) ∈
R

l1×· · ·×R
ln×R

m be feasible to (Dlps
FL), satisfying (i)−(iii). Then ū and (p̄, q̄)

are solutions for (P lps) and (Dlps
FL), respectively, and strong duality holds.

4.2 Tridiagonally separable optimization problem

Let us now treat the problem

(P ts) inf
u∈W

n∑

i=1

Fi(ui−1, ui),

where

W =
{

u = (u0, ..., un) ∈ R
s × · · · × R

s

︸ ︷︷ ︸
n+1

|

n∑

i=1

(Biui−1 + Ciui) = b, (ui−1, ui) ∈ Wi ⊆ R
2s, i = 1, n

}

13



and Bi, Ci ∈ R
m×s, i = 1, n, b ∈ R

m are given.
For (P ts) we can use the dual schemes of (P lps). The duals of (P lps) become
in this situation

(Dts
L ) sup

qi∈R
s,i=0,n

q0=qn=0
qn+1∈R

m

{
〈qn+1, b〉 −

n∑

i=1

(Fi)
∗
Wi

(qi−1 + BT
i qn+1,−qi + CT

i qn+1)

}
,

(Dts
F ) sup

(pi1,pi2)∈R
2s

i=1,n

{
−

n∑

i=1

F ∗
i (pi1, pi2) + inf

u∈W

n∑

i=1

[〈pi1, ui−1〉 + 〈pi2, ui〉]

}
,

(Dts
FL) sup

(pi1,pi2)∈R
2s

qi∈R
s,i=0,n

q0=qn=0
qn+1∈R

m

{
〈qn+1, b〉 −

n∑

i=1

F ∗
i (pi1, pi2) +

n∑

i=1

inf
(ui−1,ui)∈Wi

[〈pi1 − qi−1 − BT
i qn+1, ui−1〉 + 〈pi2 + qi − CT

i qn+1, ui〉]
}

.

The next proposition provide optimality conditions for (P ts) and (Dts
FL).

Proposition 4.2 (Optimality conditions for (P ts) and (Dts
FL))

1. Assume that the constraint qualification (CQ) is fulfilled. Let ū ∈ R
n+1

be a solution for (P ts). Then there exists an element (p̄, q̄), p̄ = (p̄1, ..., p̄n) ∈
R

s × · · · × R
s

︸ ︷︷ ︸
n

, q̄ = (q̄0, q̄1, ..., q̄n, q̄n+1) ∈ R
s × · · · × R

s

︸ ︷︷ ︸
n+1

×R
m, q̄0 = q̄n = 0

such that the following optimality conditions are satisfied:

(i) Fi(ūi−1, ūi) + F ∗
i (p̄i1, p̄i2) = 〈p̄i1, ūi−1〉 + 〈p̄i2, ūi〉, i = 1, n,

(ii) 〈p̄i1 − q̄i−1 − Bi
T q̄n+1, ūi−1〉 + 〈p̄i2 + q̄i − Ci

T q̄n+1, ūi〉
= inf

(ui−1,ui)T∈Wi

[〈p̄i1 − q̄i−1 − Bi
T q̄n+1, ui−1〉 + 〈p̄i2 + q̄i − Ci

T q̄n+1, ui〉],

i = 1, n.

2. Let ū ∈ W and (p̄, q̄), p̄ = (p̄1, ..., p̄n) ∈ R
s × · · · × R

s

︸ ︷︷ ︸
n

,

q̄ = (q̄0, q̄1, ..., q̄n, q̄n+1) ∈ R
s × · · · × R

s

︸ ︷︷ ︸
n+1

×R
m be feasible to (Dts

FL), satisfying

(i) − (ii). Then ū and (p̄, q̄) are solutions of (P ts) and (Dts
FL), respectively,

and strong duality holds.
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4.3 Convex interpolation with cubic C1 splines

The aim of this last subsection is to show how it is possible to reformulate
the convex interpolation problem with C1 splines as a tridiagonally separable
optimization problem. The role of the duality by solving this problem will
also be discussed.
Let (xi, yi) ∈ R

2, i = 0, n be given data points defined on the grid

∆n : x0 < x1 < ... < xn.

A cubic spline S on ∆n can be given for [xi−1, xi] by the formula

S(x) = yi−1 + mi−1(x − xi−1)

+ (3τi − 2mi−1 − mi)
(x − xi−1)

2

hi

+ (mi−1 + mi − 2τi)
(x − xi−1)

3

h2
i

with hi = xi − xi−1, τi = yi−yi−1

hi

, i = 1, n. It holds S ∈ C1[x0, xn] and

S(xi) = yi, S ′(xi) = mi, i = 0, n.
The points (x0, y0), ..., (xn, yn) associated with ∆n are said to be in convex
position if

τ1 ≤ τ2 ≤ · · · ≤ τn. (4.1)

By (4.1), the necessary and sufficient convexity condition for S on [0, 1] leads
to the following problem

(mi−1,mi)
T ∈ Wi (4.2)

where

Wi = {(mi−1,mi)
T ∈ R

2| 2mi−1 + mi ≤ 3τi ≤ mi−1 + 2mi}, i = 1, n. (4.3)

If the inequality ai ≤ bi, i = 1, n where a0 = −∞, b0 = +∞ and ai =
max{τi,

1
2
(3τi−bi−1)}, bi = 3τi−2ai−1, i = 1, n, is fulfilled, then the problem

(4.2) is solvable, but not uniquely in general. In order to select an unique
convex interpolant one can minimize the mean curvature of S. It is easy to
verify that

xn∫

x0

S ′′(x)2dx =
n∑

i=1

4

h2
i

{m2
i + mimi−1 + m2

i−1 − 3τi(mi + mi−1) + 3τ 2
i }

=
n∑

i=1

Fi(mi−1,mi),
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and therefore we get the following optimization problem

(P sca) min
(mi−1,mi)

T∈Wi

i=1,n

n∑

i=1

Fi(mi−1,mi),

where Wi, i = 1, n is given by (4.3). Obviously, (P csa) is a particular case of
(1.2). As we have seen, the Lagrange dual problem for (P csa) is

(Dcsa
L ) sup

q∈R
n+1

q=(q0,q1,...,qn)T

q0=qn=0

−

{
n∑

i=1

(Fi)
∗
Wi

(qi−1,−qi)

}
,

where (see [2], [8]),

(Fi)
∗
Wi

(ξ, η) =





τi(ξ + η) + hi

12
(ξ2 − ξη + η2), if ξ ≤ 0, η ≥ 0,

τi(ξ + η) + hi

12
( ξ

2
− η)2 if 0 ≤ ξ ≤ 2η,

τi(ξ + η) + hi

12
(ξ − η

2
)2, if 2ξ ≤ η ≤ 0,

τi(ξ + η), if ξ ≥ 2η, 2ξ ≥ η.

So (P csa) was solved in the literature by means of the so-called return- for-
mula (see for example, [8])

(ui−1, ui)
T = grad[(Fi)

∗
Wi

(q̄i−1,−q̄i)],

where (q̄0, q̄1, ..., q̄n)T ∈ R
n+1 is a solution of (Dcsa

L ).
As one can see, the return-formula requires the differentiability of the conju-
gate function of Fi +δWi

, i = 1, n. If this is not fulfilled, one can try to derive
an algorithm for solving (P csa) by using its Fenchel-Lagrange dual and the
optimality conditions presented in Proposition 4.2. These conditions have
the advantage that the conjugate functions are easy to calculate. For (P csa)
they look like

F ∗
i (ξ, η) = sup

x,y∈R

{
〈x, ξ〉+〈y, η〉−Fi(x, y)} = τi(ξ+η)+

hi

12
(ξ2+η2−ξη), i = 1, n.

How the optimality conditions derived by using the Fenchel-Lagrange dual
can be used to construct a dual algorithm for solving the convex interpolation
problems with C1 splines is the subject of future research.

References

[1] Burmeister,W.; Heß, W.; Schmidt, Jochen W. Convex spline inter-
polants with minimal curvature. Computing 35, 219-229 (1985).

16



[2] Dietze, S.; Schmidt, Jochen W. Determination of shape preserving spline
interpolants with minimal curvature via dual programs. J. Approxima-
tion Theory 52, No.1, 43-57 (1988).

[3] Ekeland, I.; Temam, R. Convex analysis and variational problems. Stud-
ies in Mathematics and its Applications. Vol. 1. American Elsevier Pub-
lishing Company, (1976).

[4] Griewank, A.; Toint, Ph.L. On the unconstrained optimization of par-
tially separable functions. Nonlinear optimization, Proc. NATO Adv.
Res. Inst., Cambridge/Engl. 1981, NATO Conf. Ser., Ser. II, 301-312
(1982).

[5] Griewank, A.; Toint, Ph.L. Numerical experiments with partially separa-
ble optimization problems. Numerical analysis, Proc. 10th bienn. Conf.,
Dundee/Scotl. 1983, Lect. Notes Math. 1066, 203-220 (1984).

[6] Schmidt, Jochen W. Monotone data smoothing by quadratic splines via
dualization. Z. Angew. Math. Mech. 70, No.8, 299-307 (1990).

[7] Schmidt, Jochen W.; Scholz, I. A dual algorithm for convex-concave data
smoothing by cubic C2- splines. Numer. Math. 57, No.4, 333-350 (1990).

[8] Schmidt, Jochen W. Dual algorithms for solving convex partially separa-
ble optimization problems. Jahresber. Dtsch. Math.-Ver. 94, No.1, 40-62
(1992).

[9] Schmidt, Jochen W.; Dietze, S. Unconstrained duals to partially sepa-
rable constrained programs. Math. Program., Ser. A 56, No.3, 337-341
(1992)

[10] Schmidt, Jochen W. Tridiagonally separable programs: Unconstrained
duals and applications in convex approximation. Bank, Bernd (ed.) et
al., Proceedings of the 3rd international conference on approximation
and optimization in the Caribbean, Puebla, Mexico, October 8–13, 1995.
Puebla: Benemrita Universidad Autnoma de Puebla, (1997).

[11] Rockafellar, R.Tyrrell Conjugate duality and optimization. CBMS-NSF
Regional Conference Series in Applied Mathematics. 16. Philadelphia,
Pa.: SIAM, Society for Industrial and Applied Mathematics, (1974).
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