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Radu Ioan Boţ† Sorin-Mihai Grad‡ Gert Wanka§

Abstract. Having an optimization problem with linear objective function,
linear inequality and maximum entropy inequality constraints, we determine a
dual to it. Therefore we use a conjugacy approach which bases on the pertur-
bation theory. As the main results we prove that the geometric dual problems
introduced by Peterson for, both, unconstrained and constrained optimization
problems can be obtained by using the same perturbation theory. Furthermore,
necessary and sufficient optimality conditions are derived using strong duality.

Keywords. Geometric programming; Convex programming; Perturbation
theory; Duality; Entropy optimization

2000 Mathematics Subject Classification. 49N15, 54C70, 90C25

1 Introduction

The idea behind this paper was born when we noticed that the dual problems
obtained in some works (like [5], [9]) using geometric duality can be obtained also
by means of the approach introduced in [1] and [10]. This is a so-called conjugacy
approach. We developed it by using the perturbation theory presented in [2].

The first part of the paper deals with the programming problem with a linear
objective function, linear inequality and maximum entropy inequality constraints
considered in [9]. We get, using the general scheme introduced in [1] and [10], a
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dual problem to it. This turns out to be the one obtained in the original paper,
for which we bring a small, but necessary, correction. Let us note that the authors
of [9] used geometric programming duality.

One of the works which deals with duality in geometric programming is the
paper of Peterson ([7]). By using some geometric inequalities and the geometric
Lagrangean, the author introduced dual problems to the constrained and uncon-
strained optimization problems.

We consider further the general case, the constrained and unconstrained pri-
mal geometric problems from [7]. Our scope is, by using some convenient pertur-
bations, to rediscover in both cases exactly the dual problems introduced there.

This is another important step in the analysis of the relations that can be
discovered between different types of duality, alongside papers like [1], or [10].

We can conclude that the perturbation approach introduced in [2] is on a large
scale applicable in optimization. The Fenchel dual problem, the Lagrange dual
problem (for both see [1], [10]) and the geometric dual problem can be obtained
using suitable perturbations.

The structure of this paper is as follows. The second section presents the
entropy constrained problem from [9], for which we rediscover and correct the
dual. Section 3 is divided into three parts. The first one reminds the method of
perturbations (cf. [1], [2], [10]), while the second presents the duality regarding
the unconstrained primal geometric problem. The last subsection deals with the
constrained primal geometric problem, whose dual is calculated also by using
perturbations. On the base of the derived duality results we point out necessary
and sufficient optimality conditions for all the considered programming problems.

2 The entropy constrained linear problem

Scott, Jefferson and Jorjani have considered in [9] the following optimization
problem

(PE) inf cT x,

subject to
Ax = b,

−
n
∑

i=1

xi ln xi ≥ H,

n
∑

i=1

xi = 1, x = 0,

where x = (x1, ..., xn)T ∈ R
n, c ∈ R

n, A ∈ R
m×n, b ∈ R

m. We need to mention
that in the maximum entropy optimization (see [5], [6]) it is considered that
0 ln 0 = 0, although the logarithm function is defined only on the set of strictly
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positive real numbers. This assumption is made due to the fact that lim
x→0

x ln x =

0. We take this into account into our paper and it is also worthy to mention that
we denote by ”=” the partial ordering introduced by the non-negative orthant in
the corresponding space.

To find a dual problem to (PE), the authors used in [9] the method of geometric
duality introduced by Peterson in [7], obtaining the following dual to (PE),

(DSJ) inf

{

−bT u + λ ln
n
∑

i=1

exp

(

−
wi

λ

)

− Hλ

}

,

subject to
AT u − c + w 5 0,

u = 0, λ ≥ 0, w ∈ R
n.

Earlier, Erlander considered the same problem in [4], determining its dual prob-
lem by means of Lagrange duality.

Remark 2.1. From the theory of maximum entropy optimization (see [5],

[6]) it is known that −
n
∑

i=1

xi ln xi, subject to
n
∑

i=1

xi = 1, x = 0, attains its maximal

value for xi = 1
n
, i = 1, ..., n, where it is equal to ln n. Also, its infimal value is

0. So, we can point out that if H ≤ 0, the problem (PE) becomes a linear con-

strained optimization problem, the constraint −
n
∑

i=1

xi ln xi ≥ H being redundant,

as −
n
∑

i=1

xi ln xi ≥ 0 ≥ H,∀x = 0.

On the other hand, if H > ln n, the feasible set of (PE) is empty, so the
problem has no solutions.

We can distinguish also the case H = ln n, where it is obvious that only
xi = 1

n
, i = 1, ..., n, satisfy the entropy constraints, so, if x satisfies also the

linear constraints (i.e. if it holds
n
∑

i=1

aji ≥ nbj, j = 1, ...,m), the uniform proba-

bility distribution is the solution of the problem, otherwise there are no feasible
solutions.

To avoid these trivial cases (see also [4]), we consider further that

0 < H < ln n.

In this section our purpose is to show that the dual problem (DSJ) can be
obtained also by using a different approach. We shall treat the problem (PE) by
means of a conjugacy approach, using the procedure presented in [1] and [10].

To do so, let us rewrite our primal problem in the following way

(PE) inf
g(x)50,

x∈X

f(x),
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for
X = {x ∈ R

n : x = 0},

f : R
n → R, f(x) = cT x,

and g : R
n → R

m+3,

g(x) =

(

b − Ax,H +
n
∑

i=1

xi ln xi, 1 −
n
∑

i=1

xi,
n
∑

i=1

xi − 1

)T

.

Using the perturbation approach, in [1] and [10] there is obtained the following
dual problem to (PE), the so-called Fenchel-Lagrange dual,

(DE) sup
p∈R

n,

(q1,...,qm)T =0,
qm+1,qm+2,qm+3≥0

{

−f ∗(p) + inf
x=0

[

pT x + qT g(x)
]

}

.

For our particular problem, the dual variables are p = (p1, ..., pn)T ∈ R
n and

q = (q1, ..., qm, qm+1, qm+2, qm+3)
T ∈ R

m+3. Let us calculate now the terms which
appear above. First, it is well-known that the conjugate function of f is

f ∗(p) =

{

0, if p = c,
+∞, otherwise.

So, we have to consider further pT x = cT x =
n
∑

i=1

cixi. Let us calculate now the

last term that appears in (DE),

qT g(x) =
m
∑

j=1

qj

(

bj −
n
∑

i=1

ajixi

)

+ qm+1

(

H +
n
∑

i=1

xi ln xi

)

+ qm+2

(

1 −
n
∑

i=1

xi

)

+ qm+3

(

n
∑

i=1

xi − 1

)

= qm+1

n
∑

i=1

xi ln xi −
m
∑

j=1

n
∑

i=1

qjajixi − (qm+2 − qm+3)
n
∑

i=1

xi

+
m
∑

j=1

qjbj + qm+1H + (qm+2 − qm+3)

=
n
∑

i=1

(

qm+1xi ln xi − xi

( m
∑

j=1

qjaji + qm+2 − qm+3

)

)

+
m
∑

j=1

qjbj + qm+1H + (qm+2 − qm+3).
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The dual problem becomes

(DE) sup
(q1,...,qm)T =0,

qm+1,qm+2,qm+3≥0

{

m
∑

j=1

qjbj + qm+1H + (qm+2 − qm+3)

+ inf
x=0

n
∑

i=1

(

qm+1xi ln xi + xi

(

ci −
m
∑

j=1

qjaji − qm+2 + qm+3

)

)}

.

We need to split now our calculation into two cases, whether qm+1 is zero or not.

First case: qm+1 = 0.
The form of the dual problem is simplified now to

(D1
E) sup

(q1,...,qm)T =0,
qm+2,qm+3≥0

{

m
∑

j=1

qjbj + (qm+2 − qm+3)

+ inf
x=0

n
∑

i=1

xi

(

ci −
m
∑

j=1

qjaji − qm+2 + qm+3

)

}

.

It is easy to notice that if there exists at least an i ∈ {1, ..., n}, such that

ci −
m
∑

j=1

qjaji − qm+2 + qm+3 < 0,

the infimum regarding x = 0 from (D1
E) is −∞, that is not desirable to our

problem. Otherwise, it is equal to 0. So, considering further

ci −
m
∑

j=1

qjaji − qm+2 + qm+3 ≥ 0, i = 1, ..., n,

the dual problem becomes

(D1
E) sup

(q1,...,qm)T =0,
qm+2,qm+3≥0,

ci−
m
P

j=1
qjaji−qm+2+qm+3≥0,

i=1,...,n,

{

m
∑

j=1

qjbj + qm+2 − qm+3

}

.

We can renounce the variables qm+2 and qm+3 and the dual problem turns
into

(D1
E) sup

(q1,...,qm)T =0

{

m
∑

j=1

qjbj + min
i=1,...,n

(

ci −
m
∑

j=1

qjaji

)

}

.
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Second case: qm+1 > 0.
Let us consider the function α : R+ → R, α(x) = vx ln x+wx, with v > 0, w ∈ R.
After some standard calculations there follows that α attains its minimum at
e−

v+w
v , and it is

α(e−
v+w

v ) = −ve−
v+w

v .

Applying the result from above to our problem, for v = qm+1, x = xi and w =

ci −
m
∑

j=1

qjaji − qm+2 + qm+3, i = 1, ..., n, we obtain

inf
x=0

n
∑

i=1

(

qm+1xi ln xi + xi

(

ci −
m
∑

j=1

qjaji − qm+2 + qm+3

)

)

=

−qm+1

n
∑

i=1

e
−

ci−
m
P

j=1
qjaji−qm+2+qm+3+qm+1

qm+1 .

The dual problem becomes in this case

(D2
E) sup

(q1,...,qm)T =0,
qm+2,qm+3≥0,

qm+1>0

{

− qm+1

n
∑

i=1

e
−

ci−
m
P

j=1
qjaji−qm+2+qm+3+qm+1

qm+1

+
m
∑

j=1

qjbj + qm+1H + (qm+2 − qm+3)

}

.

Considering the function β : R → R, β(x) = −qm+1we
x

qm+1 +x+k, with w > 0
and k ∈ R, whose supremum is attained at −qm+1 ln w, being

β(−qm+1 ln w) = k − qm+1 ln(ew),

for x = qm+2 − qm+3, w =
n
∑

i=1

e
−

ci−
m
P

j=1
qjaji+qm+1

qm+1 and k =
m
∑

j=1

qjbj + qm+1H, the dual

problem has the following simplification

(D2
E) sup

qj≥0,
j=1,...,m,
qm+1>0











−qm+1 ln
n
∑

i=1

e
−

ci−
m
P

j=1
qjaji+qm+1

qm+1
+1

+
m
∑

j=1

qjbj + qm+1H











,

which becomes, for u = (q1, ..., qm)T , even

(D2
E) sup

u=0,
qm+1>0

{

−qm+1 ln
n
∑

i=1

e
−

(c−AT u)i
qm+1 + bT u + qm+1H

}

,
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where (c − AT u)i denotes the i-th component of the real-valued vector c − AT u,
i = 1, ..., n.

Finally, the dual problem derived by us to (PE) is

(DE) max

{

sup
u=0

{

bT u + min
i=1,...,n

(c − AT u)i

}

,

sup
u=0,

qm+1>0

{

bT u − qm+1 ln
n
∑

i=1

e
−

(c−AT u)i
qm+1 + qm+1H

}

}

.

We can reduce this to a simpler form, using the following result (which is a special
case of Lemma 4.1 in [3]).

Lemma 2.2. For wi ∈ R, i = 1, ..., n, there holds

lim
λ↓0

λ

(

ln
n
∑

i=1

e
wi
λ

)

= max
i=1,...,n

wi.

Using this, we have

lim
qm+1↓0

qm+1

(

H − ln
n
∑

i=1

e
−

(c−AT u)i
qm+1

)

= min
i=1,...,n

(c − AT u)i,

so the second branch in the formula of (DE) is always greater than or equal to the
first one. Using this fact, the dual problem can be simplified, denoting λ = qm+1,
to

(DE) sup
u=0,
λ>0

{

bT u − λ ln
n
∑

i=1

e−
(c−AT u)i

λ + λH

}

,

and, transformed into a minimization problem, it becomes

(D′
E) inf

u=0,
λ>0

{

−bT u + λ ln
n
∑

i=1

e−
(c−AT u)i

λ − λH

}

.

Remark 2.3.

(i) Here we point out an omission in [9] as λ ≥ 0 appears as constraint in the
dual problem determined there, but the case λ = 0 is just mentioned, not
treated.

(ii) As e−x is decreasing, the minimal value of λ ln
n
∑

i=1

exp
(

− wi

λ

)

, subject to

w 5 c − AT u,w ∈ R
n, is obtained when w = c − AT u, so the variable w
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may be eliminated from (DSJ), that turns into a simpler version. Denoting
w = c − AT u, the only difference between (D′

E) and the simplified version
of (DSJ) resides in the fact that we have proved that the constraint λ > 0
is sufficient, while in (DSJ) ([9]) λ is considered greater than or equal to
0. Anyway, our aim to prove that (DSJ) may be obtained by using the
perturbation approach has been fulfilled.

We are also interested in determining the conditions when the so-called strong
duality between (PE) and (DE) occurs. First, let us mention that in [1] and [10]
the authors prove that the weak duality assertion between the primal and the
dual problem obtained using the perturbation approach always holds, i.e. the
optimal objective value of the primal problem is always greater than or equal
to the optimal objective value of the dual problem, so this takes place also in
the present case. The theory we have applied here allows us to formulate also
a strong duality result. We recall here that strong duality means, in the sense
we consider here, that the dual problem has an optimal solution and the optimal
objective values of the primal and dual coincide. To attain strong duality, a
necessary condition is to have a constraint qualification fulfilled. Here, we use
the following so-called Slater constraint qualification (cf. [3], [10]), for the vector
function g = (g1, ..., gm+3)

T , with convex component functions,

∃x′ ∈ ri(X) :

{

gj(x
′) < 0, if gj is not affine, j ∈ {1, ...,m + 3},

gj(x
′) ≤ 0, if gj is affine, j ∈ {1, ...,m + 3}.

In our case, it becomes

∃x′ ∈ int(Rn
+) :



















H +
n
∑

i=1

x′
i ln x′

i < 0,

b − Ax′ 5 0,
n
∑

i=1

x′
i = 1.

(1)

Now we can state the strong duality result regarding our problem (cf. [10]).

Theorem 2.4. If the constraint qualification (1) is satisfied, then the strong
duality between (PE) and (DE) holds.

Finally, using strong duality, we formulate and prove necessary and sufficient
optimality conditions.

Theorem 2.5. (a) If the constraint qualification (1) is fulfilled and x̄ is an
optimal solution to (PE), then the strong duality between (PE) and (DE) holds
and the dual problem has a solution (ū, λ̄) satisfying the following optimality
conditions
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(i) ūT (Ax̄ − b) = 0,

(ii) λ̄

(

H +
n
∑

i=1

x̄i ln x̄i

)

= 0,

(iii) λ̄

(

n
∑

i=1

x̄i ln x̄i + ln
n
∑

i=1

e−
(c−AT ū)i

λ̄

)

= x̄(AT ū − c).

(b) Having a feasible solution x̄ to the primal problem and one, (ū, λ̄), to the dual
satisfying the optimality conditions (i)-(iii), the mentioned feasible solutions turn
out to be optimal solutions to the corresponding problems and the strong duality
holds.
Proof.

(a) Theorem 2.4 assures that the strong duality holds. So the dual problem has
a solution Let it be denoted by (ū, λ̄). As the optimal values of the primal
and dual problem coincide in this case and both of them have solutions, it
holds

cT x̄ − bT ū + λ̄ ln
n
∑

i=1

e−
(c−AT ū)i

λ̄ − λ̄H = 0.

Adding and subtracting some terms in the left-hand side of this equation,
it follows

−λ̄

(

H +
n
∑

i=1

x̄i ln x̄i

)

+ λ̄

(

ln
n
∑

i=1

e−
(c−AT ū)i

λ̄ +
n
∑

i=1

x̄i ln x̄i

)

− ūT (b − Ax̄)

−ūT (Ax̄) + cT x̄ = 0,

which is equivalent to

−λ̄

(

H +
n
∑

i=1

x̄i ln x̄i

)

+ ūT (Ax̄ − b) + λ̄

(

ln
n
∑

i=1

e−
(c−AT ū)i

λ̄ +
n
∑

i=1

x̄i ln x̄i

)

+x̄T (c − AT ū) = 0. (2)

From the previous calculations presented in this paper regarding the infi-
mum of the function α, it holds, for every s ∈ R,

n
∑

i=1

(

λ̄x̄i ln x̄i + x̄i

(

(c − AT ū)i − s
))

+ s ≥ −λ̄

n
∑

i=1

e−
(c−AT ū)i−s+λ̄

λ̄ + s.

Because
n
∑

i=1

x̄i = 1, the terms containing s from the left-hand side of this

expression can be simplified. We have further

n
∑

i=1

(

λ̄x̄i ln x̄i + x̄i(c − AT ū)i

)

≥ sup
s∈R

{

s − λ̄

n
∑

i=1

e−
(c−AT ū)i−s+λ̄

λ̄

}

.
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¿From the discussions regarding the function β (introduced earlier in this
paper), it follows

n
∑

i=1

(

λ̄x̄i ln x̄i + x̄i(c − AT ū)i

)

≥ −λ̄ ln
n
∑

i=1

e−
(c−AT ū)i

λ̄ .

This can be written as

λ̄

(

ln
n
∑

i=1

e−
(c−AT ū)i

λ̄ +
n
∑

i=1

x̄i ln x̄i

)

+ x̄T (c − AT ū) ≥ 0. (3)

Using (3) and the fact that x̄ and (ū, λ̄) are feasible to (PE), respectively
(DE), it follows that the left-hand side of (2) is a sum of positive terms
whose result is zero, so each of them has to be equal to 0, i.e. the optimality
conditions (i)-(iii) are fulfilled.

(b) All the calculations presented above can be carried out in reverse order, so
the assertion holds. �

3 The general geometric problem

After proving that the geometric dual of a particular problem can be obtained
also via perturbations, we demonstrate further that this can be generalized to
any geometric program. Peterson’s classical work [7] presents a complete duality
treatment for geometric programs. We show further that the duals he introduced
there by using the geometric Langrangean and geometric inequalities can be
obtained also by using the perturbation approach (see [1], [2], [10]). But first let
us give a short description of this approach (cf. [1], [10]).

3.1 The perturbation method

Having an optimization problem

(P ) inf
x∈Rn

F (x),

with F : R
n → R, we attach to it a so-called perturbation function Φ : R

n×R
m →

R, with the property that

Φ(x, 0) = F (x) ∀x ∈ R
n.

We call p the perturbation variable and R
m is the space of the perturbation

variables. For each p ∈ R
m we obtain a so-called perturbed optimization problem

(Pp) inf
x∈Rn

Φ(x, p).
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We need to consider further the conjugate function of Φ. Let us remind here
its definition.

Definition 3.1. The function

F ∗ : R
n → R, F ∗(x∗) = sup

x∈Rn

{〈x∗, x〉 − F (x)},

where 〈x∗, x〉 denotes the Euclidian scalar product in R
n between x∗ and x, i.e.

〈x∗, x〉 = x∗T x, is called the conjugate function of the function F .
So, the conjugate function of Φ, with

〈

(x∗, p∗), (x, p)
〉

the Euclidian scalar
product between (x∗, p∗) and (x, p) in R

n × R
m, reads as

Φ∗(x∗, p∗) = sup
x∈R

n,
p∈R

m

{

〈

(x∗, p∗), (x, p)
〉

− Φ(x, p)

}

= sup
x∈R

n,
p∈R

m

{

〈x∗, x〉 + 〈p∗, p〉 − Φ(x, p)

}

.

Now we can define the following dual problem to (P ) (cf. [2]),

(D) sup
p∗∈Rm

{

− Φ∗(0, p∗)

}

.

Between the primal problem (P ) and its dual introduced above, (D), there holds
always the so-called weak duality (proved in [2]), i.e. any objective value of
the primal problem is greater than or equal to any objective value of the dual
problem.

To have strong duality between the primal problem (P ) and its dual, (D),
we need the problem (P ) to be stable, i.e. the so-called infimum value func-
tion, h(p) = inf

x∈Rn
Φ(x, p), p ∈ R

m, must have a finite value at 0 and has to be

subdifferentiable at the same point.
For a finite dimensional convex optimization problem, Rockafellar has pre-

sented in Theorem 31.1 in [8] some necessary conditions in order to achieve
strong duality between the primal problem and the dual problem. The so-called
constraint qualifications introduced by Peterson in [7] in order to attain strong
duality base on the same theorem.

3.2 The unconstrained case

First we treat the general unconstrained geometric programming problem. Let
be the function g : C → R, with the domain C ⊆ R

n. There is given also a closed
cone X ⊆ R

n. The unconstrained geometric programming problem (here called
primal problem) is

(Au) inf
x∈S

g(x),
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with the feasible set S = C ∩ X.
In order to introduce the dual problem, we need to introduce the following

definition.

Definition 3.2. For the function g : C → R we call its conjugate concerning
its domain C the function h : D → R, where D =

{

y ∈ R
n : sup

x∈C

{〈y, x〉− g(x)} <

∞
}

, defined by
h(y) = sup

x∈C

{〈y, x〉 − g(x)}.

Remark 3.3. We note that the formula of the conjugate concerning its do-
main C of the function g introduced above coincides with the classical conjugate
of the function ḡ : R

n → R with dom(ḡ) = C and ḡ(x) = g(x) ∀x ∈ C, i.e.
ḡ(x) = +∞ ∀x /∈ C.

Considering this conjugate concerning the domain of the function g and also
the dual cone Y to X (i.e. Y = X∗ = {p∗ ∈ R

n : 〈p∗, x〉 ≥ 0 ∀x ∈ X}), Peterson
attached in [7] the following dual to the problem (Au),

(Bu) inf
y∈J

h(y),

with the feasible set J = Y ∩ D.
In order to treat the problem (Au) by means of the conjugacy approach pre-

sented before, let us introduce the following extension to the objective function
g of the primal problem,

F : R
n → R, F (x) =

{

g(x), if x ∈ S,
+∞, otherwise.

It is clear that the problem (Au) can be written equivalently

(A′
u) inf

x∈Rn
F (x).

Having this equivalent formulation, let us introduce the following perturbation
function which plays a central role in our proof,

Φ : R
n × R

n → R, Φ(x, p) =

{

g(x + p), if x ∈ X, x + p ∈ C, p ∈ R
n,

+∞, otherwise.

The following relation is fulfilled

Φ(x, 0) = F (x) ∀x ∈ R
n.

So, according to the previous section, the dual problem to (A′
u), so also to (Au)

since they are equivalent, is

(Du) sup
p∗∈Rn

{−Φ∗(0, p∗)},
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where we need to calculate first the conjugate function of the perturbation func-
tion

Φ∗(x∗, p∗) = sup
x∈R

n,
p∈R

n

{〈x∗, x〉 + 〈p∗, p〉 − Φ(x, p)},

= sup
x∈X,
p∈R

n,
x+p∈C

{〈x∗, x〉 + 〈p∗, p〉 − g(x + p)},

= sup
x∈X,
t∈C

{〈x∗, x〉 + 〈p∗, t − x〉 − g(t)}.

As we have to take x∗ = 0 in order to calculate the dual problem, it follows

Φ∗(0, p∗) = sup
x∈X,
t∈C

{〈p∗, t〉 − 〈p∗, x〉 − g(t)}

= sup
x∈X

{−〈p∗, x〉} + sup
t∈C

{〈p∗, t〉 − g(t)}.

From the definition of the dual cone Y to the cone X it follows

sup
x∈X

{−〈p∗, x〉} =

{

0, if p∗ ∈ Y,
+∞, otherwise.

Hence,

sup
p∗∈Rn

{−Φ∗(0, p∗)} = sup
p∗∈Y

{

− sup
t∈C

{

〈p∗, t〉 − g(t)
}

}

.

Using the definition of the conjugate of the function g concerning its domain
C, we have

sup
p∗∈Rn

{−Φ∗(0, p∗)} = sup
p∗∈Y ∩D

{−h(p∗)} = − inf
p∗∈J

h(p∗).

The dual problem we have obtained is

(Du) sup
p∗∈J

{−h(p∗)},

and, considering a minimum formulation for it, we obtain the following dual
problem to (Au),

(D′
u) inf

p∗∈J
h(p∗),

which is exactly the one introduced in [7], (Bu).
As mentioned before, the weak duality regarding the problems (Au) and (Du)

always holds, while for the strong duality we have the following theorem, obtained
from Theorem 31.1 in [8].

13



Theorem 3.4. If C is a convex set, g a convex function defined on C, X a
convex closed cone and the condition ri(C)∩ ri(X) 6= ∅ is fulfilled, then the strong
duality between (Au) and (Du) holds, i.e. (Du) has an optimal solution and the
optimal objective values of the primal and dual problem coincide.

Remark 3.5. In [7] the conditions regarding the strong duality are posed on
the dual problem, in which case g and X have to be, moreover, closed and the
dual problem’s infimum must be finite.

Let us also present necessary and sufficient optimality conditions regarding
the unconstrained geometric program.

Theorem 3.6. (a) Assume the hypotheses of Theorem 3.4 fulfilled and let x̄ be
an optimal solution to (Au). Then the strong duality between the primal problem
and its dual holds and there exists an optimal solution p̄∗ to (Du) satisfying the
following optimality conditions

(i) p̄∗ ∈ ∂g(x̄),

(ii) 〈p̄∗, x̄〉 = 0.

(b) Let x̄ be a feasible solution to (Au) and p̄∗ one to (Du) satisfying the optimality
conditions (i) and (ii). Then x̄ turns out to be an optimal solution to the primal
problem, p̄∗ one to the dual and the strong duality between the two problems holds.
Proof.

(a) From Theorem 3.4 we know that the strong duality holds and the dual
problem has an optimal solution Let it be p̄∗ ∈ J = Y ∩ D. Therefore, it
holds

g(x̄) + h(p̄∗) = 0.

¿From Young’s inequality it is known that

g(x̄) + h(p̄∗) ≥ 〈p̄∗, x̄〉,

while
〈p̄∗, x̄〉 ≥ 0

since p̄∗ ∈ Y and x ∈ X. Hence it holds

g(x̄) + h(p̄∗) ≥ 〈p̄∗, x̄〉 ≥ 0,

but, since we have equality between the first and the last member of the
expression above, both inequalities must be fulfilled as equalities. So the
equality must hold in the previous two expressions, i.e. the optimality
conditions are true, since g(x̄) + h(p̄∗) = 〈p̄∗, x̄〉 implies p̄∗ ∈ ∂g(x̄).
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(b) The optimality conditions imply

g(x̄) + h(p̄∗) = 〈p̄∗, x̄〉 = 0.

So the assertion holds. �

3.3 The constrained case

In this case, the primal problem becomes more complicated, as some constraints
appear and also the objective function is not so simple anymore. The following
preliminaries are required.

Let there be the finite index sets I and J . For t ∈ {0} ∪ I ∪ J , the following
functions are considered

gt : Ct → R,

with the domains Ct ⊆ R
nt , as well as the independent vector variables xt ∈ R

nt .
There are also the sets

Dt =

{

yt ∈ R
nt : sup

xt∈Ct

{〈yt, xt〉 − gt(x
t)} < +∞

}

,

which are the domains of the conjugate functions regarding the domains Ct of the
functions gt, t ∈ {0}∪ I ∪J , respectively, and an independent vector variable k =
(k1, ..., k|J |)

T . With xI one denotes the Cartesian product of the vector variables
xi, i ∈ I, while xJ denotes the same thing for xj, j ∈ J . Hence, x = (x0, xI , xJ)
is an independent vector variable in R

n, where n = n0 +
∑

i∈I

ni +
∑

j∈J

nj. Finally,

let there be a closed cone X ⊆ R
n, the sets

C+
j =

{

(xj, kj) : either kj = 0 and sup
dj∈Dj

〈dj, xj〉 < ∞

or kj > 0 and xj ∈ kjCj

}

, j ∈ J,

C =
{

(x, k) : xt ∈ Ct, t ∈ {0} ∪ I, (xj, kj) ∈ C+
j , j ∈ J

}

,

and, for j ∈ J , the functions

g+
j (xj, kj) =







sup
dj∈Dj

〈dj, xj〉, if kj = 0 and sup
dj∈Dj

〈dj, xj〉 < ∞,

kjgj

(

xj

kj

)

, if kj > 0 and xj ∈ kjCj.

Peterson ([7]) considers the following objective function

g : C → R, g(x, k) = g0(x
0) +

∑

j∈J

g+
j (xj, kj)

such that the primal geometric programming problem is

(Ac) inf
(x,k)∈S

g(x, k),
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with the feasible set

S = {(x, k) ∈ C : x ∈ X, gi(x
i) ≤ 0, i ∈ I}.

To introduce a dual problem to it, one has to introduce the dual cone Y to the
cone X, the sets

D =
{

(y0, yI , yJ , λ) : yt ∈ Dt, t ∈ {0} ∪ J, (yi, λi) ∈ D+
i , i ∈ I

}

,

D+
i =

{

(yi, λi) : either λi = 0 and sup
ci∈Ci

〈yi, ci〉 < ∞,

or λi > 0 and yi ∈ λiDi

}

, i ∈ I,

and some functions, namely ht : Dt → R, the conjugate of the function gt con-
cerning its domain Ct, t ∈ {0} ∪ I ∪ J , and for i ∈ I we have also the functions

h+
i (yi, λi) =







sup
ci∈Ci

〈yi, ci〉, if λi = 0 and sup
ci∈Ci

〈yi, ci〉 < ∞,

λihi

(

yi

λi

)

, if λi > 0 and yi ∈ λiDi.

In [7] there is introduced the following dual problem to (Ac),

(Bc) inf
(y,λ)∈T

h(y, λ),

with the feasible set

T = {(y, λ) ∈ D : y ∈ Y, hj(y
j) ≤ 0, j ∈ J},

where the objective function is

h : D → R, h(y, λ) = h0(y
0) +

∑

i∈I

h+
i (yi, λi).

In the following part we demonstrate that this dual problem can be developed
also by using our method based on perturbations. Like before, we introduce the
following extension of the objective function

F : R
n × R

|J | → R,

F (x, k) =

{

g(x, k), if (x, k) ∈ C, x ∈ X, gi(x
i) ≤ 0, i ∈ I,

+∞, otherwise.

So, we can write the problem (Ac) equivalently as

(A′
c) inf

(x,k)∈Rn×R|J|
F (x, k).
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Let us introduce now, as in section 3.1, the perturbation function associated to
our problem,

Φ : R
n × R

|J | × R
n × R

|I| → R,

Φ(x, k, p, v) =







g(x + p, k), if x ∈ X, (x + p, k) ∈ C, and
gi(x

i + pi) ≤ vi, i ∈ I,
+∞, otherwise.

It is obvious that Φ(x, k, 0, 0) = F (x, k) ∀(x, k) ∈ R
n ×R

|J |, so from section 3.1,
the dual problem to (A′

c), so also to (Ac), is

(Dc) sup
p∗∈R

n,

v∗∈R
|I|

{

− Φ∗(0, 0, p∗, v∗)
}

,

where we have

Φ∗(x∗, k∗, p∗, v∗) = sup
x,p∈R

n,

k∈R
|J|,

v∈R
|I|

{

〈

(x∗, k∗, p∗, v∗), (x, k, p, v)
〉

− Φ(x, k, p, v)

}

= sup
x∈X,k∈R

|J|
+ ,

p∈R
n,v∈R

|I|,

gi(x
i+pi)≤vi,i∈I,
(x+p,k)∈C

{

〈x∗, x〉 + 〈k∗, k〉 + 〈p∗, p〉 + 〈v∗, v〉

−g0(x
0 + p0) −

∑

j∈J

g+
j (xj + pj, kj)

}

,

with the dual variables x∗ = (x∗0, x∗I , x∗J) and p∗ = (p∗0, p∗I , p∗J). Introducing
the new variables z = x + p and y = v − gI(z

I), with gI(z
I) = (gi(z

i))T
i∈I , there

follows

Φ∗(x∗, k∗, p∗, v∗) = sup
x∈X,k∈R

|J|
+ ,

(z,k)∈C,y∈R
|I|,

yi≥0,i∈I

{

〈x∗, x〉 + 〈k∗, k〉 + 〈p∗, z − x〉

+ 〈v∗, y + gI(z
I)〉 − g0(x

0) −
∑

j∈J

g+
j (zj, kj)

}

=
∑

i∈I

sup
yi≥0

〈v∗i, yi〉 + sup
z0∈C0

{〈p∗0, z0〉 − g0(z
0)}

+
∑

i∈I

sup
zi∈Ci

{〈p∗i, zi〉 + v∗igi(z
i)} + sup

x∈X

〈x∗ − p∗, x〉

+
∑

j∈J

sup
(zj ,kj)∈C+

j

{

〈p∗j, zj〉 + 〈k∗
j , kj〉 − g+

j (zj, kj)

}

.
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In order to calculate the dual problem (Dc), we must consider further x∗ = 0
and k∗ = 0. Also, we use the following results that arise from definitions or simple
calculations. The first of them,

sup
zi∈Ci

{〈p∗i, zi〉 + v∗igi(z
i)} =







sup
zi∈Ci

〈p∗i, zi〉, if v∗i = 0, 〈p∗i, zi〉 < ∞,

−v∗ihi

(

p∗i

−v∗i

)

, if v∗i 6= 0, p∗i ∈ −v∗iDi,

= h+
i (p∗i,−v∗i), i ∈ I,

comes directly from the definitions of the conjugate function concerning its do-
main and of the functions h+

i , i ∈ I. Then, the same definitions of the conjugate
of a function concerning its domain give us the following result

sup
z0∈C0

{〈p∗0, z0〉 − g0(z
0)} = h0(p

∗0).

It is also clear that it holds

sup
yi≥0

〈v∗i, yi〉 =

{

0, if v∗i ≤ 0,
+∞, otherwise,

, i ∈ I,

while from the definition of the dual cone we have

sup
x∈X

〈−p∗, x〉 =

{

0, if p∗ ∈ X∗,
+∞, otherwise.

Further we calculate the values of the terms summed after j ∈ J in the last stage
of the formula of Φ∗(0, 0, p∗, v∗), splitting the calculations into two branches.
When kj > 0 we have

sup
(zj ,kj)∈C+

j

{〈p∗j, zj〉 − g+
j (zj, kj)} = sup

(zj ,kj)∈C+
j

{

〈p∗j, zj〉 − kjgj

(

zj

kj

)}

,

= sup
kj>0

kjhj(p
∗j)

=

{

0, if hj(p
∗j) ≤ 0, p∗j ∈ Dj,

+∞, otherwise.

When hj(p
∗j) ≤ 0 and p∗j ∈ Dj, the case kj = 0 guides us to

sup
(zj ,kj)∈C+

j

{〈p∗j, zj〉 − g+
j (zj, kj)} = sup

(zj ,0)∈C+
j

{〈p∗j, zj〉 − sup
dj∈Dj

〈dj, zj〉} = 0,

so we can conclude that for every j ∈ J it holds

sup
(zj ,kj)∈C+

j

{〈p∗, z〉 − g+
j (zj, kj)} =

{

0, if hj(p
∗j) ≤ 0 and p∗j ∈ Dj,

+∞, otherwise.

18



The dual problem can be simplified, denoting λ = −v∗, to

(Dc) sup
pt∗∈Dt,t∈{0}∪J,

(p∗i,λi)∈D+
i ,i∈I,

hj(p
∗j)≤0,j∈J,
p∗∈Y

{

− h0(p
∗0) −

∑

i∈I

h+
i (p∗i , λi)

}

,

which, transformed into a minimization problem becomes, using the notations in
[7],

(D′
c) inf

(p∗,λ)∈T

{

h0(p
∗0) +

∑

i∈I

h+
i (p∗i, λi)

}

,

which is exactly the dual introduced by Peterson, (Bc).
The results from section 3.1 assure that the weak duality regarding the prob-

lems (Ac) and (Dc) always holds, while for strong duality we need to introduce
some supplementary conditions.

First, let us consider that the sets Ct, t ∈ {0} ∪ I ∪ J and the functions gt,
t ∈ {0} ∪ I ∪ J are convex. The cone X needs to be closed and convex, too. We
have to consider also that the sets Cj and the functions gj, j ∈ J , are closed.
This last property, alongside the convexity, assures (cf. [8]) that, for each j ∈ J ,
the functions gj and hj are a pair of conjugate closed convex functions, i.e. each
of them is the other’s conjugate concerning its domain. This fact allows us to
characterize the sets Cj in the following way

Cj =

{

xj ∈ R
nj : sup

dj∈Dj

{〈dj, cj〉 − hj(d
j)} < +∞

}

, j ∈ J.

Using this characterization, it follows that the functions g+
j and the sets C+

j are
convex, for all j ∈ J .

Then, let us introduce the following constraint qualification

∃(x′, k′) ∈ ri(X) × int(R
|J |
+ ) :















x′0 ∈ ri(C0),
x′i ∈ ri(Ci),
gi(x

′i) < 0, i ∈ I,
x′j ∈ k′

j ri(Cj), j ∈ J.

(4)

We are now ready to formulate the strong duality theorem.

Theorem 3.7. If the conditions introduced above regarding the functions gt,
t ∈ {0}∪I∪J , the sets Ct, t ∈ {0}∪I∪J , and the cone X are fulfilled and the con-
straint qualification (4) holds, then we have strong duality between (Ac) and (Dc).

Remark 3.8.

(i) In [7] the constraint qualification regarding the strong duality is posed on
the dual problem, while we choose to consider it on the primal problem.
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(ii) Let us note that the closeness property of gj and Cj, j ∈ J , is necessary
in order to prove that g+

j and C+
j are convex, ∀j ∈ J , as Fenchel’s duality

theorem (Theorem 31.1 in [8]) requires the existence of convexity for all the
functions and sets involved in the primal problem.

On the base of this strong duality, we can conclude necessary and sufficient
optimality conditions for the geometric programming problem (Ac).

Theorem 3.9. (a) Assume the hypotheses of Theorem 3.7 fulfilled and
let (x̄0, x̄I , x̄J , k̄) be an optimal solution to (Ac). Then the strong duality be-
tween the primal problem and its dual holds and there exists an optimal solution
(p̄∗0, p̄∗I , p̄∗J , λ̄) to (Dc) satisfying the following optimality conditions

(i) p̄∗0 ∈ ∂g0(x̄
0),

(ii)







p̄∗j ∈ ∂gj

(

x̄j

k̄j

)

and hj(p̄
∗j) = 0, if k̄j 6= 0,

sup
dj∈Dj

〈dj, x̄j〉 = 〈p̄∗j, x̄j〉, if k̄j = 0, j ∈ J,

(iii)







x̄i ∈ ∂hi

(

p̄∗i

λ̄i

)

and gi(x̄
i) = 0, if λ̄i 6= 0,

sup
ci∈Ci

〈p̄∗i, ci〉 = 〈p̄∗i, x̄i〉, if λ̄i = 0, i ∈ I,

(iv) 〈p̄∗, x̄〉 = 0.

(b) Let (x̄0, x̄I , x̄J , k̄) be a feasible solution to (Ac) and (p̄∗0, p̄∗I , p̄∗J , λ̄) one to
(Dc) satisfying the optimality conditions (i)-(iv). Then (x̄0, x̄I , x̄J , k̄) turns out
to be an optimal solution to the primal problem, (p̄∗0, p̄∗I , p̄∗J , λ̄) one to the dual
and the strong duality between the two problems holds.
Proof.

(a) From Theorem 3.7 we know that the strong duality holds and the dual
problem has an optimal solution. Let it be (p̄∗0, p̄∗I , p̄∗J , λ̄). Therefore, it
holds

g0(x̄
0) +

∑

j∈J

g+
j (x̄j, k̄j) + h0(p̄

∗0) +
∑

i∈I

h+
i (p̄∗i, λ̄i) = 0,

rewritable as

g0(x̄
0) + h0(p̄

∗0) +
∑

i∈I,

λ̄i 6=0

λ̄ihi

(

p̄∗i

λ̄i

)

+
∑

i∈I,

λ̄i=0

sup
ci∈Ci

〈p̄∗i, ci〉

+
∑

j∈J,

k̄j 6=0

k̄jgj

(

x̄j

k̄j

)

+
∑

j∈J,

k̄j=0

sup
dj∈Dj

〈dj, x̄j〉 = 0.
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Adding and subtracting some terms in the left-hand side, we obtain

[g0(x̄
0) + h0(p̄

∗0) − 〈p̄∗0, x̄0〉] +
∑

i∈I,

λ̄i 6=0

[

λ̄ihi

(

p̄∗i

λ̄i

)

+ λ̄igi(x̄
i) − 〈p̄∗i, x̄i〉

]

+
∑

i∈I,

λ̄i=0

[

sup
ci∈Ci

〈p̄∗i, ci〉 − 〈p̄∗i, x̄i〉

]

+
∑

j∈J,

k̄j 6=0

[

k̄jgj

(

x̄j

k̄j

)

+ k̄jhj(p̄
∗j)

−〈p̄∗j, x̄j〉

]

+
∑

j∈J,

k̄j=0

[

sup
dj∈Dj

〈dj, x̄j〉 − 〈p̄∗j, x̄j〉

]

+〈(p̄∗0, p̄∗I , p̄∗J), (x̄0, x̄I , x̄J)〉 −
∑

i∈I,

λ̄i 6=0

λ̄igi(x̄
i) −

∑

j∈J,

k̄j 6=0

k̄jhj(p̄
∗j) = 0. (5)

Let us prove now that all the terms summed in the left-hand side in (5) are
positive.

Applying Young’s inequality, we get

g0(x̄
0) + h0(p̄

∗0) ≥ 〈p̄∗0, x̄0〉,

k̄jgj

(

x̄j

k̄j

)

+ k̄jhj(p̄
∗j) ≥ 〈p̄∗j, k̄j

x̄j

k̄j

〉 = 〈p̄∗j, x̄j〉, j ∈ J : k̄j 6= 0,

and

λ̄igi(x̄
i) + λ̄ihi

(

p̄∗i

λ̄i

)

= λ̄i〈
p̄∗i

λ̄i

, x̄i〉 = 〈p̄∗i, x̄i〉, i ∈ I : λ̄i 6= 0.

On the other hand, it is obvious that

sup
dj∈Dj

〈dj, x̄j〉 ≥ 〈p̄∗j, x̄j〉, j ∈ J : k̄j = 0,

and
sup
ci∈Ci

〈p̄∗i, ci〉 ≥ 〈p̄∗i, x̄i〉, i ∈ I : λ̄i = 0.

Since p̄∗ ∈ Y = X∗, it follows also that 〈p̄∗, x̄〉 ≥ 0. Moreover, from
the feasibility conditions it follows that gi(x̄

i) ≤ 0, λ̄i ≥ 0, i ∈ I, so
−
∑

i∈I,

λ̄i 6=0

λ̄igi(x̄
i) ≥ 0. Also, hj(p̄

∗j) ≤ 0, k̄j 6= 0, j ∈ J , implies −
∑

j∈J,

k̄j 6=0

k̄jhj(p̄
∗j)

≥ 0. Therefore follows that the left-hand side in (5) is a sum of greater than
or equal to zero terms whose result is zero, so all the terms must be equal to
zero, i.e. the inequalities obtained above are fulfilled as equalities. So, (iv)
is true, and, by the definition of the subdifferential, the other optimality
conditions, (i)-(iii), hold, too.
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(b) The calculations above can be carried out in reverse order and the assertion
arises easily. �

Remark 3.10. We mention that (b) applies without any convexity assump-
tions as well as constraint qualifications. So, the sufficiency of the optimality
conditions (i)-(iv) is true in the most general case.
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