Duality for optimization problems with
entropy-like objective functions
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Abstract. We consider a convex optimization problem whose objective func-
tion consists of an entropy-like sum of functions Y25 fi(z) In(f;(z)/g:(x)). We
calculate the Lagrange dual of this problem. Weak and strong duality assertions
are presented, followed by the derivation of necessary and sufficient optimality
conditions. Some entropy optimization problems found in the literature are con-
sidered as special cases, their dual problems obtained using other approaches
being rediscovered.
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1 Preliminaries

Entropy optimization is a modern and fruitful research area for scientists hav-
ing various backgrounds: mathematicians, physicists, engineers, even chemists
or linguists. Many papers, including two of the present authors ([2] and [3]),
and books among which we mention two quite recent ([7] and [10]) deal with en-
tropy optimization, especially with its multitude of applications in various fields
such as transport and location problems, pattern and image recognition, text
classification, image reconstruction, etc.

The problem we consider here cannot be classified as a pure entropy optimiza-
tion problem. We may call it a generalization of the usual entropy optimization
problems and we argue this statement by the special cases we present in the third
part of the present paper.
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Consider the non-empty convex set X C R", the affine functions f; : R — R,
1 = 1,...,k, the concave functions ¢g; : R* — R, ¢+ = 1,...,k, and the convex
functions h; : R* — R, j = 1,...,m. Assume that for i = 1,....k, fi(x) > 0
and g;(z) > 0 when z € X such that h(z) < 0, where h = (hy, ..., h,,)T and
7<” denotes the partial ordering introduced by the corresponding non-negative
orthant. Denote further f = (fi,..., fx)* and g = (g1, ...,gx)T. Let us present
some other notations we use throughout this paper. All the vectors are column
vectors, becoming row-vectors when transposed by an upper index 7. In general,
for a vector u € R? we denote its entries by u;, 7 = 1,...,p. Moreover, u > 0
means actually u; > 0Vj = 1,...,p. For an optimization problem (U) we denote
by v(U) its optimal objective value. For a set A, int(A) is the interior of the set,
while ri(A) denotes its relative interior. For a matrix A € RP** AT denotes the
transpose. Moreover, by A;; we denote the entry situated at the intersection of
row ¢ and column j in the respective matrix, ¢ = 1,...,p, j = 1,...,s. If there
is also another matrix B having the same dimensions as A, (A, B) is the inner
product between them, being equal to the trace of the product matrix AT B. As

P
j:
important notion that will appear throughout this paper is that of conjugate
function, also known as Legendre-Fenchel or Fenchel-Moreau conjugate. For a

function f : R? — R, the conjugate function is f* : R? — R defined by

fr(w) = sup {u"z — f(z)}.

z€RP

1/2
expected, for a vector u € RP, ||u|| = 1 u?) is the Euclidian norm. An

A direct consequence of this definition is the so-called Fenchel-Young inequality,
fH(u) + f(z) > uz Vo,u € RP.
The convex optimization problem we consider throughout this paper is

o (Srom (1)

h(z)<0

As usual in entropy optimization we use further the convention 01n0 = 0.

Using a special construction we obtain another problem that is equivalent to
(P), whose Lagrange dual problem (D) is easier to determinate. Weak duality
between (P) and (D) is certain from the construction, but in order to achieve
strong duality we need to introduce a sufficient condition, a so-called constraint
qualification. Further we determine some necessary and sufficient optimality
conditions regarding the mentioned problems.

The objective function of problem (P) is a Kullback-Leibler-type sum, but
instead of probabilities we have as terms functions. To the best of our knowl-
edge this kind of objective function has not been considered yet in the literature.



There are some papers dealing with problems having as objective function expres-
sions like [ f(¢)In(f(t)/g(t)), such as [1], but the results described there do not
interfere with ours. Of course the functions involved in the objective function of
the problem (P) may take some particular shapes and (P) turns into an entropy
optimization problem. The special cases we present later deal with these aspects.
For a definite choice of the functions f, g and h and taking X = R’ we obtain
the entropy optimization problem with a Kullback-Leibler measure as objective
function and convex constraint functions treated in [7]. From (D) we derive a
dual problem to this particular one that turns out to be exactly the dual problem
obtained via geometric programming in the original paper. When the convex
constraint functions h;, j = 1,...,m, have some more particular properties, i.e.
they are linear or quadratic, the dual problems turn into some more specific for-
mulae. As a second special case we took a problem treated by Noll in [11]. After
a suitable choice of particular shapes for f, g, h and X we obtain the maximum
entropy optimization problem the author used in the applications described in
[11], whose objective function is the Shannon entropy of a probability-like vector.
The dual problem obtained using Lagrangian duality there arises also when we
derive a dual to this problem using (D). A third special case considered here
is when the mentioned functions are chosen such that the objective function be-
comes the so-called Burg entropy minimization problem with linear constraints
in [5].

For all the special cases we present the strong duality assertion and necessary
and sufficient optimality conditions, derived from the general case.

2 Lagrange Duality for problem (P)

2.1 An equivalent formulation of the problem

The main purpose of the present paper is to study the problem (P) by means of
duality. First we need to determine a dual problem to (P), a task rather difficult
to accomplish due to the special form of the objective function. Therefore we
need to resort to a quite simple construction, similar to the one used by Wanka
and Bot in [14].

Let us introduce the functions ®; : R> — R = R U {+o0},

s;In (S—?), s; > 0and t; > 0,
400, otherwise,

i=1,...k s=(s1,....,80)7, t = (t1,....tx)" and the set

A={(z,s,t) € X xRE xint(RY) : h(z) £ 0, f(z) = s,t < g(z) }.



Now we consider a new optimization problem

(o) x;f:feA{Z‘I’ }

For each i = 1, ..., k, the function ®; is convex, being the extension with positive
infinite values to the whole space of a convex function (see [10]). The convexity
of the set A follows from its definition.

Remark: The statements above assure the convexity of the problem (Pg).

Even if the problems (P) and (Ps) seem related, an accurate connection be-
tween their optimal objective values is required. The following assertion states it.

Proposition 1. The problems (P) and (Ps) are equivalent in the sense that
v(P) =v(Ps).

Proof. Let us take first an element € X such that h(z) = 0. It is obvious
that (z, f(x),g(x)) € A. Further,

gﬁ-(a:)ln( o) - Zcb (i), 9:0) = (o).

As x is chosen arbitrarily in order to fulfill the constraints of the problem (P) we
can conclude for the moment that v(P) > v(Ps).

Conversely, take a triplet (x,s,t) € A. This means that we have for each

=1,..,k, fi(r) = s; and g¢;(x) > t;. Further we have for all i = 1,....k,

g%x) § ti followed by fzgmg < i—l Consequently, because In is a monotonic

increasing function, it holds In (gﬁg) < In (%), 1t = 1,...,k. Multiplying the

terms in both sides by the corresponding f;(x) = s;, i = 1,..., k, and assembling
the resulting relations it follows

As the element (z,s,t) has been taken arbitrarily in A, it yields v(Ps) > v(P).
Therefore, v(P) = v(Pgp). O

Further we determine the Lagrange dual problem of (Ps), that is also a dual
to problem (P).



2.2  Duality statements concerning problem (P)

As to compute the Lagrange dual problem of (P) is a rather cumbersome task
and we have already proved that equivalence stands between problems (P) and
(Pg), in the following we determine the Lagrange dual problem of the latter. As
Lagrange duality is well-known and widely-used, we confine ourselves to proceed
with the calculations, without any unnecessary introductions.

So, the Lagrange dual problem to (Pg) has the following raw formulation,
where ¢/, ¢7 and ¢" are the Lagrange multipliers,

of eRF, r€X,
qgeRk’ SER’_}_,

(Da) sup  inf lzsiln(j—j)+<qh>Th<x>+<qf>T<f<x>—s>+<qg>T<t—g<x>>].

Taking a closer look to the infimum that appears above one may notice that it is
separable into a sum of infima in the following way

inf [i $; In (%) + (qh>Th(x) + (qf)T(f(x) —s)+ (Qg)T(t - g(x))}

reX, - i
SER{“H =1
teint(RK )
= inf [(@)7h(@) + (@) f(2) - (@) g()]
b S
- In(Z) = o s: + g9,
S [ () -]
=1 t; >0

We can calculate the infima regarding s; > 0 and t; > 0 for alle =1, ..., k,

. S; f . f .
Slgf(; [s,- In <t—z) —qlsi + 7t = slgfg silns; —ql s; + tlgfo[qfti —s;Int;]].
t;i>0

In order to resolve the inner infimum, consider the function ¢ : (0,4+00) — R,
o(t) = at — (Int, where > 0 and $ > 0. Its minimum is attained at t = g >0,

being cp(g) =0 —FInf+ flna. Applying this result to the infima concerning
t; in the expressions above for ¢ = 1, ..., k, there follows

si—silns; +s;Ing!, if ¢/ >0,
tinfo[qfti —s;Int;] = ¢ 0, if ¢ =0and s; =0,
i —00, if ¢/ =0 and s; > 0.

Further we have to calculate for each ¢ = 1, ..., k the infimum above with respect
to s; > 0 after replacing the infimum concerning ¢; with its value. In case ¢/ > 0



we have

ir;fo [si Ins; — ql-fsi +5; —s;lns; + s lnqﬂ = igfo [si(l — qlf +1Ing)
0, ifl—g¢/ +Ing?>0,
—00, otherwise.

When ¢/ = 0 the infimum concerning s; is equal to —oc.
One may conclude for each i = 1, ..., k, the following

inf [si In <%) — qlfsi + ¢l (1)

5,20, i
t; >0

| o, if 1 —¢/ +Ing? >0and ¢ >0,
| —oo, otherwise.

The negative infinite values are not relevant to the dual problem we work on
since after determining the inner infima one has to calculate the supremum of
the obtained values, so we must consider further the cases where the infima with
respect to s; > 0 and t; > 0 are 0, i.e. the following constraints have to be fulfilled
1—¢/ +In¢g! >0and ¢/ >0,i=1,... k The former additional constraints are

equivalent to ¢/ > et 1 vj = 1, ..., k. Let us write now the final form of the dual

problem to (Ps), after noticing that as %=1 > 0 the constraints ¢9 € R* and
¢ >0,i=1,..., k, become redundant and may be ignored,

(D) swp inf | (") (@) + (¢ (@)~ (@) g()].

g €RF gherm, TEX

f_
queqi l,izl,...,k

Although (D) has been obtained via Lagrangian duality from (Pg) we refer to it
further as the dual problem to (P) since (P) and (Pg) are equivalent. Next we
present the duality assertions regarding (P) and (D) beginning with the weak
duality statement.

Theorem 2. There is weak duality between (P) and (D), i.e. v(P) > v(D).

Proof. Theorem 5.1 in [6] yields v(Pg) > v(D), so Proposition 1 leads to the
conclusion. O

Weak duality always holds, but we cannot assert the same about strong du-
ality. Alongside the initial convexity assumptions for X and h;, i = 1,...,m, the
concavity of g;, i« = 1,...,k, and the affinity of the functions f;, i = 1,....k, an
additional constraint qualification is sufficient in order to achieve strong duality.
The one we use here is inspired from the regularity condition proposed in [6],

fz') >0,
(CQ) dz’ eri(X) : < hi(a’) <0, ifjeL,
h;(z") <0, if j € N,



where we have divided the set {1,...,m} into two disjunctive sets as follows
L={je{1,..,m}: hjis the restriction to X of an affine function}

and N = {1,...,m}\L. The strong duality statement arises naturally.

Theorem 3. If the constraint qualification (CQ) is fulfilled then there is
strong duality between problems (P) and (D), i.e. (D) has an optimal solution
and v(P) = v(Ps) = v(D).

Proof. Since ®;(s;,t;) > 0 V(z,s,t) € A (the most important properties of
the Kullback-Leibler entropy measure are presented and proved in [10]) it follows

v(Py) > 0. (2)

The constraint qualification (C'Q) being fulfilled, there is a triplet (2/,s',t') €
ri(X) x int(R%) x int(R¥) such that

hj(2") <0, je€L,

hi(x') <0, j €N,

N 3)
t, < gi(x'), i=1,..., k.

For instance take s' = f(2') and t’ = $g(a).

The results (2) and (3) allow us to apply Theorem 5.7 in [6], so strong du-
ality between (Pp) and (D) is certain, i.e. (D) has an optimal solution and
v(Pp) = v(D). Proposition 1 yields v(P) = v(D). O

Another step forward is to present some necessary and sufficient optimality
conditions regarding the pair of dual problems we treat.

Theorem 4. (a) Let the constraint qualification (CQ) be fulfilled and assume
that the primal problem (P) has an optimal solution T. Then the dual problem
(D) has an optimal solution, too, let it be (¢/,q?,q"), and the following optimality
conditions are true,

(i) Silo)n (£8) =/ fi(@) — algi(@), i = 1k,
(ii) inf [(@")"h(2) + (@) f(2) = (@) g(x)| = @) F(2) = (@) g(@),
(iii) @'hi(T) =0, j =1,...,m.

(b) If & is a feasible point to (P) and (¢/,q°,q") is feasible to (D) fulfilling the
optimality conditions (i) — (iit), then there is strong duality between (P) and (D).

7



Moreover, T is an optimal solution to the primal problem and (¢/, ¢, q") an op-
timal solution to the dual.

Proof. (a) Under weaker assumptions than here Theorem 3 yields strong
duality between (P) and (D). Therefore the existence of an optimal solution
(¢/,3%,@") to the dual problem is guaranteed. Moreover, v(P) = v(D) and be-
cause (P) has an optimal solution its optimal objective value is attained at z and
we have

S s (29 < e [0 + @ s - @]

(7) zEX

Earlier we have proved the validity of (1). Using it we can determine the conjugate
function of ®;, i =1, ..., k, at (q{, —(jf) as follows

o, ~a) = sw {(@,~a)" (s t) — Oilsiti) }
(Si,ti)ERQ
k s,
= Z sup {cjfsl at; —s,1n<t>}
i=1 $;>0,t;>0 7
k
_ 0\ _ Afe 4 A9+
- S o (2) -l 1
=1 ;>0

_ 0, if 1 —¢ +Ing? > 0and @ >0,
400, otherwise.

As ¢/ and @9 are feasible to (D) we have @f(q‘lf, —q!) =0Vi=1,.., k. Let us
apply Young’s inequality for ®;(f;(%), ¢;(Z)) and CI);“(cjif, —q7), when i = 1,..., k.
We have

; (f( ) 91( ))+CI) (qg’_(ji% 2 (jszz(j) _qggi(:f)v L= 17"‘7k'

Summing these relations up one gets

> s (%) > (@)@ - (@)T9(@). (5)

On the other hand it is obvious that ]
inf [(@")h(@)+(@) f(2)~(@)Tg(x)] < @) @)+ @) S @) @) 9(@). (6)
Relations (4) — (6) yield

0 - Zf; i (590~ ing [i@700) + (@7 )~ (@)oo

> ()" f(@) -

(@) 9(@) — | (@) h(@) + (@) F(@) - @) 9()]
— —(@")h@) 20,



The last inequality holds due to the fact that 7 is feasible to (P) and g to (D).
Thus, of course all of these inequalities must be fulfilled as equalities. Therefore
we immediately have (7i7) and
u _ fi(Z _ _ _ _ _ _ _ _
3| s (H5) - (@756 - @) + (@@ + @) s
i=1 9:(2)
(@) 9(@)| = inf (@) h(@) + @) (@) = (@) g(x)| =0,

This yields the fulfillment of the above Young’s inequality for ®; and @ as
equality, that is nothing but (7). With (¢iz) then also (i7) is clear.
(b) The conclusion arises obviously following the proof above backwards. [

3 Applications

This section is dedicated to some interesting special cases of the problem treated
so far. The first of them is the convex-constrained minimum cross-entropy prob-
lem, then follows a norm-constrained maximum entropy problem and as a third
special case we present a so-called linearly constrained Burg entropy optimization
problem. The cross-entropy problem has been treated so far by means of geo-
metric duality in [7] and some other papers, for the second Noll determined the
Lagrange dual problem in [11], while the Burg entropy problem we present comes
from [5]. The fact that the dual problems we obtain in the first two special cases
are actually the ones determined in the original papers shows that the problem
we treated is a generalization of the classical entropy optimization problems.

3.1 The Kullback-Leibler entropy as objective function

The book [7] is a must for anyone interested in entropy optimization. Among
many other interesting statements and applications, the authors consider the
cross-entropy minimization problem with convex constraint functions

(Pk) inf { le In <&> },
zem,_ﬁj zi=1, i=1 @i

l; (Ajm)+bJT:1:+c]' <0,
Jj=1,..,r

where A; are k; x n matrices with full row-rank, b, € R", j = 1,...,r, ¢ =
(c1yeyc)T €R 1 : RM — R, j =1,...,r, are convex functions and there is also

the probability distribution ¢ = (qi,...,¢")" € int(R"), with }_ ¢; = 1. We omit

=1
the additional assumptions of differentiability and co-finiteness for the functions



l;, 7 =1,...,r from the mentioned paper.

After dealing with the problem (Pg) we particularize its constraints like in [7],
first to become linear, then to obtain a quadratically-constrained cross-entropy
optimization problem. We determine their dual problems and present the corre-
sponding strong duality assertions and optimality conditions.

The problem (Pg) is a special case of our problem (P) when the elements
involved are taken as follows

( X=Rl,kE=nm=r+2,
filx)=z; Ve eR"i=1,...,n
gilx)=qVreR"i=1,...,n
hj(x) = lj(Ajz) + Tz +¢; Ve e R", j=1,...,m — 2,
hm,1($) = le —1Vz e Rn’
i=1

hm(x)=1— ixz Vr € R™.

L i=1

We want to determine the dual problem to (Pg) which is to be obtained from
(D) by replacing the terms involved with the above-mentioned expressions. Let
us proceed

(¢ f(z) = (gf)Tﬂ% (¢9)"g(x) = (¢°)"q, ) )
(@")h(z) = 3 ¢ (1lj(Ajz) + 0T e+ ¢;) + ¢l (;x, — 1> +q" <1 -3 :):l>

=1

Denoting w = ¢" | — ¢", the dual problem to (Py) is

(Dk) sup inf [ (¢ Tz — (¢) g+ Z q‘?lj<Aj.T)

¢f €R" weR, ghery, TERE
T T n
(quhbj) T+ (qh)Tc—l—w(in — 1)],
=1 i=1

where (Z quj) L1 =1,..,n, is the i-th entry of the vector ) qj’f”bj. We can
j=1 i j=1

1

f_
g?>e®i T i=1,..n

rearrange the terms and the dual problem becomes

o0 [Tl (), +0) ¢ Dbvan)

qf ER™ weR,gh eRT

queqlf_l,izl,...,n
+ (¢")e—w— (qg)Tq}-

10



Let us calculate separately the infimum over z € R’}. In order to do this we
introduce the linear operators A; : R" — RN defined by A;(z) = Az, j =
1,...,m. So these infima become

A [imi<qf+ (Zi:q?bj>ﬁw> *Zi: ((41) 0 A7) () |-

i=1

(7)

By Proposition 5.7 in [6] the expression in (7) is equal to
sup { inf [le <qu + <quhbj> Hw— ’yi> + Z ((¢)1;) o flj)(x)] }, (8)
very (PR LT =1 ’ j=1

further equivalent to

ap { = g[Sl = (), —0) - (i) )]}

veR™ TER?

The inner supremum may be written as a conjugate function, so the term above

becomes
sup { - (Z ((4715) Oflj)) (7—u)},
vERY j=1
where we have denoted by u the vector (qu + < > q?bj> ﬂ—w) . We can now
Jj=1 v i=1,...,n

apply Theorem 16.4 in [12] since the effective domains of the functions (q?lj) oflj,
7 =1,...,r, coincide, being equal to R™. We have

(T ea)) a-w=, e[S (@)ei)@] ©

a;€R",j=1,...,r, -
T ]:1
> aj=y—u
Jj=1

The relation (7) is now equivalent to

sup < — inf [zr: ((q;}lj) o Aj)*(aj)]

n a; €ER™ j=1,...,r,
vERY ISR =1

> aj=y—u
j=1

and furthermore to

sup {_i((qﬁj) szlj)*(aj)}-

a;€R™,j=1,...,r, F

T
vERY, '21 a;=vy—u
j=

11



As for any j = 1, ..., r, the image set of the operator flj is included into R*/ that
is the domain of the function q?lj defined by (q?lj) (x) = q;”lj (), we may apply
Theorem 16.3 in [12] and the last expression becomes equivalent to

r

sup —Z inf [(qjhlj)*()\j)} : (10)

aj€R™ j=1,...r, j=1 %\jERkj,
n o . _ A*Xj=a;
vERY, > aj=v—u J
=1

where flj is the adjoint of the operator Aj, j =1,...,r. Turning the inner infima
into suprema and drawing all the variables under the leading supremum (10) is
equivalent, after applying the definition of the adjoint of a linear operator, to

up { oy (q;%zj)w}-

~ERT a;€R™ \;€RM j=1,....m, j=1

T

> ajzv—u,A?Aj:aj

j=1

One may remark that the variables v and a;, j = 1, ...,r, are superfluous, so the
expression is further simplifiable to

sup { -y (Q?lj)*(/\j)}-

A E€RMI =1, j=1

(j:1 AJTA]'-F’LL)GRi

Let us resume the calculations concerning the dual problem using the partial
results obtained above. The dual problem to (Pg) becomes

=1

T
(D) Sup {(qh)TC —w—(¢)q=) (Q?lj)*(%)},
quR"7quCq{_l7i:1,...,n
weR,q"eRT A €RT j=1,...,,
qu+<éil q?bj)i+w+< > AJT/\J)FO’

j=1
i=1,...,n,

rewritable as

T
(Dk) sup (@) e—w=>" ()" (\)
¢/ €ER™ wER,g"ERT, N €RYI j=1,...,r, =1

T T
qu+( > Q?bj) +w+< > A7T>\j> >0,
Jj=1 i Jj=1

(3

7’:17"'777/7

+ i sup {—qfqi}}.

=1 queqi —1

12



It is obvious that sup{ —¢qi ¢ > ed! 1} = —qiequ_l, 1 =1,...,n, so the dual
problem turns into

(Dk) sup {(qh)TC—w—ZT; (q;’lj)*(/\j)—zn:qeqf 1}-

¢f ER™ weR gM R, N ERYT j=1,....1, i=1

™
f+( > qj%bj> +w+< Z AT ) >0,
j=1 (3 J=1 [3
i:17--.7 7

The suprema after qu ,2=1,...,n, are easily computable since the constraints are
linear inequalities and the objective functions are monotonic decreasing, i.e.

T —w— r hp, A?Aj > _
SUP{—eqlf—l : quc‘f‘(Z (q?b]_’_A?/\]))—f‘w > O} — e <J§1 (qj + ) i 1'

=1

Back to the dual problem, it becomes

T 5 (ghb,+ATA, ) -1
(Dk) sup {(qh)Tc_Z( hl qu (j:l(J 3T J) . }
weR,g"ERT, j=1
Aj€RFT j=1,....r

The next variable we want to renounce is w. In order to do this let us con-
sider the function n : R — R, n(w) = —w — Be ™!, B > 0. Its derivative
is (w) = Be™ ! — 1, w € R, a monotonic decreasing function that annu-
lates at w = In B — 1. So n attains its maximal value at w = In B — 1, that
is n(In B — 1) = —In B. Applying these considerations to our dual problem for

B = Z gie <j§1 (q?bj+Af/\j)>

VGI‘SIOH of the dual problem is

(Dk)  sup {(qh)Tc—Xr:( ') ID(ZQZ <J§ hbﬁA]TAJ))l)}?

qheRg,AjER’“j,
Jj=1,..,r

i we get rid of variable w € R and the simplified

that turns out, after redenoting the variables, to be the dual problem obtained
in [7] via geometric duality.

As weak duality between (Pr) and (Dk) is certain, we focus on the strong
duality. In order to achieve it we particularize the constraint qualification (CQ)
as follows

/ .
(CQk) Jxz" >0 )—|—bTx’+CJ<O if j € Lk,

(J
(A’ + bT:L”+cJ<O if j € Nk,



where the sets Lx and Nk are defined analogously to L and K, i.e.
Lx ={j€{l,...r} :{; is an affine function} and Ngx = {1,...,7}\Lg.

We are ready now to enunciate the strong duality assertion.

Theorem 5. If the constraint qualification (CQx) is fulfilled, then there is
strong duality between problems (Pk) and (D), i.e. (Dg) has an optimal solu-
tion and v(Px) = v(Dk).

Proof. From the general case we have strong duality between (Px) and the
first formulation of the dual problem in this section. The equality v(Pg) = v(Dg)
has been preserved after all the steps we performed in order to simplify the for-
mulation of the dual, but there could be a problem regarding the existence of
the solution to the dual problem. Fortunately, the results applied to obtain (8),
(9) and (10) mention also the existence of a solution to the resulting problems,
respectively, so this property is preserved up to the final formulation of the dual
problem. O

Furthermore we give also some necessary and sufficient optimality conditions
in the following statement. They were obtained in the same way as in Theorem
4, so we have decided to omit the proof, avoiding an unnecessary lengthening of
the paper.

Theorem 6. (a) Let the constraint qualification (CQr) be fulfilled and as-
sume that the primal problem (Py) has an optimal solution T. Then the dual
problem (Dy) has an optimal solution, too, let it be (", A1, ..., \,), and the fol-
lowing optimality conditions are true,

(% (q?bﬁAa-T*a'))i) _ _(

n B n _ T
(i) i;jiln(%)—i—ln(;qie j (@b + A7) @,

T

7=1

(ii) (@) () + (3) (4;2) = ATA;z, 5 =1,..7,
(iii) @ (1;(A;z) + 072 +¢;) =0, 5=1,...,r.
(b) If T is a feasible point to (Pg) and (¢", M1, ..., \,) is feasible to (D) ful-

filling the optimality conditions (i) — (iii), then there is strong duality between
(Pk) and (Dg). Moreover, T is an optimal solution to the primal problem and

(@, M1, ..., \v) an optimal solution to the dual.

The problem (Pg) may be particularized even more, in order to fit a wide
range of applications. We present further two special cases obtained from (Pp)
by assigning some particular values to the constraint functions, as indicated also
in [7].
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3.1.1 Special case 1: Kullback-Leibler entropy objective function and
linear constraints

Taking 1;(y;) = 0, y; € R¥, j = 1,...,r, we have for the conjugates involved in
the dual problem

X 0 A =0 )
()" O = sup (Mg —oh={ G M =L

. otherwise,
y; €R™I

Performing the necessary substitutions, we get the following pair of dual problems

(Pp) inf { Z x;In <&> }
xeR’Lgl x;=1, i=1 i

b?z—&-cjgo,j:l,.‘.,r

and
& - iq’-“b)
00w {@remm{3ge (59
qheRT7 i—1
Jj=1,..,r

In [7] there is treated a similar problem to (Ppr), but instead of inequality con-
straints Fang et al. use equality constraints. The dual problem they obtain is
also similar to (Dp), the only difference consisting of the feasible set, R’ to (D),
respectively R” in [7]. Let us mention further that an interesting application of
the optimization problem with Kullback-Leibler entropy objective function and
linear constraints can be found in [8]. In order to achieve strong duality the
sufficient constraint qualification is

n

/
1
CQ) W >0 ZETh
bJTx' +¢; <0, 7=1,..,m

Theorem 7. If the constraint qualification (CQr) is valid, then there is strong
duality between problems (Pr) and (Dy), i.e. (Dr) has an optimal solution and
’U(PL> = U(DL).

As this assertion is a special case of Theorem 5 we omit its proof. The opti-
mality conditions arise also easily from Theorem 6.

Theorem 8. (a) Assume that the primal problem (Pr) has an optimal so-
lution T and that the constraint qualification (CQp) is fulfilled. Then the dual
problem (Dp) has an optimal solution, too, let it be g" and the following optimality
conditions are true,
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oon - n —(é‘(q;bj))‘ r " T
(Z) ;xiln (E) + In izzlqie j=1 i | = —<j§1quj> z,
(ii) @' (0TT +¢;) =0, 5 =1,..,7.

(b) If T is a feasible point to (Pr) and @" a feasible point to (Dy) fulfilling the
optimality conditions (i) and (ii), then there is strong duality between (Pr) and
(D). Moreover, T is an optimal solution to the primal problem and q" one to
the dual.

3.1.2 Special case 2: Kullback-Leibler entropy objective function and
quadratic constraints

This time assign the following expressions to some elements in (Px), ;(y;) =

Syl y; € R, j=1,..,r. We have (cf. [12])

(5 xas

2q].

h *
( ! J) ) 0, otherwise.

The pair of dual problems is in this case are

(Pg) inf { sz In <&> }
c€RY, 3 2i=1, i=1 £

%:L‘TAJTA]- x—i—b?x—i—cj- <0,
J=1,...,r

N —

n (5 (nary) e
D) s Vet (qe )i)_ SIS
' j=1 1j

q

exactly the one in [7].
The following constraint qualification is sufficient in order to assure strong
duality

n

(CQQ) 337/ > O . =
%x’TA]TAj:E’ + bij’ +c; <0, 7=1,..,r

/
r; =1,
1

Theorem 9. If the constraint qualification (CQq) is fulfilled, then there is
strong duality between problems (Pg) and (Dg), i.e. (Dg) has an optimal solu-
tion and v(Pg) = v(Dg).
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Furthermore, we give without proof also some necessary and sufficient opti-
mality conditions in the following statement.

Theorem 10. (a) Let the constraint qualification (CQq) be fulfilled and as-
sume that the primal problem (Pg) has an optimal solution T. Then the dual
problem (Dg) has an optimal solution, too, let it be (§", A1, ..., \,) and the follow-
ing optimality conditions are true,

(i) > Ziln (2—) +1In (g:lqie_(jz (q;-”bﬁAjTAj))i) (

=

=—(2 (/b + ATN)) ',

1

J

NP XAz, =1,
2qh ¥l v 7] gyl

(i) Lq'aT AT Az + |
(iii) @t (ZTATA;z 4072 +¢;) =0,5=1,....r.

(b) If T is a feasible point to (Px) and (", \1,...,\,.) is feasible to (Dg) ful-
filling the optimality conditions (i) — (iii), then there is strong duality between
(Pk) and (Dg). Moreover, T is an optimal solution to the primal problem, while

(@", A1, ..., \) turns out to be an optimal solution to the dual.

3.2 The Shannon entropy as objective function

Noll [11] presents an interesting application of the maximum entropy optimization
in image reconstruction considering the following problem

n m
P inf E E Tij Inxg;
( S) mijZo’izlv"'7naj:1""m7 . " “ ’

n m
> 2 zii=T, |Az—y||<e
i=1j=1

where x € R™™ with entries z;;, 1 =1,...,n, 7 =1,....m, A € R"" y e R,
n m

e>0and T = > > y; > 0. It is easy to notice that the objective function
i=1j=1

in this problem is the well-known Shannon entropy measure with variables z;;,

i=1,..,n,j=1,..m, so (Ps) is actually equivalent to the following classical

maximum entropy optimization problem

n m
/
(PS) - sup - E E L5 lnxij .
> X 2iy=T, ||[Az—yll<e, i=1 j=1
i=1j=
Tij>

1
0,i=1,...,n,j=1,...m

However, (Ps) is viewable as a special case of problem (P) by assigning to the
sets and functions involved there the following terms
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4 X X
X = R:ﬁ m,ﬂj‘ = ('Iij)iZL.--,n, S R’r}r m’
=1,....m

j
flj(l') = Tij Vx € RnXm’Z’ = 1, ...,n,j = 1, ...m,
gij(x) = 1 Vm eR™™ i=1,...,n,j=1,..m

( ) .CEZ‘]' — T Vz e Rnxm’

hQ(ZL‘) =T — Z Z Lij Vx € Rnxm’
i=1j=1
| ha(z) = [[Az — y|| — e Vo € R™™.

Remark: Some may object that (Pg) is not a pure special case of (P) because
the variable x is not an n-dimensional vector as in (P), but a n X m matrix.
As matrices can be viewed also as vectors, in this case the variable becomes an
n x m-dimensional vector, so we may apply the results obtained for (P) also to
(Ps).

To obtain the dual problem to (Pg) from (D) we calculate the following ex-
pressions, where the Lagrange multipliers are now ¢/ € R™™, ¢9 € R and
¢" € R3,

I
'M

5 S alfol) = X Y dfes, 3 3 dhou() = 3 X
é? i(x) = (Q’f—q2)<;;wij—T>+q3(llAw—yll—6)-

The multipliers ¢ and ¢} appear only together, so we may replace both of them,
i.e. their difference, with a new variable w = ¢ — ¢ € R. The dual problem to
(Ps) becomes (cf. (D) in section 2.2)

n m n m
; / g
(Dg) sup inf . E E Qi Tij — i
qf ER™X, v=(is)is €RY i=1 j=1 i=1 j=1
4 >0,weR,

n

+ w( Xm:l’ij—T) —|—q§(HALL‘—yH—€)],

i=1 j=1
rewritable as
n m
q h
(Ds) sup —wl' — E E 4;; — 43¢
gl ER™X™, i=1 j=1
qQZO,wER,

o
ngj >e't—1,
/L‘:17"'7n7‘j:17"'7m

+  inf {Z xij(quer)JrngAﬂC—yH}}-
=1 1

nxXm
z€RY =1 j=
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We determine now the infimum concerning x € R*™ as in the previous section.
By Theorem 16.3 in [12] it turns out to be equal to

- e () @)

quj +w+ (ATA) >
9
i=1,...,n,j=1,...,m,A€R"*™

For the conjugate of the norm function we have (cf. [13])

(- =ul) (n) = { (. A), if Al < gb,

—00, otherwise.

As negative infinite values are not relevant to our problem since there is a leading
supremum to be determined, the dual problem becomes

(Ds) sup {—wT—Zquj—qga—@,M},

g/ ERXM gh>0wER,AER™X™, =1 j=1
IAlI<ala! +w+(ATA) >0,
J J

3

f
q: . . .
g% >e" ~1,i=1,...n.5=1,..,m

equivalent to

(Ds) sup —wT—(y,AH—ZZ sup  {—ql}+e sup {—d}}p.
g/ erR™*m, f—1 a4 >|IA]
wER,AERX™m

al+w+ (ATA) 20,

3

i—=1 j= a;—
=17 qujze ij

i=1,...,n,7=1,....m

The suprema from inside are trivially determinable, so we obtain for the dual
problem the following expression

(Ds) sup { —uT— (A=Y e - e||A||},

g¢f ER™MX™ weR ACRMX™, i=1 j=1

further equivalent to

(Ds) sup { —wT — (y,A) —e||A]| + ZZ sup { - eqifjl}}.

weR, i1 i—1 o
AERn*m =1 =1 g twt (ATA)UZO

For the inner suprema we have for allt =1,...,n, and j =1, ...,m,
sup{ — et qu +w + (ATA)ij > 0} = —e W (AT -1
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so the dual problem is simplifiable even to

n

(Ds) sup {—wT—<y,/\>—<€IIAH—«‘3_“’_1 D et }
i=1 j=1

weR,
AeRmxm

that is exactly the dual problem obtained via Lagrangian duality in [11].

Moreover, one may notice that also the variable w € R could be eradicated.
Using the results regarding the maximal value of the function 1 introduced before,
we have

sup{—wT—e—wlzZ AA)w}: (mT ln(zz AAM))

weR i=1 j=1 i=1 j=1

The last version of the dual problem we reach is

(Dg) sup {T(lnT —In (iie‘“m)“)) — (y,A) — 5||A||}.

AeRmxm i=1 j=1

As weak duality is certain, we skip it and focus on the strong duality. In order
to achieve it the following constraint qualification is sufficient

ZZ@“ =T,

(CQs) E'l’/ >0: i=1j=
|Az" —y|| < e.

The strong duality assertion comes immediately and the necessary and sufficient
optimality conditions follow thereafter. Even if the original paper does not con-
tain such statements, we omit the both proofs because they are modifications of
the former proofs in the present paper.

Theorem 11. Assume the constraint qualification (CQg) fulfilled. Then
strong duality between (Ps) and (Dg) is valid, i.e. (Dg) has an optimal solution
and v(Ps) = v(Dyg).

Theorem 12. (a) Assume the constraint qualification (CQg) fulfilled and let
T be an optimal solution to (Ps). Then the dual problem (Ds) has an optimal
solution A and the following optimality conditions hold

(i) 3 me In 7 +T<ln (z S e A>w> —lnT) — (ATR, 7),

i=1j= 1=1j=
(i) [[AT —yll = ¢,
(iii) (A, Az —y) = [All[| Az — y||.

(b) If T is a feasible point to (Ps) and A one to (Dg) satisfying the optimality
conditions (i) — (ii1), then they are actually optimal solutions to the corresponding
problems that enjoy moreover strong duality.
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3.3 The Burg entropy as objective function

A third widely-used entropy measure is the one introduced by J.P. Burg. Al-
though there are some others in the literature, we confine ourselves to the most
used three, as they have proved to be the most important from the viewpoint
of applications. The Burg entropy problem we have chosen as the third applica-
tion comes from Censor and Lent’s paper [5] having Burg entropy as objective
function and linear equality constraints,

(Pp) sup {Zlnxl} ,

xemt
Ax—

where A € R™*" and b € R™.

Some other problems with Burg entropy objective function and linear con-
straints that slightly differ from the one we treat are available, for example, in
[4] and [9]. None of these authors gives explicitly a dual to the Burg entropy
problem they consider.

The problem (Pg) may be equivalently rewritten as a minimization problem

as follows
/ E
(PB) B mEli{lF}‘{" { n ml} ’

Azx=

Denoting (Pj) the problem (Pg) after eluding the leading minus, it may be
trapped as a special case of (P) by taking

X =int(R}),k=n,
filx)=1VzeR"i=1,...,n
gi(x)=z; Ve eR"i=1,...n
hi(x) = Ax — b Vx € R,
ho(z) = b— Ax Vo € R™.

To calculate the dual problem to (Pf) let us replace the values above in (D). We
get
(Dp) sup. inf [( —q2) (Az —b) +Z ! — gl }
qf eR™ g} " GR’”" z>0

f_
qf>eti

Again, we introduce a new variable w = ¢ — ¢ € R™ to replace the difference
of the two positive ones that appear only together. After rearranging the terms
the dual becomes

(Dp) sup { iqlf w'b + legfo [ g):z:l-] }

g/ ER™ weR™,
q‘igZeqi _1,i:1,...,n

21



For the infima inside we have for i =1, ..., n,

inf [((w"A), - qf) ] :{ 0, (w'A),—q/ 20,

;>0 —00, otherwise.

Let us drag these results along the dual problem, that is now

n
f T
(Dg) sup { E g —w'bop,
f ,
qf ER™ weR™ gl >e 1, L i=1
(wTA)i—qigZO,i:I,...,n

rewritable as

(Dg) sup {—wa—i-Z sup {qZ }

g9 €int (R ),weR™, i=1 q; <1+lnq
( TA)_fqg]zo,z—l,...,
K

As the suprema after qif , 1 =1,....,n, are trivially computable we get for the dual
problem the following continuation

(Dp) sup {—wa+zn:(1+lan)}.

g9 €int(R™ ), weR™, —
T _
(w A)i—quo,z—l,...,n

The variable ¢9 may also be retired, but in this case another constraint appears,
namely w? A > 0. For the sake of simplicity let us perform this step, too. The
following problem is the ultimate dual problem to (Pf)

(Dp) wselilg%, {n —wlb+ ; In (wTA)Z}.
wT A>0 B

Since the constraints of the primal problem (Pp) are linear and all feasible
points z are in int(R’}) = ri(R), no constraint qualification is required in this
case. We can formulate the strong duality and optimality conditions statements
right away. These assertions do not appear in the cited article, but we give them
without proofs since these are similar to the ones already presented in the paper.
There is a difference between the strong duality notion used here and the previous
ones because normally we would present strong duality between (Pg) and (Dp).
But since the starting problem is (Pg) we modify a bit the statements using the
obvious result v(Pg) = —v(Pp).

Theorem 13. Provided that the primal problem (Pg) has at least a feasible
point, the dual problem (Dpg) has at least an optimal solution where it attains its
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mazimal value and the sum of the optimal objective values of the two problems is
vanishing, i.e. v(Pg)+v(Dp) = 0.

Theorem 14. (a) If the primal problem (Pg) has an optimal solution T, then
the dual problem (Dg) has also an optimal solution w and the following optimality
conditions hold

(i) Inz; +In (w"A), + n = w’ Az,
(ii) wT'(Az —b) = 0.

(b) If T is a feasible point to (Pg) and w is feasible to (Dg) such that the optimality
conditions (i) and (ii) are true, then v(Pg)+v(Dpg) = 0, Z is an optimal solution
to (Pg) and w an optimal solution to (Dp).

4 Conclusions and further ideas

We have considered an entropy-like optimization problem (P) whose dual prob-
lem has been calculated using a classical method through a special construction.
Further the strong duality assertion and necessary and sufficient optimality con-
ditions were presented. Three well-known entropy optimization problems picked
from the literature were brought as applications to the problem we considered.

Getting back to the main problem, (P), an interesting question arises: why
do functions f;, i = 1, ..., k, have to be affine? Is the convexity not enough? We
covered also this aspect. Considering the mentioned functions convex the method
we used to derive a dual problem to (P) would have been utilizable only if the
additional constraint f;(x) > g;(x) V& € X such that h(x) 20,7 =1,...,k, were
posed. We considered also treating the so-modified problem, but applications to
it appear too seldom. For instance the three special cases we treated could not
be trapped into such a form without particularizing them more.
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