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Abstract. In this paper we provide a duality theory for multiobjective opti-

mization problems with convex objective functions and finitely many D.C. con-

straints. In order to do this, we study first the duality for a scalar convex op-

timization problem with inequality constraints defined by extended real-valued

convex functions. For a family of multiobjective problems associated to the initial

one we determine then, by means of the scalar duality results, their multiobjective

dual problems. Finally, we consider as a special case the duality for the convex

multiobjective optimization problem with convex constraints.
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In the recent years, different duality theories have been provided for optimiza-

tion problems with a difference of two convex functions in either the objective

function or the constraints, or both. It has been observed that convex dual-

ity theory can be used for such nonconvex problems in order to construct dual

problems with a zero duality gap (see for instance [3], [5], [6], [7], [8], [9]).

In the present work, our main purpose is to develop a duality theory for a

multiobjective optimization problem with a convex objective function and finitely

many D.C. constraints. By using the approach presented in [3], we express the

feasible set in terms of Legendre-Fenchel conjugates of the data functions.

The basic and fruitful idea for the study of the duality for the multiobjective

problem is to associate a scalar optimization problem and to establish, by means

of the conjugacy approach (cf. [1], [12]), a suitable scalar dual problem. We

derive the strong duality and the optimality conditions which later are used to

obtain duality assertions for the primal multiobjective problem.

Following the same scheme, similar duality results are established for the

multiobjective problem with a convex objective function and strict inequality

D.C. constraints.

Finally, we consider as a special case of the initial problem, the multiobjective

problem with a convex objective function and convex inequality constraints. For

this problem the results concerning duality generalize those obtained in the past

(see [10], [11], [13]]).

2. The formulation of the problem

The multiobjective optimization problem with D.C. constraints, which we
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consider here, is

(P ) v-min
x∈A

f(x),

A = {x ∈ X : gi(x)− hi(x) ≤ 0, i ∈ Im} ,

f(x) = (f1(x), . . . , fk(x))T ,

where fi : X → R, i = 1, ..., k, are proper convex functions and gi, hi : X → R, i ∈

Im = {1, ...,m}, are extended real-valued convex functions on the real Hausdorff

locally convex vector space X. Let g : X → Rm
be the following vector function

g(x) = (g1(x), ..., gm(x))T . Moreover, we assume that the functions hi, i ∈ Im,

are subdifferentiable on the feasible set of (P ).

For the set R = R ∪ {±∞}, let us adopt the following conventions (see [4])

(+∞)− (+∞) = (−∞)− (−∞) = (+∞) + (−∞)

= (−∞) + (+∞) = +∞
(1)

and

0× (+∞) = +∞, 0× (−∞) = 0. (2)

Of course, for r > 0, we set r(+∞) = +∞, r(−∞) = −∞, and, for r < 0,

r(+∞) = −∞ and r(−∞) = +∞.

By (2), for a function f : X → R, we have 0f = δdom(f), where δdom(f) is the

indicator function of the set dom(f) = {x ∈ X : f(x) < +∞}.

The notation ”v-min” refers to a vector minimum problem. For this kind of

problems different notions of solutions are known. We consider in this paper the

so-called Pareto-efficient and properly efficient solutions.

DEFINITION 2.1 An element x̄ ∈ A is said to be Pareto-efficient (or efficient)
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with respect to (P ) if

f(x̄) ≥Rk
+

f(x), for x ∈ A, implies f(x̄) = f(x).

DEFINITION 2.2 ([2]) An element x̄ ∈ A is said to be properly efficient with

respect to (P ) if it is efficient and there exists a scalar M > 0 such that, for each

x ∈ A and each i ∈ {1, ..., k} satisfying fi(x) < fi(x̄), there exists j ∈ {1, ..., k}

such that fj(x) > fj(x̄) and

fi(x̄)− fi(x)

fj(x)− fj(x̄)
≤ M.

One may notice that the hypotheses concerning gi and hi, i ∈ Im, are the

same as those of the D.C. optimization problem considered by Martinez-Legaz

and Volle in [3]. They have shown that the feasible set of the problem (P ) can

be written in the following way (cf. Lemma 2.1 in [3])

A =
⋃

h∗i (x∗i )−g∗i (x∗i )≤0,
i=1,...,m

{x ∈ X : h∗i (x
∗
i ) + gi(x)− 〈x∗i , x〉 ≤ 0, i ∈ Im}. (3)

Here, h∗i and g∗i are the conjugate functions of hi and gi, respectively, for

i = 1, ...,m. Let us recall briefly this notion. To each extended real-valued

function f : X → R corresponds its conjugate function f ∗ : X∗ → R,

f ∗(x∗) = sup
x∈X

{〈x∗, x〉 − f(x)},

for any x∗ ∈ X∗, where X∗ is the topological dual space of X. As usual, 〈·, ·〉 is
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the bilinear pairing between X∗ and X.

Using this result, we introduce for each x∗ = (x∗1, ..., x
∗
m), x∗i ∈ X∗, i ∈ Im,

such that h∗i (x
∗
i )− g∗i (x

∗
i ) ≤ 0, i ∈ Im, the multiobjective optimization problem

(Px∗) v-min
x∈Ax∗

f(x),

Ax∗ = {x ∈ X : h∗i (x
∗
i ) + gi(x)− 〈x∗i , x〉 ≤ 0, i ∈ Im} ,

f(x) = (f1(x), . . . , fk(x))T .

Let us notice that

A =
⋃

x∗=(x∗1,...,x∗m),
h∗i (x∗i )−g∗i (x∗i )≤0,

i=1,...,m

Ax∗ .

When A is a non-empty set, from the assumptions we made at the beginning

of this section, we have that the functions hi, i = 1, ...,m have proper conjugates

and that
m⋂

i=1

dom(gi) 6= ∅.

The following two obvious assertions show the connection between the solu-

tions of the problems (P ) and (Px∗).

PROPOSITION 2.1 If x ∈ A is Pareto-efficient to (P ), then there exists an

x∗ = (x∗1, ..., x
∗
m), x∗i ∈ X∗, h∗i (x

∗
i ) − g∗i (x

∗
i ) ≤ 0, i ∈ Im, such that x is Pareto-

efficient to (Px∗).

PROPOSITION 2.2 If x ∈ A is properly efficient to (P ), then there exists an

x∗ = (x∗1, ..., x
∗
m), x∗i ∈ X∗, h∗i (x

∗
i ) − g∗i (x

∗
i ) ≤ 0, i ∈ Im, such that x is properly

efficient to (Px∗).
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3. Duality for the extended real-valued scalar optimization problem

In this section we deal with the duality for the following scalar optimization

problem

(Ps) inf F (x),

Gi(x) ≤ 0, i ∈ Im,

with F : X → R and Gi : X → R, i ∈ Im = {1, ...,m}, being extended real-valued

convex functions. Moreover we assume that F is proper.

It is noted that problem (Ps) can be reformulated as a problem with an

extended real-valued convex objective function, but without constraint. However

the study of (Ps) will help us to establish the optimality conditions for a D.C.

optimization problem in this paper. Using the conjugacy approach we construct

a dual problem to (Ps) and give a constraint qualification which guarantees the

strong duality, namely, that the optimal objective values of the primal and dual

problem are equal and the dual has an optimal solution.

In order to do this, let us consider the perturbation function Φ : X×X×Rm →

R,

Φ(x, p, q) =

 F (x + p), if Gi(x) ≤ qi, i ∈ Im,

+∞, otherwise,

with p ∈ X and q = (q1, ..., qm)T ∈ Rm being the perturbation variables.

A dual problem to (Ps) is given by the following formula (cf. [1])

(Ds) sup
p∗∈X∗,
q∗∈Rm

{−Φ∗(0, p∗, q∗)} ,

where p∗ ∈ X∗, q∗ ∈ Rm are the dual variables and Φ∗ is the conjugate function

of Φ.
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Using the properties of conjugate functions, it can be shown (see [1]) that

inf(Ps) ≥ sup(Ds), meaning that the optimal objective value of the primal prob-

lem is greater than or equal to the optimal objective value of the dual. This

implies that the weak duality always holds. In order to obtain the strong duality

(inf(Ps) = max(Ds)) we consider the following constraint qualification.

(CQs) There exists x′ ∈ dom(F ) such that F is continuous at x′ and

Gi(x
′) < 0, for i ∈ Im.

Below, under the constraint qualification (CQs), we obtain a sufficient con-

dition for the strong duality between (Ps) and (Ds), which is a special case of

Proposition 2.1 in [1].

THEOREM 3.1 Let the constraint qualification (CQs) be fulfilled. Then the

dual problem (Ds) has an optimal solution and the strong duality holds, i.e.

inf(Ps) = max(Ds).

Proof. The constraint qualification (CQs) being fulfilled, it follows that

inf(Ps) ≤ F (x′) < +∞.

We distinguish now between the cases inf(Ps) = −∞ and inf(Ps) ∈ R.

If inf(Ps) = −∞, by the weak duality, it follows that sup(Ds) = −∞. This

implies that, for p∗ ∈ X∗ and q∗ ∈ Rm,

−Φ∗(0, p∗, q∗) = sup(Ds) = −∞.

In this case, each pair (p∗, q∗) ∈ X∗ × Rm is an optimal solution of the dual

and inf(Ps) = max(Ds) = −∞.

Let us assume now that inf(Ps) ∈ R. One can notice that the function Φ is
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convex.

Let ε > 0. By the continuity of F at x′, there exists an open neighborhood

V ⊆ X of 0 such that ∀p ∈ V

|F (x′ + p)− F (x′)| < ε. (4)

On the other hand, (CQs) being fulfilled, there exists an δ > 0 such that

Gi(x
′) ≤ −δ,∀i ∈ Im. Then the set V × (−δ, +δ)m is an open neighborhood of

(0, 0) in X × Rm and, for each p ∈ V and q ∈ (−δ, +δ)m, it holds (by (4))

|Φ(x′, p, q)− Φ(x′, 0, 0)| = |F (x′ + p)− F (x′)| < ε.

This implies that the function (p, q) 7→ Φ(x′, p, q) is continuous at (0, 0) ∈

X×Rm. The stability criterion introduced in Proposition III.2.3 in [1] is fulfilled

and therefore the problem (Ps) is stable. Then from Proposition III.2.2 in [1] we

have that (Ps) is normal and the dual problem (Ds) has optimal solutions. By

the equivalence (i) ⇔ (iii) in Proposition III.2.1 in [1] (cf. Remark 2.3 in [1] this

equivalence is true if Φ is a proper convex function) we obtain further that the

optimal objective values of the primal and dual are equal. �

The final form of the dual (Ds) can now be found by calculating the conju-

gate function of Φ. In [12] and [13] we proved that this leads to the following

formulation for the dual problem of (Ps)

(Ds) sup
p∈X∗,q∈Rm,

q=0

{
−F ∗(p)− (qT G)∗(−p)

}
,

where G(x) = (G1(x), ..., Gm(x))T . Here, the conventions (1), (2) and the related
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calculus rules are crucial.

REMARK 3.1 Let us notice that if for an i = 1, ...,m, Gi(x) = −∞ for some

x ∈
m⋂

i=1

dom(Gi), then qi must be 0 in (Ds), because otherwise (qT G)∗ ≡ +∞ and

this q does not contribute to the supremum.

REMARK 3.2 One may notice that the duality scheme for scalar optimization

problems presented above is different from that one used by Martinez-Legaz and

Volle in [3].

Using the strong duality result between (Ps) and (Ds) we can derive now the

following optimality conditions.

THEOREM 3.2

(a) Let us assume that the constraint qualification (CQs) is fulfilled and let x̄

be an optimal solution to (Ps). Then there exists (p̄, q̄) ∈ X∗ × Rm, q̄ = 0,

an optimal solution to (Ds), such that the following optimality conditions

are satisfied

(i) F ∗(p̄) + F (x̄) = 〈p̄, x̄〉,

(ii) q̄T G(x̄) = 0,

(iii) (q̄T G)∗(−p̄) = 〈−p̄, x̄〉.

(b) Let x̄ be admissible to (Ps) and (p̄, q̄) be admissible to (Ds), satisfying (i),

(ii) and (iii). Then x̄ is an optimal solution to (Ps), (p̄, q̄) is an optimal
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solution to (Ds) and the strong duality holds

F (x̄) = −F ∗(p̄)− (q̄T G)∗(−p̄).

Proof.

(a) The function F being proper, we have that inf(Ps) is finite. Then, by

Theorem 3.1, follows that there exists an optimal solution to (Ds) (p̄, q̄) ∈

X∗ × Rm, q̄ = 0 such that F (x̄) = −F ∗(p̄)− (q̄T G)∗(−p̄) or, equivalently,

F (x̄) + F ∗(p̄)− 〈p̄, x̄〉+ 〈p̄, x̄〉+ (q̄T G)∗(−p̄) = 0. (5)

This implies that F ∗(p̄) ∈ R and (q̄T G)∗(−p̄) ∈ R.

On the other hand, we have

−∞ < −(q̄T G)∗(−p̄) ≤ 〈p̄, x̄〉+ q̄T G(x̄).

Considering I(x) = {i ∈ Im : Gi(x) = −∞}, it follows that q̄i = 0 if

i ∈ I(x̄). Therefore holds

−∞ < inf
x∈X

[
〈p̄, x〉+ q̄T G(x)

]
≤ 〈p̄, x̄〉+ q̄T G(x̄)

= 〈p̄, x̄〉+
∑

i∈Im\I(x̄)

q̄iGi(x̄) ≤ 〈p̄, x̄〉.
(6)

Finally, from (5), (6) and taking Young’s inequality F (x̄) + F ∗(p̄) ≥ 〈p̄, x̄〉

into consideration we have

F ∗(p̄) + F (x̄) = 〈p̄, x̄〉,
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−(q̄T G)∗(−p̄) = inf
x∈X

[
〈p̄, x〉+ q̄T G(x)

]
= 〈p̄, x̄〉

and

q̄T G(x̄) = 0, with q̄i = 0, for i ∈ I(x̄).

(b) The conclusion follows by doing all the calculations and transformations

from (a) in the reverse direction.

�

Let us denote by
m∏

i=1

{h∗i − g∗i ≤ 0} the set of those x∗ = (x∗1, ..., x
∗
m), x∗i ∈

X∗, i ∈ Im, with the property that h∗i (x
∗
i )− g∗i (x

∗
i ) ≤ 0, i ∈ Im.

Returning to the vectorial case, for every x∗ = (x∗1, ..., x
∗
m) ∈

m∏
i=1

{h∗i −g∗i ≤ 0},

let us associate to the multiobjective problem (Px∗) the following scalar problem

(Psx∗) inf
k∑

j=1

λjfj(x),

g̃i(x) := gi(x) + h∗i (x
∗
i )− 〈x∗i , x〉 ≤ 0, i ∈ Im,

with λ = (λ1, ..., λk)
T ∈ int(Rk

+) fixed.

Moreover, we assume the following constraint qualification.

(CQsx∗) There exists x′ ∈
k⋂

j=1

dom(fj) such that fj is continuous at x′,

j = 1, ..., k, and g̃i(x
′) < 0 for i ∈ Im.

Following the same scheme as in the first part of this section, a dual problem
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to (Psx∗) is given by

(Dsx∗) sup
p∈X∗,q∈Rm,

q=0

{
−

(
k∑

j=1

λjfj

)∗

(p)− (qT g̃)∗(−p)

}
,

where g̃(x) = (g̃1(x), ..., g̃m(x))T . One may notice that even the case of extended-

valued constrained functions g̃i, i ∈ Im in (Psx∗) is covered by the duality theory

developed in the first part of the section. This situation has been taken into

consideration when we assumed that Gi, i ∈ Im in (Ps) were also extended real-

valued functions.

By Remark 3.3 in [3] we have that

(
k∑

j=1

λjfj

)∗

(p) = min
p=

kP
j=1

p̃j

k∑
j=1

(λjfj)
∗(p̃j),

and, using the properties of the conjugate functions, we obtain for the dual of

(Psx∗) the following formulation

(Dsx∗) sup
pj∈X∗,j=1,...,k,

q∈Rm,q=0

{
−

k∑
j=1

λjf
∗
j (pj)− (qT g̃)∗

(
−

k∑
j=1

λjpj

)}
.

Theorem 3.1 implies the following strong duality theorem for (Psx∗).

THEOREM 3.3 If the constraint qualification (CQsx∗) is fulfilled, then the

dual problem (Dsx∗) has an optimal solution and the strong duality holds, i.e.

inf(Psx∗) = max(Dsx∗).

Next, we give the optimality conditions for the problems (Psx∗) and (Dsx∗).
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THEOREM 3.4

(a) Let the constraint qualification (CQsx∗) be fulfilled and let x̄ be an optimal

solution to (Psx∗). Then there exists an optimal solution to (Dsx∗) (p̄, q̄), p̄ =

(p̄1, ..., p̄k), p̄i ∈ X∗, i = 1, ..., k, q̄ = 0 such that the following optimality

conditions are satisfied

(i) f ∗j (p̄j) + fj(x̄) = 〈p̄j, x̄〉, j = 1, ..., k,

(ii) q̄T g(x̄) +
m∑

i=1

q̄ih
∗
i (x

∗
i ) =

〈
m∑

i=1

q̄ix
∗
i , x̄

〉
,

(iii) inf
x∈X

[〈
k∑

j=1

λj p̄j −
m∑

i=1

q̄ix
∗
i , x

〉
+ q̄T g(x)

]

=

〈
k∑

j=1

λj p̄j, x̄

〉
−

m∑
i=1

q̄ih
∗
i (x

∗
i ).

(b) Let x̄ be admissible to (Psx∗) and (p̄, q̄) be admissible to (Dsx∗), satisfying

(i), (ii) and (iii). Then x̄ is an optimal solution to (Psx∗), (p̄, q̄) is an

optimal solution to (Dsx∗) and the strong duality holds

k∑
j=1

λjfj(x̄) = −
k∑

j=1

λjf
∗
j (p̄j)− (q̄T g̃)∗

(
−

k∑
j=1

λj p̄j

)
.

REMARK 3.3 The relation (iii) in Theorem 3.4 is equivalent to

(q̄T g)∗

(
m∑

i=1

q̄ix
∗
i −

k∑
j=1

λj p̄j

)
=

m∑
i=1

q̄ih
∗
i (x

∗
i )−

〈
k∑

j=1

λj p̄j, x̄

〉
. (7)
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4. Duality for the multiobjective problem with D.C. constraints

For the functions fj, j = 1, ..., k, let us impose the additional hypothesis of

continuity over the set
k⋂

j=1

dom(fj), which is assumed to be non-empty. We denote

by g : X → Rm
the vector function g(x) = (g1(x), ..., gm(x))T .

In section 2 we have introduced for each x∗ = (x∗1, ..., x
∗
m), x∗i ∈ X∗, i ∈ Im,

with the property that h∗i (x
∗
i ) − g∗i (x

∗
i ) ≤ 0, i ∈ Im, the following multiobjective

optimization problem

(Px∗) v-min
x∈Ax∗

f(x),

Ax∗ = {x ∈ X : h∗i (x
∗
i ) + gi(x)− 〈x∗i , x〉 ≤ 0, i ∈ Im} ,

f(x) = (f1(x), . . . , fk(x))T .

We associate to each (Px∗) a multiobjective optimization problem (Dx∗) and,

by means of this family of multiobjective problems, we will formulate two theo-

rems concerning the duality for the problem (P ). The dual problem is

(Dx∗) v-max
(p,q,λ,t)∈Bx∗

hx∗(p, q, λ, t),

with

hx∗(p, q, λ, t) =


hx∗1(p, q, λ, t)

...

hx∗m(p, q, λ, t)

 ,

hx∗j(p, q, λ, t) = −f ∗j (pj)−
(
(qj)T g

)∗(− 1

kλj

k∑
j=1

λjpj +
m∑

i=1

qj
i x

∗
i

)
+ tj,
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for j = 1, . . . , k, the dual variables

p = (p1, . . . , pk), q = (q1, . . . , qk), λ = (λ1, . . . , λk)
T , t = (t1, . . . , tk)

T ,

pj ∈ X∗, qj ∈ Rm, λj ∈ R, tj ∈ R, j = 1, . . . , k,

and the set of constraints

Bx∗ =

{
(p, q, λ, t) : λ ∈ int(Rk

+),
k∑

j=1

λjq
j = 0,

k∑
j=1

λjtj =
k∑

j=1

m∑
i=1

λjq
j
i h

∗
i (x

∗
i )

}
.

The following constraint qualification has been introduced by Martinez-Legaz

and Volle in [3].

(CQ) For each x∗ = (x∗1, ..., x
∗
m) ∈

m∏
i=1

{h∗i − g∗i ≤ 0}, there exists x′ ∈
k⋂

j=1

dom(fj), such that gi(x
′) + h∗i (x

∗
i )− 〈x∗i , x′〉 < 0, ∀i ∈ Im.

The constraint qualification (CQ) will be used later for the characterization

of the properly efficient solutions of the problem (P ). First, we prove a weak

duality-type theorem.

THEOREM 4.1 There is no x ∈ A, no x∗ = (x∗1, ..., x
∗
m) ∈

m∏
i=1

{h∗i − g∗i ≤ 0},

with the property that x ∈ Ax∗, and no (p, q, λ, t) ∈ Bx∗ such that fj(x) ≤

hx∗j(p, q, λ, t), for j = 1, ..., k, and fi(x) < hx∗i(p, q, λ, t), for at least one i ∈

{1, ..., k}.

Proof. Let x ∈ A and x∗ = (x∗1, ..., x
∗
m) ∈

m∏
i=1

{h∗i − g∗i ≤ 0} be such that

x ∈ Ax∗ . By (3) we have that an element x∗ with these properties always exists.
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For a (p, q, λ, t) ∈ Bx∗ let us assume that fj(x) ≤ hx∗j(p, q, λ, t), for j = 1, ..., k,

and fi(x) < hx∗i(p, q, λ, t), for at least one i ∈ {1, ..., k}. This implies that

k∑
j=1

λjfj(x) <

k∑
j=1

λjhx∗j(p, q, λ, t). (8)

On the other hand, we have

k∑
j=1

λjhx∗j(p, q, λ, t) = −
k∑

j=1

λjf
∗
j (pj) +

k∑
j=1

λjtj

−
k∑

j=1

λj

(
(qj)T g

)∗(− 1

kλj

k∑
j=1

λjpj +
m∑

i=1

qj
i x

∗
i

)
≤

k∑
j=1

λjfj(x)

−

〈
k∑

j=1

λjpj, x

〉
+

k∑
j=1

m∑
i=1

λjq
j
i h

∗
i (x

∗
i ) +

k∑
j=1

λj

(
(qj)T g

)
(x)

+

〈
k∑

j=1

λjpj −
k∑

j=1

m∑
i=1

λjq
j
i x

∗
i , x

〉
=

k∑
j=1

λjfj(x) +
m∑

i=1

(
k∑

j=1

λjq
j

)
i

h∗i (x
∗
i )

+
m∑

i=1

(
k∑

j=1

λjq
j

)
i

gi(x)−
m∑

i=1

〈(
k∑

j=1

λjq
j

)
i

x∗i , x

〉

=
k∑

j=1

λjfj(x) +

(
k∑

j=1

λjq
j

)T

g̃(x),

where g̃(x) = (g̃1(x), ..., g̃m(x))T , g̃i(x) = gi(x) + h∗i (x
∗
i ) − 〈x∗i , x〉, i ∈ Im. Here,(

k∑
j=1

λjq
j

)
i

is the i-th component of the vector
k∑

j=1

λjq
j ∈ Rm.

Because of x ∈ Ax∗ and (p, q, λ, t) ∈ Bx∗ we have g̃j(x) ≤ 0, for j ∈ Im, and

k∑
j=1

λjq
j = 0. This implies that

(
k∑

j=1

λjq
j

)T

g̃(x) ≤ 0, and therefore follows that

k∑
j=1

λjhx∗j(p, q, λ, t) ≤
k∑

j=1

λjfj(x).

16



This last inequality contradicts relation (8) and then the assertion of the the-

orem must be true. �

The following theorem gives a characterization of the properly efficient so-

lutions of (P ) by means of the Pareto-efficient elements of (Dx∗), for an x∗ =

(x∗1, ..., x
∗
m) ∈

m∏
i=1

{h∗i − g∗i ≤ 0}.

THEOREM 4.2. Let the constraint qualification (CQ) be fulfilled and let x̄

be a properly efficient solution to (P ). Then there exists an x∗ = (x∗1, ..., x
∗
m) ∈

m∏
i=1

{h∗i −g∗i ≤ 0} and a Pareto-efficient solution (p̄, q̄, λ̄, t̄) ∈ Bx∗ to the dual (Dx∗)

such that f(x̄) = hx∗(p̄, q̄, λ̄, t̄).

Proof. Assume x̄ to be properly efficient to (P ). This implies that x̄ ∈ A. By

Proposition 2.2 there exists an x∗ = (x∗1, ..., x
∗
m) ∈

m∏
i=1

{h∗i − g∗i ≤ 0} such that x̄

is properly efficient to (Px∗).

The feasible set of (Px∗), Ax∗ , is a convex set and the objective function

of (Px∗) is a convex function. Then follows that x̄ to be properly efficient to

(Px∗) can be expressed via scalarization (see [2]). Therefore exists a vector λ̄ =

(λ̄1, . . . , λ̄k)
T ∈ int(Rk

+) such that x̄ solves the scalar problem

(Psx∗) inf
x∈Ax∗

k∑
j=1

λ̄jfj(x).

The constraint qualification (CQ) is fulfilled and this implies that for x∗ =

(x∗1, ..., x
∗
m) the constraint qualification (CQsx∗) is also fulfilled. Under this hy-

potheses, Theorem 3.3 assures the existence of an optimal solution (p̃, q̃) to the

dual of (Psx∗) and Theorem 3.4 states that the optimality conditions (i), (ii) and
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(iii) are satisfied.

Let us construct now by means of x̄ and (p̃, q̃) a Pareto-efficient solution

(p̄, q̄, λ̄, t̄) to (Dx∗). Let λ̄ = (λ̄1, . . . , λ̄k)
T be the vector introduced above. We

consider for j = 1, . . . , k, p̄j := p̃j and p̄ := (p̄1, . . . p̄k) = (p̃1, . . . p̃k) = p̃. It

remains to define q̄ = (q̄1, . . . q̄k) and t̄ = (t̄1, . . . t̄k)
T .

These are defined in the following way, for j = 1, . . . , k,

q̄j :=
1

kλ̄j

q̃ ∈ Rm,

(9)

t̄j := 〈p̄j, x̄〉+
(
(q̄j)T g

)∗(− 1

kλ̄j

m∑
j=1

λ̄j p̄j +
m∑

i=1

q̄j
i x

∗
i

)
∈ R.

For the new element (p̄, q̄, λ̄, t̄) holds

λ̄ ∈ int(Rk
+),

k∑
j=1

λ̄j(q̄)
j = q̃ = 0

and

k∑
j=1

λ̄j t̄j =

〈
m∑

j=1

λ̄j p̄j, x̄

〉
+

k∑
j=1

λ̄j

(
1

kλ̄j

q̃T g

)∗(
− 1

kλ̄j

(
k∑

j=1

λ̄j p̄j −
m∑

i=1

q̃ix
∗
i

))

=

〈
k∑

j=1

λ̄j p̄j, x̄

〉
+

k∑
j=1

λ̄j
1

kλ̄j

(q̃T g)∗

(
m∑

i=1

q̃ix
∗
i −

k∑
j=1

λ̄j p̄j

)

=

〈
k∑

j=1

λ̄j p̄j, x̄

〉
+ (q̃T g)∗

(
m∑

i=1

q̃ix
∗
i −

k∑
j=1

λ̄j p̄j

)

=

〈
k∑

j=1

λ̄j p̄j, x̄

〉
+

m∑
i=1

q̃ih
∗
i (x

∗
i )−

〈
k∑

j=1

λ̄j p̄j, x̄

〉
(by (7))
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=
m∑

i=1

q̃ih
∗
i (x

∗
i ) =

k∑
j=1

m∑
i=1

λ̄j q̄
j
i h

∗
i (x

∗
i ).

Therefore, (p̄, q̄, λ̄, t̄) is feasible to (Dx∗). In order to finish the proof, it remains

to show that the values of the objective functions on these elements are equal,

i.e. f(x̄) = hx∗(p̄, q̄, λ̄, t̄).

What we actually prove is that fj(x̄) = hx∗j(p̄, q̄, λ̄, t̄), for each j = 1, . . . , k.

By using relation (i) from Theorem 3.4 and the equalities in (9), for j = 1, ..., k,

holds

hx∗j(p̄, q̄, λ̄, t̄) = −f ∗j (p̄j)−
(
(q̄j)T g

)∗(− 1

kλ̄j

k∑
j=1

λ̄j p̄j +
m∑

i=1

q̄j
i x

∗
i

)
+ t̄j

= −f ∗j (p̄j) + 〈p̄j, x̄〉 = fj(x̄).

The fact that (p̄, q̄, λ̄, t̄) is Pareto-efficient to (Dx∗) is given by Theorem 4.1.

�

5. Duality for the multiobjective problem with strict inequalities

D.C. constraints

The next problem which we treat in this paper is the multiobjective opti-

mization problem with a convex objective function and strict inequalities D.C.

constraints

(P si) v-min
x∈Asi

f(x),

Asi = {x ∈ X : gi(x)− hi(x) < 0, i ∈ Im} ,

f(x) = (f1(x), . . . , fk(x))T ,

where fj : X → R, j = 1, ..., k, are proper convex functions, continuous on
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the set
k⋂

j=1

dom(fj), which is assumed to be non-empty, and gi, hi : X → R, i =

1, ...,m, are extended real-valued convex functions. We assume, as in the previous

sections, that the functions hi, i ∈ Im, are subdifferentiable on the feasible set of

(P si).

Martinez-Legaz and Volle have also shown that the feasible set of the problem

(P si) can be written in the following way (cf. Lemma 5.1 in [3])

Asi =
⋃

h∗i (x∗i )−g∗i (x∗i )<0,
i=1,...,m

{x ∈ X : h∗i (x
∗
i ) + gi(x)− 〈x∗i , x〉 < 0, i ∈ Im}. (10)

Starting from this result, we introduce for every x∗ = (x∗1, ..., x
∗
m), x∗i ∈ X∗, i ∈

Im, with the property that h∗i (x
∗
i )− g∗i (x

∗
i ) < 0, i ∈ Im, the following multiobjec-

tive optimization problem

(P si
x∗) v-min

x∈Asi
x∗

f(x),

Asi
x∗ = {x ∈ X : h∗i (x

∗
i ) + gi(x)− 〈x∗i , x〉 < 0, i ∈ Im} ,

f(x) = (f1(x), . . . , fk(x))T .

The next two results, similar to Propositions 2.1 and 2.2, are also true.

PROPOSITION 5.1 If x ∈ Asi is Pareto-efficient to (P si), then there exists

x∗ = (x∗1, ..., x
∗
m), x∗i ∈ X∗, i ∈ Im, h∗i (x

∗
i ) − g∗i (x

∗
i ) < 0, i ∈ Im such that x is

Pareto-efficient to (P si
x∗).

PROPOSITION 5.2. If x ∈ Asi is properly efficient to (P si), then there exists

an x∗ = (x∗1, ..., x
∗
m), x∗i ∈ X∗, i ∈ Im, h∗i (x

∗
i ) − g∗i (x

∗
i ) < 0, i ∈ Im such that x is

properly efficient to (P si
x∗).
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For an x∗ = (x∗1, ..., x
∗
m), x∗i ∈ X∗, i ∈ Im such that h∗i (x

∗
i )−g∗i (x

∗
i ) < 0, i ∈ Im,

we associate to the multiobjective problem (P si
x∗) the following scalar problem

(P si
sx∗) inf

k∑
j=1

λjfj(x)

g̃i(x) = gi(x) + h∗i (x
∗
i )− 〈x∗i , x〉 < 0, i ∈ Im,

with λ = (λ1, ..., λk) ∈ int(Rk
+) fixed.

If the constraint qualification (CQsx∗) is fulfilled, then by Lemma 5.2 in [3]

follows

inf(P si
sx∗) = inf(Psx∗).

Therefore we can consider as a dual problem to (P si
sx∗) the same optimization

problem as for (Psx∗)

(Dsx∗) sup
pj∈X∗,j=1,...,k,

q∈Rm,q=0

{
−

k∑
j=1

λjf
∗
j (pj)− (qT g̃)∗

(
−

k∑
j=1

λjpj

)}
.

Let us present for (P si
sx∗) the strong duality theorem and the optimality con-

ditions.

THEOREM 5.1 If the constraint qualification (CQsx∗) is fulfilled, then the

dual problem (Dsx∗) has an optimal solution and the strong duality holds, i.e.

inf(P si
sx∗) = inf(Psx∗) = max(Dsx∗).

THEOREM 5.2

(a) Let the constraint qualification (CQsx∗) be fulfilled and let x̄ be an optimal
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solution to (P si
sx∗). Then there exists an optimal solution to (Dsx∗) (p̄, q̄), p̄ =

(p̄1, ..., p̄k), p̄i ∈ X∗, i = 1, ..., k, q̄ = 0 such that the following optimality

conditions are satisfied

(i) f ∗j (p̄j) + fj(x̄) = 〈p̄j, x̄〉, j = 1, ..., k,

(ii) q̄ = 0,

(iii)
k∑

j=1

λj p̄j = 0.

(b) Let x̄ be admissible to (P si
sx∗) and (p̄, q̄) be admissible to (Dsx∗), satisfying

(i),(ii) and (iii). Then x̄ is an optimal solution to (P si
sx∗), (p̄, q̄) is an

optimal solution to (Dsx∗) and the strong duality holds

k∑
j=1

λjfj(x̄) = −
k∑

j=1

λjf
∗
j (p̄j)− (q̄T g̃)∗

(
−

k∑
j=1

λj p̄j

)
.

Proof.

(a) If x̄ is an optimal solution to (P si
sx∗), then x̄ is also an optimal solution to

(Psx∗). By Theorem 3.4 follows that there exists an optimal solution to

(Dsx∗) (p̄, q̄), p̄ = (p̄1, ..., p̄k), p̄i ∈ X∗, i = 1, ..., k, q̄ = 0 such that

f ∗j (p̄j) + fj(x̄) = 〈p̄j, x̄〉, j = 1, ..., k,

q̄T g̃(x̄) = 0,

and

inf
x∈X

[〈
k∑

j=1

λj p̄j, x

〉
+ q̄T g̃(x)

]
=

〈
k∑

j=1

λj p̄j, x̄

〉
.

But, for x̄ being feasible to the problem (P si
sx∗), follows that either g̃i(x̄) =
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−∞ or g̃i(x̄) < 0, for every i ∈ Im. The relations (1) and (2) give us that

q̄ must be 0.

Therefore, by the third equality, we have

inf
x∈X

〈
k∑

j=1

λj p̄j, x

〉
=

〈
k∑

j=1

λj p̄j, x̄

〉
∈ R,

which is possible just if
k∑

j=1

λj p̄j = 0. So, (i)-(iii) are proved.

(b) The conclusion follows by doing all the calculations and transformations

from (a) in the reverse direction.

�

Inspired by the optimality conditions presented above, let us introduce the

following multiobjective optimization problem

(Dsi) v-max
(p,λ,t)∈Bsi

hsi(p, λ, t),

with

hsi(p, λ, t) =


hsi

1 (p, λ, t)

...

hsi
m(p, λ, t)

 ,

hsi
j (p, λ, t) = −f ∗j (pj) + tj,

for j = 1, . . . , k, the dual variables

p = (p1, . . . , pk), λ = (λ1, . . . , λk)
T , t = (t1, . . . , tk)

T ,

pj ∈ X∗, λj ∈ R, tj ∈ R, j = 1, . . . , k,
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and the set of constraints

Bsi =

{
(p, λ, t) : λ ∈ int(Rk

+),
k∑

j=1

λjpj = 0,
k∑

j=1

λjtj = 0

}
.

We show now that for the problems (P si) and (Dsi) the weak and strong duality

theorems in their classical formulations hold.

THEOREM 5.3 There is no x ∈ Asi and no (p, λ, t) ∈ Bsi such that fj(x) ≤

hsi
j (p, λ, t), for j = 1, ..., k, and fi(x) < hsi

i (p, λ, t), for at least one i ∈ {1, ..., k}.

Proof. Let be x ∈ A and (p, λ, t) ∈ Bsi such that fj(x) ≤ hsi
j (p, λ, t), for

j = 1, ..., k, and fi(x) < hsi
i (p, λ, t), for at least one i ∈ {1, ..., k}. This implies

that
k∑

j=1

λjfj(x) <
k∑

j=1

λjh
si
j (p, λ, t). (11)

On the other hand, we have

k∑
j=1

λjh
si
j (p, λ, t) = −

k∑
j=1

λjf
∗
j (pj) +

k∑
j=1

λjtj

= −
k∑

j=1

λjf
∗
j (pj) +

〈
k∑

j=1

λjpj, x

〉
=

k∑
j=1

λj

(
−f ∗j (pj) + 〈pj, x〉

)
≤

k∑
j=1

λjfj(x).

The last inequality contradicts relation (11) and this implies that the assertion

of the theorem must be true. �

THEOREM 5.4 Let x̄ be a properly efficient solution to (P si). Then there

exists a Pareto-efficient solution (p̄, λ̄, t̄) ∈ Bsi to the dual (Dsi) such that f(x̄) =
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hsi(p̄, λ̄, t̄).

Proof. Assume x̄ to be properly efficient to (P si). This implies that x̄ ∈ Asi.

By Proposition 5.2 follows that there exists an x∗ = (x∗1, ..., x
∗
m) ∈

m∏
i=1

{h∗i−g∗i < 0}

such that x̄ is properly efficient to (P si
x∗). Here

m∏
i=1

{h∗i − g∗i < 0} represents

the set of those x∗ = (x∗1, ..., x
∗
m), x∗i ∈ X∗, i ∈ Im, with the property that

h∗i (x
∗
i )− g∗i (x

∗
i ) < 0, i ∈ Im.

The feasible set of (P si
x∗), Asi

x∗ , is a convex set and the objective function of

(P si
x∗) is a convex function. The fact that x̄ is properly efficient to (P si

x∗) can

be then expressed via scalarization (see [2]). Therefore, there exists a vector

λ̄ = (λ̄1, . . . , λ̄k)
T ∈ int(Rk

+) such that x̄ solves the scalar problem

(P si
sx∗) inf

x∈Asi
x∗

k∑
j=1

λ̄jfj(x).

On the other hand, one may notice by considering the definition of Asi
x∗ that

x̄ automatically fulfills the constraint qualification (CQ). So, x̄ also fulfills the

constraint qualification (CQsx∗), for x∗ = (x∗1, ..., x
∗
m). Applying Theorem 5.1 we

get an optimal solution (p̃, q̃) to the dual of (P si
sx∗) and Theorem 5.2 states that

for this solution the optimality conditions (i), (ii) and (iii) are satisfied.

Let us construct now, by means of x̄ and (p̃, q̃), a Pareto-efficient solution

(p̄, λ̄, t̄) to (Dsi). Let λ̄ = (λ̄1, . . . , λ̄k)
T be the vector obtained above. We consider

for j = 1, . . . , k, p̄j := p̃j, and p̄ := (p̄1, . . . p̄k) = (p̃1, . . . p̃k) = p̃. It holds
m∑

j=1

λ̄j p̄j =
m∑

j=1

λ̄j p̃j = 0.

For j = 1, . . . , k, let us define t̄j := 〈p̄j, x̄〉.
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For the new element (p̄, λ̄, t̄) holds λ̄ ∈ int(Rk
+),

k∑
j=1

λ̄j p̄j = 0 and

k∑
j=1

λ̄j t̄j =

〈
m∑

j=1

λ̄j p̄j, x̄

〉
= 0,

which implies that (p̄, λ̄, t̄) is feasible to the problem (Dsi). It remains to show

that the values of the objective functions are equal, i.e. f(x̄) = hsi(p̄, λ̄, t̄).

Using relation (i) in Theorem 5.2 we get

hsi
j (p̄, λ̄, t̄) = −f ∗j (p̄j) + t̄j = −f ∗j (p̄j) + 〈p̄j, x̄〉 = fj(x̄), j = 1, ..., k,

and the equality is proved.

The fact that (p̄, λ̄, t̄) is Pareto-efficient to (Dsi) follows from Theorem 5.3.�

REMARK 5.1 One may notice that Theorem 5.4 holds without being neces-

sary to assume the fulfillment of any constraint qualification.

6. The case hi = 0, i ∈ Im

In the last section of the paper we consider in the formulation of both multiob-

jective optimization problems (P ) and (P si) that hi = 0, for i ∈ Im. We assume,

in fact, that both problems have convex inequality constraints. Obviously, the

assumption of subdifferentiability for hi = 0, i ∈ Im, is fulfilled. Then, the primal

multiobjective optimization problems become

(P0) v-min
x∈A

f(x),
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A = {x ∈ X : gi(x) ≤ 0, i ∈ Im} ,

f(x) = (f1(x), . . . , fk(x))T ,

and, respectively,

(P si
0 ) v-min

x∈A
f(x),

A = {x ∈ X : gi(x) < 0, i ∈ Im} ,

f(x) = (f1(x), . . . , fk(x))T .

Looking at the formulation of the dual problem (Dsi), one may notice that

this does not depend on x∗ = (x∗1, ..., x
∗
m) ∈

m∏
i=1

{h∗i −g∗i < 0}. It implies that (Dsi)

can be considered as a dual multiobjective problem for the problem (P si
0 ). More-

over, the weak duality theorem (Theorem 5.3) and the strong duality theorem

(Theorem 5.4) are still true.

More interesting is to see what happens, in this case, with the family of

problems (Dx∗). The feasible set of (P ) being non-empty, it must hold, for

i ∈ Im, gi 6= +∞ and therefore g∗i (x
∗
i ) > −∞, ∀x∗i ∈ X∗.

If x∗ = (x∗1, ..., x
∗
m) ∈

m∏
i=1

{h∗i − g∗i ≤ 0}, by (1) and (2) follows that h∗i (x
∗
i ) <

+∞, ∀x∗i ∈ X∗, i ∈ Im.

On the other hand, for i ∈ Im, if hi(x) = 0, then h∗i (x
∗
i ) = sup

x∈X
〈x∗i , x〉 < +∞

if and only if x∗i = 0. In this case, h∗i (x
∗
i ) = 0, i ∈ Im, and x∗ = (0, ..., 0) ∈

X∗ × ... × X∗. This implies that the dual multiobjective dual (D0) does not

depend anymore on x∗

(D0) v-max
(p,q,λ,t)∈B0

h0(p, q, λ, t),
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with

h0(p, q, λ, t) =


h01(p, q, λ, t)

...

h0m(p, q, λ, t)

 ,

h0j(p, q, λ, t) = −f ∗j (pj)−
(
(qj)T g

)∗(− 1

kλj

k∑
j=1

λjpj

)
+ tj,

for j = 1, . . . , k, the dual variables

p = (p1, . . . , pk), q = (q1, . . . , qk), λ = (λ1, . . . , λk)
T , t = (t1, . . . , tk)

T ,

pj ∈ X∗, qj ∈ Rm, λj ∈ R, tj ∈ R, j = 1, . . . , k,

and the set of constraints

B0 =

{
(p, q, λ, t) : λ ∈ int(Rk

+),
k∑

j=1

λjq
j = 0,

k∑
j=1

λjtj = 0

}
.

The constraint qualification (CQ), which assures the existence of the strong

duality, becomes

(CQ0) There exists x′ ∈
k⋂

j=1

dom(fj), such that gi(x
′) < 0, ∀i ∈ Im.

Under these assumptions, instead of the Theorems 4.1 and 4.2, we get in this

convex case the following weak duality and, respectively, strong duality theorems.

We want to stress here that they have been also obtained in [13] in the context

of the study of the duality for multiobjective convex optimization problems with

cone inequality constraints.
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THEOREM 6.1. There is no x ∈ A and no (p, q, λ, t) ∈ B0 such that

fj(x) ≤ h0j(p, q, λ, t), for j = 1, ..., k, and fi(x) < h0i(p, q, λ, t), for at least

one i ∈ {1, ..., k}.

THEOREM 6.2 Assume that the constraint qualification (CQ0) is fulfilled.

Let x̄ be a properly efficient element to (P ). Then there exists a Pareto-efficient

solution (p̄, q̄, λ̄, t̄) ∈ B0 to the dual (D0) such that f(x̄) = h0(p̄, q̄, λ̄, t̄).
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