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Abstract. In this paper we present a new regularity condition for the subd-
ifferential sum formula of a convex function with the precomposition of another
convex function with a continuous linear mapping. This condition is formulated
by using the epigraphs of the conjugates of the functions involved and turns out
to be weaker than the generalized interior-point regularity conditions given so far
in the literature. Moreover, it provides a weak sufficient condition for Fenchel du-
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1 Introduction

A nowadays challenge in the convex analysis is to give weaker regularity condi-
tions for the subdifferential sum formula of a convex function with the precom-
position of another convex function with a continuous linear mapping in infinite
dimensional spaces. Among the large number of works which deal with this
subject we want to mention [14], [17], [18], [20], [21], [23], [24], where different
so-called generalized interior-point regularity conditions have been introduced.
Concerning the subdifferential sum formula of two convex functions, which is
a particular case of the problem presented above, let us mention the paper of
Attouch and Brézis [1] and the very recent articles [7] and [8]. The popularity
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of these regularity conditions is brought by the central role played by them in
the theory of duality for convex optimization problems. Moreover, they provide
sufficient conditions which guarantee the strong conical hull intersection property
(CHIP) for a finite family of closed convex sets. The strong CHIP is proved to
be useful in the study of best approximation problems (cf. [2], [3], [9], [10], [11],
[17]).

In this paper we introduce a new regularity condition for the subdifferential
sum formula of a convex function with the precomposition of another convex func-
tion with a continuous linear mapping in locally convex spaces. This condition is
formulated by using the epigraphs of the conjugates of the functions involved and
turns out to be weaker than the generalized interior-point regularity conditions
given so far in the literature. Moreover, it generalizes the so-called dual regularity
condition introduced by Burachik and Jeyakumar in [7] and [8]. Then we succeed
to further weaken this new regularity condition and to obtain a sufficient condi-
tion which still guarantees strong duality between a convex optimization problem
and its Fenchel dual problem, namely that the optimal objective values of the
primal and dual are equal and the dual has an optimal solution. The converse
duality, namely the situation when the optimal objective values of the primal and
dual are equal but the primal problem has an optimal solution, is also studied.
As an application, we discuss the strong conical hull intersection property for a
finite family of closed convex sets.

The paper is organized as follows. In the next section we present some def-
initions and preliminary results. In Section 3 we give the announced general
regularity condition for the subdifferential sum formula and we deal with some
particular cases of it. Section 4 is devoted to the study of the Fenchel duality and
Section 5 deals with the so-called converse duality. A short concluding section
and the list of references close the paper.

2 Notations and preliminary results

In this section we describe the notations used throughout this paper and present
some preliminary results. Let X be a nontrivial locally convex space and X∗

the continuous dual space of X. X∗ will be endowed with the weak* topology
w(X∗, X) and 〈x∗, x〉 will denote the value at x ∈ X of the continuous linear
functional x∗ ∈ X∗. For a set D ⊆ X we shall denote the closure, the interior,
the affine hull and the linear hull of D by cl(D), int(D), aff(D) and lin(D),
respectively.

Furthermore, for the nonempty set D ⊆ X, the indicator function δD : X →
R ∪ {+∞} is defined by

δD(x) =

{

0, if x ∈ D,

+∞, otherwise,
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while the support function σD : X∗ → R ∪ {+∞} is defined by σD(x∗) =
sup
x∈D

〈x∗, x〉. Considering now a function f : X → R ∪ {+∞}, we denote by

dom(f) = {x ∈ X : f(x) < +∞}

its effective domain and by

epi(f) = {(x, r) ∈ X × R : f(x) ≤ r}

its epigraph. Moreover, by cl(f) we denote the lower semicontinuous envelope of
f , namely the function whose epigraph is the closure of epi(f) in X × R. We
say that f : X → R ∪ {+∞} is proper if dom(f) 6= ∅. The (Fenchel-Moreau)
conjugate function of f is f ∗ : X∗ → R ∪ {+∞} defined by

f ∗(p) = sup
x∈X

{〈p, x〉 − f(x)}

and the subdifferential f at x ∈ dom(f) is the following set

∂f(x) = {x∗ ∈ X∗ : f(y) − f(x) ≥ 〈x∗, y − x〉,∀y ∈ X}.

Next we introduce some further notations used within this paper.

Definition 2.1 Let M1, M2, N1, N2 be nonempty sets and f : M1 → M2,
g : N1 → N2 be some given functions. We denote by f × g : M1 ×N1 → M2 ×N2

the function defined in the following way

f × g(m,n) = (f(m), g(n)),∀(m,n) ∈ M1 × N1.

Definition 2.2 Let the functions fi : X → R ∪ {+∞}, i = 1, ...,m, be given.
The function f1� · · ·�fm : X → R ∪ {±∞} defined by

f1� · · ·�fm(x) = inf

{

m
∑

i=1

fi(xi) :
m
∑

i=1

xi = x

}

is called the infimal convolution function of f1, ..., fm. We say that f1� · · ·�fm is
exact at x ∈ X if there exist some xi ∈ X, i = 1, ...,m, such that f1� · · ·�fm(x) =
f1(x1) + ... + fm(xm). Furthermore, we call f1� · · ·�fm exact if it is exact at
every x ∈ X.

Definition 2.3 Let X and Y be nontrivial locally convex spaces, A : X → Y

be a linear continuous mapping and f : X → R∪{+∞} be a given function. The
function Af : Y → R ∪ {±∞} defined by

Af(y) = inf{f(x) : Ax = y}
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is called the marginal function of f through A. By convention, if {x ∈ X : Ax =
y} is empty, then Af(y) = +∞.

The following two results characterize the epigraph of the conjugate of the
sum of two functions, whereby the first one is a consequence of the Rockafellar-
Moreau theorem (cf. [19], [22]).

Theorem 2.1 Let f, g : X → R ∪ {+∞} be proper, convex and lower semi-
continuous functions such that dom(f)∩dom(g) 6= ∅. Then the following relation
holds

epi((f + g)∗) = cl(epi(f ∗
�g∗)) = cl(epi(f ∗) + epi(g∗)). (1)

Remark 1. One may notice that the second equality in (1) remains true even
considering the closure in the product topology of (X∗, τ) × R, where τ is an
arbitrary topology on X∗.

Proposition 2.2 Let f, g : X → R ∪ {+∞} be proper functions such that
dom(f) ∩ dom(g) 6= ∅. Then the following statements are equivalent:

(i) epi((f + g)∗) = epi(f ∗) + epi(g∗);

(ii) (f + g)∗ = f ∗
�g∗ and f ∗

�g∗ is exact at every p ∈ X∗.

Proof. ”(i) ⇒ (ii)” Let be p ∈ X∗. By the definition of the conjugate
function, we have

(f + g)∗(p) ≤ sup
x∈X

{〈u, x〉 − f(x)} + sup
x∈X

{〈p − u, x〉 − g(x)} =

f ∗(u) + g∗(p − u),∀u ∈ X∗.

If (f + g)∗(p) = +∞, then (ii) is fulfilled. In case (f + g)∗(p) < +∞, we have
that (p, (f + g)∗(p)) ∈ epi((f + g)∗) = epi(f ∗) + epi(g∗). By (i), there exist
(q, s) ∈ epi(f ∗) and (r, t) ∈ epi(g∗) such that p = q + r and (f + g)∗(p) = s + t.
Therefore f ∗(q) ≤ s, g∗(p − q) ≤ t and f ∗(q) + g∗(p − q) ≤ (f + g)∗(p). This
proves (ii).

”(ii) ⇒ (i)” Let be (q, s) ∈ epi(f ∗) and (r, t) ∈ epi(g∗). Then

(f + g)∗(q + r) ≤ sup
x∈X

{〈q, x〉 − f(x)} + sup
x∈X

{〈r, x〉 − g(x)} =

f ∗(q) + g∗(r) ≤ s + t,

which implies that (q + r, s + t) ∈ epi((f + g)∗). Therefore epi(f ∗) + epi(g∗) ⊆
epi((f + g)∗).
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Taking now (p, w) ∈ epi((f + g)∗), we have (f + g)∗(p) ≤ w. By (ii), there
exists u ∈ X∗ such that f ∗(u) + g∗(p − u) ≤ w. Then the element (p, w) can be
written as

(p, w) = (u, f ∗(u)) + (p − u,w − f ∗(u)),

which belongs to epi(f ∗) + epi(g∗). Thus epi((f + g)∗) = epi(f ∗) + epi(g∗). �

The next result has been proved by Fitzpatrick and Simons in [13].

Theorem 2.3 (see Theorem 2.7 in [13]) Let X and Y be nontrivial locally
convex spaces, A : X → Y a linear continuous mapping and g : Y → R ∪ {+∞}
a proper, convex and lower semicontinuous function such that g ◦A is proper on
X. Then

epi((g ◦ A)∗) = cl(epi(A∗g∗)), (2)

where the closure is taken in the product topology of (X∗, τ)×R, for every locally
convex topology τ on X∗ giving X as dual.

Remark 2. Significant choices for τ are the weak* topology w(X∗, X) on X∗

or the norm topology of X∗ in case X is a reflexive Banach space.

In Theorem 2.4 we give a further characterization for the epigraph of A∗g∗.
In relation (3) idR : R → R, idR(r) = r,∀r ∈ R denotes the identity mapping on
R.

Theorem 2.4 Let X and Y be nontrivial locally convex spaces, τ an arbitrary
topology on X∗, A : X → Y a linear continuous mapping and g : Y → R∪{+∞}
a proper function. Then

cl(epi(A∗g∗)) = cl(A∗ × idR(epi(g∗))), (3)

where the closure is taken in the product topology of (X∗, τ) × R. Here A∗ ×
idR(epi(g∗)) stands for the image of the function A∗ × idR : Y ∗ × R → X∗ × R

over the set epi(g∗).

Proof. First, let be (x∗, r) ∈ A∗ × idR(epi(g∗)). Then there exists y∗ ∈ Y ∗

such that A∗y∗ = x∗ and (y∗, r) ∈ epi(g∗). From here it follows

A∗g∗(x∗) = inf{g∗(y∗) : A∗y∗ = x∗} ≤ r

and so (x∗, r) ∈ epi(A∗g∗). Thus the inclusion A∗ × idR(epi(g∗)) ⊆ epi(A∗g∗) is
certain.

In the second part of the proof we show that epi(A∗g∗) ⊆ cl(A∗×idR(epi(g∗)))
and this will lead us to the desired result. To this end, let be (x∗, r) ∈ epi(A∗g∗),
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V(x∗) an open neighborhood of x∗ in τ and ε > 0. Because

A∗g∗(x∗) = inf{g∗(y∗) : A∗y∗ = x∗} ≤ r < r +
ε

2
,

there exists a y∗ ∈ Y ∗ such that A∗y∗ = x∗ and g∗(y∗) ≤ r+ ε
2
. Thus (x∗, r+ ε

2
) ∈

A∗ × idR(epi(g∗)) and, on the other hand, (x∗, r + ε
2
) ∈ V(x∗) × (r − ε, r + ε).

The open neighborhood V(x∗) and ε > 0 being arbitrary chosen, it follows that
(x∗, r) ∈ cl(A∗ × idR(epi(g∗))). �

Taking in (2) and (3) the closure in the product topology of (X∗, w(X∗, X))×R

we obtain the following equality

epi((g ◦ A)∗) = cl(epi(A∗g∗)) = cl(A∗ × idR(epi(g∗))). (4)

Considering nontrivial, locally convex spaces X and Y , X∗ endowed with the
weak* topology w(X∗, X), A : X → Y a linear continuous mapping, f : X →
R ∪ {+∞} and g : Y → R ∪ {+∞} proper, convex and lower semicontinuous
functions such that A(dom(f)) ∩ dom(g) 6= ∅, we have (cf. Theorem 2.1 and
relation (4))

epi((f +g◦A)∗) = cl(epi(f ∗)+epi((g◦A)∗)) = cl(epi(f ∗)+cl(A∗×idR(epi(g∗)))),

which is nothing else than (because cl(E + cl(F )) = cl(E + F ), for any arbitrary
sets E and F )

epi((f + g ◦ A)∗) = cl(epi(f ∗) + A∗ × idR(epi(g∗))). (5)

Inspired by the last relation we introduce the following regularity condition

(RCA) : epi(f ∗) + A∗ × idR(epi(g∗)) is closed in the product topology of
(X∗, w(X∗, X)) × R.

One can notice that the regularity condition (RCA) is equivalent to

epi((f + g ◦ A)∗) = epi(f ∗) + A∗ × idR(epi(g∗)). (6)

3 The subdifferential sum formula and some ap-

plications

In this section we establish the subdifferential sum formula of a convex function
with the precomposition of another convex function with a continuous linear map-
ping, assuming (RCA) is fulfilled. Further we show that (RCA) provides a gener-
alization for the dual condition recently introduced by Burachik and Jeyakumar
(cf. [7], [8]) and, furthermore, that is weaker than some generalized interior-point
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regularity conditions given so far in the literature. We conclude the section by
deriving a sufficient condition for the strong conical hull intersection property
(CHIP) in locally convex spaces. The main result of this section follows.

Theorem 3.1 Let X and Y be nontrivial locally convex spaces, A : X → Y a
linear continuous mapping, f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} proper,
convex and lower semicontinuous functions such that A(dom(f)) ∩ dom(g) 6= ∅.
Then

(i) (RCA) is fulfilled if and only if ∀x∗ ∈ X∗,

(f + g ◦ A)∗(x∗) = inf{f ∗(x∗ − A∗y∗) + g∗(y∗) : y∗ ∈ Y ∗}

and the infimum is attained.

(ii) If (RCA) is fulfilled, then ∀x ∈ dom(f) ∩ A−1(dom(g)),

∂(f + g ◦ A)(x) = ∂f(x) + A∗∂g(Ax).

Proof.

(i) ”⇒” Assume that (RCA) is fulfilled and let x∗ ∈ X∗. For all x ∈ X and
y∗ ∈ Y ∗ we have (by the so-called Young-Fenchel inequality)

f ∗(x∗ − A∗y∗) + g∗(y∗) ≥ 〈x∗ − A∗y∗, x〉 − f(x) + 〈y∗, Ax〉 − g(Ax)
= 〈x∗, x〉 − f(x) − g(Ax)

and therefore

inf{f ∗(x∗ − A∗y∗) + g∗(y∗) : y∗ ∈ Y ∗} ≥ (f + g ◦ A)∗(x∗). (7)

If (f + g ◦ A)∗(x∗) = +∞, then the conclusion follows. In case (f + g ◦
A)∗(x∗) < +∞, we have that (x∗, (f + g ◦A)∗(x∗)) ∈ epi((f + g ◦A)∗). The
regularity condition (RCA) being fulfilled, there exist (u∗, r) ∈ epi(f ∗) and
(v∗, s) ∈ A∗×idR(epi(g∗)) such that x∗ = u∗+v∗ and (f+g◦A)∗(x∗) = r+s.
Thus there exists a y∗ ∈ Y ∗ such that A∗y∗ = v∗ and g∗(y∗) ≤ s, which
implies

f ∗(x∗ − A∗y∗) + g∗(y∗) = f ∗(u∗) + g∗(y∗) ≤ r + s = (f + g ◦ A)∗(x∗).

This delivers the desired result.

”⇐” In order to prove that (RCA) is fulfilled, it is enough to show that
the equality in (6) holds. For the beginning, let be (u∗, r) ∈ epi(f ∗) and
(v∗, s) ∈ A∗×idR(epi(g∗)). Thus there exists a y∗ ∈ Y ∗ such that A∗y∗ = v∗

and g∗(y∗) ≤ s. By (7) we have

(f + g ◦ A)∗(u∗ + v∗) ≤ f ∗(u∗) + g∗(y∗) ≤ r + s,
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which is nothing else than (u∗ +v∗, r +s) ∈ epi((f +g ◦A)∗). Therefore the
inclusion epi(f ∗) + A∗ × idR(epi(g∗)) ⊆ epi((f + g ◦A)∗) is always satisfied.

In order to show the opposite inclusion, let (x∗, r) ∈ epi((f + g ◦ A)∗) or,
equivalently, (f+g◦A)∗(x∗) ≤ r. The relation (f+g◦A)∗(x∗) = inf{f ∗(x∗−
A∗y∗)+g∗(y∗) : y∗ ∈ Y ∗} being fulfilled and the infimum being attained for
every x∗ ∈ X∗, there exists a y∗ ∈ Y ∗ such that f ∗(x∗−A∗y∗)+ g∗(y∗) ≤ r.
The element (x∗, r) can be written in the following way

(x∗, r) = (x∗ − A∗y∗, f ∗(x∗ − A∗y∗)) + (A∗y∗, r − f ∗(x∗ − A∗y∗))
∈ epi(f ∗) + A∗ × idR(epi(g∗))

and so epi((f + g ◦ A)∗) = epi(f ∗) + A∗ × idR(epi(g∗)).

(ii) Assume that (RCA) is fulfilled and let x ∈ dom(f)∩A−1(dom(g)) be fixed.
If u∗ ∈ ∂f(x) and v∗ ∈ ∂g(Ax), then ∀y ∈ X

〈u∗ + A∗v∗, y − x〉 = 〈u∗, y − x〉 + 〈v∗, Ay − Ax〉
≤ f(y) − f(x) + g(Ay) − g(Ax)
= (f + g ◦ A)(y) − (f + g ◦ A)(x).

By the definition of the subdifferential we get that u∗ + A∗v∗ ∈ ∂(f + g ◦
A)(x).

On the other hand, let x∗ ∈ ∂(f + g ◦ A)(x). This is nothing else than
(f + g ◦ A)∗(x∗) + (f + g ◦ A)(x) = 〈x∗, x〉. By (i), there exists a y∗ ∈ Y ∗

such that

〈x∗, x〉 − (f + g ◦ A)(x) = (f + g ◦ A)∗(x∗) = f ∗(x∗ − A∗y∗) + g∗(y∗)

or, equivalently,

f ∗(x∗ − A∗y∗) + f(x) − 〈x∗ − A∗y∗, x〉 + g∗(y∗) + g(Ax) − 〈y∗, Ax〉 = 0.

Noticing that the following Young-Fenchel inequalities

f ∗(x∗ − A∗y∗) + f(x) ≥ 〈x∗ − A∗y∗, x〉

and
g∗(y∗) + g(Ax) ≥ 〈y∗, Ax〉

are always fulfilled for all x∗ ∈ X∗ and for all y∗ ∈ Y ∗, we get that

f ∗(x∗ − A∗y∗) + f(x) ≥ 〈x∗ − A∗y∗, x〉 ⇔ x∗ − A∗y∗ ∈ ∂f(x)

and
g∗(y∗) + g(Ax) = 〈y∗, Ax〉 ⇔ y∗ ∈ ∂g(Ax).

Thus x∗ ∈ ∂f(x) + A∗∂g(Ax), which concludes the proof. �
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In case X = Y and A = idX is the identity mapping on X, A∗ × idR becomes
the identity mapping on X∗ × R and the regularity condition (RCA) can be
rewritten in the following way

(RC) : epi(f ∗) + epi(g∗) is closed in the product topology of
(X∗, w(X∗, X)) × R.

Theorem 3.1 leads to the following result.

Theorem 3.2 Let X be a nontrivial locally convex space and f, g : X →
R∪{+∞} proper, convex and lower semicontinuous functions such that dom(f)∩
dom(g) 6= ∅. Then

(i) (RC) is fulfilled if and only if ∀x∗ ∈ X∗,

(f + g)∗(x∗) = inf{f ∗(x∗ − y∗) + g∗(y∗) : y∗ ∈ Y ∗}

and the infimum is attained.

(ii) If (RC) is fulfilled, then ∀x ∈ dom(f) ∩ dom(g),

∂(f + g)(x) = ∂f(x) + ∂g(x).

Remark 3. Let us notice that the statement (ii) in Theorem 3.2 has been
obtained by Burachik and Jeyakumar (cf. Theorem 3.1 in [7]; see also [8]) in case
X is a Banach space.

Next we show that (RCA) is implied by some generalized interior-point reg-
ularity conditions given in the literature. To arrive there, we need to introduce
the following notions first.

For a subset D ⊆ X, the core of D is defined by core(D) = {d ∈ D : ∀x ∈
X ∃ε > 0 : ∀λ ∈ [−ε, ε] d + λx ∈ D}. The core of D relative to aff(D) is called
the intrinsic core of D and is written icr(D) (cf. [15]). For a convex subset
D ⊆ X, the strong quasi-relative interior of D is the set of those x ∈ D for which
cone(D− x) is a closed subspace and is written sqri(D) (cf. [16]). Consider now
the following generalized interior-point regularity conditions:

(i) : ∃x′ ∈ dom(f) such that Ax′ ∈ int(dom(g));

(ii) : 0 ∈ core(dom(g) − A(dom(f))) (cf. [18]);

(iii) : 0 ∈ sqri(dom(g) − A(dom(f))) (cf. [20]);

(iv) : 0 ∈ icr(dom(g) − A(dom(f))) and aff(dom(g) − A(dom(f))) is a
closed subspace (cf. [14]).
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The following relation holds between them (cf. [14])

(i) ⇒ (ii) ⇒ (iii) ⇔ (iv).

Gowda and Teboulle in [14] and Rodrigues in [20] (see also the paper of
Rodrigues and Simons [21]) have proved that in case X and Y are Banach spaces,
respectively, Fréchet spaces the regularity conditions enumerated above ensure
the subdifferential sum formula. On the other hand, by Theorem 2.6 in [20] (see
also [21]), one has that if 0 ∈ sqri(dom(g)−A(dom(f))) (which becomes in case
A is the identity mapping on X the regularity condition of Attouch-Brézis in [1]),
then ∀x∗ ∈ X∗,

(f + g ◦ A)∗(x∗) = inf{f ∗(x∗ − A∗y∗) + g∗(y∗) : y∗ ∈ Y ∗}

and the infimum is attained. By Theorem 3.1 (i) this is nothing else than that
(RCA) must be fulfilled. Therefore the regularity conditions (i) − (iv) imply
(RCA).

Remark 4. A very comprehensive result which gives different regularity condi-
tions for the subdifferential sum formula, including also the generalized interior-
point regularity conditions enumerated above, is Theorem 2.8.3 in [24] (see also
[23]). One can deduce from the mentioned theorem that (RCA) is implied by
each of the ten regularity conditions given there. The most general regularity
condition in Theorem 2.8.3 in [24] follows:

(v) : there exist λ0 ∈ R, B a bounded subset in X and V0 a balanced
and closed neighborhood of 0 in lin(dom(g) − A(dom(f))) such that
V0 ⊆ A({x ∈ X : f(x) ≤ λ0} ∩ B) − {y ∈ Y : g(y) ≤ λ0}.

We show that (RCA) is actually weaker even than (v). This means that (RCA) is
weaker than all the regularity conditions given in Theorem 2.8.3 in [24] and, as a
consequence, that (RCA) is weaker than (i) − (iv). Let be X = Y = R, A = idR

the identity mapping on R, f = δ[0,+∞) and g = δ(−∞,0]. One can easily see that
epi(f ∗) + epi(g∗) = R × [0, +∞), which is a closed set in R

2. Assume that (v) is
also fulfilled. Then there would exist a λ0 ≥ 0, B a bounded subset in R and V0

a balanced and closed neighborhood of 0 in lin(dom(g) − A(dom(f))) = R such
that

V0 ⊆ [0, +∞) ∩ B − (−∞, 0] = [0, +∞) ∩ B + [0, +∞) ⊆ [0, +∞).

It is obvious that the relation above leads to a contradiction.

In the last part of the section we formulate a sufficient condition which guar-
antees the strong conical hull intersection property for a finite family of closed
convex sets. Therefore we give first a preliminary result which can be derived
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from Theorem 3.1 by taking f ≡ 0. For this choice of the function f we have
that epi(f ∗) = {0} × [0, +∞), ∂f(x) = 0,∀x ∈ X and the regularity condition
(RCA) becomes:

{0} × [0, +∞) + A∗ × idR(epi(g∗)) is closed in the product topology of
(X∗, w(X∗, X)) × R.

We prove that

{0} × [0, +∞) + A∗ × idR(epi(g∗)) = A∗ × idR(epi(g∗)). (8)

First it is obvious that A∗× idR(epi(g∗)) ⊆ {0}× [0, +∞)+A∗× idR(epi(g∗)). In
order to show the opposite inclusion, let be r ≥ 0 and (v∗, s) ∈ A∗× idR(epi(g∗)).
Then there exists a y∗ ∈ Y ∗ such that A∗y∗ = v∗ and g∗(y∗) ≤ s. From here we
have that g∗(y∗) ≤ r + s and so (v∗, r + s) ∈ A∗ × idR(epi(g∗)). This means that
(8) is true and thus Theorem 3.1 leads to the following result.

Theorem 3.3 Let X and Y be nontrivial locally convex spaces, A : X → Y

a linear continuous mapping and g : Y → R∪ {+∞} a proper, convex and lower
semicontinuous function such that g ◦ A is proper. Then

(i) A∗× idR(epi(g∗)) is closed in the product topology of (X∗, w(X∗, X))×R if
and only if ∀x∗ ∈ X∗,

(g ◦ A)∗(x∗) = inf{g∗(y∗) : A∗y∗ = x∗}

and the infimum is attained.

(ii) If A∗× idR(epi(g∗)) is closed in the product topology of (X∗, w(X∗, X))×R,
then ∀x ∈ A−1(dom(g)),

∂(g ◦ A)(x) = A∗∂g(Ax).

Remark 5. From Theorem 2.3 and the proof of Theorem 2.4 follows that
A∗ × idR(epi(g∗)) is closed in the product topology of (X∗, w(X∗, X))×R if and
only if

A∗ × idR(epi(g∗)) = epi(A∗g∗) = epi((g ◦ A)∗).

Let us recall now the definition of the strong conical hull intersection property
for a finite family of closed convex sets.

Definition 3.1 Let C1, ..., Cm be closed convex subsets of X with C =
m
⋂

i=1

Ci 6=

∅. We say that {C1, ..., Cm} has the strong conical hull intersection property
(CHIP), if ∀x ∈ C

NC(x) =
m
∑

i=1

NCi
(x),
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where NC(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0,∀y ∈ C} represents the normal cone
of C at x.

The notion of strong CHIP has been introduced by Deutsch, Li and Ward
(cf. [11]) in Hilbert spaces and has proved to be useful for dealing with best
approximation problems and in the conjugate duality theory (cf. [2], [9], [10],
[11]). Obviously, {C1, ..., Cm} has the strong CHIP if and only if

∂(δC)(x) =
m
∑

i=1

∂(δCi
)(x),∀x ∈ C.

Particularizing Theorem 3.3 we give a sufficient condition for the strong CHIP
for {C1, ..., Cm}, which is assumed to be a family of closed convex subsets in
the nontrivial locally convex space X. Therefore let Y = Xm, A : X → Xm,
Ax = (x, ..., x) and g : Y → R ∪ {+∞} defined by

g(x1, ..., xm) = δ m
Q

i=1

Ci

(x1, ..., xm) =

{

0, if xi ∈ Ci, i = 1, ...,m,

+∞, otherwise.

Then A∗ : (X∗)m → X∗ and g∗ : (X∗)m → R∪{+∞} turn out to be A∗(x∗
1, ..., x

∗
m)

=
m
∑

i=1

x∗
i and g∗(x∗

1, ..., x
∗
m) =

m
∑

i=1

δ∗Ci
(x∗

i ), respectively, for (x∗
1, ..., x

∗
m) ∈ (X∗)m.

In order to determine the set A∗ × idR(epi(g∗)), we consider an arbitrary ele-
ment (v∗, s) belonging to it. This happens if and only if there exists (x∗

1, ..., x
∗
m) ∈

(X∗)m such that A∗(x∗
1, ..., x

∗
m) = v∗ and g∗(x∗

1, ..., x
∗
m) ≤ s, which is further equiv-

alent to
m
∑

i=1

x∗
i = v∗ and

m
∑

i=1

δ∗Ci
(x∗

i ) ≤ s. It can be easily shown that the last two

relations take place if and only if (v∗, s) ∈ epi(δ∗C1
) + ... + epi(δ∗Cm

). In conclusion

A∗ × idR(epi(g∗)) =
m
∑

i=1

epi(δ∗Ci
). (9)

On the other hand, we have ∀x ∈ C,

(g ◦ A)(x) =







0, if x ∈
m
⋂

i=1

Ci,

+∞, otherwise,
= δ m

T

i=1

Ci

(x) = δC(x)

and (see, for instance, [17])

∂g(Ax) = {(x∗
1, ..., x

∗
m) : x∗

i ∈ ∂(δCi
)(x), i = 1, ...,m}.

So A∗∂g(Ax) =
m
∑

i=1

∂(δCi
)(x) and Theorem 3.3 (ii) provides the following result.

12



Corollary 3.4 Let X be a nontrivial locally convex space and C1, ..., Cm be

closed convex subsets of X with C =
m
⋂

i=1

Ci 6= ∅. If
m
∑

i=1

epi(δ∗Ci
) is closed in the

product topology of (X∗, w(X∗, X)) × R, then {C1, ..., Cm} has the strong CHIP.

Remark 6. For m = 2, a similar result has been given by Burachik and
Jeyakumar for X a Banach space (cf. Theorem 3.1 in [8]). On the other hand,
Ng and Song have given a sufficient condition for strong CHIP in case X is a
Fréchet space and a generalized interior-point regularity condition is fulfilled (cf.
Theorem 4.3 in [17]). By Remark 4, it turns out that Corollary 3.4 improves
the result of Ng and Song, to more general spaces and more general regularity
condition.

4 A regularity condition for Fenchel duality

In this section we introduce a further regularity condition which guarantees the
existence of strong duality between a convex optimization problem and its Fenchel
dual, namely that the optimal objective values of the primal and of the dual are
equal and the dual has an optimal solution. This new regularity condition called
(FRCA) turns out to be weaker than (RCA). Then we specialize (FRCA) for
convex optimization problems over a infinite intersection of closed convex sets.

For X and Y nontrivial locally convex spaces, A : X → Y a linear continuous
mapping, f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} proper, convex and lower
semicontinuous functions such that A(dom(f)) ∩ dom(g) 6= ∅, we consider the
following convex optimization problem

(PA) inf
x∈X

{f(x) + g(Ax)}.

The Fenchel dual problem to (PA) is

(DA) sup
y∗∈Y ∗

{−f ∗(−A∗y∗) − g∗(y∗)}

and assuming that (RCA) is fulfilled, Theorem 3.1 (i) (taking x∗ = 0) guarantees
strong duality between (PA) and (DA). Let us denote by v(PA) and v(DA) the
optimal objective values of (PA) and (DA), respectively.

Let the regularity condition (FRCA) be

(FRCA) : f ∗
�A∗g∗ is lower semicontinuous and epi(f ∗

�A∗g∗) ∩ ({0} × R) =
(epi(f ∗) + A∗ × idR(epi(g∗))) ∩ ({0} × R).

Theorem 4.1 If (FRCA) is fulfilled, then v(PA) = v(DA) and (DA) has an
optimal solution.
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Proof. Taking in (7) x∗ = 0, it holds

v(PA) = −(f + g ◦ A)∗(0) ≥ v(DA) ≥ −f ∗(−A∗y∗) − g∗(y∗),∀y∗ ∈ Y ∗.

If v(PA) = −∞, then the conclusion follows. Assume now that v(PA) > −∞. By
the theorems 2.1-2.3 we obtain

epi((f + g ◦ A)∗) = cl(epi(f ∗) + epi(g ◦ A)∗)) = cl(epi(f ∗) + cl(epi(A∗g∗)))

= cl(epi(f ∗) + epi(A∗g∗)) = cl(epi(f ∗
�A∗g∗)),

which is nothing else than (f + g ◦ A)∗ = cl(f ∗
�A∗g∗). The regularity condition

(FRCA) being fulfilled, we have actually that (f+g◦A)∗ = f ∗
�A∗g∗ and, because

of −v(PA) = (f + g ◦ A)∗(0), we get

(0,−v(PA)) ∈ (epi(f ∗) + A∗ × idR(epi(g∗))) ∩ ({0} × R).

Therefore there exist (u∗, r) ∈ epi(f ∗) and (v∗, s) ∈ A∗ × idR(epi(g∗)) such that
u∗ + v∗ = 0 and r + s = −v(PA). Further there exists a y∗ ∈ Y ∗ such that
A∗y∗ = v∗ and g∗(y∗) ≤ s. Thus u∗ = −A∗y∗ and

v(PA) = −r − s ≤ −f ∗(u∗) − g∗(y∗) = −f ∗(−A∗y∗) − g∗(y∗) ≤ v(DA),

which delivers the desired conclusion. �

Remark 7. Assume that (RCA) is fulfilled, namely that epi((f + g ◦ A)∗) =
epi(f ∗) + A∗ × idR(epi(g∗)) (cf. (6)). We prove that (FRCA) is also fulfilled. As
we have seen in the proof of Theorem 4.1, the following relations hold (see also
the proof of Theorem 2.4)

epi((f + g ◦ A)∗) = cl(epi(f ∗
�A∗g∗)) ⊇ epi(f ∗

�A∗g∗)

⊇ epi(f ∗) + epi(A∗g∗) ⊇ epi(f ∗) + A∗ × idR(epi(g∗)).

Because of (RCA), for all these inclusions equality holds. Thus epi(f ∗
�A∗g∗) is

closed and epi(f ∗
�A∗g∗) = epi(f ∗)+ epi(A∗g∗). So, the conclusion follows. That

(FRCA) is actually weaker than (RCA) will be shown in the example below.

In case X = Y and A = idX is the identity mapping of X, the problems (PA)
and (DA) become

(P ) inf
x∈X

{f(x) + g(x)}

and
(D) sup

y∗∈Y ∗

{−f ∗(−y∗) − g∗(y∗)},
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respectively. The functions A∗g∗ and A∗ × idR will be nothing else than g∗ and
the identity mapping of X∗ × R, respectively. The regularity condition (FRCA)
can now be written as

(FRC) : f ∗
�g∗ is lower semicontinuous and epi(f ∗

�g∗) ∩ ({0} × R) =
(epi(f ∗) + epi(g∗)) ∩ ({0} × R)

or, equivalently,

(FRC) : f ∗
�g∗ is a lower semicontinuous function and is exact at 0.

The following theorem states the existence of strong duality between (P ) and
(D), assuming (FRC) fulfilled.

Theorem 4.2 If (FRC) is fulfilled, then v(P ) = v(D) and (D) has an opti-
mal solution.

By Remark 7, we have that epi(f ∗) + epi(g∗) is closed in the product topol-
ogy of (X∗, w(X∗, X)) × R if and only if epi(f ∗

�g∗) is closed and epi(f ∗
�g∗) =

epi(f ∗) + epi(g∗). This is the same with f ∗
�g∗ is lower semicontinuous and is

exact at every p ∈ X∗. Therefore, if (RC) holds, then (FRC) is also fulfilled.
The following example shows that (FRC) is indeed weaker than (RC) (see also
[4]).

Example. Let X = R
2, C = {(x1, x2)

T : x1 ≥ 0}, D = {(x1, x2)
T : 2x1 + x2

2 ≤
0}, f = δC and g = δD. Obviously, f and g are proper, convex and lower
semicontinuous and dom(f) ∩ dom(g) = {(0, 0)T}. The conjugate functions f ∗

and g∗ are

f ∗(u∗
1, u

∗
2) = δ∗C(u∗

1, u
∗
2) =

{

0, if u∗
1 ≤ 0, u∗

2 = 0,
+∞, otherwise,

and

g∗(v∗
1, v

∗
2) = δ∗D(v∗

1, v
∗
2) =











(v∗
2
)2

v∗
1

, if v∗
1 > 0,

0, if v∗
1 = v∗

2 = 0,
+∞, otherwise.

For every (x∗
1, x

∗
2)

T ∈ R
2, (f + g)∗(x∗

1, x
∗
2) = sup

x1=x2=0
{(x∗

1)
T x1 + (x∗

2)
T x2} = 0 and,
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on the other hand,

f ∗
�g∗(x∗

1, x
∗
2) = inf

u∗
1
+v∗

1
=x∗

1

u∗
2
+v∗

2
=x∗

2

{δ∗C(u∗
1, u

∗
2) + δ∗D(v∗

1, v
∗
2)}

= inf
u∗
1
+v∗

1
=x∗

1

u∗
2
+v∗

2
=x∗

2

{

(v∗
2
)2

v∗
1

, if u∗
1 ≤ 0, u∗

2 = 0, v∗
1 > 0,

0, if u∗
1 ≤ 0, u∗

2 = 0, v∗
1 = v∗

2 = 0

= inf
v∗
1
≥x∗

1

v∗
2
=x∗

2

{

(v∗
2
)2

v∗
1

, if v∗
1 > 0,

0, if v∗
1 = v∗

2 = 0

= 0.

Thus f ∗
�g∗ is lower semicontinuous on R

2. Moreover, f ∗
�g∗ is exact at (0, 0)T

(the infimum is attained for (v∗
1, v

∗
2)

T = (0, 0)T ) and so (FRC) is fulfilled.
On the other hand, the function f ∗

�g∗ is not exact at every point of R
2.

Taking, for instance, (x∗
1, x

∗
2)

T = (1, 1)T , the infimum in the infimal convolution of
f ∗

�g∗ at (1, 1)T is not attained. By Proposition 2.2, the sets epi(f ∗)+epi(g∗) and
epi((f + g)∗) are not equal, which means that, by Theorem 2.1, epi(f ∗) + epi(g∗)
can not be closed.

Let us also notice that for (0, 0)T ∈ dom(f) ∩ dom(g) it holds ∂f(0, 0) =
(−∞, 0] × {0}, ∂g(0, 0) = [0, +∞) × {0}, ∂(f + g)(0, 0) = R × R and so ∂(f +
g)(0, 0) 6= ∂f(0, 0)+∂g(0, 0). Thus the Fenchel duality can hold even though the
subdifferential sum rule fails.

We conclude this section by treating the duality for a particular case of (PA),
namely the convex optimization problem over a finite intersection of closed convex
sets. The primal problem is defined in the following way

(PC) inf
x∈C

f(x),

where C =
m
⋂

i=1

Ci 6= ∅, C1, ..., Cm are closed convex subsets of the nontrivial

locally convex space X and f : X → R ∪ {+∞} is a proper, convex and lower
semicontinuous function such that dom(f) ∩C 6= ∅. The problem (PC) has been
intensively studied in the past in [2], [8], [9] and [17].

For Y = Xm, A : X → Xm, Ax = (x, ..., x) and g : Y → R ∪ {+∞},
g = δ m

Q

i=1

Ci

, (PC) has the following formulation

(PC) inf
x∈X

{f(x) + g(Ax)}.

The Fenchel dual problem to (PC) can be derived from (DA) and looks like

(DC) sup
y∗∈Y ∗

{−f ∗(−A∗y∗) − g∗(y∗)}
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or, equivalently,

(DC) sup
(x∗

1
,...,x∗m)∈(X∗)m

{

−f ∗

(

−
m
∑

i=1

x∗
i

)

−
m
∑

i=1

δ∗Ci
(x∗

i )

}

,

as A∗(x∗
1, ..., x

∗
m) =

m
∑

i=1

x∗
i and g∗(x∗

1, ..., x
∗
m) =

m
∑

i=1

δ∗Ci
(x∗

i ) for (x∗
1, ..., x

∗
m) ∈ (X∗)m.

Let us deduce now from (FRCA) a sufficient condition which guarantees the
strong duality between (PC) and (DC). Obviously, for x∗ ∈ X∗,

A∗g∗(x∗) = inf{g∗(y∗) : A∗y∗ = x∗} = inf

{

m
∑

i=1

δ∗Ci
(y∗

i ) :
m
∑

i=1

y∗
i = x∗

}

= δ∗C1
�...�δ∗Cm

(x∗)

and, because of the associativity of the infimal convolution, we get f ∗
�A∗g∗ =

f ∗
�δ∗C1

�...�δ∗Cm
. On the other hand, by (9), A∗×idR(epi(g∗)) =

m
∑

i=1

epi(δ∗Ci
) and,

so,

epi(f ∗
�A∗g∗) ∩ ({0} × R) = (epi(f ∗) + A∗ × idR(epi(g∗))) ∩ ({0} × R)

becomes

epi(f ∗
�δ∗C1

�...�δ∗Cm
) ∩ ({0} × R) =

(

epi(f ∗) +
m
∑

i=1

epi(δ∗Ci
)

)

∩ ({0} × R).

Noticing that this last equality holds if and only if f ∗
�δ∗C1

�...�δ∗Cm
is exact at

0, we can write (FRCA) as follows

(FRCC) : f ∗
�δ∗C1

�...�δ∗Cm
is a lower semicontinuous function and is exact at 0.

Theorem 4.3 If (FRCC) is fulfilled, then v(PC) = v(DC) and (DC) has an
optimal solution.

Remark 8. Theorem 4.3 generalizes similar results given in the past in the
literature in particular spaces and under much stronger regularity conditions (cf.
[8], [9], [17]).

5 Converse duality

The aim of this last section is to study the existence of the so-called converse du-
ality for the optimization problems introduced in Section 4, namely the situation
when the optimal objective values of the primal and of the dual are equal but the
primal has an optimal solution. The approach is based on a fruitful idea used by
Bauschke in [2] and later by Ng and Song in [17].
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Let X and Y be nontrivial locally convex spaces with X∗ and Y ∗ the contin-
uous dual spaces endowed with the weak* topologies w∗(X∗, X) and w∗(Y ∗, Y ),
respectively, A : X → Y a linear continuous mapping, f : X → R ∪ {+∞} and
g : Y → R ∪ {+∞} proper, convex and lower semicontinuous functions such
that A(dom(f)) ∩ dom(g) 6= ∅ and 0 ∈ dom(f ∗) + A∗(dom(g∗)). For the optimal
objective value of the dual (DA) we have the following expression

−v(DA) = − sup
y∗∈Y ∗

{−f ∗(−A∗y∗) − g∗(y∗)} = inf
y∗∈Y ∗

{f ∗(−A∗y∗) + g∗(y∗)}.

By Theorem 4.1, if an appropriate regularity condition is fulfilled, than the opti-
mal objective value of the infimum problem

inf
y∗∈Y ∗

{f ∗(−A∗y∗) + g∗(y∗)}

is equal to the optimal objective value of its dual and the last one has an optimal
solution. In the hypotheses we made we have that the continuous dual of X∗ and
Y ∗ are X∗∗ = X and Y ∗∗ = Y , respectively that (A∗)∗ = A, f ∗∗(x) = f(x),∀x ∈
X and g∗∗(y) = g(y),∀y ∈ Y . Therefore the Fenchel dual of the infimum problem
from above becomes

sup
x∈X

{−g(Ax) − f(x)} = − inf
x∈X

{f(x) + g(Ax)}

and its objective value is equal to −v(PA). Let us notice that the assumptions
A(dom(f)) ∩ dom(g) 6= ∅ and 0 ∈ dom(f ∗) + A∗(dom(g∗)) provide the following
relation

−∞ < v(DA) ≤ v(PA) < +∞. (10)

The regularity condition which guarantees the converse duality can be derived
from (FRCA) and looks like

(CFRCA) : g�(−A)f is lower semicontinuous and epi(g�(−A)f)∩
({0} × R) = (epi(g) + (−A) × idR(epi(f))) ∩ ({0} × R).

By Theorem 4.1 it follows that, under this regularity condition, v(PA) = v(DA)
and (PA) has an optimal solution.

In the following we give an equivalent formulation for (CFRCA) which turns
out to be very close to a well-known result given in literature.

For the beginning we prove that, because of the fact that v(PA) is finite (cf.
(10)), the relation

epi(g�(−A)f) ∩ ({0} × R) = (epi(g) + (−A) × idR(epi(f))) ∩ ({0} × R) (11)
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is fulfilled if and only if (PA) has an optimal solution. This means that (11) gives
a complete characterization of the existence of optimal solutions for (PA).

Therefore assume that (11) holds. So,

g�(−A)f(0) = inf
y∈Y

{g(y) + (−A)f(−y)} = inf
y∈Y







g(y) + inf
−Ax=−y

x∈X

f(x)







= inf
x∈X

{f(x) + g(Ax)} = v(PA) ∈ R.

Because

(0, v(PA)) ∈ (epi(g) + (−A) × idR(epi(f))) ∩ ({0} × R),

there exist (x, r) ∈ epi(g), z ∈ X and s ∈ R such that x = Az, f(z) ≤ s and
r + s = v(PA). Then we have f(z) + g(Az) ≤ v(PA) and z is an optimal solution
for (PA).

On the other hand, we notice that the inclusion (epi(g)+(−A)×idR(epi(f)))∩
({0} × R) ⊆ epi(g�(−A)f) ∩ ({0} × R) is always fulfilled. Taking an element
(0, r) in epi(g�(−A)f)∩ ({0}×R), this is nothing else than v(PA) = inf

x∈X
{f(x)+

g(Ax)} ≤ r. The primal (PA) having an optimal solution, there exists a z ∈ X

such that f(z) + g(Az) ≤ r. Thus (0, r) = (Az, g(Az)) + (−Az, r − g(Az)) ∈
(epi(g) + (−A) × idR(epi(f))) ∩ ({0} × R), which concludes the proof.

Next we discuss the other assumption in (CFRCA), namely that g�(−A)f is
a lower semicontinuous function. We start by calculating its value on an arbitrary
z ∈ Y

g�(−A)f(z) = inf
y∈Y

{g(y) + (−A)f(z − y)} = inf
y∈Y







g(y) + inf
−Ax=z−y

x∈X

f(x)







= inf
x∈X

{f(x) + g(Ax + z)}.

Let now define the following so-called perturbation function for the problem (PA)
ΦA : X × Y → R ∪ {+∞}, ΦA(x, z) = f(x) + g(Ax + z). It fulfills ΦA(x, 0) =
f(x)+ g(Ax),∀x ∈ X and, so, by means of the perturbation theory (see, also [5],
[6], [12]) ΦA provides the following dual to (PA)

sup
y∗∈Y ∗

{−Φ∗
A(0, y∗)},

which is exactly the Fenchel dual problem

(DA) sup
y∗∈Y ∗

{−f ∗(−A∗y∗) − g∗(y∗)}.
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The function hA : Y → R∪{+∞}, hA(z) = inf
x∈X

ΦA(x, z) = inf
x∈X

{f(x)+g(Ax+z)}

is called the infimal value function of (PA) (cf. [12]). Thus hA = g�(−A)f and
(CFRCA) is nothing else than

(CFRCA) : The infimal value function hA is lower semicontinuous and
(PA) has an optimal solution.

Thus the fact that (CFRCA) implies the converse duality for (PA) and (DA) is
not surprising at all (cf. Proposition III.2.1 in [12]).

In the last part of the section we give the perturbation and the infimal value
functions for the problems (P ) and (PC), respectively.

In case X = Y , A = idX is the identity mapping of X and f, g : X →
R ∪ {+∞} are proper, convex and lower semicontinuous functions such that
dom(f) ∩ dom(g) 6= ∅ and 0 ∈ dom(f ∗) + dom(g∗), the perturbation and infimal
value functions for (P ) become Φ : X×X → R∪{+∞}, Φ(x, z) = f(x)+g(x+z)
and h : X → R ∪ {+∞}, h(z) = inf

x∈X
Φ(x, z) = inf

x∈X
{f(x) + g(x + z)}, respec-

tively. The same duality scheme described above leads to the Fenchel dual (D)
introduced in Section 4.

For the convex optimization problem over a finite intersection of closed and

convex sets we make again, under the hypotheses dom(f) ∩
m
⋂

i=1

Ci 6= ∅ and 0 ∈

dom(f ∗) +
m
∑

i=1

dom(δ∗Ci
), the following particularizations Y = Xm, A : X → Xm,

Ax = (x, ..., x) and g : Y → R ∪ {+∞}, g = δ m
Q

i=1

Ci

. Then the perturbation and

the infimal value functions for (PC) will be ΦC : X × Xm → R ∪ {+∞},

ΦC(x, z1, ..., zm) =







f(x), if x ∈
m
⋂

i=1

(Ci − zi),

+∞, otherwise,

and hC : Xm → R ∪ {+∞},

hC(z1, ..., zm) = inf
x∈X

ΦC(x, z1, ..., zm) = inf

{

f(x) : x ∈
m
⋂

i=1

(Ci − zi)

}

,

respectively. One can easily prove that the duality approach in [12] leads to
the Fenchel dual problem (DC). Let us also mention that the existence of con-
verse duality between (PC) and (DC) has been discussed under much stronger
assumptions by Bauschke in [2] and, respectively, Ng and Song in [17].
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6 Conclusions

In this paper we give a new regularity condition for the convex subdifferential
sum formula of a convex function with the precomposition of a convex function
with a continuous linear mapping. This condition is proved to be weaker than
the generalized interior-point regularity conditions given so far in the literature.
We employ these insights by giving a sufficient condition which ensures the exis-
tence of strong duality between a convex optimization problem with the objective
function being the sum of a convex function with the precomposition of a convex
function with a continuous linear mapping and its Fenchel dual. Further, we
investigate the so-called converse duality, namely the situation when the optimal
objective values of the primal and the dual are equal and the primal problem
has an optimal solution. As an application, we discuss the strong conical hull
intersection property (CHIP) for a finite family of closed convex sets.
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