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1 Introduction

During the last decades the optimization techniques have been intensively
used in various fields of applications. Since the problems generated by the
practical needs turn out to be more and more complex, the attention of many
mathematicians has been focused on finding some methods and conditions
which guarantee the existence of optimal solutions.
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The problem treated within this paper consists in minimizing the com-
position of some convex functions when finitely many real-valued constraint
functions are non-positive. From the large number of works dealing with
composed optimization problems let us mention [3], [6], [8], [10], [11], [12],
[14], [15], [18], [19]. In order to provide duality assertions for the problem
treated in [18], the authors have worked with a duality concept based on
conjugacy and perturbations.

However, similar results can be obtained using another approach (see [1]),
namely considering an equivalent problem to the primal one, but whose dual
can be easier established. The equivalent problem is introduced considering
an auxiliary variable. For the new problem we consider the Lagrange dual
problem. To the inner infimum of the Lagrange dual we attach the Fenchel
dual problem and it can be easily seen that the final dual we obtain is ac-
tually a so-called Fenchel-Lagrange-type dual of the primal problem. The
construction of the dual is described here in detail and a constraint quali-
fication assuring strong duality between the primal problem and its dual is
introduced. Regarding the Fenchel-Lagrange dual problem, let us mention
that this type of dual problem has been introduced, named and studied by
Boţ and Wanka (see, for example, [3], [4], [5], [17]).

Recently Boţ and Wanka have presented in [4] and [5] some Farkas-type
results for inequality systems involving finitely many convex functions using
an approach based on the theory of conjugate duality for convex problems.
The aim of the present paper is to extend these results to convex optimization
problems involving composed convex functions. The weak and strong duality
assertions are used in order to deliver a Farkas-type statement for inequality
systems involving composed convex functions. Moreover, it is shown that
some results in the literature arise as special cases of the problem we treat.

The paper is organized as follows. In section 2 we present some definitions
and results needed later within the paper. We give a dual for the optimization
problem with composed convex functions and establish the weak and strong
duality assertions in the third section. Section 4 contains the main result
of the paper. Using the duality acquired in section 3 we give a Farkas-type
theorem. In the last section Farkas-type results for some particular instances
of the initial one are presented, rediscovering some recent results.
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2 Notations and preliminaries

We use some well-known concepts briefly recalled here. The notations we
use throughout the paper and some preliminary results are presented in the
following, too. We consider all vectors as column vectors. Any column
vector can be transposed to a row vector by an upper index T . By xT y =∑n

i=1 xiyi is denoted the usual inner product of two vectors x = (x1, ..., xn)T

and y = (y1, ..., yn)T in the real space Rn. By ”5” we denote the partial
order introduced by the non-negative orthant Rn

+, defined by

x 5 y ⇔ xi ≤ yi,∀i = 1, ..., n.

Let us consider an arbitrary set X ⊆ Rn. The relative interior, the convex
hull and the closure of the set X are denoted by ri(X), co(X) and cl(X),
respectively. Furthermore, the cone and the convex cone generated by the
set X are denoted by cone(X) =

⋃
λ≥0 λX and, respectively, coneco(X) =⋃

λ≥0 λ co(X). By v(P ) we denote the optimal objective value of an opti-
mization problem (P ).

If X ⊆ Rn is given, we consider the following two functions, the indicator
function

δX : Rn → R = R ∪ {±∞}, δX(x) =

{
0, x ∈ X,
+∞, otherwise,

and the support function

σX : Rn → R = R ∪ {±∞}, σX(u) = sup
x∈X

uT x,

respectively.
For a given function f : Rn → R, we denote by dom(f) =

{
x ∈ Rn :

f(x) < +∞
}

its effective domain, by epi(f) =
{
(x, r) : x ∈ Rn, r ∈ R, f(x) ≤

r
}

its epigraph and by cl(f) its closure, i.e. the function whose epigraph is the
closure of epi(f), respectively. The function f is called proper if its effective
domain is a nonempty set and f(x) > −∞ for all x ∈ Rn.

We consider also the linear operator

T : Rn × R → R× Rn, T
(
x, r

)
= (r, x).
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When X is a nonempty subset of Rn we define for the function f the
conjugate relative to the set X by

f ∗X : Rn → R, f∗X(p) = sup
x∈X

{
pT x− f(x)

}
.

It is easy to remark that for X = Rn the conjugate relative to the set
X is actually the (Fenchel-Moreau) conjugate function of f denoted by f ∗.
Even more, it can be easily proved that

f ∗X = (f + δX)∗ and δ∗X = σX .

Definition 2.1 Let the function f : Rk → R be given. The function is
called Rk

+-increasing if for all x = (x1, ..., xk)
T and y = (y1, ..., yk)

T in Rk

such that xi ≤ yi, i = 1, ..., k, it holds f(x) ≤ f(y).

Definition 2.2 Given the proper functions f1, ..., fm : Rn → R, we call
their infimal convolution the function

f1�...�fm : Rn → R, (f1�...�fm)(x) = inf

{ m∑
i=1

fi(xi) : x =
m∑

i=1

xi

}
.

The following statements close this preliminary section.

Theorem 2.1 (cf. [16]) Let f1, ..., fm : Rn → R be proper convex func-
tions. If the set

⋂m
i=1 ri(dom(fi)) is nonempty, then( m∑

i=1

fi

)∗

(p) = (f ∗1 �...�f ∗m)(p) = inf

{ m∑
i=1

f ∗i (pi) : p =
m∑

i=1

pi

}
,

and for each p ∈ Rn the infimum is attained.

Corollary 2.2 Let f1, ..., fm : Rn → R be proper convex functions. If
the set

⋂m
i=1 ri(dom(fi)) is nonempty, then

epi

(( m∑
i=1

fi

)∗)
=

m∑
i=1

epi(f ∗i ).

Proof. ”⊆” Let us consider an arbitrary (p, r) ∈ epi

((
m∑

i=1

fi

)∗)
. Since

the hypotheses of Theorem 2.1 are fulfilled, there exist p1, ..., pm ∈ Rn such
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that

p =
m∑

i=1

pi

and

r ≥
( m∑

i=1

fi

)∗

(p) =
m∑

i=1

f ∗i (pi).

The last relation implies f ∗1 (p1) ≤ r −
m∑

i=2

f ∗i (pi) and it occurs(
p1, r −

m∑
i=2

f ∗i (pi)

)
∈ epi

(
f ∗1

)
.

Thus

(p, r) =

(
p1, r −

m∑
i=2

f ∗i (pi)

)
+

m∑
i=2

(
pi, f

∗
i (pi)

)
∈

m∑
i=1

epi(f ∗i ).

”⊇” For the reverse inclusion, consider (pi, ri) ∈ epi
(
f ∗i

)
, i = 1, ...,m.

Since
m∑

i=1

ri ≥
m∑

i=1

f ∗i (pi) ≥
( m∑

i=1

fi

)∗( m∑
i=1

pi

)
,

we can state that
m∑

i=1

(pi, ri) =

( m∑
i=1

pi,
m∑

i=1

ri

)
∈ epi

(( m∑
i=1

fi

)∗)
.

�

Proposition 2.3 Let f : Rk → R be a proper function and α > 0 a real
number. One has

epi
(
(αf)∗

)
= α epi

(
f ∗

)
.

Proof. The following equivalences are fulfilled:

(p, r) ∈ epi
(
(αf)∗

)
⇔

(
αf

)∗
(p) ≤ r ⇔ αf ∗

(
1

α
p

)
≤ r

⇔
(

1

α
p,

1

α
r

)
∈ epi

(
f ∗

)
⇔ (p, r) ∈ α epi

(
f ∗

)
.

�
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3 Duality for the composed programming

problem

Let X be a nonempty convex set in Rn. Consider the functions f : Rk → R,

F : Rn → Rk, F =
(
F1, ..., Fk

)T
and G : Rn → Rm, G =

(
G1, ..., Gm

)T
such

that f is proper, Rk
+-increasing and convex, while F1, ..., Fk and G1, ..., Gm

are convex. Moreover assume that

F−1(dom(f)) ∩X 6= ∅,

where F−1
(
dom(f)

)
= {x ∈ Rn : F (x) ∈ dom(f)}. The optimization

problem we treat within this paper is

(P ) inf
x∈X,

G(x)50

f
(
F (x)

)
.

It is not hard to prove that the function f ◦ F is actually a convex func-
tion (see [18]) and thus the problem (P ) is nothing but a convex optimiza-
tion problem, with convex objective function and finitely many convex con-
straints.

We associate to the problem (P ) the following convex optimization prob-
lem

(P ′) inf
x∈X, y∈Rk,

Gi(x)≤0, i=1,...,m
Fj(x)−yj≤0, j=1,...,k

f(y).

Regarding the optimal values of the problems (P ) and (P ′), the following
result can be established.

Theorem 3.1 v(P ) = v(P ′).

Proof. For an arbitrary x feasible to (P ) take y = F (x), i.e. Fj(x)−yj = 0,
j = 1, ..., k, and since the feasibility of x involves Gi(x) ≤ 0, i = 1, ...,m,
we can conclude that (x, y) is feasible to (P ′). As x is arbitrarily chosen,
it follows that for all x ∈ X such that Gi(x) ≤ 0, i = 1, ...,m, we can
find an element (x, y) feasible to (P ′) such that f(y) = f

(
F (x)

)
. Thus

f
(
F (x)

)
≥ v(P ′) for all x feasible to (P ). That implies v(P ) ≥ v(P ′).
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In order to prove the opposite inequality, let us consider (x, y) feasible to
(P ′). Since Gi(x) ≤ 0, i = 1, ...,m, it follows immediately that x is feasible
to (P ). But Fj(x) − yj ≤ 0, j = 1, ..., k, implies F (x) 5 y and, since f
is an Rk

+-increasing function, we have also v(P ) ≤ f
(
F (x)

)
≤ f(y). Tak-

ing the infimum on the right-side regarding (x, y) feasible to (P ′) we obtain
v(P ) ≤ v(P ′). �

Our next step is to construct a dual problem to (P ′) and to give sufficient
conditions in order to achieve strong duality, i.e. the situation when the op-
timal objective value of the primal coincides with the optimal objective value
of the dual and the dual has an optimal solution.

We consider first the Lagrange dual problem to (P ′) with α = (α1, ...,
αm)T ∈ Rm

+ and β = (β1, ..., βk) ∈ Rk
+ as dual variables

(D) sup
α=0,
β=0

inf
x∈X,
y∈Rk

{
f(y) + αT G(x) + βT

(
F (x)− y

)}
.

Regarding the inner infimum concerning (x, y) ∈ X × Rk, by using the
definition of the conjugate relative to a set, we have

inf
x∈X,
y∈Rk

{
f(y) + αT G(x) + βT

(
F (x)− y

)
)

}
= inf

x∈X

{
αT G(x) + βT F (x)

}
+ inf

y∈Rk

{
f(y)− βT y

}
= − sup

x∈X

{
− αT G(x)− βT F (x)

}
− sup

y∈Rk

{
βT y − f(y)

}
= −

(
αT G + βT F

)∗

X

(0)− f ∗(β).

Since X is a nonempty convex set we have ri(X) 6= ∅ and thus, by Theo-
rem 2.1,(

αT G + βT F

)∗

X

(0) =

(
αT G + βT F + δX

)∗

(0)

= inf
p∈Rn

{(
βT F

)∗
(p) +

(
αT G + δX(x)

)∗
(−p)

}
= inf

p∈Rn

{(
βT F

)∗
(p) +

(
αT G

)∗
X

(−p)

}
,
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and the last infimum is attained for some p ∈ Rn.

Considering the latter relations we obtain the following formulation for
the dual problem

(D) sup
p∈Rn,

α=0,β=0

{
− f ∗(β)−

(
βT F

)∗
(p)−

(
αT G

)∗
X

(−p)

}
.

The optimal objective value of the problem (P ′) is always greater than or
equal to the optimal objective value of its Lagrange dual, i.e. v(P ′) ≥ v(D).
Because of Theorem 3.1 (D) is also a dual problem to (P ) and thus the fol-
lowing assertion arises easily.

Theorem 3.2 Between the primal problem (P ) and the dual (D) weak
duality is always satisfied, i.e. v(P ) ≥ v(D).

It can be easily shown that in the general case strong duality between
the primal problem and its dual can fail (see [17]). In order to avoid this
situation the following constraint qualification is considered (see [1])

(CQ) ∃x′ ∈ ri(X) such that

 F (x′) ∈ ri
(
dom(f)

)
− int

(
Rk

+

)
,

Gi(x
′) ≤ 0, i ∈ L,

Gi(x
′) < 0, i ∈ N,

where
L :=

{
i ∈ {1, ...,m} : Gi is an affine function

}
and N := {1, ...,m} \ L.

As the authors proved in [1], (CQ) is weaker than the constraint qualifi-
cations concerning composed convex optimization problems given until now
in the literature (see [9], [13]).

The following assertion states strong duality between the problems (P )
and (D).

Theorem 3.3 Assume that v(P ) is finite. If (CQ) is fulfilled, then be-
tween (P ) and (D) strong duality holds, i.e. v(P ) = v(D) and the dual
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problem has an optimal solution.

Proof. In order to prove that the problems (P ) and (D) have the same
optimal objective value, we will actually prove that this happens between
the problems (P ′) and (D) and, using again Theorem 3.1, the desired result
will arise as a direct consequence. Therefore to the problem

(P ′) inf
x∈X, y∈Rk,

Gi(x)≤0, i=1,...,m,
Fj(x)−yj≤0, j=1,...,k

f(y)

we associate first its Lagrange dual

(D′) sup
α=0,
β=0

inf
x∈X,
y∈Rk

{
f(y) + αT G(x) + βT

(
F (x)− y

)}
.

It is not hard to see that we can always find a y ∈ ri
(
dom(f)

)
such that

Fj(x
′) < yj, j = 1, ..., k, and, since the condition (CQ) is fulfilled and the

functions involved are convex, it is well-known from the literature (see The-
orem 28.2 in [16]) that between between (P ′) and its Lagrange dual strong
duality holds. This means that the optimal objective values of (P ′) and (D′)
are equal and, moreover, there exist some α = 0 and β = 0 such that

v(P ′) = sup
α=0,
β≥0

inf
x∈X,y∈Rk

{
f(y) + αT G(x) + βT

(
F (x)− y

)}

= inf
x∈X,y∈Rk

{
f(y) + αT G(x) + β

T (
F (x)− y

)}
= − sup

x∈X,y∈Rk

{(
β

T
y − f(y)

)
−

(
αT G(x) + β

T
F (x)

)}
= − sup

y∈Rk

{
β

T
y − f(y)

}
− sup

x∈Rn

{
− αT G(x)− β

T
F (x)− δX(x)

}
= −f ∗(β)−

((
β

T
F

)
+

(
αT G + δX

))∗

(0).

Since

ri
(
dom(βT F )

)
∩ ri

(
dom(αT G + δX)

)
= ri(X) 6= ∅,
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by Theorem 2.1 we get further

v(P ′) = −f ∗(β)− inf
p∈Rn

{(
β

T
F

)∗
(p) +

(
αT G

)∗
X

(−p)

}
,

completed with the existence of some p ∈ Rn where the infimum in the
equality above is attained. Therefore

v(P ′) = −f ∗(β)−
(
β

T
F

)∗
(p)−

(
αT G

)∗
X

(−p),

and from here follows immediately that v(P ) = v(P ′) = v(D) and (p, α, β)
is an optimal solution for (D). �

4 Farkas-type results via conjugate duality

The results presented in the previous section are the backbone in the proof
of the following Farkas-type result.

Theorem 4.1 Suppose that (CQ) holds. Then the following assertions
are equivalent:

(i) x ∈ X, G(x) 5 0 ⇒ f
(
F (x)

)
≥ 0;

(ii) there exist p ∈ Rn, α = 0 and β = 0 such that

f ∗(β) +
(
βT F

)∗
(p) +

(
αT G

)∗
X

(−p) ≤ 0. (1)

Proof. ”(i) ⇒ (ii)” The statement (i) implies v(P ) ≥ 0 and, since the
assumptions of Theorem 3.3 are fulfilled, strong duality holds, i.e. v(D) =
v(P ) ≥ 0 and the dual (D) has an optimal solution. Thus there exist p ∈ Rn,
α = 0 and β = 0 fulfilling (1).

”(ii) ⇒ (i)” As we can find some p ∈ Rn, α = 0 and β = 0 fulfilling (1),
it follows right away that

v(D) ≥ −f ∗(β)−
(
βT F

)∗
(p)−

(
αT G

)∗
X

(−p) ≥ 0.

Weak duality between (P ) and (D) always holds and thus we obtain
v(P ) ≥ 0, i.e. (i) is true. �
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The previous statement can be reformulated as a theorem of the alterna-
tive.

Corollary 4.2 Assume the hypothesis of Theorem 4.1 being fulfilled.
Then either the inequality system

(I) x ∈ X, G(x) 5 0, f
(
F (x)

)
< 0

has a solution or the system

(II) f ∗(β) +
(
βT F

)∗
(p) +

(
αT G

)∗
X

(−p) ≤ 0,
p ∈ Rn, α = 0, β = 0

has a solution, but never both.

As in [4] and [10], we give an equivalent formulation for the statement
(ii) in Theorem 4.1 using the epigraphs of the involved functions.

Theorem 4.3 The statement (ii) in Theorem 4.1 is equivalent to

(0, 0, 0) ∈ {0} × T
(
epi(f ∗)

)
+

⋃
β=0

(
epi

(
(βT F )∗

)
× {−β}

)
+ coneco

(
m⋃

i=1

epi(G∗
i )

)
× {0}+ epi(σX)× {0}.

Proof. ”⇒” Since the statement (ii) holds, there exist p ∈ Rn, α = 0 and
β = 0 such that

f ∗(β) +
(
βT F

)∗
(p) +

(
αT G

)∗
X

(−p) ≤ 0.

As f ∗(β) and
(
βT F

)∗
(p) have both finite real values, it is clear that(

β, f ∗(β)
)
∈ epi

(
f ∗

)
and (

p,
(
βT F

)∗
(p)

)
∈ epi

(
(βT F )∗

)
.

Thus (
p,

(
βT F

)∗
(p),−β

)
∈ epi

(
(βT F )∗

)
× {−β}
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and it follows(
p,

(
βT F

)∗
(p),−β

)
∈

⋃
β=0

(
epi

(
(βT F )∗

)
× {−β}

)
. (2)

Taking into consideration the definition of the operator T introduced in
the first section of the paper, the relation(

0, f∗(β), β
)
∈ {0} × T (epi(f ∗)) (3)

follows at once.

On the other hand the inequality(
αT G

)∗
X

(−p) ≤ −f ∗(β)−
(
βT F

)∗
(p)

is also fulfilled, and, as the value in the right-hand side is finite, it holds(
− p,−f ∗(β)−

(
βT F

)∗
(p)

)
∈ epi

(
(αT G)∗X

)
. (4)

Further we deal with two cases. First suppose that α = 0. It is trivial to
verify that in this case we have

epi
(
(αT G)∗X

)
= epi

(
δ∗X

)
= epi(σX)

and therefore (
− p,−f ∗(β)−

(
βT F

)∗
(p)

)
∈ epi

(
σX

)
.

Moreover, as

(0, 0, 0) ∈ coneco

( m⋃
i=1

epi(G∗
i )

)
× {0},

we have

(0,0,0) =
(
0,f ∗(β),β

)
+

(
p,

(
βT F

)∗
(p),−β

)
+

(
−p,−f ∗(β)−

(
βT F

)∗
(p),0

)
∈ {0}×T

(
epi(f ∗)

)
+

⋃
β=0

(
epi

(
(βT F )∗

)
×{−β}

)
+epi(σX)×{0}

⊆ {0} × T
(
epi(f ∗)

)
+

⋃
β=0

(
epi

(
(βT F )∗

)
× {−β}

)

+ coneco

( m⋃
i=1

epi(G∗
i )

)
× {0}+ epi(σX)× {0},
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and the desired result is secured.

The second case occurs for α 6= 0. The set Iα = {i : αi 6= 0} is obviously
nonempty. Since the hypothesis of Corollary 2.2 are fulfilled, relation (4)
becomes(

− p,−f ∗(β)−
(
βT F

)∗
(p)

)
∈ epi

(( ∑
i∈Iα

αiGi

)∗)
+ epi(σX).

But

epi

(( ∑
i∈Iα

αiGi

)∗)
=

∑
i∈Iα

epi
(
(αiGi)

∗) =
∑
i∈Iα

αi epi
(
G∗

i

)
=

( ∑
i∈Iα

αi

) ∑
i∈Iα

αi∑
i∈Iα

αi

epi
(
G∗

i

)
⊆ coneco

( m⋃
i=1

epi(G∗
i )

)
.

Combining relations (2) and (3) with the last two we get

(0,0,0) =
(
0,f ∗(β),β

)
+

(
p,

(
βT F

)∗
(p),−β

)
+

(
−p,−f ∗(β)−

(
βT F

)∗
(p),0

)
∈ {0} × T

(
epi(f ∗)

)
+

⋃
β=0

(
epi

(
(βT F )∗

)
× {−β}

)

+ coneco

( m⋃
i=1

epi(G∗
i )

)
× {0}+ epi(σX)× {0}.

”⇐” Since

(0, 0, 0) ∈ {0} × T
(
epi(f ∗)

)
+

⋃
β=0

epi
(
(βT F )∗

)
× {−β}

+ coneco

(
m⋃

i=1

epi(G∗
i )

)
× {0}+ epi(σX)× {0},

we can find some p ∈ Rn and r ∈ R such that

(p, r, 0) ∈ {0} × T (epi(f ∗)) +
⋃
β=0

epi
(
(βT F )∗

)
× {−β} (5)
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and

(−p,−r, 0) ∈ coneco

( m⋃
i=1

epi(G∗
i )

)
× {0}+ epi(σX)× {0}. (6)

The definition of the operator T and relation (5) imply that there exist
β = 0 and two real numbers r1 and r2 such that r = r1 + r2, while the pairs
(β, r1) and (p, r2) are in epi(f ∗) and epi

(
(βT F )∗

)
, respectively. Thus

f ∗(β) + (βT F )∗(p) ≤ r1 + r2 = r. (7)

Since relation (6) is also fulfilled, there exist λ ≥ 0, and µi ≥ 0, i =
1, ...,m,

∑m
i=1 µi = 1, such that

(−p,−r) ∈ λ
m∑

i=1

µi epi
(
G∗

i

)
+ epi(σX). (8)

If λ = 0 we have (−p,−r) ∈ epi(σX). Considering α = (0, ..., 0) ∈ Rm it
follows

(−p,−r) ∈ epi
(
(αT G)∗X

)
and, taking into consideration also relation (7), we obtain

f ∗(β) +
(
βT F

)∗
(p) +

(
αT G

)∗
X

(−p) ≤ 0,

so the conclusion is straightforward in this case.

If λ > 0 let us consider the vector α = (λµ1, ..., λµm) ∈ Rm
+ . Since∑m

i=1 µi = 1, the set Iα is obviously nonempty and relation (8) becomes

(−p,−r) ∈
∑
i∈Iα

αi epi
(
G∗

i

)
+ epi(σX).

But αi > 0 for all i ∈ Iα and using Corollary 2.2 and Proposition 2.3 we
get∑

i∈Iα

αi epi
(
G∗

i

)
=

∑
i∈Iα

epi
(
(αiGi)

∗) = epi

(( ∑
i∈Iα

αiGi

)∗)
= epi

(
(αT G)∗

)
.

From the last two relations we have

(−p,−r) ∈ epi
(
(αT G)∗

)
+ epi(σX) = epi

(
(αT G)∗X

)
and, combining this last result with relation (7), the desired conclusion fol-
lows easily. �

14



5 Special cases

In this section we give Farkas-type results for some problems which turn out
to be special cases of the problem (P ).

5.1 The max-function

This special case of our initial problem is similar to the one studied in [5]. It
is well known (see [8]) that the conjugate of the function

f : Rk → R, f(x) = max{x1, ..., xk}, x = (x1, ..., xk)
T ∈ Rk

is

f ∗ : Rk → R, f∗(β) =

 0, β = 0,
k∑

j=1

βj = 1,

+∞, otherwise.

As dom(f) = Rk, one may notice that the constraint qualification becomes

(C̃Q) ∃x′ ∈ ri(X) such that

{
Gi(x

′) ≤ 0, i ∈ L,
Gi(x

′) < 0, i ∈ N.

Using these remarks, the following result can be formulated as a special
case of Theorem 4.1.

Theorem 5.1 Suppose that (C̃Q) holds. Then the following assertions
are equivalent:

(i) x ∈ X, G(x) 5 0 ⇒ max
{
F1(x), ..., Fk(x)

}
≥ 0;

(ii) there exist p ∈ Rn, α = 0 and β = 0,
k∑

j=1

βj = 1 such that

(
βT F

)∗
(p) +

(
αT G

)∗
X

(−p) ≤ 0.

Theorem 5.2 The statement (ii) in Theorem 5.1 is equivalent to

(0, 0) ∈ co

( k⋃
j=1

epi
(
F ∗

j

))
+ coneco

( m⋃
i=1

epi(G∗
i )

)
+ epi(σX). (9)

15



Proof. Theorem 4.3 ensures that the statement (ii) in Theorem 5.1 is
actually equivalent to

(0, 0, 0) ∈ {0} × T
(
epi(f ∗)

)
+

⋃
β=0

(
epi

(
(βT F )∗

)
× {−β}

)
+ coneco

(
m⋃

i=1

epi(G∗
i )

)
× {0}+ epi(σX)× {0}.

This holds if and only if there exists β = 0 such that
∑k

j=1 βj = 1 and

(0, 0) ∈ {0} × [0, +∞) + epi
(
(βT F )∗

)
+ coneco

( m⋃
i=1

epi(G∗
i )

)
+ epi(σX).

Using the definition of the epigraph of a function it can be easily shown
that epi(σX) = epi(σX) + {0} × [0, +∞). Moreover, since β 6= 0, we have

epi
(
(βT F )∗

)
= epi

(( ∑
βj 6=0

βjFj

)∗)
=

∑
βj 6=0

βj epi(F ∗
j ) =

k∑
j=1

βj epi(F ∗
j ).

Thus the initial relation is equivalent to the existence of a vector β = 0,∑k
j=1 βj = 1, such that

(0, 0) ∈
k∑

j=1

βj epi(F ∗
j ) + coneco

( m⋃
i=1

epi(G∗
i )

)
+ epi(σX)

and it is not hard to observe that this condition is fulfilled if and only if the
desired conclusion holds. �

5.2 The ordinary convex optimization problem

The next two theorems are direct consequences of Theorem 5.1 and 5.2,
respectively. If we take k = 1, as the constraint qualification (C̃Q) remains
unchanged and the set epi(F ∗) is convex, the proofs are obvious.

Theorem 5.3 Assume (C̃Q) fulfilled. Then the following assertions are
equivalent:

(i) x ∈ X, G(x) 5 0 ⇒ F (x) ≥ 0;
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(ii) there exist p ∈ Rn and α = 0 such that

F ∗(p) +
(
αT G

)∗
X

(−p) ≤ 0.

Theorem 5.4 The statement (ii) in Theorem 5.3 is equivalent to

(0, 0) ∈ epi(F ∗) + coneco

( m⋃
i=1

epi(G∗
i )

)
+ epi(σX).

This result had been also obtained by Boţ and Wanka in [4] and by
Jeyakumar in [10].

6 Conclusions

In this paper we present a Farkas-type result for inequality systems with
finitely many convex functions. The approach we use is based on conjugate
duality for an optimization problem consisting in minimizing the composi-
tion of an Rk

+-increasing and convex function with a convex vector function,
subject to finitely many convex inequality constraints. The result we present
generalizes some Farkas-type results presented by Boţ and Wanka in [4] and
[5]. The connections between the Farkas-type results and the theory of the
alternative and, respectively, the theory of duality are exposed once more.
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