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Abstract: In this paper we deal with the construction of gap functions
for equilibrium problems by using the Fenchel duality theory for convex
optimization problems. For proving the properties which characterize a
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approach is applied to variational inequalities in a real Banach space.
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1 Introduction

Let X be a real topological vector space, K ⊆ X be a nonempty closed and
convex set. Assume that f : X × X → R ∪ {+∞} is a bifunction satisfying
f(x, x) = 0, ∀x ∈ K. The equilibrium problem consists in finding x ∈ K
such that

(EP ) f(x, y) ≥ 0, ∀y ∈ K.

Since (EP ) includes as special cases optimization problems, complementarity
problems and variational inequalities (see [5]), some results for these prob-
lems have been extended to (EP ) by several authors. In particular, the gap
function approaches for solving variational inequalities (see for instance [2]
and [13]) have been investigated for equilibrium problems in [4] and [10].
A function γ : X → R = R ∪ {±∞} is said to be a gap function for (EP )
[10, Definition 2.1] if it satisfies the properties
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(i) γ(y) ≥ 0, ∀y ∈ K;

(ii) γ(x) = 0 and x ∈ K if and only if x is a solution for (EP ).

Recently, in [1] the construction of gap functions for finite-dimensional vari-
ational inequalities has been related to the conjugate duality of an optimiza-
tion problem. On the other hand, in [6] very weak sufficient conditions for
Fenchel duality regarding convex optimization problems have been estab-
lished in infinite dimensional spaces. The combination of both results allows
us to propose new gap functions for (EP ) based on Fenchel duality.
This paper is organized as follows. In Section 2 we give some definitions
and introduce the weak sufficient condition for the strong duality related to
Fenchel duality. In the next section we propose some new functions by using
Fenchel duality and we show that under certain assumptions they are gap
functions for (EP ). Finally, the proposed approach is applied to variational
inequalities in a real Banach space.

2 Mathematical preliminaries

Let X be a real locally convex space and X∗ be its topological dual, the set
of all continuous linear functionals over X endowed with the weak* topology
w(X∗, X). By 〈x∗, x〉 we denote the value of x∗ ∈ X∗ at x ∈ X. For the
nonempty set C ⊆ X, the indicator function δC : X → R ∪ {+∞} is defined
by

δC(x) =

{

0, if x ∈ C,
+∞, otherwise,

while the support function is σC(x∗) = sup
x∈C

〈x∗, x〉. Considering now a function

f : X → R ∪ {+∞}, we denote by dom f =
{

x ∈ X| f(x) < +∞
}

its

effective domain and by

epi f =
{

(x, r) ∈ X × R| f(x) ≤ r
}

its epigraph. A function f : X → R ∪ {+∞} is called proper if dom f 6= ∅.
The (Fenchel-Moreau) conjugate function of f is f ∗ : X∗ → R ∪ {+∞}
defined by

f ∗(p) = sup
x∈X

[〈p, x〉 − f(x)].

Definition 2.1 Let the functions fi : X → R∪{+∞}, i = 1, ...,m, be given.
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The function f1� · · ·�fm : X → R ∪ {±∞} defined by

f1� · · ·�fm(x) = inf
{

m
∑

i=1

fi(xi)|
m

∑

i=1

xi = x
}

is called the infimal convolution function of f1, ..., fm. The infimal convolution
f1� · · ·�fm is called to be exact at x ∈ X if there exist some xi ∈ X, i =

1, ...,m, such that
m
∑

i=1

xi = x and

f1� · · ·�fm(x) = f1(x1) + ... + fm(xm).

Furthermore, we say that f1� · · ·�fm is exact if it is exact at every x ∈ X.

Let f : X → R ∪ {+∞} and g : X → R ∪ {+∞} be proper, convex and
lower semicontinuous functions such that dom f ∩ dom g 6= ∅. We consider
the following optimization problem

(P ) inf
x∈X

{

f(x) + g(x)
}

.

The Fenchel dual problem to (P ) is

(D) sup
p∈X∗

{

− f ∗(−p) − g∗(p)
}

.

In [6] a new weaker regularity condition has been introduced in a more gen-
eral case in order to guarantee the existence of strong duality between a
convex optimization problem and its Fenchel dual, namely that the optimal
objective values of the primal and the dual are equal and the dual has an
optimal solution. This regularity condition for (P ) can be written as

(FRC) f ∗
�g∗ is lower semicontinuous and

epi (f ∗
�g∗) ∩

(

{0} × R

)

=
(

epi(f ∗) + epi(g∗)
)

∩
(

{0} × R

)

,

or, equivalently,

(FRC) f ∗
�g∗ is a lower semicontinuous function and exact at 0.

Let us denote by v(P ) the optimal objective value of the optimization prob-
lem (P ). The following theorem states (cf. [6]) the existence of strong duality
between (P ) and (D).
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Proposition 2.1 Let (FRC) be fulfilled. Then v(P ) = v(D) and (D) has

an optimal solution.

Remark that considering the perturbation function Φ : X ×X → R∪{+∞}
defined by Φ(x, z) = f(x) + g(x + z), one can obtain the Fenchel dual (D).
Indeed, the function Φ fulfills Φ(x, 0) = f(x) + g(x), ∀x ∈ X and choosing
(D) as being

(D) sup
p∈X∗

{

− Φ∗(0, p)
}

(cf. [7]), this problem becomes actually the well-known Fenchel dual problem.

3 Gap functions based on Fenchel duality

In this section we consider the construction of gap functions for (EP ) by using
a similar approach like the one considered for finite-dimensional variational
inequalities in [1]. Here, the Fenchel duality will play an important role. We
assume that X is a real locally convex space and K ⊆ X is a nonempty
closed and convex set. Further, let f : X × X → R ∪ {+∞} be a given
function such that K × K ⊆ dom f and f(x, x) = 0, ∀x ∈ K.

Let x ∈ X be given. Then (EP ) can be reduced to the optimization
problem

(PEP ; x) inf
y∈K

f(x, y).

We mention that x∗ ∈ K is a solution of (EP ) if and only if it is a solution
of (P EP ; x∗).

Now let us reformulate (P EP ; x) using the indicator function δK(y) as

(PEP ; x) inf
y∈X

{

f(x, y) + δK(y)
}

.

Then we can write the Fenchel dual to (P EP ; x) as being

(DEP ; x) sup
p∈X∗

{

− sup
y∈X

[〈p, y〉 − f(x, y)] − δ∗K(−p)
}

= sup
p∈X∗

{

− f ∗
y (x, p) − δ∗K(−p)

}

,

where f ∗
y (x, p) := sup

y∈X

[〈p, y〉 − f(x, y)] is the conjugate of y 7→ f(x, y) for a
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given x ∈ X. Let us introduce the following function for any x ∈ X

γEP
F (x) := −v(DEP ; x) = − sup

p∈X∗

{

− f ∗
y (x, p) − δ∗K(−p)

}

= inf
p∈X∗

{

f ∗
y (x, p) + σK(−p)

}

.

For (P EP ; x), the regularity condition (FRC) can be written as follows

(FRCEP ; x) f ∗
y (x, ·)�σK is a lower semicontinuous function and exact

at 0.

Theorem 3.1 Assume that ∀x ∈ K the regularity condition (FRCEP ; x)
is fulfilled. Let for each x ∈ K, y 7→ f(x, y) be convex and lower semicon-

tinuous. Then γEP
F is a gap function for (EP ).

Proof:

(i) By weak duality it holds

v(DEP ; x) ≤ v(P EP ; x) ≤ 0, ∀x ∈ K.

Therefore one has γEP
F (x) = −v(DEP ; x) ≥ 0, ∀x ∈ K.

(ii) If x̄ ∈ K is a solution of (EP ), then v(P EP ; x̄) = 0. On the other hand,
by Proposition 2.1 the strong duality between (P EP ; x̄) and (DEP ; x̄)
holds. In other words

v(DEP ; x̄) = v(P EP ; x̄) = 0.

That means γEP
F (x̄) = 0. Conversely, let γEP

F (x̄) = 0 for x̄ ∈ K. Then

0 = v(DEP ; x̄) ≤ v(P EP ; x̄) ≤ 0.

Therefore x̄ is a solution of (EP ). �

Remark 3.1 As it follows by Theorem 3.1, the gap function introduced
above coincides under the assumption (FRCEP ; x), ∀x ∈ K, with the well-
known gap function

sup
y∈K

[−f(x, y)].

The advantage of considering γEP
F may come when computing it. In order

to do this one has to minimize the sum of the conjugate of a given function,
for whose calculation the well-developed apparatus existent in this field of
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convex analysis can be helpful, with the support function of a nonempty
closed convex set. On the other hand, the formula above consists in solving
a constraint maximization problem which can be a harder work. This aspect
is underlined in Example 3.1.

Even if the assumption that (FRCEP ; x) must be fulfilled for all x ∈ K
seems complicate let us notice that it is valid under the natural assumption
int(K) 6= ∅. For a comprehensive study on regularity conditions for Fenchel
duality we refer to [6].

Example 3.1 Take X = R
2, K = {(x1, x2)

T ∈ R
2 : x2

1 + x2
2 ≤ 1} and

f : R
2 × R

2 → R, defined by f(x1, x2, y1, y2) = y2
1 − x2

1 − y2 + x2. Consider
the equilibrium problem of finding (x1, x2)

T ∈ K such that

y2
1 − y2 ≥ x2

1 − x2,∀(y1, y2)
T ∈ K.

Instead of using the formula given in Remark 3.1 we determine a gap func-
tion for this equilibrium problem by using our approach, as the calculations
are easier.

By definition, for (x1, x2)
T ∈ R

2, one has

γEP
F (x1, x2) =

inf
(p1,p2)T∈R2

[

sup
(y1,y2)T∈R2

(p1y1 + p2y2 − y2
1 + x2

1 + y2 − x2) + δ∗K(−p1,−p2)

]

.

As

sup
(y1,y2)T∈R2

(p1y1 + p2y2 − y2
1 + y2) =

{

p2
1

4
, if p2 = −1,

+∞, otherwise,

and

δ∗K(−p1,−p2) =
√

p2
1 + p2

2,

we have

γEP
F (x1, x2) = x2

1 − x2 + inf
p∈R

{

p2

4
+

√

p2 + 1

}

= x2
1 − x2 + 1.

Since for (x1, x2)
T ∈ K one has γEP

F (x1, x2) ≥ 1 − x2 ≥ 0, property (i)
in the definition of the gap function is fulfilled. On the other hand, if for
an (x1, x2)

T ∈ K, γEP
F (x1, x2) = 0, then x2 must be equal to 1 and x1 must

be equal to 0. As (0, 1)T is the only solution of the equilibrium problem
considered within this example, γEP

F is a gap function.
An alternative proof of the fact that γEP

F is a gap function comes from
verifying the fulfillment of the hypotheses of Theorem 3.1, which are surely
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fulfilled. As int(K) is nonempty, the regularity condition (FRCEP ; x) is ob-
viously valid for all x ∈ K.

Example 3.2 Let X = R
2, K = {0}×R+ and f : R

2×R
2 → R∪{+∞}, f =

δR
2
+
×R

2
+
. One can see that K ×K ⊆ domf , f(x, x) = 0,∀x ∈ K, and that for

all x ∈ K the mapping y 7→ f(x, y) is convex and lower semicontinuous. We
show that although int(K) 6= ∅ fails, the regularity condition (FRCEP ; x) is
fulfilled for all x ∈ K.

Let x ∈ K be fixed. For all p ∈ R
2 we have

f ∗
y (x, p) = sup

y∈R
2
+

[pT y] = δ−R
2
+
(p)

and
σK(p) = sup

y∈{0}×R+

[pT y] = δR×(−R+)(p).

As f ∗
y (x, ·)�σK = δR×(−R+), it is obvious that this function is lower semicon-

tinuous and exact at 0. The regularity condition (FRCEP ; x) is fulfilled for
all x ∈ K and one can apply Theorem 3.1.

Remark 3.2 In the following we stress the connections between the gap
function we have just introduced and convex optimization. Therefore let
K ⊆ X be a convex and closed set and u : X → R∪ {+∞} be a convex and
lower semicontinuous function with K ⊆ dom u. We consider the following
optimization problem with geometrical constraints

(Pu) inf
x∈K

u(x).

Take f : X × X → R ∪ {+∞}, f(x, y) = u(y) − u(x) and assume, by
convention, that (+∞) − (+∞) = +∞. For all x ∈ X the gap function γEP

F

becomes γEP
F (x) = inf

p∈X∗

{

u∗(p) + σK(−p)
}

+ u(x). Assuming that u∗
�σK

is lower semicontinuous and exact at 0, the hypotheses of Theorem 3.1 are
fulfilled and, so, γEP

F turns out to be a gap function for the equilibrium
problem which consists in finding x ∈ K such that

f(x, y) = u(y) − u(x) ≥ 0,∀y ∈ K ⇔ u(y) ≥ u(x),∀y ∈ K.

Taking into account that

(Du) sup
p∈X∗

{−u∗(p) − σK(−p)}
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is the Fenchel dual problem of (Pu), we observe that the property (i) in the
definition of the gap function is nothing else than weak duality between these
problems. The second requirement claims that x ∈ K to be a solution for (Pu)
if and only if γEP

F (x) = 0, which is nothing else than u(x) = sup
p∈X∗

{−u∗(p) −

σK(−p)}.
Thus we rediscover a well-known statement in convex optimization as a

particular instance of our main result.

In the second part of the section we assume that dom f = X × X and
under this assumption we deal with the so-called dual equilibrium problem
(cf. [8]) which is closely related to (EP ) and consists in finding x ∈ K such
that

(DEP ) f(y, x) ≤ 0, ∀y ∈ K,

or, equivalently,

(DEP ) − f(y, x) ≥ 0, ∀y ∈ K.

By KEP and KDEP we denote the solution sets of problems (EP ) and
(DEP ), respectively. In order to suggest another gap function for (EP )
we need some definitions and results.

Definition 3.1

The bifunction f : X × X → R is said to be

(i) monotone if, for each pair of points x, y ∈ X, we have

f(x, y) + f(y, x) ≤ 0;

(ii) pseudomonotone if, for each pair of points x, y ∈ X, we have

f(x, y) ≥ 0 implies f(y, x) ≤ 0.

Definition 3.2

Let K ⊆ X and ϕ : X → R. The function ϕ is said to be

(i) quasiconvex on K if, for each pair of points x, y ∈ K and for all α ∈
[0, 1], we have

ϕ(αx + (1 − α)y) ≤ max
{

ϕ(x), ϕ(y)
}

;
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(ii) explicitly quasiconvex on K if it is quasiconvex on K and for each pair
of points x, y ∈ K such that ϕ(x) 6= ϕ(y) and for all α ∈ (0, 1), we have

ϕ(αx + (1 − α)y) < max
{

ϕ(x), ϕ(y)
}

.

(iii) (explicitly) quasiconcave on K if −ϕ is (explicitly) quasiconvex on K.

Definition 3.3

Let K ⊆ X and ϕ : X → R. The function ϕ is said to be u-hemicontinuous
on K if, for all x, y ∈ K and α ∈ [0, 1], the function τ(α) = ϕ(αx+(1−α)y)
is upper semicontinuous at 0.

Proposition 3.1 (cf. [8, Proposition 2.1])

(i) If f is pseudomonotone, then KEP ⊆ KDEP .

(ii) If f(·, y) is u-hemicontinuous on K for all y ∈ K and f(x, ·) is explicitly

quasiconvex on K for all x ∈ K then KDEP ⊆ KEP .

By using (DEP ), in the same way as before, we introduce a new gap function
for (EP ). Let x ∈ K be a solution of (DEP ). This is equivalent to that x is
a solution to the optimization problem

(PDEP ; x) inf
y∈K

[−f(y, x)].

Now we consider (P DEP ; x) for all x ∈ X. The corresponding Fenchel
dual problem to (P DEP ; x) is

(DDEP ; x) sup
p∈X∗

{

− sup
y∈X

[〈p, y〉 + f(y, x)] − δ∗K(−p)
}

,

if we rewrite (P DEP ; x) again using δK similarly as done for (P EP ; x). Let us
define the function

γDEP
F (x) : = −v(DDEP ; x)

= − sup
p∈X∗

{

− sup
y∈X

[〈p, y〉 + f(y, x)] − δ∗K(−p)
}

= inf
p∈X∗

{

sup
y∈X

[〈p, y〉 + f(y, x)] + σK(−p)
}

.

Assuming that for all x ∈ K the function y 7→ −f(y, x) is convex and
lower-semicontinuous one can give, in analogy to Theorem 3.1, some weak
regularity conditions such that γDEP

F becomes a gap function for (DEP ).
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Next result shows under which conditions γDEP
F becomes a gap function for

the equilibrium problem (EP ).

Proposition 3.2 Assume that f is a monotone bifunction. Then it holds

γDEP
F (x) ≤ γEP

F (x), ∀x ∈ X.

Proof: By the monotonicity of f, we have

f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ X,

or, equivalently, f(y, x) ≤ −f(x, y), ∀x, y ∈ X. Let p ∈ X∗ be fixed. Adding
〈p, y〉 and taking the supremum in both sides over all y ∈ X yields

sup
y∈X

[〈p, y〉 + f(y, x)] ≤ sup
y∈X

[〈p, y〉 − f(x, y)].

After adding σK(−p) and taking the infimum in both sides over p ∈ X∗ , we
conclude that γDEP

F (x) ≤ γEP
F (x), ∀x ∈ X. �

Theorem 3.2 Let the assumptions of Theorem 3.1, Proposition 3.1(ii) and

Proposition 3.2 be fulfilled. Then γDEP
F is a gap function for (EP ).

Proof:

(i) By weak duality it holds

γDEP
F (x) = −v(DDEP ; x) ≥ −v(P DEP ; x) ≥ 0, ∀x ∈ K.

(ii) Let x̄ be a solution of (EP.) By Theorem 3.1, x̄ is solution of (EP ) if
and only if γEP

F (x̄) = 0. In view of (i) and Proposition 3.2, we get

0 ≤ γDEP
F (x̄) ≤ γEP

F (x̄) = 0.

Whence γDEP
F (x̄) = 0. Let now γDEP

F (x̄) = 0. By weak duality it holds

0 = v(DDEP ; x̄) ≤ v(P DEP ; x̄) ≤ 0.

Consequently v(P DEP ; x̄) = 0. That means x̄ ∈ KDEP . Hence, accord-
ing to Proposition 3.1(ii), x̄ is a solution of (EP ). �
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4 Applications to variational inequalities

In this section we apply the approach proposed in Section 3 to variational
inequalities in a real Banach space. Let us notice that the approach based
on the conjugate duality including Fenchel one, has been first considered for
finite-dimensional variational inequalities (cf. [1]). We assume that X is a
Banach space. The variational inequality problem consists in finding x ∈ K
such that

(V I) 〈F (x), y − x〉 ≥ 0, ∀y ∈ K,

where F : K → X∗ is a given mapping and K ⊆ X is a closed and convex
set. Considering f : X × X → R ∪ {+∞},

f(x, y) =

{

〈F (x), y − x〉, if (x, y) ∈ K × X,
+∞, otherwise,

the problem (V I) can be seen as a particular case of the equilibrium problem
(EP ).

For x ∈ K, (V I) can be rewritten as the optimization problem

(P V I ; x) inf
y∈X

{

〈F (x), y − x〉 + δK(y)
}

,

in the sense that x is a solution of (V I) if and only if it is a solution of
(P V I ; x). In view of γEP

F , we introduce the function based on Fenchel duality
for (V I) by

γV I
F (x) = inf

p∈X∗

{

sup
y∈X

[〈p, y〉 − 〈F (x), y − x〉] + σK(−p)
}

= inf
p∈X∗

{

sup
y∈X

〈p − F (x), y〉 + σK(−p)
}

+ 〈F (x), x〉,∀x ∈ K.

From

sup
y∈X

〈p − F (x), y〉 =

{

0, if p = F (x),
+∞, otherwise,

follows that

γV I
F (x) = inf

p=F (x)
sup
y∈K

〈−p, y〉 + 〈F (x), x〉 = sup
y∈K

〈F (x), x − y〉,∀x ∈ K.

In accordance to the definition of γEP
F in the previous, we have that for

x /∈ K, γV I
F (x) = −∞.

Let us notice that for all x ∈ K, y 7→ f(x, y) is an affine function,
thus continuous. On the other hand, the set epi(f ∗

y (x, ·)) + epi(σK) =
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{F (x)} × [〈F (x), x〉, +∞) + epi(σK) is closed for all x ∈ K. This means
that for all x ∈ K, f ∗

y (x, ·)�σK is lower semicontinuous and exact every-
where in X∗ (cf. [6]). Thus the hypotheses of Theorem 3.1 are verified and
γV I

F turns out to be a gap function for the problem (V I). γV I
F is actually the

so-called Auslender’s gap function (see [1] and [3]).

The problem (V I) can be associated with the following variational inequality
introduced by Minty, which consists in finding x ∈ K such that

(MV I) 〈F (y), y − x〉 ≥ 0, ∀y ∈ K.

As in Section 3, before introducing another gap function for (V I), let us
consider some definitions and assertions.

Definition 4.1 A mapping F : K → X∗ is said to be

(i) monotone if, for each pair of points x, y ∈ K, we have

〈F (y) − F (x), y − x〉 ≥ 0;

(ii) pseudo-monotone if, for each pair of points x, y ∈ K, we have

〈F (x), y − x〉 ≥ 0 implies 〈F (y), y − x〉 ≥ 0;

(iii) continuous on finite-dimensional subspaces if for any finite-dimensional
subspace M of X with K ∩ M 6= ∅ the restricted mapping F : K ∩
M → X∗ is continuous from the norm topology of K ∩M to the weak∗

topology of X∗.

Proposition 4.1 [12, Lemma 3.1] Let F : K → X∗ be a pseudo-monotone

mapping which is continuous on finite-dimensional subspaces. Then x ∈ K
is a solution of (V I) if and only if it is a solution of (MV I).

Minty variational inequality (MV I) is equivalent to the equilibrium prob-
lem which consists in finding x ∈ K such that

−f(y, x) ≥ 0,∀y ∈ K.

As

−f(y, x) =

{

〈F (y), y − x〉, if (x, y) ∈ X × K,
−∞, otherwise,

using the formula of γDEP
F , we get

γMV I
F (x) := inf

p∈X∗

{

sup
y∈K

[〈p, y〉 − 〈F (y), y − x〉] + σK(−p)
}

= sup
y∈K

〈F (y), y − x〉.
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One can notice that γMV I
F is nothing else than Auslender’s gap function for

Minty variational inequality (see, for instance, [9] and [11]). The following
two results close the last section of the paper.

Proposition 4.2 Let F : K → X∗ be a monotone mapping. Then it holds

γMV I
F (x) ≤ γV I

F (x), ∀x ∈ K.

Theorem 4.1 Let F : K → X∗ be a monotone mapping which is contin-

uous on finite-dimensional subspaces. Then γMV I
F is a gap function for (V I).

Proof:

(i) γDEP
F (x) ≥ 0 implies that γMV I

F (x) ≥ 0, ∀x ∈ K, as this is a special
case.

(ii) By the definition of the gap function, x̄ ∈ K is a solution of (V I) if
and only if γV I

F (x̄) = 0. Taking into account (i) and Proposition 4.2,
one has

0 ≤ γMV I
F (x̄) ≤ γV I

F (x̄) = 0.

In other words, γMV I
F (x̄) = 0. Let now γMV I

F (x̄) = 0. We can easily see
that x̄ ∈ K is a solution of (MV I). This follows using an analogous
argumentation as in the proof of Theorem 3.2. Whence, according to
Proposition 4.1, x̄ solves (V I). �

5 Concluding remarks

In this paper we deal with the construction of gap functions for equilib-
rium problems by using the Fenchel duality theory for convex optimization
problems. The gap functions we introduce here are defined by means of
the optimal objective value of the duals of some primal optimization prob-
lems associated to the equilibrium problem, but also to the so-called dual
equilibrium problem, respectively. In the particular case of the variational
inequality problem we rediscover Auslender’s gap functions for Stampacchia
and Minty variational inequalities.

The present research opens the door for using the well-developed theory
of duality when working with gap functions for equilibrium problems. As
future research one can consider alongside the conjugate duality also other
types of duality for convex as well as non-convex problems.
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