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1. Introduction

In the paper [9], Mangasarian introduced a new approach in order to give dual char-
acterizations for different set containment problems. He succeeded to characterize the
containment of a polyhedral set in another polyhedral set and in a reverse convex
set defined by convex quadratic constraints and the containment of a general closed
convex set in a reverse convex set defined by convex nonlinear constraints, respectively.
By incorporating them as prior knowledge, these characterizations can be very useful
in the determination of knowledge-based classifiers, the most famous example being
here the so-called support vector machines classifiers.

Motivated by the paper [9], Jeyakumar has established in [7] dual characterizations
for the containment of a closed convex set, defined by infinitely many convex con-
straints, in an arbitrary polyhedral set, in a reverse convex set and in another convex
set, respectively. The characterizations are given in terms of epigraphs of conjugate
functions.

Recently, Boţ and Wanka have presented in [3] some new Farkas-type results for
inequality systems involving a finite as well as an infinite number of convex constraints.
This approach bases on the theory of conjugate duality for convex optimization prob-
lems, namely by using the so-called Fenchel and Fenchel-Lagrange duality concepts (see
also [1], [2], [10], [12]). Moreover the authors show how these new Farkas-type results
generalize some of the results obtained by Jeyakumar in [7].

The aim of the present paper is to extend the results obtained in [3] by consid-
ering inequality systems involving finitely many convex constraints as well as convex
max-functions. Then we particularize them in order to obtain set containment charac-
terizations and, on the other hand, to rediscover two famous theorems of the alternative.
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Therefore we give an extended formulation of the Lagrange dual of a minmax optimiza-
tion problem, which leads to new Farkas-type results employing the conjugates of the
functions involved. Thus we succeed to underline the connections that exist between
Farkas-type results and theorems of the alternative and, on the other hand, the theory
of the duality.

The paper is organized as follows. In section 2 we present definitions and preliminary
results that will be used later in the paper and we introduce the primal minmax
optimization problem. In section 3 we construct its dual problem by using the Lagrange
duality. After proving the strong duality we formulate and prove also the optimality
conditions for these problems. Section 3 contains our main results. By using the duality
developed in the previous section we give a Farkas-type theorem. Then we apply this
theorem and its corollaries to three set containment characterization problems. In the
last section we rediscover Gale’s and Motzkin’s theorems of the alternative by using
the general results obtained in section 3.

2. Preliminaries

In this section we describe the notations we use throughout this paper and present some
necessary preliminary results. All vectors will be column vectors. A column vector will
be transposed to a raw vector by an upper index T . If A is a matrix, then AT stands for
its transpose. The inner product of two vectors x = (x1, ..., xn)T and y = (y1, ..., yn)T

in the n-dimensional real space R
n will be denoted by xT y =

n
∑

i=1

xiyi.

The following convention for inequalities will be used. If x, y ∈ R
n, n ≥ 2, then

x = y ⇔ xi ≥ yi, i = 1, ..., n,

x ≥ y ⇔ x = y and x 6= y,

x > y ⇔ xi > yi, i = 1, ..., n.

For x, y ∈ R = R ∪ {±∞} we write, as usual, x ≥ y and x > y if x is greater than or
equal to y and if x is strictly greater than y, respectively.

For a set X ⊆ R
n we shall denote the relative interior of X by ri(X). Furthermore,

let the indicator function of X be defined by δX : R
n → R,

δX(x) =

{

0, if x ∈ X,

+∞, otherwise.

Considering now a function f : R
n → R, we denote by

dom(f) = {x ∈ R
n : f(x) < +∞}

its effective domain. We say that f is proper if dom(f) 6= ∅ and f(x) 6= −∞ for all
x ∈ R

n.
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When X is a nonempty subset of R
n we define for f the so-called conjugate relative

to the set X

f∗

X : R
n → R, f∗

X(p) = sup
x∈X

{pT x − f(x)}.

By taking X equal to the whole space R
n, the conjugate relative to the set X becomes

the classical conjugate function of f (the Fenchel-Moreau conjugate)

f∗ : R
n → R, f∗(p) = sup

x∈Rn

{pT x − f(x)}.

Throughout the present paper we assume that X is a nonempty convex subset
of R

n and that fi : R
n → R, i = 1, ..., k are proper convex functions such that

k
⋂

i=1

ri(dom(fi))
⋂

ri(X) 6= ∅. Furthermore, let g = (g1, ..., gm)T : R
n → R

m be a vector-

valued function with gj convex functions, for j = 1, ..., m. Using them we introduce the
following minmax optimization problem

(P ) inf
x

max
i=1,...,k

{fi(x)},

s.t. x ∈ X, g(x) 5 0.

Let us notice that (P ) is a convex optimization problem, its objective function being
convex. To (P ) we associate another optimization problem (P ′) with the property
that v(P ) = v(P ′), where v(P ) and v(P ′) represent the optimal objective values of
the problems (P ) and (P ′), respectively. We formulate (P ′), which is also a convex
optimization problem, in the following way (see for instance [11] and [1])

(P ′) inf
x,a

a,

s.t. x ∈ X, g(x) 5 0, a ∈ R,

fi(x) − a ≤ 0, i = 1, ..., k.

Proposition 1 states the equality between the optimal objective values of the prob-
lems (P ) and (P ′).

PROPOSITION 1. It holds v(P ) = v(P ′).
Proof. Let x be feasible to (P ). If max

i=1,...,k
{fi(x)} = +∞, then max

i=1,...,k
{fi(x)} ≥ v(P ′).

Assuming now that max
i=1,...,k

{fi(x)} < +∞ and taking a = max
i=1,...,k

{fi(x)}, we have that

(x, a) is feasible to (P ′) and so max
i=1,...,k

{fi(x)} = a ≥ v(P ′). In both cases the objective

function of (P ) is greater than or equal to v(P ′) and this implies that v(P ) ≥ v(P ′).
Conversely, let (x, a) be feasible to (P ′), namely x ∈ X, g(x) 5 0, a ∈ R and

fi(x) ≤ a, ∀i = 1, ..., k. This implies the feasibility of x to problem (P ) and that
a ≥ max

i=1,...,k
{fi(x)} ≥ v(P ). This assures that the opposite inequality v(P ′) ≥ v(P ) also

holds. In conclusion, v(P ) = v(P ′). 2
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3. Duality for the minmax optimization problem

The aim of this section is to construct a dual problem to (P ′) and to give sufficient
conditions in order to achieve strong duality, namely that the optimal objective values
of the primal and the dual problems coincide and the dual problem has an optimal
solution. After that, we formulate and prove also the optimality conditions for these
problems.

Let us consider the well-known Lagrange dual problem to (P ′) with q1 ∈ R
k, q2 ∈

R
m, q1 = 0, q2 = 0 as dual variables

(D) sup
q1=0,

q2=0

inf
x∈X,

a∈R

{

a +
k
∑

i=1

q1
i [fi(x) − a] + (q2)T g(x)

}

.

We can separate the variables in parentheses, so it follows

(D) sup
q1=0,

q2=0

{

inf
x∈X

[

k
∑

i=1

q1
i fi(x) + (q2)T g(x)

]

+ inf
a∈R

[

a

(

1 −
k
∑

i=1

q1
i

)]}

.

Since

inf
a∈R

[

a

(

1 −
k
∑

i=1

q1
i

)]

=







0, if
k
∑

i=1

q1
i = 1,

−∞, otherwise,

the dual follows to be

(D) sup
q1=0,q2=0,

k
∑

i=1

q1
i
=1

inf
x∈X

[

k
∑

i=1

q1
i fi(x) + (q2)T g(x)

]

.

The infimum concerning x ∈ X is rewritable as

inf
x∈X

[

k
∑

i=1

q1
i fi(x) + (q2)T g(x)

]

= inf
x∈Rn

[

k
∑

i=1

q1
i fi(x) + (q2)T g(x) + δX(x)

]

=

− sup
x∈Rn

[

−
k
∑

i=1

q1
i fi(x) − (q2)T g(x) − δX(x)

]

= −

(

k
∑

i=1

q1
i fi + (q2)T g + δX

)∗

(0),

where δX is the indicator function of the set X.
The functions q1

i fi, i = 1, .., k and (q2)T g + δX are proper and convex and the
intersection of the relative interiors of their effective domains fulfills

k
⋂

i=1

ri(dom(q1
i fi))

⋂

ri(dom((q2)T g + δX)) ⊇
k
⋂

i=1

ri(dom(fi))
⋂

ri(X),
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which is a nonempty set. Therefore can we apply Theorem 16.4 in [10] and so
(

k
∑

i=1

q1
i fi + (q2)T g + δX

)

∗

(0) =

inf

{

k
∑

i=1

(q1
i fi)

∗(pi) +
(

(q2)T g + δX

)

∗

(u) :
k
∑

i=1

pi + u = 0

}

,

(1)

where the infimum is attained. This leads to the following formulation for the dual (D)

(D) sup

q1=0,

k
∑

i=1

q1
i
=1,q2=0,

pi∈Rn,i=1,..,k,u∈Rn,

k
∑

i=1

pi+u=0

{

−
k
∑

i=1

(q1
i fi)

∗(pi) −
(

(q2)T g + δX

)

∗

(u)

}

.

Finally, because of
(

(q2)T g + δX

)

∗

(u) =
(

(q2)T g
)

∗

X
(u), we get

(D) sup

q1=0,

k
∑

i=1

q1
i
=1,q2=0,

pi∈Rn,i=1,..,k

{

−
k
∑

i=1

(q1
i fi)

∗(pi) −
(

(q2)T g
)

∗

X

(

−
k
∑

i=1

pi

)}

.

It is obvious from the construction of the dual that the weak duality assertion
between (P ′) and (D), i. e. the value of the primal objective function at any feasible
point is greater than or equal to the value of the dual objective function at any dual
feasible point, always stands. This implies that v(P ′) ≥ v(D), where v(D) is the optimal
objective value of (D). Unlike weak duality, strong duality can fail in the general
case. To avoid this undesired situation, we introduce a constraint qualification that
guarantees the validity of strong duality in case it is fulfilled. First let us divide the
index set {1, ..., m} into two subsets,

L :=

{

j ∈ {1, ..., m} : gj : R
n → R is an affine function

}

and N := {1, ..., m}\L. The constraint qualification follows

(CQ) ∃x′ ∈
k
⋂

i=1

ri(dom(fi))
⋂

ri(X) :

{

gj(x
′) ≤ 0, j ∈ L,

gj(x
′) < 0, j ∈ N.

We are ready now to formulate the strong duality assertion.

THEOREM 1. (strong duality) Assume that v(P ) > −∞. Provided that the constraint
qualification (CQ) is fulfilled, the dual problem (D) has an optimal solution and v(P ) =
v(P ′) = v(D).
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Proof. The constraint qualification (CQ) being fulfilled, Proposition 1 states that
v(P ) = v(P ′) ∈ R. On the other hand, we can write (P ′) equivalently as

(P ′) inf
x,a

a,

s.t. x ∈
k
⋂

i=1

dom(fi)
⋂

X, g(x) 5 0, a ∈ R,

fi(x) − a ≤ 0, i = 1, ..., k.

By Theorem 6.5 in [10], (CQ) yields

x′ ∈
k
⋂

i=1

ri(dom(fi))
⋂

ri(X) = ri

(

k
⋂

i=1

dom(fi)
⋂

X

)

,

and so there exists

(

x′, max
i=1,...,k

{fi(x
′)} + 1

)

∈ ri

((

k
⋂

i=1

dom(fi)
⋂

X

)

× R

)

such that















gj(x
′) ≤ 0, j ∈ L,

gj(x
′) < 0, j ∈ N,

fi(x
′) −

(

max
i=1,...,k

{fi(x
′)} + 1

)

< 0, i = 1, ..., k.

Under the present hypotheses, Theorem 5.7 in [4] states the existence of q̄1 ∈ R
k, q̄1 =

0,
k
∑

i=1

q̄1
i = 1 and q̄2 ∈ R

m, q̄2 = 0 such that strong duality for the Lagrange dual holds,

i. e.

v(P ′) = max
q1=0,q2=0,

k
∑

i=1

q1
i
=1

inf
x∈Rn

[

k
∑

i=1

q1
i fi(x) + (q2)T g(x) + δX(x)

]

=

= inf
x∈Rn

[

k
∑

i=1

q̄1
i fi(x) + (q̄2)T g(x) + δX(x)

]

=

= −

(

k
∑

i=1

q̄1
i fi + (q̄2)T g + δX

)

∗

(0).

Using the fact that the infimum which appears in relation (1) is always attained, there
exist p̄i ∈ R

n, i = 1, ..., k such that

v(P ′) = −
k
∑

i=1

(q̄1
i fi)

∗(p̄i) −
(

(q̄2)T g
)

∗

X

(

−
k
∑

i=1

p̄i

)

. (2)

In the right-hand term of (2) one may recognize the objective function of (D) at
(q̄1, q̄2, p̄1, ..., p̄k). From weak duality it follows that the supremum of (D) is attained,
becoming maximum. The element (q̄1, q̄2, p̄1, ..., p̄k) turns out to be an optimal solution
to (D) and therefore v(P ) = v(P ′) = v(D). 2
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Next we derive necessary and sufficient optimality conditions regarding the problems
(P ) and (D).

THEOREM 2. (optimality conditions)

(a) If the constraint qualification (CQ) is fulfilled and x̄ is an optimal solution to
(P ), then there exists (q̄1, q̄2, p̄1, ..., p̄k), an optimal solution to (D), satisfying the
following optimality conditions

(i) fi(x̄) = max
i=1,...,k

{fi(x̄)}, if q̄1
i > 0, i = 1, ..., k,

(ii) (q̄2)T g(x̄) = 0,
(iii) (q̄1

i fi)
∗(p̄i) + q̄1

i fi(x̄) = p̄T
i x̄, i = 1, ..., k,

(iv)
(

(q̄2)T g
)

∗

X

(

−
k
∑

i=1

p̄i

)

+ (q̄2)T g(x̄) =

(

−
k
∑

i=1

p̄i

)T

x̄.

(b) Let x̄ be feasible to (P ) and (q̄1, q̄2, p̄1, ..., p̄k) be feasible to (D) such that (i)− (iv)
are satisfied. Then x̄ is an optimal solution to (P ), (q̄1, q̄2, p̄1, ..., p̄k) is an optimal
solution to (D) and v(P ) = v(D).

Proof. By Theorem 1 follows that the dual problem (D) has an optimal solution
(q̄1, q̄2, p̄1, ..., p̄k) which fulfills

max
i=1,...,k

{fi(x̄)} = v(P ) = v(P ′) = v(D) = −
k
∑

i=1

(q̄1
i fi)

∗(p̄i) −
(

(q̄2)T g
)

∗

X

(

−
k
∑

i=1

p̄i

)

or, equivalently,

0 = max
i=1,...,k

{fi(x̄)} +
k
∑

i=1

(q̄1
i fi)

∗(p̄i) +
(

(q̄2)T g
)

∗

X

(

−
k
∑

i=1

p̄i

)

=

max
i=1,...,k

{fi(x̄)} −
k
∑

i=1

q̄1
i fi(x̄) +

k
∑

i=1

[

(q̄1
i fi)

∗(p̄i) + q̄1
i fi(x̄) − p̄T

i x̄
]

+

(

(q̄2)T g
)

∗

X

(

−
k
∑

i=1

p̄i

)

+ (q̄2)T g(x̄) −

(

−
k
∑

i=1

p̄i

)T

x̄ − (q̄2)T g(x̄). (3)

On the other hand, by the so-called Young inequality we have

(q̄1
i fi)

∗(p̄i) + q̄1
i fi(x̄) − p̄T

i x̄ ≥ 0, ∀i = 1, ..., k

and
(

(q̄2)T g
)

∗

X

(

−
k
∑

i=1

p̄i

)

+ (q̄2)T g(x̄) −

(

−
k
∑

i=1

p̄i

)T

x̄ ≥ 0.
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In addition, −(q̄2)T g(x̄) ≥ 0 and max
i=1,...,k

{fi(x̄)}−
k
∑

i=1

q̄1
i fi(x̄) ≥ 0. Therefore the terms of

the sum in (3) are greater than or equal to zero. This implies that all of them must be
equal to zero and, in conclusion, the optimality conditions (i) − (iv) must be fulfilled.

All the calculations done before carried out in the reverse direction prove that
assertion (b) also holds. 2

4. A new Farkas-type result and its applications in set containment

characterization

In the following we give a new Farkas-type result for inequality systems involving finitely
many convex constraints as well as convex max-functions. The main theorem yields a
new dual characterization for this kind of inequality systems and bases on the duality
concepts introduced in the previous section. In the last part of this section we give some
applications of this new result and its consequences by the characterization of three
set containment problems. Two of them allow us to rediscover some results proved by
Mangasarian in [9] and the last one characterizes the containment of a polyhedral set
in a reverse open polyhedral set.

We assume that all the hypotheses introduced in section 2 are fulfilled, so we can
formulate the main result of this paper.

THEOREM 3. Let the constraint qualification (CQ) be fulfilled. Then the following
statements are equivalent

(i) x ∈ X, g(x) 5 0 ⇒ max
i=1,...,k

{fi(x)} ≥ 0.

(ii) There exist q1 ∈ R
k, q1 = 0,

k
∑

i=1

q1
i = 1, q2 ∈ R

m, q2 = 0 and pi ∈ R
n, i = 1, ..., k

such that
k
∑

i=1

(q1
i fi)

∗(pi) +
(

(q2)T g
)

∗

X

(

−
k
∑

i=1

pi

)

≤ 0.

Proof. (ii) ⇒ (i). Choose q1 ∈ R
k, q1 = 0,

k
∑

i=1

q1
i = 1, q2 ∈ R

m, q2 = 0 and pi ∈

R
n, i = 1, ..., k such that

k
∑

i=1

(q1
i fi)

∗(pi) +
(

(q2)T g
)

∗

X

(

−
k
∑

i=1

pi

)

≤ 0 or, equivalently,

−
k
∑

i=1

(q1
i fi)

∗(pi) −
(

(q2)T g
)

∗

X

(

−
k
∑

i=1

pi

)

≥ 0. The optimal objective value v(D) of the

dual optimization problem (D) is greater than or equal to zero. This implies that the
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optimal objective value v(P ) of the problem

(P ) inf
x

max
i=1,...,k

{fi(x)},

s.t. x ∈ X, g(x) 5 0

fulfills v(P ) = v(P ′) ≥ v(D) ≥ 0. We recall that by weak duality the inequality
v(P ′) ≥ v(D) is true. Therefore for all x ∈ X, g(x) 5 0, we have max

i=1,...,k
{fi(x)} ≥ 0 and

so (i) is fulfilled.
(i) ⇒ (ii). Assuming now that (i) is true, it follows that the optimal objective value

of the problem (P ) is greater than or equal to zero. On the other hand, the constraint
qualification (CQ) being fulfilled, we obtain by Theorem 2 that there exists an optimal
solution to (D) (q1, q2, p1, ..., pk) such that

v(P ) = v(P ′) = v(D) = −
k
∑

i=1

(q1
i fi)

∗(pi) −
(

(q2)T g
)

∗

X

(

−
k
∑

i=1

pi

)

≥ 0.

This proves the validity of (ii). 2

Remark. For the implication (ii) ⇒ (i) the constraint qualification (CQ) is not
necessary.

As an immediate consequence of Theorem 3 we get the following theorem of the
alternative.

COROLLARY 1. Let the constraint qualification (CQ) be fulfilled. Then either the
inequality system

(I) x ∈ X, g(x) 5 0, max
i=1,...,k

{fi(x)} < 0

has a solution or the system

(II)



















k
∑

i=1

(q1
i fi)

∗(pi) +
(

(q2)T g
)

∗

X

(

−
k
∑

i=1

pi

)

≤ 0,

q1 = 0,
k
∑

i=1

q1
i = 1, q2 = 0, pi ∈ R

n, i = 1, ..., k

has a solution, but never both.

For k = 1, Theorem 3 and Corollary 1 imply the following results.

THEOREM 4. Let X ⊆ R
n be a nonempty convex set, f : R

n → R be a proper convex
function and g = (g1, ..., gm)T : R

n → R
m be a vector-valued function with gj convex,

for j = 1, ..., m. If there exists x′ ∈ ri(dom(f)) ∩ ri(X) such that gj(x
′) ≤ 0, ∀j ∈ L

and gj(x
′) < 0, ∀j ∈ N , then the following statements are equivalent:
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(i) x ∈ X, g(x) 5 0 ⇒ f(x) ≥ 0.

(ii) There exist q ∈ R
m, q = 0 and p ∈ R

n such that

f∗(p) + (qT g)∗X(−p) ≤ 0.

COROLLARY 2. Let the assumptions of Theorem 4 be fulfilled. Then either the in-
equality system

(I) x ∈ X, g(x) 5 0, f(x) < 0

has a solution or the system

(II) f∗(p) + (qT g)∗X(−p) ≤ 0, p ∈ R
n, q = 0

has a solution, but never both.
Remark. Let us notice that Theorem 4 and Corollary 2 have been obtained by

Boţ and Wanka in [3]. This article is devoted to the presentation of new Farkas-type
results for inequality systems involving a finite as well as an infinite number of convex
constraints. The approach used in [3] bases on the theory of conjugate duality for con-
vex optimization problems, the so-called Fenchel and Fenchel-Lagrange dual problems
playing an important role. The results formulated and proved in [3] generalize some
recently published results due to Jeyakumar in [7].

Next we give some applications of Theorem 3 in order to characterize the contain-
ment of a nonempty polyhedral set in an arbitrary polyhedral set and in a reverse-
convex set determined by convex quadratic constraints, respectively, in a different
manner than Mangasarian in [9].

PROPOSITION 2. (polyhedral set containment in another polyhedral set) Let A ∈
R

p×n, B ∈ R
m×n, a ∈ R

p, b ∈ R
m and the sets A := {x ∈ R

n : Ax = a} and B :=
{x ∈ R

n : Bx 5 b} be such that B is not empty. Then the following statements are
equivalent:

(i) B ⊆ A.

(ii) There exists Q ∈ R
p×m, Q = 0 such that a + Qb 5 0 and A + QB = 0.

Proof. In order to apply Theorem 4, let be X = R
n, g : R

n → R
m, g(x) = Bx − b

and fi : R
n → R, fi(x) = AT

i x − ai, for i = 1, ..., p. Let Ai ∈ R
n and ai ∈ R be such

that AT
i , i = 1, ..., p are the row vectors of the matrix A ∈ R

p×n and ai, i = 1, ..., p are
the components of the vector a ∈ R

p, respectively.
The statement (i) can be equivalently written as

(i) x ∈ R
n, g(x) 5 0 ⇒ fi(x) ≥ 0, ∀i = 1, ..., p.
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The set B being nonempty, yields that the constraint qualification which appears in
Theorem 4 is fulfilled. As a consequence of this theorem we have that B ⊆ A if and
only if

(ii) ∀i = 1, ..., p there exist qi ∈ R
m, qi = 0 and pi ∈ R

n such that

f∗

i (pi) +
(

(qi)T g
)

∗

(−pi) ≤ 0

or, equivalently,

sup
x∈Rn

{(pi)T x − AT
i x + ai} + sup

x∈Rn

{−(pi)T x − (qi)T Bx + (qi)T b} =

sup
x∈Rn

{(pi − Ai)
T x} + ai + sup

x∈Rn

{(−pi − BT qi)T x} + (qi)T b ≤ 0. (4)

It is obvious that (4) is true just if pi = Ai,−pi = BT qi and ai + (qi)T b ≤ 0, for
i = 1, ..., p. Therefore (ii) is rewritable as

(ii) ∀i = 1, ..., p there exists qi ∈ R
m, qi = 0 such that Ai+BT qi = 0 and ai+(qi)T b ≤ 0.

Considering Q ∈ R
p×m, the matrix with the row vectors (qi)T , i = 1, ..., p we get the

desired result

(ii) There exists Q ∈ R
p×m, Q = 0 such that a + Qb 5 0 and A + QB = 0.

This finishes the proof. 2

PROPOSITION 3. (polyhedral set containment in a reverse-convex quadratic set)
Let be B ∈ R

m×n, b ∈ R
m, Ai ∈ R

n, ai ∈ R, i = 1, ..., p and the symmetric positive
semidefinite matrices Ui ∈ R

n×n, i = 1, ..., p. We consider the sets A := {x ∈ R
n :

1
2
xT Uix+AT

i x ≥ ai, i = 1, ..., p} and B := {x ∈ R
n : Bx 5 b} such that B is not empty.

Then the following statements are equivalent:

(i) B ⊆ A.

(ii) For i = 1, ..., p there exist xi ∈ R
n and qi ∈ R

m, qi = 0 such that

AT
i + (qi)T B + (xi)T Ui = 0 and ai + (qi)T b +

1

2
(xi)T Uix

i ≤ 0.

Proof. We apply again Theorem 4. Therefore let be X = R
n, g : R

n → R
m, g(x) =

Bx− b and fi : R
n → R, fi(x) = 1

2
xT Uix+AT

i x−ai, i = 1, ..., p. The statement (i) can
be equivalently written as

(i) x ∈ R
n, g(x) 5 0 ⇒ fi(x) ≥ 0, ∀i = 1, ..., p.
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12 R.I. Boţ, G. Wanka

The set B is nonempty and so the constraint qualification in Theorem 4 is fulfilled.
For this reason, B ⊆ A if and only if

(ii) ∀i = 1, ..., p there exist qi ∈ R
m, qi = 0 and pi ∈ R

n such that

f∗

i (pi) +
(

(qi)T g
)

∗

(−pi) ≤ 0. (5)

We can write now (5) equivalently as follows

f∗

i (pi) + ((qi)T g)∗(−pi) ≤ 0 ⇔ f∗

i (pi) + sup
x∈Rn

{

−(pi)T x − (qi)T Bx + (qi)T b
}

≤ 0 ⇔

f∗

i (pi) + (qi)T b + sup
x∈Rn

{

(

−pi − BT qi
)T

x

}

≤ 0 ⇔

f∗

i (pi) + (qi)T b ≤ 0 and pi + BT qi = 0.

In order to calculate the conjugate of fi, let hi : R
n → R be defined by hi(x) =

1
2
xT Uix + AT

i x = fi(x) + ai, i = 1, ..., p. We have f∗

i (pi) = h∗

i (p
i) + ai, for i = 1, ..., p.

On the other hand, the conjugate of hi, i = 1, ..., p can be calculated by using the
Moore-Penrose pseudo-inverse U−

i (see [5], [6])

h∗

i (p
i) =

{ 1
2
(pi − Ai)

T U−

i (pi − Ai), if pi ∈ Ai + ImUi,

+∞, otherwise.

Relation (ii) becomes

(ii) ∀i = 1, ..., p there exist pi ∈ R
n and qi ∈ R

m, qi = 0 such that

pi ∈ Ai + ImUi, ai +
1

2
(pi − Ai)

T U−

i (pi − Ai) + (qi)T b ≤ 0, pi + BT qi = 0.

By taking pi − Ai = Uix
i, i = 1, ..., p, we get the following assertion

(ii) ∀i = 1, ..., p there exist xi ∈ R
n and qi ∈ R

m, qi = 0 such that

ai +
1

2
(xi)T UT

i U−

i (Uix
i) + (qi)T b ≤ 0, Ai + Uix

i + BT qi = 0.

Because of the symmetry of Ui and the fact that UiU
−

i (y) = y, ∀y ∈ ImUi, we get

UT
i U−

i (Uix
i) = UiU

−

i (Uix
i) = Uix

i, i = 1, ..., p.

Finally, relation (ii) can be written as

(ii) ∀i = 1, ..., p there exist xi ∈ R
n and qi ∈ R

m, qi = 0 such that

AT
i + (qi)T B + (xi)T Ui = 0 and ai + (qi)T b +

1

2
(xi)T Uix

i ≤ 0.
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2

The last result of this section provides a characterization of the containment of
a polyhedral set in a reverse open polyhedral set and can be obtained as a direct
consequence of Theorem 3. One should notice that the methods use by Mangasarian in
[9], which uses the duality theory for differentiable convex optimization problems, fail
in case of Proposition 4.

PROPOSITION 4. (polyhedral set containment in a reverse open polyhedral set) Let
A ∈ R

k×n, B ∈ R
m×n, a ∈ R

k, b ∈ R
m and the sets A := {x ∈ R

n : Ax > a} and
B := {x ∈ R

n : Bx 5 b} be such that B is not empty. Then the following statements
are equivalent:

(i) B ⊆ R
n \ A.

(ii) There exist q1 ∈ R
k, q1 ≥ 0 and q2 ∈ R

m, q2 = 0 such that BT q2 = AT q1 and
bT q2 ≤ aT q1.

Proof. Let be X = R
n, g : R

n → R
m, g(x) = Bx − b and fi : R

n → R, fi(x) =
ai − AT

i x, for i = 1, ..., k. Then the statement (i) is nothing else than

(i) x ∈ R
n, g(x) 5 0 ⇒ max

i=1,...,k
{fi(x)} ≥ 0.

Because B is a nonempty set it follows that the constraint qualification (CQ) is fulfilled.
So, by Theorem 3, B ⊆ R

n \ A if and only if

(ii) There exist q1 ∈ R
k, q1 = 0,

k
∑

i=1

q1
i = 1, q2 ∈ R

m, q2 = 0 and pi ∈ R
n, i = 1, ..., k

such that
k
∑

i=1

(q1
i fi)

∗(pi) +
(

(q2)T g
)

∗

(

−
k
∑

i=1

pi

)

≤ 0

or, equivalently,

k
∑

i=1

sup
x∈Rn

{(pi)T x − q1
i ai + q1

i A
T
i x} + sup

x∈Rn







(

−
k
∑

i=1

pi

)T

x − (q2)T Bx + (q2)T b







=

k
∑

i=1

sup
x∈Rn

{(pi + q1
i Ai)

T x} −
k
∑

i=1

q1
i ai + sup

x∈Rn







(

−
k
∑

i=1

pi − BT q2

)T

x







+ (q2)T b ≤ 0.

Therefore (i) is true if and only if

(ii) There exist q1 ∈ R
k, q1 = 0,

k
∑

i=1

q1
i = 1, q2 ∈ R

m, q2 = 0 and pi ∈ R
n, i = 1, ..., k
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14 R.I. Boţ, G. Wanka

such that pi = −q1
i Ai, i = 1, .., k, −

k
∑

i=1

pi = BT q2 and −aT q1 + bT q2 ≤ 0,

which is rewritable as

(ii) There exist q1 ∈ R
k, q1 = 0,

k
∑

i=1

q1
i = 1 and q2 ∈ R

m, q2 = 0 such that BT q2−AT q1 =

0 and bT q2 − aT q1 ≤ 0.

We conclude the proof by remarking that (ii) is true if and only if

(ii) There exist q1 ∈ R
k, q1 ≥ 0 and q2 ∈ R

m, q2 = 0 such that BT q2 = AT q1 and
bT q2 ≤ aT q1. 2

5. Rediscovering two famous theorems of the alternative

In the last section of this paper we give other applications for the general results
presented above, namely by getting two famous theorems of the alternative as conse-
quences of the corollaries 1 and 2. The results we deal with are the theorems of Gale and
Motzkin. Further theorems of the alternative, including the nonhomogeneous theorem
of Farkas and the theorems of Tucker, Stiemke, Gordan and Slater, can be obtained
from the results we mentioned above. For a detailed presentation of theorems of the
alternative we invite the reader to consult Mangasarian’s book [8].

Throughout this section the set X will be the whole space R
n and all the functions

involved will be affine.

THEOREM 5. (Gale’s theorem for linear inequalities) Let A ∈ R
k×n and c ∈ R

k be
given. Then either the inequality system

(I) Ax 5 c

has a solution x ∈ R
n or the system

(II) AT y = 0, cT y < 0, y = 0

has a solution y ∈ R
k, but never both.

Proof. Let be g : R
k → R

n × R
n × R

k, g(y) = (AT y,−AT y,−y)T and f : R
k →

R, f(y) = cT y. Then (II) is rewritable as

(II) y ∈ R
k, g(y) 5 0, f(y) < 0.

The constraint qualification (CQ) is fulfilled. By Corollary 2, (II) has a solution or the
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system

(I) f∗(p) + (qT g)∗(−p) ≤ 0, p ∈ R
k, q = 0

has a solution, but never both. The system (I) becomes

(I)







sup
y∈Rk

{

(p − c)T y
}

+ sup
y∈Rk

{

(−p + Aq1 − Aq2 + q3)T y
}

≤ 0,

p ∈ R
k, q1 ∈ R

n, q1 = 0, q2 ∈ R
n, q2 = 0, q3 ∈ R

k, q3 = 0

or, equivalently,

(II) p = c, p = Ax + q3, p ∈ R
k, x ∈ R

n, q3 ∈ R
k, q3 = 0

which is nothing else than

(II) Ax 5 c, x ∈ R
n.

This concludes the proof. 2

The last theorem of this section, known as Motzkin’s theorem of the alternative,
characterizes the existence of solutions for homogeneous systems containing equalities
as well as inequations.

THEOREM 6. (Motzkin’s theorem) Let A ∈ R
k×n, C ∈ R

s×n and D ∈ R
t×n be given

with A 6= 0. Then either the inequality system

(I) Ax > 0, Cx = 0, Dx = 0

has a solution x ∈ R
n or the system

(II) AT y1 + CT y3 + DT y4 = 0, y1 ≥ 0, y3 = 0

has a solution y1 ∈ R
k, y3 ∈ R

s, y4 ∈ R
t, but never both.

Proof. The system (I) can be rewritten as

(I) − Cx 5 0, Dx = 0, max
i=1,...,k

{−AT
i x} < 0,

AT
i , i = 1, ..., k being the row vectors of the matrix A. If g : R

n → R
s ×R

t ×R
t, g(x) =

(−Cx, Dx,−Dx)T and fi : R
n → R, fi(x) = −AT

i x, i = 1, .., k, then (I) is nothing else
than

(I) x ∈ R
n, g(x) 5 0, max

i=1,...,k
{fi(x)} < 0.
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16 R.I. Boţ, G. Wanka

By Corollary 1, using the fact that the constraint qualification (CQ) is fulfilled for
x′ = 0, we get that either (I) has a solution or the system

(II)



















k
∑

i=1

(q1
i fi)

∗(pi) +
(

(q2)T g
)

∗

(

−
k
∑

i=1

pi

)

≤ 0,

q1 = 0,
k
∑

i=1

q1
i = 1, q2 = 0, pi ∈ R

n, i = 1, ..., k

has a solution, but never both. The last inequality system becomes

(II)























k
∑

i=1

sup
x∈Rn

{

(pi + q1
i Ai)

T x
}

+ sup
x∈Rn







(

−
k
∑

i=1

pi + CT q2′ + DT q2′′

)T

x







≤ 0,

q1 = 0,
k
∑

i=1

q1
i = 1, q2′ ∈ R

s, q2′ = 0, q2′′ ∈ R
t, pi ∈ R

n, i = 1, ..., k,

which is the same as

(II)



















pi = −q1
i Ai, C

T q2′ + DT q2′′ =
k
∑

i=1

pi,

q1 = 0,
k
∑

i=1

q1
i = 1, q2′ ∈ R

s, q2′ = 0, q2′′ ∈ R
t, pi ∈ R

n, i = 1, ..., k.

(6)

We conclude the proof by remarking that (6) has a solution if and only if

(II) AT q1 + CT q2′ + DT q2′′ = 0, q1 ≥ 0, q2′ = 0

has a solution q1 ∈ R
k, q2′ ∈ R

s, q2′′ ∈ R
t. 2

6. Conclusion

In this paper we present some Farkas-type results for inequality systems involving
finitely many convex constraints as well as convex max-functions. Therefore an impor-
tant role is played by the dual of a minmax optimization problem. The approach we
use here leads to Farkas-type formulations by employing the conjugates of the functions
involved. The main theorem is a generalization of a another recent Farkas-type theorem
formulated by Boţ and Wanka in [3]. Moreover, it allows us to establish some results
concerning set containment characterization and to rediscover two famous theorems of
the alternative.
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