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Abstract

In this paper we present some duality assertions to a non-convex
multiobjective fractional optimization problem. To the primal prob-
lem we attach an intermediate multiobjective convex optimization
problem, using an approach due to Dinkelbach ([6]), for which we
construct then a dual problem. This is expressed in terms of the con-
jugates of the numerator and denominator of the components of the
primal objective function as well as the functions describing the set
of constraints. The weak, strong and converse duality statements for
the intermediate problems allow us to give dual characterizations for
the efficient solutions of the initial fractional problem.

1 Introduction

The duality theory for convex multiobjective optimization problems is a field
of the optimization theory which has intensively developed during the last
decades. Among the duality concepts one can meet in the literature we
mention here those of Wolfe ([20]), Weir-Mond ([19]), Nakayama ([11]), Jahn
([9]) and Wanka and Boţ ([17]). The last one is proposing a new conjugate
dual based on the perturbation approach described in [7]. The papers [3] and
[4] are completely studying the relations between all these duality concepts.

This paper considers duality for a special class of optimization problems
called multiobjective fractional optimization problems, i.e. problems with
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multiple objective functions that are quotients of convex and concave func-
tions. These kind of problems form indeed a separate class since they are in
general not convex.

The case of fractional optimization has been investigated by Charnes and
Cooper ([5]) for linear fractional objectives. Dinkelbach ([6]) gave the con-
nection between a fractional and a certain parametrized program. Schaible
([16]) introduced a transformation that made it tractable to work with frac-
tional problems. Bector ([1]) presented a dual for fractional optimization
problems and Schaible ([15]) calculated the corresponding Lagrange dual.
Kaul and Lyall ([10]) and Bector, Chandra and Singh ([2]) formulated du-
als and duality assertions for multiobjective fractional problems, but under
some differentiability assumptions. Ohlendorf and Tammer ([12]) proposed
a Fenchel-type dual for a fractional vector optimization problem.

The aim of this paper is to extend the approach in [17] to a non-convex
multiobjective fractional programming problem. By using the parametriza-
tion approach of Dinkelbach ([6]) we attach to the primal problem an inter-
mediate multiobjective convex optimization problem. Then we scalarize the
primal intermediate problem and consider the conjugate dual for it intro-
duced in [18]. Inspired by the dual of the scalarized problem we construct a
multiobjective dual for the intermediate vector one. Weak, strong and con-
verse duality are proved. These statements for the intermediate problems
allow us to give dual characterizations for the efficient solutions of the initial
fractional problem.

In a forthcoming paper we discuss the relations between the proposed
intermediate multiobjective dual and other multiobjectve dual problems in-
troduced so far in the literature (see for instance [12]).

The paper is structured as follows.
In Section 2 we formulate the multiobjective fractional primal problem

(P ) and - making use of the parametrization of Dinkelbach ([6]) - an inter-
mediate convex problem (Pµ), µ ∈ R

m, which is equivalent to the original in
some sense. Furthermore we recall different efficiency definitions that will be
necessary in the following.

In Section 3 we present the Fenchel-Lagrange dual for the corresponding
real-valued problem that one gets by applying a linear scalarizing functional
to the objective function of the parametrized primal problem. A strong
duality theorem and necessary optimality conditions are established.

In Section 4 we derive the dual (Dµ) for the multiobjective problem
(Pµ), µ ∈ R

m. This dual is presented in a compact way with three conjugate
functions in each component of the objective function. For this dual prob-
lem weak, strong and converse duality theorems are formulated and proved.
These statements are then used in order to give dual characterizations for
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the efficient solutions of the initial fractional problem.
Finally, we describe the way in which the converse duality result can

be applied, by treating a particular multiobjective fractional optimization
problem.

2 The primal problem and its parametriza-

tion

2.1 The primal problem

Before introducing the primal problem, let us present the following definition
of an ordering relation induced on R

k by the ordering cone R
k
+.

Definition 2.1. For y, z ∈ R
k we denote y 5 z if z − y ∈ R

k
+ = {u =

(u1, . . . , uk)
T ∈ R

k : ui ≥ 0, i = 1, . . . , k}.

Using the above definition the following multiobjective fractional primal
problem (P ) can be introduced

(P )
v- min

x∈A
Φ(x)

A =
{

x ∈ R
n : g(x) =

[

g1(x), · · · , gk(x)
]T

5 0
}

,

where A is assumed to be non-empty, ∀x ∈ R
n, Φ(x) =

[

Φ1(x), · · · , Φm(x)
]T

=
[

f1(x)
h1(x)

, · · · , fm(x)
hm(x)

]T

, fi : R
n → R = R ∪ {±∞} are convex and proper

functions, (−hi) : R
n → R are convex functions fulfilling hi(x) > 0, ∀x ∈ A,

i = 1, . . . ,m, gj : R
n → R are real-valued convex functions, j = 1, . . . , k and

m
⋂

i=1

ri(dom fi) 6= ∅.

Note that A is convex, but nevertheless (P ) is in general a non-convex
problem.

In order to point out the optimal solutions of the problem (P ), let us
introduce the following definitions of efficiency and proper efficiency.

Definition 2.2 (Efficiency for problem (P )). An element x̄ ∈ A is said to
be efficient (or minimal) for (P ) if

{Φ(x̄) − R
m
+} ∩ Φ(A) = {Φ(x̄)},
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or, equivalently, if there is no x ∈ A such that

Φ(x) 5 Φ(x̄)

and
Φ(x) 6= Φ(x̄).

Definition 2.3 (Proper efficiency for problem (P )). A point x̄ ∈ A is said
to be properly efficient for (P ) if there exists λ = (λ1, . . . , λm)T ∈ int(Rm

+ )
such that

m
∑

i=1

λiΦi(x̄) ≤
m
∑

i=1

λiΦi(x), ∀x ∈ A.

Let us notice that any properly efficient solution turns out to be an effi-
cient one, too.

2.2 Parametrization according to Dinkelbach

In order to investigate the duality for the non-convex problem (P ) we consider
the following parametrized optimization problem

(Pµ) v- min
x∈A

Φ(µ)(x),

where

Φ(µ)(x) =







Φ
(µ)
1 (x)

...

Φ
(µ)
m (x)






=







f1(x)
...

fm(x)






−







µ1 · h1(x)
...

µm · hm(x)







and µ = (µ1, ..., µm)T ∈ R
m. Note that Φ

(µ)
i are proper and convex if µi ≥

0, i = 1, . . . ,m.
Efficiency and proper efficiency for (Pµ) are defined in an analogous man-

ner as done above for (P ).
For the single objective case Dinkelbach ([6]) has proved the following

result, which is actually the starting point of our approach.

Theorem 2.1 ([6]). Let A ⊆ R
n, f : R

n → R and h : R
n → R be real-valued

functions with h(x) > 0,∀x ∈ A. Then

q0 :=
f(x0)

h(x0)
= min

{

f(x)

h(x)
: x ∈ A

}

if and only if

f(x0) − q0 h(x0) = min
x∈A

{f(x) − q0 h(x)} = 0.
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Kaul and Lyall ([10]) and Bector, Chandra and Singh ([2]) stated the
connections between the efficient elements of (P ) and (Pµ).

Theorem 2.2 ([2], [10]). A point x̄ ∈ A is efficient for problem (P ) if
and only if x̄ is efficient for problem (Pµ̄), where µ̄ = (µ̄1, . . . , µ̄m)T and

µ̄i := fi(x̄)
hi(x̄)

, i = 1, . . . ,m.

In order to prove a theorem concerning the relationship between properly
efficient elements of (P ) and (Pµ) we need the definition presented below.

Definition 2.4 (Proper efficiency in the sense of Geoffrion [8]). A point
x̄ ∈ A is said to be properly efficient in the sense of Geoffrion for (P ) if
it is efficient and if there is some real number M > 0 such that for each
i = 1, . . . ,m and each x ∈ A satisfying Φi(x) < Φi(x̄) there exists at least
one j ∈ {1, . . . ,m} such that Φj(x̄) < Φj(x) and

Φi(x̄) − Φi(x)

Φj(x) − Φj(x̄)
≤ M.

Proper efficiency in the sense of Geoffrion for problem (Pµ) is defined in
an analogous way, with Φ(µ) instead of Φ.

Theorem 2.3. Let be x̄ ∈ A and assume that µ̄i := fi(x̄)
hi(x̄)

≥ 0, i = 1, . . . ,m.

The point x̄ is properly efficient in the sense of Geoffrion for problem (P ) if
and only if x̄ is properly efficient (in the sense of Definition 2.3) for problem
(Pµ̄), where µ̄ = (µ̄1, . . . , µ̄m)T .

Proof. By Lemma 1 in [10] follows that x̄ is properly efficient in the sense of
Geoffrion for problem (P ) if and only if x̄ is properly efficient in the sense
of Geoffrion for problem (Pµ̄). Since Φ(µ̄)(A) is R

m
+ -convex (Φ(µ̄)(A) + R

m
+ is

convex), the set of the properly efficient elements in the sense of Geoffrion
for problem (Pµ̄) coincides with the set of the properly efficient elements in
the sense of Definition 2.3 (cf. Theorem 3.1.4, Theorem 3.4.1 and Theorem
3.4.2 in [14]). That Φ(µ̄)(A) + R

m
+ is convex, can be easily understood by the

following calculations.
Let x1, x2 ∈ Φ(µ̄)(A) + R

m
+ , i.e. ∃ a1, a2 ∈ A and k1, k2 ∈ R

m
+ such that

x1 = Φ(µ̄)(a1) + k1 and x2 = Φ(µ̄)(a2) + k2. Let be α ∈ (0, 1). Then it holds

αx1 + (1 − α)x2 = αΦ(µ̄)(a1) + αk1 + (1 − α)Φ(µ̄)(a2) + (1 − α)k2

∈ αΦ(µ̄)(A) + αk1 + (1 − α)Φ(µ̄)(A) + (1 − α)k2

⊆ Φ(µ̄)(A) + R
m
+ .

In conclusion we get the equivalence that was to be shown.
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Now let us consider the corresponding scalarized problem

(Pµ,λ) inf
x∈A

Φ(µ,λ)(x),

where

Φ(µ,λ)(x) =
m
∑

i=1

λi · Φ
(µ)
i (x) =

m
∑

i=1

λi · (fi(x) − µi · hi(x))

and λ = (λ1, ..., λm)T ∈ R
m, µ = (µ1, ..., µm)T ∈ R

m are such that λi >
0, µi ≥ 0, i = 1, . . . ,m. Obviously, (Pµ,λ) is a convex optimization problem
and we denote its optimal objective value by v(Pµ,λ).

3 The Fenchel-Lagrange dual for the scalar-

ized problem

In this section we construct a conjugate dual problem for the scalar optimiza-
tion problem introduced above, called the Fenchel-Lagrange dual problem.
For the primal problem (Pµ,λ) this can be written as follows (cf. [17] and
[18])

(DG)
sup

p∈R
n,

q∈R
k
+

{

−f̃ ∗(p) − (qT g)∗(−p)
}

,

where

f̃ : R
n → R, f̃(x) =

m
∑

i=1

λi · (fi(x) − µi · hi(x)) .

Here f̃ ∗ : R
n → R, f̃ ∗(p) = sup

x∈Rn

{pT x − f(x)} is the conjugate function of f̃ .

Note that for λi > 0 and µi ≥ 0, the functions λi(fi −µihi), i = 1, . . . ,m, are
convex.

In order to be able to give an appropriate formulation for the dual we
need the following lemma.

Lemma 3.1 (Theorem 16.4, [13]). Let ϕi : R
n → R, i = 1, . . . ,m, be proper

convex functions with
m
⋂

i=1

ri(dom ϕi) 6= ∅. Then

(

m
∑

i=1

ϕi

)∗

(p) = inf

{

m
∑

i=1

ϕ∗
i (pi) :

m
∑

i=1

pi = p

}

,

and the infimum is attained for each p ∈ R
n.
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Because
m
⋂

i=1

ri(dom fi) 6= ∅ and as the functions hi are real-valued for

i = 1, . . . ,m, we can apply Lemma 3.1 and get the following formulation for
the dual problem

(Dµ,λ) sup
q∈R

k
+

,

ui,vi∈R
n,

i=1,...,m

{

−
m
∑

i=1

λi[f
∗
i (ui) + (−µihi)

∗(vi)]

−(qT g)∗

(

−
m
∑

i=1

λi(ui + vi)

)}

. (1)

For the strong duality theorem and the optimality conditions we need a
so-called constraint qualification. In order to formulate it let us consider the
sets L = {j ∈ {1, ..., k} : gj is affine} and N = {1, ..., k} \ L.

Constraint qualification (CQ)

There exists an element x′ ∈
m
⋂

i=1

ri(dom fi) such that gj(x
′) < 0, j ∈ N , and

gj(x
′) ≤ 0, j ∈ L.

Theorem 3.1 (Strong Duality, [18]). If v(Pµ,λ) is finite and the constraint
qualification (CQ) is fulfilled, then the problem (Dµ,λ) has an optimal solution
and it holds

v(Pµ,λ) = v(Dµ,λ).

Theorem 3.2 (Optimality conditions). Let (CQ) be fulfilled and x̄ be an
optimal solution of (Pµ,λ). Then there exists (ū1, ..., ūm, v̄1, ..., v̄m, q̄), optimal
solution of (Dµ,λ), such that the following optimality conditions hold

(1) fi(x̄) + f ∗
i (ūi) = ūT

i x̄; , i = 1, . . . ,m,

(2) −µihi(x̄) + (−µihi)
∗(v̄i) = v̄T

i x̄ , i = 1, . . . ,m,

(3) q̄T g(x̄) = 0,

(4) −(q̄T g)∗
(

−
m
∑

i=1

λi(ūi + v̄i)

)

=

(

m
∑

i=1

λi(ūi + v̄i)

)T

x̄.
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Proof. Let x̄ be an optimal solution of (Pµ,λ). According to Theorem 3.1,
there exists an optimal solution (ū, v̄, q̄) of (Dµ,λ) such that strong duality
holds,

m
∑

i=1

λi(fi(x̄) − µihi(x̄)) = −
m
∑

i=1

λif
∗
i (ūi) −

m
∑

i=1

λi(−µihi)
∗(v̄i)

− (q̄T g)∗

(

−
m
∑

i=1

λi(ūi + v̄i)

)

.

It follows

0 =
m
∑

i=1

λi

(

fi(x̄) − µihi(x̄) + f ∗
i (ūi) + (−µihi)

∗(v̄i)
)

+ (q̄T g)∗

(

−
m
∑

i=1

λi(ūi + v̄i)

)

.

This can be reformulated as

0 =
m
∑

i=1

λi

[

(fi(x̄) + f ∗
i (ūi) − ūT

i x̄) + (−µihi(x̄) + (−µihi)
∗(v̄i) − v̄T

i x̄)
]

+

(

m
∑

i=1

λi(ūi + v̄i)

)T

x̄ + q̄T g(x̄) − inf
x∈Rn





(

m
∑

i=1

λi(ūi + v̄i)

)T

x + q̄T g(x)





− q̄T g(x̄).

Because of λi > 0, i = 1, . . . ,m, g(x̄) 5 0, q̄ = 0, by applying the Young-
Fenchel inequality, the right-hand side of the previous relation is greater than
or equal to 0. Consequently, it must be equal to 0 and the conditions (1)−(4)
follow immediately.

4 The multiobjective Fenchel-Lagrange dual

Before introducing a multiobjective dual problem to (Pµ), let us notice that
(Dµ,λ) can be written equivalently as

sup
(u,v,q)∈Bµ,λ

{

m
∑

i=1

λi [−f ∗
i (ui) − (−µihi)

∗(vi)

−

(

1

mλi

· qT g

)∗
(

−
1

mλi

m
∑

j=1

λj(uj + vj)

)]}

,
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where

Bµ,λ = {(u, v, q) : u = (u1, . . . , um), ui ∈ R
n, i = 1, . . . ,m,

v = (v1, . . . , vm), vi ∈ R
n, i = 1, . . . ,m, q ∈ R

k, q = 0
}

.

By setting qi := 1
mλi

· q for i = 1, . . . ,m, we get
m
∑

i=1

λi qi = q = 0 and this

motivates the following dual to the problem (Pµ)

(Dµ) v- max
(u,v,q,λ,t)∈Bµ

Ψ(µ)(u, v, q, λ, t),

where

Ψ(µ)(u, v, q, λ, t) =
[

Ψ
(µ)
1 (u, v, q, λ, t), · · · , Ψ

(µ)
m (u, v, q, λ, t)

]T

,

Ψ
(µ)
i (u, v, q, λ, t) = − f ∗

i (ui) − (−µihi)
∗(vi)

− (qT
i g)∗

(

−
1

mλi

m
∑

j=1

λj(uj + vj)

)

+ ti,

the set of constraints is defined as

Bµ =

{

(u, v, q, λ, t) : λ ∈ int(Rm
+ ),

m
∑

i=1

λiqi = 0,
m
∑

i=1

λiti = 0

}

and the dual variables are u = (u1, . . . , um), ui ∈ R
n, v = (v1, . . . , vm), vi ∈

R
n, q = (q1, . . . , qm), qi ∈ R

k, i = 1, . . . ,m, λ = (λ1, . . . , λm)T ∈ int(Rm
+ ) and

t = (t1, . . . , tm)T ∈ R
m.

The efficient elements of (Dµ) are defined in an analogous manner as for
(P ).

Definition 4.1 (Efficiency for problem (Dµ)). An element (ū, v̄, q̄, λ̄, t̄) ∈ Bµ

is said to be efficient (or maximal) for (Dµ) if

{Ψ(µ)(ū, v̄, q̄, λ̄, t̄) + R
m
+} ∩ Ψ(µ)(Bµ) = {Ψ(µ)(ū, v̄, q̄, λ̄, t̄)}.

Theorem 4.1 (Weak duality). There is no (u, v, q, λ, t) ∈ Bµ and no x ∈ A
such that

Ψ(µ)(u, v, q, λ, t) = Φ(µ)(x),

and
Ψ(µ)(u, v, q, λ, t) 6= Φ(µ)(x).
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Proof. Assume there is x ∈ A and (u, v, q, λ, t) ∈ Bµ such that

Φ
(µ)
i (x) ≤ Ψ

(µ)
i (u, v, q, λ, t), ∀ i ∈ {1, . . . ,m}

and Φ
(µ)
j (x) < Ψ

(µ)
j (u, v, q, λ, t) for at least one j ∈ {1, . . . ,m}. Because

λ ∈ int(Rm
+ ), we get

m
∑

i=1

λiΦ
(µ)
i (x) <

m
∑

i=1

λiΨ
(µ)
i (u, v, q, λ, t). (2)

By the Young-Fenchel inequality it holds

−(qT
i g)∗

(

−
1

mλi

m
∑

j=1

λj(uj + vj)

)

≤ qT
i g(x) −

(

−
1

mλi

m
∑

j=1

λj(uj + vj)

)T

x,

for i = 1, . . . ,m. Applying the definition of conjugate functions we get

−
(

Φ
(µ)
i

)∗
(pi) = −(fi + (−µihi))

∗(pi) ≥ −f ∗
i (ui) − (−µihi)

∗(vi),

for arbitrary ui, vi ∈ R
n with ui + vi = pi , i = 1, . . . ,m. So we get the

following estimate

Ψ
(µ)
i (u, v, q, λ, t) ≤ −(Φ

(µ)
i )∗(pi) + ti + qT

i g(x) +

(

1

mλi

m
∑

j=1

λj(uj + vj)

)T

x,

for i = 1, . . . ,m. For λ ∈ int(Rm
+ ) it follows

m
∑

i=1

λiΨ
(µ)
i (u, v, q, λ, t) ≤−

m
∑

i=1

λi(Φ
(µ)
i )∗(pi) +

m
∑

i=1

λi(p
T
i x)

+
m
∑

i=1

λiti +

(

m
∑

i=1

λiqi

)T

g(x)

≤
m
∑

i=1

λiΦ
(µ)
i (x),

which is a direct conclusion of the Young-Fenchel inequality for Φi, i =

1, . . . ,m, and of the fact that
m
∑

i=1

λiti = 0 as well as
( m
∑

i=1

λiqi

)T

g(x) ≤ 0.

But this contradicts relation (2).

10



Theorem 4.2 (Strong duality). Let (CQ) be fulfilled and x̄ be a properly
efficient element of (Pµ). Then there exists an efficient solution (ū, v̄, q̄, λ̄, t̄)
∈ Bµ of (Dµ) and strong duality holds, i.e.

Φ(µ)(x̄) = Ψ(µ)(ū, v̄, q̄, λ̄, t̄).

Proof. Because x̄ is a properly efficient solution of (Pµ), there exists λ̄ ∈
int(Rm

+ ) such that x̄ solves

(Pµ,λ̄) inf
x∈A

m
∑

i=1

λ̄i(fi(x) − µihi(x)).

Since (CQ) is fulfilled, by Theorem 3.2 there exists an optimal solution
(ũ, ṽ, q̃) ∈ Bµ,λ̄ of problem (Dµ,λ̄) such that the optimality conditions (1)-
(4) in Theorem 3.2 are fulfilled.

Now a feasible solution (ū, v̄, q̄, λ̄, t̄) to problem (Dµ) will be constructed.
We are setting ū := ũ, v̄ := ṽ, λ̄ like above and

q̄i :=
1

mλ̄i

q̃, ∀i = 1, . . . ,m,

t̄i := (ūi + v̄i)
T x̄ + (q̄T

i g)∗

(

−
1

mλ̄i

m
∑

j=1

λ̄j(ūj + v̄j)

)

, ∀i = 1, . . . ,m.

We see that

m
∑

i=1

λ̄it̄i =

(

m
∑

i=1

λ̄i(ūi + v̄i)

)T

x̄ +
m
∑

i=1

λ̄i(q̄
T
i g)∗

(

−
1

mλ̄i

m
∑

j=1

λ̄j(ūj + v̄j)

)

=

(

m
∑

i=1

λ̄i(ūi + v̄i)

)T

x̄ +
m
∑

i=1

λ̄i

1

mλ̄i

(q̃T g)∗

(

−
m
∑

j=1

λ̄j(ūj + v̄j)

)

=

(

m
∑

i=1

λ̄i(ūi + v̄i)

)T

x̄ + (q̃T g)∗

(

−
m
∑

i=1

λ̄i(ūi + v̄i)

)

= 0 (by Theorem 3.2, (4)).

Moreover we have
m
∑

i=1

λ̄iq̄i =
m
∑

i=1

λ̄i

1

mλ̄i

q̃ = q̃ = 0.

This means that (ū, v̄, q̄, λ̄, t̄) ∈ Bµ.
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Furthermore for x̄ and (ū, v̄, q̄, λ̄, t̄) the equality of the objective values
holds, since

Ψ
(µ)
i (ū, v̄, q̄, λ̄, t̄) = − f ∗

i (ūi) − (−µihi)
∗(v̄i)

−
(

q̄T
i g
)∗

(

−
1

mλ̄i

m
∑

j=1

λ̄j(ūj + v̄j)

)

+ (ūi + v̄i)
T x̄ + (q̄T

i g)∗

(

−
1

mλ̄i

m
∑

j=1

λ̄j(ūj + v̄j)

)

= − f ∗
i (ūi) − (−µihi)

∗(v̄i) + (ūi + v̄i)
T x̄,

for i = 1, . . . ,m. Because of Theorem 3.2 (1) and (2), the right-hand side
equals fi(x̄) − µihi(x̄), for i = 1, . . . ,m, and it follows

Ψ
(µ)
i (ū, v̄, q̄, λ̄, t̄) = Φ

(µ)
i (x̄), i = 1, . . . ,m.

According to Theorem 4.1 we have weak duality, which means that the ele-
ment (ū, v̄, q̄, λ̄, t̄) is an efficient solution for (Dµ) and strong duality between
(Pµ) and (Dµ) holds.

In order to establish a converse duality theorem (following the steps of
Wanka and Boţ [17]), we need the following notations and lemmas presented
below.

For λ ∈ int(Rm
+ ) let us denote

Bλ :=

{

(u, v, q, t) :
m
∑

i=1

λiqi = 0,
m
∑

i=1

λiti = 0

}

,

where u = (u1, . . . , um), v = (v1, . . . , vm), q = (q1, . . . , qm), t = (t1, . . . , tm)T ,
ui ∈ R

m, vi ∈ R
m, qi ∈ R

k, ti ∈ R, i = 1, . . . ,m. Furthermore, let us define

M :=
{

a ∈ R
m : ∃λ ∈ int(Rm

+ ), ∃ (u, v, q, t) ∈ Bλ

such that
m
∑

i=1

λiai =
m
∑

i=1

λiΨ
(µ)
i (u, v, q, λ, t)

}

.

The following two lemmas have been proved in a some different context
by Wanka and Boţ (see Proposition 1 and 2 in [17]).

Lemma 4.1. It holds Ψ(µ)(Bµ) ∩ R
m = M .

12



Proof. From the definition it follows directly Ψ(µ)(Bµ) ∩ R
m ⊆ M . What

remains to show is the inverse inclusion.
Let a ∈ M . Thus there exist λ ∈ int(Rm

+ ) and (u, v, q, t) ∈ Bλ such that

m
∑

i=1

λiai =
m
∑

i=1

λiΨ
(µ)
i (u, v, q, λ, t)

= −
m
∑

i=1

λif
∗
i (ui) −

m
∑

i=1

λi(−µihi)
∗(vi)

−
m
∑

i=1

λi(q
T
i g)∗

(

−
1

mλi

m
∑

j=1

λj(uj + vj)

)

+
m
∑

i=1

λiti.

Defining

t̄i := ai + f ∗
i (ui) + (−µihi)

∗(vi) + (qT
i g)∗

(

−
1

mλi

m
∑

j=1

λj(uj + vj)

)

,

for i = 1, . . . ,m, we see that
m
∑

i=1

λit̄i = 0, which means (u, v, q, λ, t̄) ∈ Bµ.

Thus

ai = −f ∗
i (ui) − (−µihi)

∗(vi) − (qT
i g)∗

(

−
1

mλi

m
∑

j=1

λj(uj + vj)

)

+ t̄i.

In conclusion a = Ψ(µ)(u, v, q, λ, t̄) ∈ Ψ(µ)(Bµ) and we have the inclusion
M ⊆ Ψ(µ)(Bµ) ∩ R

m, which finishes the proof.

Lemma 4.2. An element ā ∈ R
m is efficient in M if and only if for every

a ∈ M with corresponding λa ∈ int R
m
+ and (ua, va, qa, ta) ∈ Bλa it holds

m
∑

i=1

λa
i āi ≥

m
∑

i=1

λa
i ai.

Proof. ”⇐”:
Assume that ā is not efficient in M , namely there exists a ∈ M such that
a ∈ ā + R

m
+\{0}. For the corresponding λa ∈ int(Rm

+ ) it holds

m
∑

i=1

λa
i āi <

m
∑

i=1

λa
i ai,

which contradicts the assertion.
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”⇒”:
Let ā be maximal in M and take an arbitrary a ∈ M with corresponding
λa ∈ int R

m
+ and (ua, va, qa, ta) ∈ Bλa . Further, let be an arbitrary b ∈ R

m,
b ∈ ā + R

m
+\{0}. Assume

m
∑

i=1

λa
i ai ≥

m
∑

i=1

λa
i bi.

If the above relation is fulfilled with equality, i.e.
m
∑

i=1

λa
i ai =

m
∑

i=1

λa
i bi, we must

have that b ∈ M and this contradicts the maximality of ā in M .

If
m
∑

i=1

λa
i ai >

m
∑

i=1

λa
i bi, we can choose ci ∈ R such that ci > ai and ci > bi, i =

1, . . . ,m. It follows

c :=
m
∑

i=1

λa
i ci >

m
∑

i=1

λa
i ai > b :=

m
∑

i=1

λa
i bi,

which implies that there exists an r ∈ (0, 1) such that
m
∑

i=1

λa
i ai = (1− r)b+ rc

or, equivalently,
m
∑

i=1

λa
i ai =

m
∑

i=1

λa
i [(1− r)bi + rci], consequently (1− r)b+ rc ∈

M .
On the other hand,

(1 − r)b + rc = r(c − b) + b ∈ R
m
+\{0} + (ā + R

m
+\{0}).

This contradicts the maximality of ā in M .
Summarizing, it holds for all b ∈ ā + R

m
+\{0}

m
∑

i=1

λa
i ai <

m
∑

i=1

λa
i bi.

Let b converge to ā and so one gets

m
∑

i=1

λa
i āi = inf

{

m
∑

i=1

λa
i bi : b ∈ ā + R

m
+\{0}

}

≥
m
∑

i=1

λa
i ai.

Next we deal with the converse duality theorem. Therefore we need the
following condition.
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Definition 4.2. Let be λ ∈ int(Rm
+ ). The condition (Cµ,λ) is fulfilled when

from

inf
x∈A

m
∑

i=1

λiΦ
(µ)
i (x) > −∞

it follows that there exists xλ ∈ A such that

inf
x∈A

m
∑

i=1

λiΦ
(µ)
i (x) =

m
∑

i=1

λiΦ
(µ)
i (xλ).

This means that (Pµ,λ) has a solution if inf(Pµ,λ) > −∞.

Now the converse duality theorem for (Pµ) can be formulated extending
Theorem 5 in [17].

Theorem 4.3. Let (CQ) be fulfilled and assume that (Cµ,λ) holds for all
λ ∈ int(Rm

+ ).

(1) Let (ū, v̄, q̄, λ̄, t̄) be an efficient solution of (Dµ). Then

(a) Ψ(µ)(ū, v̄, q̄, λ̄, t̄) ∈ cl(Φ(µ)(A) + R
m
+ );

(b) it exists a properly efficient solution x̄λ̄ ∈ A of (Pµ) such that

m
∑

i=1

λ̄i[Φ
(µ)
i (x̄λ̄) − Ψ

(µ)
i (ū, v̄, q̄, λ̄, t̄)] = 0.

(2) If, additionally, Φ(µ)(A) is R
m
+ -closed (Φ(µ)(A) + R

m
+ is closed), then

there exists a properly efficient solution x̄ ∈ A of (Pµ) such that

m
∑

i=1

λ̄iΦ
(µ)
i (x̄λ̄) =

m
∑

i=1

λ̄iΦ
(µ)
i (x̄),

and
Φ(µ)(x̄) = Ψ(µ)(ū, v̄, q̄, λ̄, t̄).

Proof.

(1) Let us denote ā := Ψ(µ)(ū, v̄, q̄, λ̄, t̄). Since ā is maximal in Ψ(µ)(Bµ),
we have that ā ∈ Ψ(µ)(Bµ) ∩ R

m = M .

Assume that ā /∈ cl(Φ(µ)(A) + R
m
+ ). Then there exists λ1 ∈ R

m\{0}
and an α ∈ R such that

m
∑

i=1

λ1
i āi < α ≤

m
∑

i=1

λ1
i di, ∀ d ∈ cl(Φ(µ)(A) + R

m
+ ).
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It is obvious that λ1 ∈ R
m
+\{0}.

As ā ∈ M , there exist a corresponding λā ∈ int(Rm
+ ) and an element

(uā, vā, qā, tā) ∈ Bλā such that
m
∑

i=1

λā
i āi =

m
∑

i=1

λā
i Ψ

(µ)
i (uā, vā, qā, tā). Be-

cause of the weak duality theorem, there is

m
∑

i=1

λā
i āi =

m
∑

i=1

λā
i Ψ

(µ)
i (uā, vā, qā, tā) ≤

m
∑

i=1

λā
i di, ∀ d ∈ cl(Φ(µ)(A)+R

m
+ ).

Choosing a fixed s ∈ (0, 1) and setting λ∗ := s λ1 + (1 − s)λā ∈
int(Rm

+ ), we get

m
∑

i=1

λ∗
i āi <

m
∑

i=1

λ∗
i di, ∀ d ∈ cl(Φ(µ)(A) + R

m
+ ),

which implies that ∀x ∈ A

m
∑

i=1

λ∗
i āi <

m
∑

i=1

λ∗
i Φ

(µ)
i (x). (3)

Since (Cµ,λ) is fulfilled, Definition 4.2 and inequality (3) ensure the
existence of an optimal solution xλ∗ ∈ A of problem (Pµ,λ∗) which is
even properly efficient for (Pµ). (CQ) is fulfilled as well, so according
to Theorem 4.2 there exists an efficient solution for problem (Dµ), say
(uλ∗ , vλ∗ , qλ∗ , λ

∗, tλ∗), such that

Φ(µ)(xλ∗) = Ψ(µ)(uλ∗ , vλ∗ , qλ∗ , λ
∗, tλ∗) ∈ Ψ(µ)(Bµ) ∩ R

m = M.

Due to the fact that ā is efficient in M , we get from Lemma 4.2

m
∑

i=1

λ∗
i āi ≥

m
∑

i=1

λ∗
i Φ

(µ)
i (xλ∗),

which contradicts inequality (3). Thus

ā = Ψ(µ)(ū, v̄, q̄, λ̄, t̄) ∈ cl(Φ(µ)(A) + R
m
+ ).

Taking into account again the weak duality we have for each x ∈ A

m
∑

i=1

λ̄iΦ
(µ)
i (x) ≥

m
∑

i=1

λ̄iāi,
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and so (Cµ,λ̄) ensures that the optimal objective value of (Pµ,λ̄) is at-
tained, i.e. there exists a properly efficient solution x̄λ̄ ∈ A of (Pµ).
For x̄λ̄ the following inequalities hold

m
∑

i=1

λ̄iāi ≤
m
∑

i=1

λ̄iΦ
(µ)
i (x̄λ̄) = inf

x∈A

m
∑

i=1

λ̄iΦ
(µ)
i (x)

≤
m
∑

i=1

λ̄i

(

Φ
(µ)
i (xn) + kn

i

)

, ∀n ≥ 1

where (xn)n≥1 ⊆ A and (kn)n≥1 ⊆ R
m
+ are sequences with the property

that Φ(µ)(xn) + kn → ā as n → ∞. Their existence follows from
ā ∈ cl(Φ(µ)(A) + R

m
+ ).

If n → ∞, it follows that

m
∑

i=1

λ̄iΦ
(µ)
i (x̄λ̄) =

m
∑

i=1

λ̄iāi =
m
∑

i=1

λ̄iΨ
(µ)
i (ū, v̄, q̄, λ̄, t̄).

(2) If Φ(µ)(A) + R
m
+ is closed, we have from the first part of the proof that

ā ∈ cl(Φ(µ)(A) + R
m
+ ) = Φ(µ)(A) + R

m
+ . Again, because of the weak

duality theorem (Theorem 4.1), we have ā ∈ Φ(µ)(A), meaning that
there is an x̄ ∈ A such that Φ(µ)(x̄) = ā = Ψ(µ)(ū, v̄, q̄, λ̄, t̄).
Thus x̄ is properly efficient and it holds

m
∑

i=1

λ̄iΦ
(µ)
i (x̄λ̄) =

m
∑

i=1

λ̄iΦ
(µ)
i (x̄).

The last two theorems give some dual characterizations for the efficient
solutions of the primal multiobjective problem (P ). They follow from The-
orem 2.3 together with the strong duality and converse duality assertions
Theorem 4.2 and Theorem 4.3, respectively.

Theorem 4.4. Let (CQ) be fulfilled and x̄ ∈ A be properly efficient in the

sense of Geoffrion for problem (P ) with µ̄i := fi(x̄)
hi(x̄)

≥ 0, i = 1, . . . ,m. Let

be µ̄ := (µ̄1, . . . , µ̄m)T . Then x̄ is properly efficient for (Pµ̄), there exists
(ū, v̄, q̄, λ̄, t̄) ∈ Bµ̄ that is efficient for (Dµ̄) and strong duality between (Pµ̄)
and (Dµ̄) holds.
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Theorem 4.5. Let (CQ) be fulfilled and µ̄ ∈ R
m
+ be such that the set Φµ̄(A)

is R
m
+ -closed. Moreover, assume that (Cµ̄,λ) holds for all λ ∈ int(Rm

+ ). Let
(ū, v̄, q̄, λ̄, t̄) be an efficient solution for (Dµ̄). Then there exists a properly
efficient solution x̄ ∈ A for (Pµ̄) and strong duality between (Pµ̄) and (Dµ̄)
holds. If Φ(x̄) = µ̄, then x̄ is properly efficient in the sense of Geoffrion for
(P ).

5 An example

We study the applicability of the converse duality result by considering a
theoretical example. Let the primal problem be defined as follows

(P ) v- min
x∈A

Φ(x),

where

Φ(x) =
[5x + 6

2x + 3
,

x + 1

5x + 2

]T

and
A = {x ∈ R : g(x) := −x ≤ 0} = [0,∞).

The corresponding parametric problem (Pµ) will be

(Pµ) v- min
x∈A

Φ(µ)(x),

where µ = (µ1, µ2)
T and

Φ(µ)(x) =

[

5x + 6 − 2µ1x − 3µ1

x + 1 − 5µ2x − 2µ2

]

=

[

(5 − 2µ1) x + 6 − 3µ1

(1 − 5µ2) x + 1 − 2µ2

]

, x ∈ R
n.

Then the dual (Dµ) looks like

(Dµ) v- max
(u,v,q,λ,t)∈Bµ

Ψ(µ)(u, v, q, λ, t) = v- max
(u,v,q,λ,t)∈Bµ

[

Ψ
(µ)
1 (u, v, q, λ, t)

Ψ
(µ)
2 (u, v, q, λ, t)

]

,

where
Ψ

(µ)
i (u, v, q, λ, ti) = −f ∗

i (ui) − (−µihi)
∗(vi)

−(qig)∗

(

−
1

2λi

2
∑

j=1

λj(uj + vj)

)

+ ti,
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for i = 1, 2. The conjugate functions of fi and hi, i = 1, 2, can be easily
calculated

f ∗
1 (u1) =

{

−6, if u1 = 5,

+∞, otherwise,

f ∗
2 (u2) =

{

−1, if u2 = 1,

+∞, otherwise,

(−µ1h1)
∗(v1) =

{

3µ1, if v1 = −2µ1,

+∞, otherwise,

(−µ2h2)
∗(v2) =

{

2µ2, if v2 = −5µ2,

+∞, otherwise.

Thus the two objective functions of the dual problem are greater than −∞
only if u = (5, 1) and v = (−2µ1,−5µ2). Furthermore,

(qig)∗

(

−
1

2λi

2
∑

j=1

λj(uj + vj)

)

=











0, if qi = 1
2λi

2
∑

j=1

λj(uj + vj),

∞, otherwise,

for i = 1, 2. Therefore the dual problem (Dµ) becomes

v- max
(q,λ,t)∈Bµ

Ψ(µ)(q, λ, t),

where

Ψ
(µ)
1 (q, λ, t) = 6 − 3µ1 + t1,

Ψ
(µ)
2 (q, λ, t) = 1 − 2µ2 + t2,

and

Bµ =
{

(q, λ, t) : λi > 0, qi ≥ 0, i = 1, 2,
2
∑

i=1

λiti = 0,

2λ1q1 = 2λ2q2 = λ1(5 − 2µ1) + λ2(1 − 5µ2)
}

.

Choosing µ̄ = (2, 1
2
)T , we see that (q̄, λ̄, t̄) is feasible for (Dµ̄) with q̄ = ( 1

5
, 1

2
)T ,

λ̄ = (5, 2)T and t̄ = (0, 0)T . Furthermore, the objective value Ψ(µ̄)(q̄, λ̄, t̄) =
[0, 0]T can not be improved (in the sense of efficiency) without violating the

19



constraints, i.e. (q̄, λ̄, t̄) is efficient for (Dµ̄).
For µ̄ = (2, 1

2
)T the primal objective function Φ(µ̄) can be written as

Φ(µ̄)(x) =

[

x
−3

2
x

]

.

We see that x̄ = 0 ∈ A is the only element satisfying Φ(µ̄)(x) = [0, 0]T .
Obviously, the condition (CQ) is fulfilled, (Cµ̄,λ) holds for all λ ∈ int(R2

+)
and Φ(µ̄)(A) is R

2
+-closed. By Theorem 4.5 it follows that x̄ = 0 is properly

efficient for (Pµ̄).
Furthermore, it holds

Φ(0) =

[

2
1
2

]

= µ̄

and the same theorem ensures that x̄ is properly efficient in the sense of
Geoffrion for (P ).
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