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Abstract. Given an optimization problem with a composite of a convex and com-
ponentwise increasing function with a convex vector function as objective function,
by means of the conjugacy approach based on the perturbation theory, we determine
a dual to it. Necessary and sufficient optimality conditions are derived using strong
duality. Furthermore, as special case of this problem, we consider a location problem,
where the ”distances” are measured by gauges of closed convex sets. We prove that
the geometric characterization of the set of optimal solutions for this location problem
given by Hinojosa and Puerto in a recently published paper can be obtained via the
presented dual problem. Finally, the Weber and the minmax location problems with
gauges are given as applications.
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1 Introduction

Location problems play an important role in a lot of fields of applications, as they ap-
pear in many areas such as transportation planning, industrial engineering, telecom-
munication, computer science, etc. A lot of research has been carried out in location
analysis, the results of these problems being to locate some items, to optimize trans-
portation costs, to minimize covered distances etc. Among the large number of papers
and books dealing with location analysis we mention [2], [5], [6], [8], [9], [10] and [16].

This paper is based on the work of Y. Hinojosa and J. Puerto [6], in which the au-
thors introduced a location problem, where the ”distances” were measured by gauges
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of closed (not necessarily bounded) convex sets. For this problem the authors ob-
tained a characterization of the set of optimal solutions and gave some methods to
solve it.

The goal of our paper is to treat the problem introduced in [6] by means of duality.
On the other hand, we show how it is possible to derive the optimality conditions for
this optimization problem via strong duality.

In order to do this we consider at first a more general optimization problem,
and then we particularize the results for the location problems in [6]. The objective
function of the original optimization problem we consider is a composite of a convex
and componentwise increasing function with a convex vector function. Applying the
Fenchel-Rockafellar duality concept based on conjugacy and perturbations (cf. [3]),
we construct a dual problem to it and we prove the strong duality. Then, by means
of strong duality, we derive the optimality conditions for the primal optimization
problem.

Afterwards, we study optimization problems with monotonic gauges as objective
functions as particular cases of the general problem treated before. Analogously to
the general problem, we construct a dual problem and prove the strong duality, and
then we derive the optimality conditions.

In Section 5 we consider the optimization problem treated by Y. Hinojosa and J.
Puerto in [6]. The obtained optimality conditions turn out to be the same as in [6].
The sections 6 and 7 are devoted to the specialization of the Weber and the minmax
problem with gauges, respectively.

In the past most of the references concerning location problems have considered
distances induced by norms, but recently some papers have been published that con-
sider the use of gauges like [4], [12] and [17]. These lead to more general models, for
example to model situations where the symmetry property of a norm does not make
sense.

2 Notations and preliminary results

In this section we provide some definitions and results that we shall use in the sequel.
As usual, Rn denotes the n-dimensional real space, for n ∈ N. Throughout this paper
all the vectors are considered as column vectors belonging to Rn, unless otherwise
specified. An upper index T transposes a column vector to a raw one and viceversa.

The inner product of two vectors x =
(
x1, ..., xn

)T
and y =

(
y1, ..., yn

)T
in the n-

dimensional real space is denoted xT y =
∑n

i=1 xiyi. Now we recall the concepts of
gauges and polar sets and we relate them with some other concepts of convex analysis.

Definition 2.1. Let C ⊆ Rn be a closed convex set containing the origin. The
function γC defined by

γC(x) := inf
{
α > 0 : x ∈ αC

}
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is called the gauge of C. The set C is called the unit ball associated with γC . As usual,
we set γC(x) := +∞, if there is no α > 0 such that x ∈ αC.

Definition 2.2. Let C ⊆ Rn be a closed convex set containing the origin. The
set given by

C0 = {y ∈ Rn : yT x ≤ 1, ∀x ∈ C}
is called the polar set of C.

Remark 2.3. C0 is a closed convex set containing the origin.

Definition 2.4. Let C ⊆ Rn be a convex set. The function σC given by

σC(y) := sup{yT x : x ∈ C}

is called the support function of C.

Theorem 2.5. ([7]) Let C be a closed convex set containing the origin. Then

(i) its gauge γC is a nonnegative closed sublinear function,

(ii) {x ∈ Rn : γC(x) ≤ r} = rC, for all r > 0.

Proposition 2.6. ([7]) Let C be a closed convex set containing the origin. Its gauge
γC is the support function of the set C0, namely

γC(x) = σC0(x) = sup{yT x : y ∈ C0}.

Corollary 2.7. ([7]) Let C be a closed convex set containing the origin. Its support
function σC is the gauge of C0 and is denoted by γC0 , i.e.

σC(y) = γC0(y) = inf
{
α > 0 : y ∈ αC0

}
.

Proposition 2.8. The conjugate function γ∗C : Rn → R ∪ {+∞} of γC verifies

γ∗C(y) =

{
0, if y ∈ C0,
+∞, otherwise,

where C0 is the polar set of C.

Proof. By the definition of the conjugate function of γC(x) we get

γ∗C(y) = sup
x∈Rn

{
yT x− γC(x)

}
= sup

x∈Rn

{
yT x− inf

{
α > 0 : x ∈ αC

}}
= sup

x∈Rn

{
yT x + sup

α>0,

x∈αC

(−α)
}

= sup
α>0,

x∈αC

{
yT x− α

}
= sup

α>0,

z∈C

{
yT (αz)− α

}
= sup

α>0
α
{

sup
z∈C

{
yT z − 1

}}
=

{
0, if y ∈ C0,
+∞, otherwise. �
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Remark 2.9. By Theorem 2.5 and Remark 2.3 the fact that y ∈ C0 is equivalent to

the inequality γC0(y) ≤ 1, so, one can write γ∗C(y) =

{
0, if γC0(y) ≤ 1,
+∞, otherwise.

3 The optimization problem with a composed con-

vex function as objective function

Let (X, ‖ · ‖) be a normed space and X∗ the topological dual space of X. 〈x∗, x〉
will denote the value at x ∈ X of the continuous linear functional x∗ ∈ X∗. Further,
let gi : X → R, i = 1, . . . ,m, be convex and continuous functions and f : Rm → R
be a convex and componentwise increasing function, i.e. for y = (y1, . . . , ym)T , z =
(z1, . . . , zm)T ∈ Rm,

yi ≥ zi, i = 1, . . . ,m ⇒ f(y) ≥ f(z).

The optimization problem which we consider is the following one

(P ) inf
x∈X

f(g(x)),

where g : X → Rm, g(x) = (g1(x), . . . , gm(x))T .
In this section we find out a dual problem to (P ) and prove the existence of weak

and strong duality. Moreover, by means of strong duality we derive the optimality
conditions for (P ).

The approach, we use to find a dual problem to (P ), is the so-called Fenchel-
Rockafellar approach and it was very well described in [3] and [11]. It offers the
possibility to construct different dual problems to a primal optimization problem by
perturbing it in different ways (cf. [13], [14] and [15]).

In order to find a dual problem to (P ) we consider the following perturbation
function Ψ : X × . . .×X︸ ︷︷ ︸

m+1

×Rm → R,

Ψ(x, q, d) = f((g1(x + q1), . . . , gm(x + qm))T + d),

where q = (q1, . . . , qm) ∈ X × . . . × X and d ∈ Rm are the so-called perturbation
variables.

Then the dual problem to (P ), obtained by using the perturbation function Ψ, is

(D) sup
λ∈Rm,pi∈X∗,

i=1,...,m

{−Ψ∗(0, p, λ)},

where Ψ∗ : X∗ × . . .×X∗︸ ︷︷ ︸
m+1

×Rm → R ∪ {+∞} is the conjugate function of Ψ. Here,

pi, i = 1, ...,m, and λ ∈ Rm are the dual variables.

4



We recall that for a function h : Y → R, Y being a Hausdorff locally convex
vector space, its conjugate function h∗ : Y ∗ → R ∪ {+∞} has the form h∗(y∗) =
sup
y∈Y

{〈y∗, y〉 − h(y)}. Y ∗ is the topological dual space to Y .

Therefore the conjugate function of Ψ can be calculated by the following formula

Ψ∗(x∗, p, λ) = sup
qi∈X,i=1,...,m,

x∈X,d∈Rm

{
〈x∗, x〉+

m∑
i=1

〈pi, qi〉+ λT d

−f((g1(x + q1), . . . , gm(x + qm))T + d)
}

.

To treat this expression we introduce at first the new variable t instead of d and then
the new variables ri instead of qi by

t = d + (g1(x + q1), . . . , gm(x + qm))T ∈ Rm

and
ri = x + qi ∈ X, i = 1, ...,m.

This implies

Ψ∗(x∗, p, λ) = sup
qi∈X,i=1,...,m,

x∈X,t∈Rm

{
〈x∗, x〉+

m∑
i=1

〈pi, qi〉

+λT
(
t− (g1(x + q1), . . . , gm(x + qm))T

)
− f(t)

}
= sup

ri∈X,i=1,...,m,
x∈X

{
〈x∗, x〉+

m∑
i=1

〈pi, ri − x〉

−λT
(
(g1(r1), . . . , gm(rm))T

)}
+ sup

t∈Rm

{λT t− f(t)}

=
m∑

i=1

sup
ri∈X

{〈pi, ri〉 − λigi(ri)}+ sup
x∈X

〈
x∗ −

m∑
i=1

pi, x

〉
+f ∗(λ)

= f ∗(λ) +
m∑

i=1

(λigi)
∗(pi) + sup

x∈X

〈
x∗ −

m∑
i=1

pi, x

〉
.

We have now to consider x∗ = 0 and, so, the dual problem of (P ) has the following
form

(D) sup
λ∈Rm,pi∈X∗,

i=1,...,m

{
−f ∗(λ)−

m∑
i=1

(λigi)
∗(pi) + inf

x∈X

〈
m∑

i=1

pi, x

〉}
.
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In the objective function of (D), if
m∑

i=1

pi 6= 0X∗ , there exists x0 ∈ X, x0 6= 0X , such

that

〈
m∑

i=1

pi, x0

〉
< 0. But, for all α > 0 we have

inf
x∈X

〈
m∑

i=1

pi, x

〉
< α ·

〈
m∑

i=1

pi, x0

〉
,

and this means that, in this case, inf
x∈X

〈
m∑

i=1

pi, x

〉
= −∞.

In conclusion, in order to have the supremum in (D), we must consider
m∑

i=1

pi = 0.

By this, the dual problem of (P ) is

(D) sup
λ∈Rm,pi∈X∗,

i=1,...,m,
mP

i=1
pi=0

{
−f ∗(λ)−

m∑
i=1

(λigi)
∗(pi)

}
. (1)

Now, let us point out a property of the conjugate of a componentwise increasing
function.

Proposition 3.1. Let be f : Rm → R a componentwise increasing function. Then
f ∗(λ) = +∞ for all λ ∈ Rm \ Rm

+ .

Proof. Let be λ ∈ Rm \ Rm
+ . Then there exists at least one i ∈ {1, ...,m} such

that λi < 0. But

f ∗(λ) = sup
d∈Rm

{
λT d− f(d)

}
≥ sup

d=(0,...,di,...,0),

di∈R

{
λidi − f(0, ..., di, ..., 0)

}
,

this means that

f ∗(λ) ≥ sup
di∈R

{
λidi − f(0, ..., di, ..., 0)

}
≥ sup

di<0

{
λidi − f(0, ..., di, ...0)

}
≥ sup

di<0

{
λidi

}
− f(0, ..., 0) = +∞,

i.e. f ∗(λ) = +∞, ∀ λ ∈ Rm \ Rm
+ . �

By Proposition 3.1, the dual problem of (P ) becomes

(D) sup
λ∈Rm

+ ,pi∈X∗,

i=1,...,m,
mP

i=1
pi=0

{
−f ∗(λ)−

m∑
i=1

(λigi)
∗(pi)

}
.
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Let us point out that, by the Fenchel-Rockafellar approach, between (P ) and (D)
weak duality, i.e. inf(P ) ≥ sup(D), always holds (cf. [3]).

But, we are interested in the existence of strong duality inf(P ) = max(D). This
can be shown by proving that the problem (P ) is stable (cf. [3]). Therefore, we show
that the stability criterion described in Proposition III.2.3 in [3] is fulfilled. For the
beginning we need the following proposition.

Proposition 3.2. The function Ψ : X × . . .×X︸ ︷︷ ︸
m+1

×Rm → R,

Ψ(x, q, d) = f((g1(x + q1), . . . , gm(x + qm))T + d)

is convex.
The convexity of Ψ follows from the convexity of the functions f and g and the fact
that f is a componentwise increasing function.

Theorem 3.3. (strong duality for (P )) If inf(P ) > −∞, then the dual prob-
lem has an optimal solution and strong duality holds, i.e.

inf(P ) = max(D).

Proof. By Proposition 3.2, we have that the perturbation function Ψ is convex.
Moreover, inf(P ) is a finite number and the function

(q1, . . . , qm, d) −→ Ψ(0, q1, . . . , qm, d)

is finite and continuous in (0, ..., 0︸ ︷︷ ︸
m

, 0Rm) ∈ X × . . .×X︸ ︷︷ ︸
m

×Rm. This means that the

stability criterion in Proposition III.2.3 in [3] is fulfilled, which implies that the prob-
lem (P ) is stable. Finally, the Propositions IV.2.1 and IV.2.2 in [3] lead to the desired
conclusions. �

The structure of the problem (P ) looks like a scalarization of a vector optimization
problem by means of the monotonic function f . The results concerning duality for
the problem (P ) could be used to derive duality statements in the multiobjective
optimization. But, this is the subject of some of our present research.

The last part of this section is devoted to the presentation of the optimality con-
ditions for the primal problem (P ). They are derived, by the use of the equality
between the optimal values of the primal and dual problem.

Theorem 3.4. (optimality conditions for (P ))

(1) Let x̄ ∈ X be an optimal solution to (P ). Then there exist p̄i ∈ X∗, i = 1, ...,m,
and λ̄ ∈ Rm

+ , such that (λ̄, p̄1, . . . , p̄m) is an optimal solution to (D) and the
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following optimality conditions are satisfied

(i) f(g(x̄)) + f ∗(λ̄) =
m∑

i=1

λ̄igi(x̄),

(ii) λ̄igi(x̄) + (λ̄igi)
∗(p̄i) = 〈p̄i, x̄〉 , i = 1, . . . ,m,

(iii)
m∑

i=1

p̄i = 0.

(2) If x̄ ∈ X, (λ̄, p̄1, . . . , p̄m) is feasible to (D) and (i)-(iii) are fulfilled, then x̄ is an
optimal solution to (P ), (λ̄, p̄1, . . . , p̄m) is an optimal solution to (D) and strong
duality holds

f(g(x̄)) = −f ∗(λ̄)−
m∑

i=1

(λ̄igi)
∗(p̄i).

Proof. (1) By Theorem 3.3 follows that there exist p̄i ∈ X∗, i = 1, ...,m, and λ̄ ∈ Rm
+ ,

such that (λ̄, p̄1, . . . , p̄m) is a solution to (D) and inf(P ) = max(D). This means that
m∑

i=1

p̄i = 0 and

f(g(x̄)) = −f ∗(λ̄)−
m∑

i=1

(λ̄igi)
∗(p̄i). (2)

The last equality is equivalent to

0 = f(g(x̄)) + f ∗(λ̄)−
m∑

i=1

λ̄igi(x̄) +
m∑

i=1

[λ̄igi(x̄) + (λ̄igi)
∗(p̄i)− 〈p̄i, x̄〉]. (3)

From the definition of the conjugate functions we have that the following so-called
Young-inequalities

f(g(x̄)) + f ∗(λ̄) ≥ λ̄T g(x̄) =
m∑

i=1

λ̄igi(x̄) (4)

and

λ̄igi(x̄) + (λ̄igi)
∗(p̄i) ≥ 〈p̄i, x̄〉 , i = 1, . . . ,m, (5)

are true. By (4) and (5) all the terms of the sum in (3) must be equal to zero. In
conclusion, the equalities in (i) and (ii) must hold.
(2) All the calculations and transformations done within part (1) may be carried
out in the inverse direction starting from the conditions (i), (ii) and (iii). Thus the
equality (2) results, which is the strong duality and shows that x̄ solves (P ) and
(λ̄, p̄1, . . . , p̄m) solves (D). �

8



4 The case of monotonic gauges

In this section we give an application to the problem presented above. Therefore, let
γC : Rm → R be a monotonic gauge of a closed convex set C containing the origin.
Recall that γC is a monotonic gauge on Rm (cf. [1]), if γC(u) ≤ γC(v) for every u and
v in Rm satisfying |ui| ≤ |vi| for each i = 1, ...,m.
As in the Section 3 X is assumed to be a normed space and g : X → Rm, g(x) =
(g1(x), . . . , gm(x))T , where gi, i = 1, ...,m, are convex and continuous functions.

Let us introduce now the following primal problem

(PγC
) inf

x∈X
γ+

C (g(x)),

where γ+
C : Rm → R, γ+

C (t) := γC(t+), with t+ = (t+1 , ..., t+m)T and t+i =max{0, ti},
i = 1, ...,m.

Proposition 4.1. The function γ+
C : Rm → R is convex and componentwise in-

creasing.

Proof. First, let us point out that the function (·)+ : Rm → Rm
+ , defined by

t+ = (t+1 , ..., t+m)T , for t ∈ Rm, is a convex function. This means that, for u, v ∈ Rm

and α ∈ [0, 1], it holds

(αu + (1− α)v)+ 5 αu+ + (1− α)v+.

Here, ” 5 ” is the ordering induced on Rm by the cone of non-negative elements Rm
+ .

By the positive sublinearity and monotonicity of the gauge γC , we have for u, v ∈ Rm

and α ∈ [0, 1],

γ+
C (αu + (1− α)v) = γC((αu + (1− α)v)+) ≤ γC(αu+ + (1− α)v+)

≤ αγC(u+) + (1− α)γC(v+) = αγ+
C (u) + (1− α)γ+

C (v).

This means that the function γ+
C is convex.

In order to prove that γ+
C is componentwise increasing, let u, v ∈ Rm be such that

ui ≤ vi, i = 1, ...,m. It follows u+
i ≤ v+

i , which implies that |u+
i | ≤ |v+

i |, i =
1, ...,m. γC being a monotonic gauge, we have γC(u+) ≤ γC(v+), where u+ =
(u+

1 , ..., u+
m)T , v+ = (v+

1 , ..., v+
m)T or, equivalently, γ+

C (u) ≤ γ+
C (v).

Hence the function γ+
C is componentwise increasing. �

By the approach described in Section 3, a dual problem to (PγC
) is

(DγC
) sup

λ∈Rm
+ , pi∈X∗,

i=1,...,m,
mP

i=1
pi=0

{
−(γ+

C )∗(λ)−
m∑

i=1

(λigi)
∗(pi)

}
.
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Proposition 4.2. The conjugate function (γ+
C )∗ : Rm → R ∪ {+∞} of γ+

C verifies

(γ+
C )∗(λ) =

{
0, if λ ∈ Rm

+ and γC0(λ) ≤ 1,
+∞, otherwise,

where γC0 is the gauge of the polar set C0.

Proof. For λ ∈ Rm \ Rm
+ the assertion is a consequence of Proposition 3.1 and

Proposition 4.1.
Let be λ ∈ Rm

+ . For t ∈ Rm, we have |ti| ≥ |t+i |, i = 1, ...,m, which implies that
γC(t) ≥ γC(t+) = γ+

C (t) and

γ∗C(λ) = sup
t∈Rm

{λT t− γC(t)} ≤ sup
t∈Rm

{λT t− γ+
C (t)} = (γ+

C )∗(λ). (6)

On the other hand, for the conjugate of the gauge γC we have the following formula
(see Remark 2.9)

γ∗C(λ) = sup
t∈Rm

{λT t− γC(t)} =

{
0, if γC0(λ) ≤ 1,
+∞, otherwise.

(7)

If γC0(λ) > 1, we have that +∞ = γ∗C(λ) ≤ (γ+
C )∗(λ). From here, (γ+

C )∗(λ) = +∞.
Let be now γC0(λ) ≤ 1. Because λ = 0, it follows that λT t ≤ λT t+, for every t ∈ Rm.
Furthermore, by Theorem 2.5, from γC0(λ) ≤ 1 it follows that λ ∈ C0 and then by
Proposition 2.6 we obtain that λT t+ ≤ γC(t+). From these inequalities we obtain for
the conjugate function of γ+

C

0 ≤ γ∗C(λ) ≤ (γ+
C )∗(λ) = sup

t∈Rm

{λT t− γC(t+)} ≤ sup
t∈Rm

{λT t+ − γC(t+)} ≤ 0.

Consequently, there is (γ+
C )∗(λ) = 0 and the proposition is proved. �

By Proposition 4.2 the dual of (PγC
) has the following formulation

(DγC
) sup

λ∈Rm
+ , pi∈X∗, i=1,...,m,

mP
i=1

pi=0, γC0 (λ)≤1

{
−

m∑
i=1

(λigi)
∗(pi)

}
.

In the objective function of this dual we separate the terms for which λi > 0 from
the terms for which λi = 0 and then the dual can be written as

(DγC
) sup

pi∈X∗, i=1,...,m,
mP

i=1
pi=0,

γC0 (λ)≤1, I⊆{1,...,m},
λi>0 (i∈I), λi=0 (i/∈I)

{
−

∑
i∈I

(λigi)
∗(pi)−

∑
i/∈I

(0)∗(pi)

}
. (8)
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For i /∈ I, it holds

0∗(pi) = sup
x∈X

{〈pi, x〉 − 0} = sup
x∈X

〈pi, x〉 =

{
0, if pi = 0,
+∞, otherwise.

For i ∈ I there is (λigi)
∗(pi) = λig

∗
i

(
1
λi

pi

)
(cf. [3]). Denoting pi := 1

λi
pi, we obtain

(DγC
) sup

(I,λ,p)∈YγC

{
−

∑
i∈I

λig
∗
i (pi)

}
,

with
YγC

=
{

(I, λ, p) : I ⊆ {1, ...,m}, λ = (λ1, ..., λm)T , p = (p1, ..., pm),

γC0(λ) ≤ 1, λi > 0 (i ∈ I), λi = 0 (i /∈ I),
∑
i∈I

λipi = 0
}

.

Because inf(PγC
) is finite being greater or equal than zero and γ+

C is a convex and
componentwise increasing function, by Theorem 3.3 we can formulate the following
strong duality theorem for the problems (PγC

) and (DγC
).

Theorem 4.3. (strong duality for (PγC
)) The dual problem (DγC

) has an op-
timal solution and strong duality holds, i.e.

inf(PγC
) = max(DγC

).

Similarly to the general problem (P ) the optimality conditions for (PγC
) can be

derived.

Theorem 4.4. (optimality conditions for (PγC
))

(1) Let x̄ be an optimal solution to (PγC
). Then there exists an optimal solution

(Ī , λ̄, p̄) ∈ YγC
to (DγC

), such that the following optimality conditions are satisfied

(i) Ī ⊆ {1, ...,m}, λ̄i > 0 (i ∈ Ī), λ̄i = 0 (i /∈ Ī),
(ii) γC0(λ̄) ≤ 1,

∑
i∈Ī

λ̄ip̄i = 0,

(iii) γ+
C (g(x̄)) =

∑
i∈Ī

λ̄igi(x̄),

(iv) gi(x̄) + g∗i (p̄i) = 〈p̄i, x̄〉, i ∈ Ī .

(2) If x̄ ∈ X, (Ī , λ̄, p̄) ∈ YγC
and (i)− (iv) are fulfilled, then x̄ is an optimal solution

to (PγC
), (Ī , λ̄, p̄) ∈ YγC

is an optimal solution to (DγC
) and strong duality holds

γ+
C (g(x̄)) = −

∑
i∈Ī

λ̄ig
∗
i (p̄i).
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Proof. (1) By Theorem 4.3 follows that there exists an optimal solution (Ī , λ̄, p̄) ∈
YγC

to (DγC
) such that (i)− (ii) are fulfilled and

γ+
C (g(x̄)) = −

∑
i∈Ī

λ̄ig
∗
i (p̄i).

This equality is equivalent to

0 =

[
γ+

C (g(x̄)) + (γ+
C )∗(λ̄)−

∑
i∈Ī

λ̄igi(x̄)

]
+

∑
i∈Ī

λ̄i[gi(x̄) + g∗i (p̄i)− 〈p̄i, x̄〉]. (9)

Using Young’s inequality we have

γ+
C (g(x̄)) + (γ+

C )∗(λ̄) ≥ λ̄T g(x̄) =
∑
i∈Ī

λ̄igi(x̄) (10)

and
gi(x̄) + g∗i (p̄i) ≥ 〈p̄i, x̄〉, i ∈ Ī . (11)

All terms of the sum in (9) inside brackets are positive, therefore

γ+
C (g(x̄)) + (γ+

C )∗(λ̄) = λ̄T g(x̄) =
∑
i∈Ī

λ̄igi(x̄) (12)

and
gi(x̄) + g∗i (p̄i) = 〈p̄i, x̄〉, i ∈ Ī . (13)

But, by Proposition 4.2, we have that (γ+
C )∗(λ̄) = 0, and, so, γ+

C (g(x̄)) =
∑
i∈Ī

λ̄igi(x̄).

In conclusion, the relations (iii)− (iv) must also hold.
(2) All the calculations and transformations done within part (1) may be carried out
in the inverse direction. �

5 The location model with unbounded unit balls

In this section we consider the problem treated by Hinojosa and Puerto in [6]. This
is a single facility location problem, where gauges of closed convex sets are used to
model distances.

Throughout this section let A := {a1, ..., am} be a subset of Rn which represents
the set of existing facilities. Each facility ai ∈ A has an associated gauge ϕai

, whose
unit ball is a closed convex set Cai

containing the origin. Let w = {wa1 , ..., wam} be a
set of positive weights and let γC : Rm → R be a monotonic gauge of a closed convex
set C containing the origin. The distance from an existing facility ai ∈ A to a new

12



facility x ∈ Rn is given by ϕai
(x−ai). By ϕ0

ai
we denote the gauge of the polar set C0

ai
.

The location problem studied in [6] is

(PγC
(A)) inf

x∈Rn
γC

(
wa1ϕa1(x− a1), ..., wamϕam(x− am)

)
.

Let g : Rn → Rm be the vector function defined by g(x) := (g1(x), ..., gm(x))T ,
where gi(x) = wai

ϕai
(x− ai) for all i = 1, ...,m.

Because
γ+

C (g(x)) = γC(g+(x)) = γC(g(x)), ∀x ∈ Rn,

(PγC
(A)) can be written in the equivalent form

(PγC
(A)) inf

x∈Rn
γ+

C (g(x)),

which is a particular case of the problem studied in the previous section. We mention,
that instead of the space X considered in the case of the general optimization problem,
we take here analogously to [6], the space Rn. Therefore the dual problem to (PγC

(A))
is

(DγC
(A)) sup

(I,λ,p)∈YγC
(A)

{
−

∑
i∈I

λig
∗
i (pi)

}
,

with

YγC
(A) =

{
(I, λ, p) : I ⊆ {1, ...,m}, λ = (λ1, ..., λm)T , p = (p1, ..., pm),

γC0(λ) ≤ 1, λi > 0 (i ∈ I), λi = 0 (i /∈ I),
∑
i∈I

λipi = 0
}

.

As the dual space X∗ is also Rn, the dual variable p belongs to Rn × ...× Rn︸ ︷︷ ︸
m

. This

is also valid for the duals in the rest of the paper.
In our case gi(x) = wai

ϕai
(x− ai), i = 1, ...,m, hence (cf. [3])

g∗i (pi) = (wai
ϕai

(x− ai))
∗(pi) = (wai

ϕai
)∗(pi) + pT

i ai = wai
ϕ∗ai

(
pi

wai

)
+ pT

i ai.

By Remark 2.9, ϕ∗ai

(
pi

wai

)
=

{
0, if ϕ0

ai

(
pi

wai

)
≤ 1,

+∞, otherwise,
and, denoting pi :=

pi

wai
, i ∈ I, the dual problem to (PγC

(A)) becomes

(DγC
(A)) sup

(I,λ,p)∈YγC
(A)

{
−

∑
i∈I

λiwai
pT

i ai

}
,

with

YγC
(A) =

{
(I, λ, p) : I ⊆ {1, ...,m}, λ = (λ1, ..., λm)T , p = (p1, ..., pm), ϕ0

ai
(pi) ≤ 1,
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i ∈ I, γC0(λ) ≤ 1, λi > 0 (i ∈ I), λi = 0 (i /∈ I),
∑
i∈I

λiwai
pi = 0

}
.

Using the Theorems 4.3 and 4.4 we can present for (PγC
(A)) and (DγC

(A)) the
strong duality theorem and the optimality conditions.

Theorem 5.1. (strong duality for (PγC
(A))) The dual problem (DγC

(A)) has
an optimal solution and strong duality holds, i.e.

inf(PγC
(A)) = max(DγC

(A)).

Theorem 5.2. (optimality conditions for (PγC
(A)))

(1) Let x̄ be an optimal solution to (PγC
(A)). Then there exists an optimal solution

(Ī , λ̄, p̄) ∈ YγC
(A) to (DγC

(A)), such that the following optimality conditions are
satisfied

(i) Ī ⊆ {1, ...,m}, λ̄i > 0 (i ∈ Ī), λ̄i = 0 (i /∈ Ī),
(ii) γC0(λ̄) ≤ 1, ϕ0

ai
(p̄i) ≤ 1, i ∈ Ī ,

∑
i∈Ī

λ̄iwai
p̄i = 0,

(iii) γC(wa1ϕa1(x̄− a1), ..., wamϕam(x̄− am)) =
∑
i∈Ī

λ̄iwai
ϕai

(x̄− ai),

(iv) ϕai
(x̄− ai) = p̄i

T (x̄− ai), i ∈ Ī .

(2) If x̄ ∈ X, (Ī , λ̄, p̄) ∈ YγC
and (i)− (iv) are fulfilled, then x̄ is an optimal solution

to (PγC
(A)), (Ī , λ̄, p̄) ∈ YγC

(A) is an optimal solution to (DγC
(A)) and strong duality

holds

γC(wa1ϕa1(x̄− a1), ..., wamϕam(x̄− am)) = −
∑
i∈Ī

λ̄iwai
p̄T

i ai.

Proof. Theorem 5.2 is a direct consequence of Theorem 4.4 and the fact that
γ+

C (g(x)) = γC(g(x)). �

Remark 5.3. The optimality conditions obtained for the optimization problem
(PγC

(A)) are the same as the conditions obtained by Y. Hinojosa and J. Puerto
in Lemma 7 in [6]. In the paper cited above the authors gave an geometrical de-
scription of the set of optimal solutions, but, as one can see, by means of duality one
obtains the same characterization of this set.

In the next two sections of this paper we present some particular cases of the
problem (PγC

(A)), namely, the Weber problem and the minmax problem with gauges
of closed convex sets.
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6 The Weber problem with gauges of closed con-

vex sets

The Weber problem with gauges of closed convex sets is

(Pw(A)) inf
x∈Rn

m∑
i=1

wai
ϕai

(x− ai),

where ϕai
, i = 1, ...,m, are gauges whose unit balls are the closed convex sets Cai

, i =
1, ...,m, which contain the origin, and w = {wa1 , ..., wam} is a set of the positive
weights. As one can see, the problem above is equivalent to the following one

(Pw(A)) inf
x∈Rn

l1(g(x)),

where l1 : Rm → R, l1(λ) =
m∑

i=1

|λi| and g : Rn → Rm is the vector function defined

by g(x) := (g1(x), ..., gm(x))T , with gi(x) = wai
ϕai

(x − ai) for all i = 1, ...,m. One
may observe that the function l1 is a monotonic gauge, actually, a monotonic norm.

Taking γC(λ) := l1(λ) for all λ ∈ Rm, by the results obtained in the previous
section, the dual problem to (Pw(A)) becomes

(Dw(A)) sup
(I,λ,p)∈Yw(A)

{
−

∑
i∈I

λiwai
pT

i ai

}
,

with

Yw(A) =
{

(I, λ, p) : I ⊆ {1, ...,m}, λ = (λ1, ..., λm)T , p = (p1, ..., pm), ϕ0
ai

(pi) ≤ 1,

i ∈ I, l01(λ) ≤ 1, λi > 0 (i ∈ I), λi = 0 (i /∈ I),
∑
i∈I

λiwai
pi = 0

}
.

Remark 6.1. In case the gauge γC of a convex set C is a norm, the gauge of the
polar set C0 actually becomes the dual norm. Because the dual norm of the l1−norm
is l01(λ) = max

i=1,...,m
|λi|, we obtain the following formulation for the dual problem

(Dw(A)) sup
(I,λ,p)∈Yw(A)

{
−

∑
i∈I

λiwai
pT

i ai

}
,

with

Yw(A) =
{

(I, λ, p) : I ⊆ {1, ...,m}, λ = (λ1, ..., λm)T , p = (p1, ..., pm), ϕ0
ai

(pi) ≤ 1,
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i ∈ I, max
i∈I

λi ≤ 1, λi > 0 (i ∈ I), λi = 0 (i /∈ I),
∑
i∈I

λiwai
pi = 0

}
.

Let us give now the strong duality theorem and the optimality conditions for
(Pw(A)) and its dual (Dw(A)).

Theorem 6.2. (strong duality for (Pw(A))) The dual problem (Dw(A)) has an
optimal solution and strong duality holds, i.e.

inf(Pw(A)) = max(Dw(A)).

Theorem 6.3. (optimality conditions for (Pw(A)))
(1) Let x̄ be an optimal solution to (Pw(A)). Then there exists an optimal solu-
tion (Ī , λ̄, p̄) ∈ Yw(A) to (Dw(A)), such that the following optimality conditions are
satisfied

(i) Ī ⊆ {1, ...,m}, λ̄i > 0 (i ∈ Ī), λ̄i = 0 (i /∈ Ī),
(ii) max

i∈Ī
λ̄i ≤ 1, ϕ0

ai
(p̄i) ≤ 1, i ∈ Ī ,

∑
i∈Ī

λ̄iwai
p̄i = 0,

(iii)
m∑

i=1

wai
ϕai

(x̄− ai) =
∑
i∈Ī

λ̄iwai
ϕai

(x̄− ai),

(iv) ϕai
(x̄− ai) = p̄i

T (x̄− ai), i ∈ Ī .

(2) If x̄ ∈ X, (Ī , λ̄, p̄) ∈ Yw(A) and (i) − (iv) are fulfilled, then x̄ is an optimal
solution to (Pw(A)), (Ī , λ̄, p̄) ∈ Yw(A) is an optimal solution to (Dw(A)) and strong
duality holds

m∑
i=1

wai
ϕai

(x̄− ai) = −
∑
i∈Ī

λ̄iwai
p̄T

i ai.

Proof. Theorem 6.3 is a direct consequence of Theorem 5.2. �

7 The minmax problem with gauges of closed con-

vex sets

The optimization problem studied in this last section is the minmax problem with
gauges of closed convex sets

(Pm(A)) inf
x∈Rn

max
i=1,...,m

wai
ϕai

(x− ai),

where ϕai
, i = 1, ...,m, and w = {wa1 , ..., wam} are considered like in the previous

section. One can see that this problem is equivalent to the following one

(Pm(A)) inf
x∈Rn

l∞(g(x)),
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where l∞ : Rm → R, l∞(λ) = max
i=1,...,m

|λi| and g : Rn → Rm is the vector function

defined by g(x) := (g1(x), ..., gm(x))T , with gi(x) = wai
ϕai

(x− ai) for all i = 1, ...,m.
One may observe that the function l∞ is also a monotonic norm.

Taking γC(λ) := l∞(λ) for all λ ∈ Rm, the dual problem to (Pm(A)) becomes

(Dm(A)) sup
(I,λ,p)∈Ym(A)

{
−

∑
i∈I

λiwai
pT

i ai

}
,

with

Ym(A) =
{

(I, λ, p) : I ⊆ {1, ...,m}, λ = (λ1, ..., λm)T , p = (p1, ..., pm), ϕ0
ai

(pi) ≤ 1,

i ∈ I, l0∞(λ) ≤ 1, λi > 0 (i ∈ I), λi = 0 (i /∈ I),
∑
i∈I

λiwai
pi = 0

}
.

Remark 7.1. Because the dual norm of the l∞−norm is l0∞(λ) =
m∑

i=1

|λi| we ob-

tain the following formulation for the dual problem

(Dm(A)) sup
(I,λ,p)∈Ym(A)

{
−

∑
i∈I

λiwai
pT

i ai

}
,

with

Ym(A) =
{

(I, λ, p) : I ⊆ {1, ...,m}, λ = (λ1, ..., λm)T , p = (p1, ..., pm), ϕ0
ai

(pi) ≤ 1,

i ∈ I,
m∑

i=1

λi ≤ 1, λi > 0 (i ∈ I), λi = 0 (i /∈ I),
∑
i∈I

λiwai
pi = 0

}
.

Like in the previous section we give now the strong duality theorem and the op-
timality conditions for (Pm(A)) and its dual (Dm(A)).

Theorem 7.2. (strong duality for (Pm(A))) The dual problem (Dm(A)) has
an optimal solution and strong duality holds, i.e.

inf(Pm(A)) = max(Dm(A)).

Theorem 7.3. (optimality conditions for (Pm(A)))
(1) Let x̄ be an optimal solution to (Pm(A)). Then there exists an optimal solu-
tion (Ī , λ̄, p̄) ∈ Ym(A) to (Dm(A)), such that the following optimality conditions are
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satisfied
(i) Ī ⊆ {1, ...,m}, λ̄i > 0 (i ∈ Ī), λ̄i = 0 (i /∈ Ī),

(ii)
∑
i∈Ī

λ̄i ≤ 1, ϕ0
ai

(p̄i) ≤ 1, i ∈ Ī ,
∑
i∈Ī

λ̄iwai
p̄i = 0,

(iii) max
i=1,...,m

wai
ϕai

(x̄− ai) =
∑
i∈Ī

λ̄iwai
ϕai

(x̄− ai),

(iv) ϕai
(x̄− ai) = p̄i

T (x̄− ai), i ∈ Ī .

(2) If x̄ ∈ X, (Ī , λ̄, p̄) ∈ Ym(A) and (i) − (iv) are fulfilled, then x̄ is an optimal
solution to (Pm(A)), (Ī , λ̄, p̄) ∈ Ym(A) is an optimal solution to (Dm(A)) and strong
duality holds

max
i=1,...,m

wai
ϕai

(x̄− ai) = −
∑
i∈Ī

λ̄iwai
p̄T

i ai.

Proof. Theorem 7.3 is a direct consequence of Theorem 5.2. �
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