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Abstract. The aim of this paper is to extend the so-called perturbation approach in order to

deal with conjugate duality for constrained vector optimization problems. To this end we use two

conjugacy notions introduced in the past in the literature in the framework of set-valued optimization.

As a particular case we consider a vector variational inequality which we rewrite in the form of a

vector optimization problem. The conjugate vector duals introduced in the first part allow us to

introduce new gap functions for the vector variational inequality. The properties in the definition of

the gap functions are verified by using the weak and strong duality theorems.
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a primal scalar optimization problem three conjugate duals, namely the Lagrange, Fenchel and

Fenchel-Lagrange dual problems, all of them obtained by considering some special perturbation

functions ([5], [23]). The relations between the optimal objective functions of these duals have been

completely investigated.

Inspired by the scalar case, Tanino and Sawaragi in [20] (see also [18]) developed a conjugate

duality theory based on the same perturbation approach but for vector optimization problems.

They considered a new concept of a conjugate map (also called type I Fenchel transform) in finite-

dimensional spaces based on Pareto efficiency. For different perturbation functions one can attach

to a vector optimization problem, by using this conjugacy notion, a dual problem. Weak and

strong duality assertions can be also formulated. Furthermore, by using the concept of supremum

of a set (cf. [21]) on the basis of weak orderings, this conjugate duality theory has been extended

to optimization problems in partially ordered topological vector space (see [22]) and to set-valued

vector optimization problems (see [19]).

In the first part of the paper we construct for a primal vector optimization problem, by considering

some appropriate perturbation functions, three new vector dual problems based on the Lagrange,

Fenchel and Fenchel-Lagrange duality concepts treated in [23] in the scalar case. To this end we

consider on the one hand the type I Fenchel transform introduced in [20] but also, on the other

hand, a different conjugacy concept, namely the type II Fenchel transform. For the definition and

some property of the latter we mention the book of Goh and Yang ([11]). For all the vector duals

considered in this paper weak and strong duality assertions are proved.

In the second part of the paper we deal with the connections between vector optimization and

vector variational inequalities. Since the vector variational inequality in a finite-dimensional space

was introduced first in [8], several papers concerning this topic have been written in the past (see

for instance [10], [13] and [14]). By rewriting a vector variational inequality in the form of a vector

optimization problem, the conjugate vector duals introduced in the first part allow us to introduce

new gap (merit) functions for it.

In the case of scalar optimization the construction of a gap function for variational inequalities
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has been associated to Lagrange duality (see [9]). Different classes of gap (merit) functions have

been considered also by Noor in [17] for general variational inequalities in Hilbert spaces. The

general variational inequalities have been introduced in [15] and include as special cases variational

inequalities, quasivariational inequalities and complementary problems (see also [16]). By using the

gap functions introduced in [17] one can obtain error bounds for the solution of general variational

inequalities.

The approach we consider here extends to the vector case the results in [3] and [2] where dif-

ferent gap functions have been constructed via conjugate duality for variational inequalities and for

equilibrium problems, respectively.

The paper is organized as follows. In section 2 we recall some definitions and some preliminary

results. In section 3 we develop a new duality theory for the constrained vector optimization problem

by using the perturbation approach and working with the type I Fenchel transform. Similar results

are obtained in section 4 but using the type II Fenchel transform. These duality concepts allow us

to define in section 5 some new gap functions for the vector variational inequality. The properties

in the definition of the gap functions are verified by using the weak and strong duality theorems.

2 Mathematical preliminaries

Let C be a pointed closed and convex cone in Rn. For any ξ, µ ∈ Rn, we use the following ordering

relations: ξ≤
C

µ ⇔ µ − ξ ∈ C and ξ ≤
C\{0}

µ ⇔ µ − ξ ∈ C\{0}. Furthermore, we denote ξ �
C\{0}

µ ⇔

µ− ξ /∈ C\{0}. The notions ≥
C

, ≥
C\{0}

and �
C\{0}

are used in an alternative way.

Definition 2.1 A point y ∈ Rn is said to be a maximal point of a set Y ⊆ Rn if y ∈ Y and there is

no y′ ∈ Y such that y ≤
C\{0}

y′.

The set of all maximal points of Y is called the maximum of Y and is denoted by max
C\{0}

Y . The

minimum of Y is defined analogously. Further we take the cone C being the nonnegative orthant

Rn
+ =

{
x = (x1, ..., xn)T ∈ Rn| xi ≥ 0, i = 1, n

}
.

Lemma 2.1 [18, cf. Proposition 3.1.3] Let Y1, Y2 ⊆ Rn. Then
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(i) max
Rn

+\{0}
(Y1 + Y2) ⊆ max

Rn
+\{0}

Y1 + max
Rn

+\{0}
Y2;

(ii) min
Rn

+\{0}
(Y1 + Y2) ⊆ min

Rn
+\{0}

Y1 + min
Rn

+\{0}
Y2.

Definition 2.2 [11, cf. Definition 8.2.2] Let h : Rn ⇒ Rp be a set-valued map.

(i) The set-valued map min
Rp

+\{0}
h(x) is said to be externally stable if h(x) ⊆ min

Rp
+\{0}

h(x)+ Rp
+, ∀x ∈

Rn.

(ii) Similarly, the set-valued map max
Rp

+\{0}
h(x) is said to be externally stable if h(x) ⊆ max

Rp
+\{0}

h(x)−

Rp
+, ∀x ∈ Rn.

Lemma 2.2 [18, Lemma 6.1.1] Let F1 : Rn ⇒ Rp and F2 : Rn ⇒ Rp be set-valued maps and

X ⊆ Rn. Then max
Rp

+\{0}

⋃
x∈X

[
F1(x) + F2(x)

]
⊆ max

Rp
+\{0}

⋃
x∈X

[
F1(x) + max

Rp
+\{0}

F2(x)
]
. If max

Rp
+\{0}

F2(x) is

externally stable, then the converse inclusion also holds.

Corollary 2.1 [18, Corollary 6.1.3] Let F : Rn ⇒ Rp be a set-valued map and X ⊆ Rn. If

max
Rp

+\{0}
F (x) is externally stable, then max

Rp
+\{0}

⋃
x∈X

F (x) = max
Rp

+\{0}

⋃
x∈X

max
Rp

+\{0}
F (x).

Before describing the conjugate duality for vector optimization, let us recall the concepts of conjugate

maps and of set-valued subgradient.

Definition 2.3 [11, Definition 8.2.1] Let h : Rn ⇒ Rp be a set-valued map.

(i) The set-valued map h∗ : Rp×n ⇒ Rp defined by h∗(U) = max
Rp

+\{0}

⋃
x∈Rn

[
Ux− h(x)

]
, U ∈ Rp×n is

called the conjugate map of h.

(ii) The conjugate map of h∗, h∗∗ is called the biconjugate map of h, i.e.

h∗∗(x) = max
Rp

+\{0}

⋃
U∈Rp×n

[
Ux− h∗(U)

]
, x ∈ Rn.

(iii) U is said to be a subgradient of the set-valued map h at (x̄; ȳ) if ȳ ∈ h(x̄) and

ȳ − Ux̄ ∈ min
Rp

+\{0}

⋃
x∈Rn

[h(x)− Ux].
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The set of all subgradients of h at (x; y) is denoted by ∂h(x; y) and is called the subdifferential

of h at (x; y). If ∂h(x; y) 6= ∅, ∀y ∈ h(x), then h is said to be subdifferentiable at x.

When ϕ : Rn → Rp is a vector-valued function, then the conjugate map ϕ∗ of ϕ is defined by

ϕ∗(T ) = max
Rp

+\{0}

{
Tx− ϕ(x)| x ∈ Rn

}
, T ∈ Rp×n.

Let f : Rn → Rp∪{∞} be an extended vector-valued function. Here ∞ is the imaginary point whose

every component is +∞. We consider the following unconstrained vector optimization problem

(Pu) min
Rp

+\{0}

{
f(x)| x ∈ Rn

}
.

In other words, (Pu) is the problem of finding x̄ ∈ Rn such that f(x) �
Rp

+\{0}
f(x̄), ∀x ∈ Rn. Let

Φ : Rn×Rm → Rp∪{∞} be another vector-valued function such that Φ(x, 0) = f(x), ∀x ∈ Rn, which

is the so-called perturbation function. The value function is a set-valued map Ψ : Rm ⇒ Rp ∪ {∞}

defined by Ψ(y) = min
Rp

+\{0}

{
Φ(x, y)| x ∈ Rn

}
. Clearly Ψ(0) = min

Rp
+\{0}

f(Rn) is the minimal frontier of

the problem (Pu). The problem (Pu) can be stated as the primal optimization problem

(Pu) min
Rp

+\{0}

{
Φ(x, 0)| x ∈ Rn

}
.

The conjugate map of Φ, denoted by Φ∗ : Rp×n×Rp×m ⇒ Rp ∪ {∞}, is a set-valued map defined in

the usual manner: Φ∗(U, V ) = max
Rp

+\{0}

{
Ux + V y − Φ(x, y)| x ∈ Rn, y ∈ Rm

}
. Then the conjugate

dual optimization problem can be defined as being

(Du) max
Rp

+\{0}

⋃
V ∈Rp×m

[
− Φ∗(0, V )

]
.

Since −Φ∗ is a set-valued map, the problem (Du) is not an ordinary vector optimization problem.

In other words, it can be reformulated as follows.

Find V ∗ ∈ Rp×m such that − Φ∗(0, V ∗) ∩ max
Rp

+\{0}

⋃
V ∈Rp×m

[
− Φ∗(0, V )

]
6= ∅.

Theorem 2.1 [18, Proposition 6.1.12] (Weak duality)

Φ(x, 0) /∈ −Φ∗(0, V )− Rp
+\{0}, ∀x ∈ Rn, ∀ V ∈ Rp×m.

Definition 2.4 The primal problem (Pu) is said to be stable with respect to the perturbation function

Φ if the value function Ψ is subdifferentiable at y = 0.
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Theorem 2.2 [18, Theorem 6.1.1] (Strong duality)

(i) The primal problem (Pu) is stable with respect to Φ if and only if for each solution x∗ to the

primal problem (Pu) there exists a solution V ∗ to the dual problem (Du) such that

Φ(x∗, 0) ∈ −Φ∗(0, V ∗). (2.1)

(ii) Conversely, if x∗ ∈ Rn and V ∗ ∈ Rp×m satisfy (2.1), then x∗ is a solution to (Pu) and V ∗ is

a solution to (Du).

3 Conjugate duality for the constrained vector optimization prob-

lem

In this section some special perturbation functions investigated for scalar optimization in [23] are

applied to the constrained vector optimization problem. As a consequence, we obtain different dual

problems having set-valued objective maps. In analogy to the scalar case, let us call them Lagrange,

Fenchel and Fenchel-Lagrange dual problem, respectively. Let f : Rn → Rp, g : Rn → Rm be

vector-valued functions and X ⊆ Rn. Consider the vector optimization problem

(V O) min
Rp

+\{0}

{
f(x)| x ∈ G

}
,

where G =
{

x ∈ X| g(x) ≤
Rm

+

0
}

. Let us introduce now the following perturbation functions (cf. [5]

and [23])

Φ1 : Rn × Rm → Rp ∪ {∞}, Φ1(x, u) =


f(x), x ∈ X, g(x) ≤

Rm
+

u,

∞, otherwise;

Φ2 : Rn × Rn → Rp ∪ {∞}, Φ2(x, v) =


f(x + v), x ∈ G,

∞, otherwise;

Φ3 : Rn × Rn × Rm → Rp ∪ {∞},

Φ3(x, v, u) =


f(x + v), x ∈ X, g(x) ≤

Rm
+

u,

∞, otherwise.
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Then the corresponding value functions can be written as follows.

Ψ1 : Rm ⇒ Rp, Ψ1(u) = min
Rp

+\{0}

{
Φ1(x, u)| x ∈ Rn

}
= min

Rp
+\{0}

{
f(x)| x ∈ X, g(x) ≤

Rm
+

u
}

;

Ψ2 : Rn ⇒ Rp, Ψ2(v) = min
Rp

+\{0}

{
Φ2(x, v)| x ∈ Rn

}
= min

Rp
+\{0}

{
f(x + v)| x ∈ G

}
;

Ψ3 : Rn × Rm ⇒ Rp, Ψ3(v, u) = min
Rp

+\{0}

{
Φ3(x, v, u)| x ∈ Rn

}
= min

Rp
+\{0}

{
f(x + v)| x ∈ X, g(x) ≤

Rm
+

u
}

.

In view of Definition 2.4, the problem (V O) is said to be stable with respect to the perturbation

function Φi, i = 1, 2, 3, if the value function Ψi, i = 1, 2, 3, is subdifferentiable at 0.

Definition 3.1 Let Z ⊆ Rn be a convex set.

(i) The set-valued map G : Rn ⇒ Rp is said to be convex, if for any x1, x2 ∈ Z and ξ ∈ [0, 1], we

have ξG(x1) + (1− ξ)G(x2) ⊆ G(ξx1 + (1− ξ)x2) + Rp
+.

(ii) The set-valued map G : Rn ⇒ Rp is said to be strictly convex, if for any x1, x2 ∈ Z, x1 6= x2

and ξ ∈ (0, 1), we have ξG(x1) + (1− ξ)G(x2) ⊆ G(ξx1 + (1− ξ)x2) + int Rp
+, where int Rp

+

denotes the interior of a set Rp
+.

Lemma 3.1 Let X ⊆ Rn be a convex set and fi, i = 1, p, gj , j = 1,m, be convex functions. If

∀u ∈ Rm (resp., ∀v ∈ Rn and ∀(v, u) ∈ Rn × Rm) the set Ψ1(u) (resp., Ψ2(v) and Ψ3(v, u)) is

externally stable, then the value function Ψ1 (resp., Ψ2 and Ψ3) is convex.

Proof: Let us verify it only for Ψ1. By the same way, one can prove the assertions for Ψ2 and Ψ3.

Let u1, u2 ∈ Rm and λ ∈ [0, 1]. Then λΨ1(u1) + (1 − λ)Ψ1(u2) ⊆ λH1(u1) + (1 − λ)H1(u2), where

H1 is defined by H1(u) :=
{

f(x)| x ∈ X, g(x) ≤
Rm

+

u
}

. By the convexity and the external stability,

we have

λH1(u1) + (1− λ)H1(u2) ⊆{
f(λx + (1− λ)z)| λx + (1− λ)z ∈ X, g(λx + (1− λ)z) ≤

Rm
+

λu1 + (1− λ)u2

}
+ Rp

+

= H1(λu1 + (1− λ)u2) + Rp
+ ⊆ Ψ(λu1 + (1− λ)u2) + Rp

+.

Consequently, one has λΨ1(u1) + (1− λ)Ψ1(u2) ⊆ Ψ(λu1 + (1− λ)u2) + Rp
+. �
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Let us give some stability criteria with respect to the above perturbation functions. Similar

results can be found in [20].

Proposition 3.1 (see [1]) Let X ⊆ Rn be a convex set and gj , j = 1,m, be convex functions.

Assume that the functions fi, i = 1, p, are strictly convex.

(i) If ∀u ∈ Rm the set Ψ1(u) is externally stable and there exists x0 ∈ X such that −g(x0) ∈

int Rm
+ , then the problem (V O) is stable with respect to Φ1.

(ii) If ∀v ∈ Rn the set Ψ2(v) is externally stable, then the problem (V O) is stable with respect to

Φ2.

(iii) If ∀(v, u) ∈ Rn × Rm the set Ψ3(v, u) is externally stable and there exists x0 ∈ X such that

−g(x0) ∈ int Rm
+ , then the problem (V O) is stable with respect to Φ3.

In section 5 we consider the vector optimization problem with linear objective function. Since

the hypothesis of strictly convexity is not fulfilled, the above stability criteria cannot be applied.

Instead of it we will use Proposition 3.2. Let be A ∈ Rp×n. Consider the vector optimization problem

(PA) min
Rp

+\{0}

{
Ax| x ∈ G

}
.

Before giving a stability criterion for (PA) with respect to Φ2, let us mention the following trivial

properties.

Remark 3.1 Let h : Rn → Rp be a vector-valued function and Z ⊆ Rn. The following assertions

are true:

(i) For any t ∈ Rp it holds {h(x) + t| x ∈ Z} = {h(x)| x ∈ Z}+ t.

(ii) For any set A ⊆ Rp it holds
⋃

x∈Z

{
A + h(x)

}
= A +

⋃
x∈Z

{h(x)}.

For the problem (PA) we can state the following stability criterion.

Proposition 3.2 Let the set min
Rp

+\{0}
{Ax| x ∈ G} be externally stable. Then the problem (PA) is

stable with respect to Φ2.
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Proof: Let f(x) = Ax, A ∈ Rp×n. Then, in view of Remark 3.1, one has

−Ψ∗
2(T ) = min

Rp
+\{0}

⋃
v∈Rn

[
min

Rp
+\{0}

{Ax + Av| x ∈ G} − Tv
]

=

min
Rp

+\{0}

⋃
v∈Rn

[
Av − Tv + min

Rp
+\{0}

{Ax| x ∈ G}
]

= min
Rp

+\{0}

[
{(A− T )v|v ∈ Rn}+ min

Rp
+\{0}

{Ax| x ∈ G}
]
.

As the set min
Rp

+\{0}
{Ax| x ∈ G} is externally stable, for T = A one has (cf. Corollary 2.1)

−Ψ∗
2(A) = min

Rp
+\{0}

min
Rp

+\{0}
{Ax| x ∈ G} = min

Rp
+\{0}

{Ax| x ∈ G}.

In other words, ∀z ∈ min
Rp

+\{0}
{Ax| x ∈ G}, it holds z ∈ −Ψ∗

2(A). This means that ∂Ψ2(0; z) 6= ∅. �

Lagrange duality. In the following we obtain different dual problems by specializing the per-

turbation approach. First we construct a dual problem to (V O) by using the perturbation function

Φ1. We prove first the following preliminary result.

Proposition 3.3 Let Λ ∈ Rp×m. Then

(i) Φ∗
1(0,Λ) = max

Rp
+\{0}

{
{Λu| u ∈ Rm

+}+ {Λg(x)− f(x)| x ∈ X}
}

.

(ii) If the set max
Rp

+\{0}
{Λu| u ∈ Rm

+} is externally stable, then it holds

Φ∗
1(0,Λ) = max

Rp
+\{0}

{
max

Rp
+\{0}

{Λu| u ∈ Rm
+}+ {Λg(x)− f(x)| x ∈ X}

}
.

Proof:

(i) Let Λ ∈ Rp×m. Taking into account Remark 3.1

Φ∗
1(0,Λ) = max

Rp
+\{0}

{
Λu− Φ1(x, u)| x ∈ Rn, u ∈ Rm

}
=

max
Rp

+\{0}

{
Λu− f(x)| x ∈ X, g(x) ≤

Rm
+

u
}

= max
Rp

+\{0}

⋃
x∈X

{
Λu− f(x)| g(x) ≤

Rm
+

u
}

.

Setting ū := u− g(x), we have

Φ∗
1(0,Λ) = max

Rp
+\{0}

⋃
x∈X

{
Λg(x)− f(x) + Λū| ū ∈ Rm

+

}
= max

Rp
+\{0}

⋃
x∈X

{
Λg(x)− f(x)+

{Λū| ū ∈ Rm
+}

}
= max

Rp
+\{0}

{
{Λu| u ∈ Rm

+}+ {Λg(x)− f(x)| x ∈ X}
}

.

(ii) Follows from Lemma 2.2. �
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According to Proposition 3.3, we can define the following dual problem to (V O)

(DV O
L ) max

Rp
+\{0}

⋃
Λ∈Rp×m

[
− Φ∗

1(0,Λ)
]

= max
Rp

+\{0}

⋃
Λ∈Rp×m

min
Rp

+\{0}

{
{−Λu| u ∈ Rm

+}+ {f(x)− Λg(x)| x ∈ X}
}

.

This dual problem may be considered as a kind of Lagrange-type dual problem. This interpretation

appears evident and natural in the context of the following derivation of the classical Lagrange dual

problem to (V O) (cf. [18]).

As applications of Theorem 2.1 and Theorem 2.2 we get weak and strong duality results for (V O)

and (DV O
L ).

Proposition 3.4 (Weak duality)

f(x) + ξ �
Rp

+\{0}
0, ∀x ∈ G, ∀ξ ∈ Φ∗

1(0,Λ),∀Λ ∈ Rp×m.

Proposition 3.5 (Strong duality)

(i) (V O) is stable with respect to Φ1 if and only if for each solution x∗ to (V O) there exists a

solution Λ∗ to (DV O
L ) such that f(x∗) ∈ −Φ∗

1(0,Λ∗).

(ii) Conversely, if x∗ ∈ G and Λ∗ ∈ Rp×m satisfy f(x∗) ∈ −Φ∗
1(0,Λ∗), then x∗ is a solution to

(V O) and Λ∗ is a solution to (DV O
L ).

Under the external stability condition of the set max
Rp

+\{0}
{Λq| q ∈ Rm

+}, considering as objective of the

dual problem the set-valued map in Proposition 3.3(ii), one can obtain similar results.

Before coming to the next perturbation function, let us, as announced, explain how the problem

(DV O
L ) turns out to be the classical Lagrange dual problem (cf. [18]) under a certain restriction on

the feasible set of the dual. To do this, we assume that the feasible set looks like

L =
{

Λ ∈ Rp×m| Λu ≥
Rp

+

0, ∀u ∈ Rm
+

}
=

{
Λ ∈ Rp×m| ΛRm

+ ⊆ Rp
+

}
.

Then we conclude immediately that

min
Rp

+\{0}
{Λu| u ∈ Rm

+} = {0}, ∀Λ ∈ L. (3.1)
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Because of Λ ∈ L, by using (3.1), from Lemma 2.1(i) follows

Φ∗
1(0,−Λ) = max

Rp
+\{0}

{
{−Λu| u ∈ Rm

+}+ {−Λg(x)− f(x)| x ∈ X}
}

⊆ max
Rp

+\{0}
{−Λu| u ∈ Rm

+}+ max
Rp

+\{0}
{−Λg(x)− f(x)| x ∈ X} = − min

Rp
+\{0}

{Λu| u ∈ Rm
+}+

max
Rp

+\{0}
{−Λg(x)− f(x)| x ∈ X} = max

Rp
+\{0}

{−Λg(x)− f(x)| x ∈ X}.

Denoting by Φ̃(Λ) := max
Rp

+\{0}
{−Λg(x)− f(x)| x ∈ X}, we get the classical Lagrange dual problem to

(V O)

(D̃V O
L ) max

Rp
+\{0}

⋃
Λ∈L

[
− Φ̃(Λ)

]
= max

Rp
+\{0}

⋃
Λ∈L

min
Rp

+\{0}
{Λg(x) + f(x)| x ∈ X}.

Proposition 3.6 [18, Theorem 5.2.4] (Weak duality)

f(x) + ξ �
Rp

+\{0}
0, ∀x ∈ G, ∀ξ ∈ Φ̃(Λ),∀Λ ∈ L.

Proposition 3.7 [11, Theorem 8.3.3] (see also [18, Theorem 5.2.5(i)])

Let x∗ ∈ G, Λ∗ ∈ L such that f(x∗) ∈ −Φ̃(Λ∗). Then f(x∗) is simultaneously a minimal point to the

primal problem (V O) and a maximal point to the dual problem (D̃V O
L ).

Fenchel duality. The following result is in connection with the perturbation function Φ2.

Proposition 3.8 Let T ∈ Rp×n. Then

(i) Φ∗
2(0, T ) = max

Rp
+\{0}

{
{Tv − f(v)| v ∈ Rn}+ {−Tx| x ∈ G}

}
.

(ii) If the set f∗(T ) = max
Rp

+\{0}
{Tv − f(v)| v ∈ Rn} is externally stable, then it holds

Φ∗
2(0, T ) = max

Rp
+\{0}

{
f∗(T ) + {−Tx| x ∈ G}

}
.

Proof:

(i) Let T ∈ Rp×n. In view of Remark 3.1

Φ∗
2(0, T ) = max

Rp
+\{0}

{Tv − Φ2(x, v)| x ∈ Rn, v ∈ Rn} =

max
Rp

+\{0}
{Tv − f(x + v)| x ∈ G, v ∈ Rn} = max

Rp
+\{0}

⋃
x∈G

{Tv − f(x + v)| v ∈ Rn}.

11



Denoting v̄ := x + v, one gets

Φ∗
2(0, T ) = max

Rp
+\{0}

⋃
x∈G

{T v̄ − f(v̄)− Tx| v̄ ∈ Rn} = max
Rp

+\{0}

⋃
x∈G

{
− Tx+

{T v̄ − f(v̄)| v̄ ∈ Rn}
}

= max
Rp

+\{0}

{
{Tv − f(v)| v ∈ Rn}+ {−Tx| x ∈ G}

}
.

(ii) Follows from Lemma 2.2. �

As a consequence we state the following dual problem to (V O), which will be called the Fenchel dual

problem

(DV O
F ) max

Rp
+\{0}

⋃
T∈Rp×n

[
− Φ∗

2(0, T )
]

= max
Rp

+\{0}

⋃
T∈Rp×n

min
Rp

+\{0}

{
{f(v)− Tv| v ∈ Rn}+ {Tx| x ∈ G}

}
.

Also in this case one can state weak and strong duality assertions.

Proposition 3.9 (Weak duality)

f(x) + ξ �
Rp

+\{0}
0, ∀x ∈ G, ∀ξ ∈ Φ∗

2(0, T ), ∀T ∈ Rp×n.

Proposition 3.10 (Strong duality)

(i) (V O) is stable with respect to Φ2 if and only if for each solution x∗ to (V O), there exists a

solution T ∗ to (DV O
F ) such that f(x∗) ∈ −Φ∗

2(0, T ∗).

(ii) Conversely, if x∗ ∈ G and T ∗ ∈ Rp×n satisfy f(x∗) ∈ −Φ∗
2(0, T ∗), then x∗ is a solution to

(V O) and T ∗ is a solution to (DV O
F ).

As mentioned before, under the external stability of the set f∗(T ) = max
Rp

+\{0}
{Tv− f(v)| v ∈ Rn}, for

the dual problem having as objective the set-valued map in Proposition 3.8(ii), one can also show

similar dual assertions.

Fenchel-Lagrange duality. In the following we deal with the perturbation function Φ3.

Proposition 3.11 Let Λ ∈ Rp×m and T ∈ Rp×n. Then

(i) Φ∗
3(0, T, Λ) = max

Rp
+\{0}

{ ⋃
u∈Rm

+

{Λu}+
⋃

v∈Rn

{Tv − f(v)}+
⋃

x∈X

{Λg(x)− Tx}
}

.
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(ii) If the sets max
Rp

+\{0}
{Λu| u ∈ Rm

+} and f∗(T ) are externally stable, then it holds

Φ∗
3(0, T, Λ) = max

Rp
+\{0}

{
max

Rp
+\{0}

⋃
u∈Rm

+

{Λu}+ f∗(T ) +
⋃

x∈X

{Λg(x)− Tx}
}

.

Proof:

(i) Let T ∈ Rp×n and Λ ∈ Rp×m. By applying Remark 3.1

Φ∗
3(0, T, Λ) = max

Rp
+\{0}

{
Tv + Λu− Φ3(x, v, u)| x ∈ Rn, v ∈ Rn, u ∈ Rm

}
= max

Rp
+\{0}

{
Tv + Λu

−f(x + v)| x ∈ X, v ∈ Rn, g(x) ≤
Rm

+

u
}

= max
Rp

+\{0}

⋃
x∈X,
v∈Rn

{
Tv + Λu− f(x + v)| g(x) ≤

Rm
+

u
}

.

Putting ū := u− g(x), one has

Φ∗
3(0, T, Λ) = max

Rp
+\{0}

⋃
x∈X,
v∈Rn

{Tv + Λ(g(x) + ū)− f(x + v)| ū ∈ Rm
+} = max

Rp
+\{0}

⋃
x∈X

⋃
v∈Rn

{
Tv + Λg(x)

−f(x + v) + {Λū| ū ∈ Rm
+}

}
= max

Rp
+\{0}

⋃
x∈X

{
Λg(x) + {Λu| u ∈ Rm

+}+ {Tv − f(x + v)| v ∈ Rn}
}

.

Setting v̄ := x + v, we obtain

Φ∗
3(0, T, Λ) = max

Rp
+\{0}

⋃
x∈X

{
Λg(x) + {Λu| u ∈ Rm

+}+ {T v̄ − Tx− f(v̄)| v̄ ∈ Rn}
}

= max
Rp

+\{0}

⋃
x∈X

{
Λg(x)− Tx + {Λu| u ∈ Rm

+}+ {T v̄ − f(v̄)| v̄ ∈ Rn}
}

= max
Rp

+\{0}

{
{Λu| u ∈ Rm

+}+ {Tv − f(v)| v ∈ Rn}+ {Λg(x)− Tx| x ∈ X}
}

.

(ii) By Lemma 2.2, one can easily verify (ii). �

Now we can formulate the following so-called Fenchel-Lagrange dual problem to (V O)

(DV O
FL ) max

Rp
+\{0}

⋃
(T,Λ)∈Rp×n×Rp×m

[
− Φ∗

3(0, T, Λ)
]

= max
Rp

+\{0}

⋃
(T,Λ)∈Rp×n×Rp×m

min
Rp

+\{0}

{
{f(v)− Tv| v ∈ Rn}+ {−Λu| u ∈ Rm

+}+ {Tx− Λg(x)| x ∈ X}
}

.

Proposition 3.12 (Weak duality)

f(x) + ξ �
Rp

+\{0}
0, ∀x ∈ X, ∀ξ ∈ Φ∗

3(0, T, Λ), ∀(T,Λ) ∈ Rp×n × Rp×m.

Proposition 3.13 (Strong duality)
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(i) (V O) is stable with respect to Φ3 if and only if for each solution x∗ to (V O) there exists a

solution (T ∗,Λ∗) to (DV O
FL ) such that f(x∗) ∈ −Φ∗

3(0, T ∗,Λ∗).

(ii) Conversely, if x∗ ∈ X and (T ∗,Λ∗) ∈ Rp×n × Rp×m satisfy f(x∗) ∈ −Φ∗
3(0, T ∗,Λ∗), then x∗ is

a solution to (V O) and (T ∗,Λ∗) is a solution to (DV O
FL ).

Like for (D̃V O
L ), under the same restriction on Λ, we can introduce another Fenchel-Lagrange-type

dual problem. Indeed, let us suppose that Λ ∈ L. Then, according to Lemma 2.1(i) and (3.1), it

holds

Φ∗
3(0, T,−Λ) = max

Rp
+\{0}

{ ⋃
u∈Rm

+

{−Λu}+
⋃

v∈Rn

{Tv − f(v)}+
⋃

x∈X

{−Λg(x)− Tx}
}
⊆

max
Rp

+\{0}

⋃
u∈Rm

+

{−Λu}+ max
Rp

+\{0}

{ ⋃
v∈Rn

{Tv − f(v)}+
⋃

x∈X

{−Λg(x)− Tx}
}

=

max
Rp

+\{0}

{ ⋃
v∈Rn

{Tv − f(v)}+
⋃

x∈X

{−Λg(x)− Tx}
}

.

Let us denote by Ψ̃(T,Λ) := max
Rp

+\{0}

{ ⋃
v∈Rn

{Tv − f(v)} +
⋃

x∈X

{−Λg(x) − Tx}
}

. If the set f∗(T ) is

externally stable, then Ψ̃(T,Λ) can be rewritten as Ψ̃(T,Λ) = max
Rp

+\{0}

{
f∗(T )+

⋃
x∈X

{−Λg(x)−Tx}
}

.

So we can suggest the following dual problem

(D̃V O
FL ) max

Rp
+\{0}

⋃
(T,Λ)∈Rp×n×L

[
− Ψ̃(T,Λ)

]
= max

Rp
+\{0}

⋃
(T,Λ)∈Rp×n×L

min
Rp

+\{0}

{ ⋃
v∈Rn

{f(v)− Tv}+
⋃

x∈X

{Tx + Λg(x)}
}

.

Proposition 3.14 (weak duality)

f(x) + ξ �
Rp

+\{0}
0, ∀x ∈ G, ∀ξ ∈ Ψ̃(T,Λ),∀(T,Λ) ∈ Rp×n × L.

Proof: Let (T,Λ) ∈ Rp×n × L be fixed and ξ ∈ Ψ̃(T,Λ). In other words

ξ �
Rp

+\{0}
Tv − f(v) + (−Λg(x)− Tx), ∀v ∈ Rn, ∀x ∈ X.

Choosing v = x := x̄ ∈ G, we obtain that f(x̄) + ξ �
Rp

+\{0}
−Λg(x̄). On the other hand, since Λ ∈ L

from x̄ ∈ G it follows that −Λg(x̄) ≥
Rp

+

0. Consequently, one has f(x) + ξ �
Rp

+\{0}
0. �
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Proposition 3.15 Let x∗ ∈ G and (T ∗,Λ∗) ∈ Rp×n × L be such that f(x∗) ∈ −Ψ̃(T ∗,Λ∗). Then

f(x∗) is simultaneously a minimal point of the primal problem (V O) and a maximal point to the

dual problem (D̃V O
FL ).

Proof: Let x∗ ∈ G and (T ∗,Λ∗) ∈ Rp×n × L be such that f(x∗) ∈ −Ψ̃(T ∗,Λ∗). The latter means

f(x∗) ∈ min
Rp

+\{0}

{ ⋃
v∈Rn

{f(v)− T ∗v}+
⋃

x∈X

{T ∗x + Λ∗g(x)}
}

. (3.2)

If f(x∗) is not a minimal point of the primal problem (V O), then there exists x ∈ G such that

f(x) ≤
Rp

+\{0}
f(x∗). As mentioned before, since Λ∗ ∈ L, x ∈ G yields Λ∗g(x) ≤

Rp
+

0. Consequently, we

have f(x) + Λ∗g(x) ≤
Rp

+\{0}
f(x∗) or, equivalently, f(x)− T ∗x + T ∗x + Λ∗g(x) ≤

Rp
+\{0}

f(x∗). But

f(x)− T ∗x + T ∗x + Λ∗g(x) ∈
⋃

v∈Rn

{f(v)− T ∗v}+
⋃

x∈X

{T ∗x + Λ∗g(x)},

which is a contradiction to (3.2). Therefore f(x∗) is a minimal point to the problem (V O). Further,

if f(x∗) is not a solution to (D̃V O
FL ), then ∃ỹ ∈

⋃
(T,Λ)∈Rp×n×L

[
− Ψ̃(T,Λ)

]
such that f(x∗) ≤

Rp
+\{0}

ỹ.

Let (T̃ , Λ̃) ∈ Rp×n × L be such that ỹ ∈ −Ψ̃(T̃ , Λ̃). From Λ̃g(x∗) ≤
Rp

+

0 follows

ỹ ≥
Rp

+\{0}
f(x∗) + Λ̃g(x∗) = f(x∗)− T̃ x∗ + T̃ x∗ + Λ̃g(x∗),

which contradicts the fact that ỹ ∈ −Ψ̃(T̃ , Λ̃) in the same way as before. Accordingly, f(x∗) is a

solution of (D̃V O
FL ). �

4 Special cases

This section aims to investigate some special cases of dual problems based on alternative definitions

of the conjugate maps and the subgradient for a set-valued map having vector variables. In Definition

2.3, if we choose U := [t, ..., t]T ∈ Rp×n for t ∈ Rn, as variable of the conjugate maps, then this reduces

to the definition considered in this section. Remark that duality results for vector optimization

developed by Tanino and Sawaragi (see [18] and [20]) are essentially not distinguishable in both

cases. The advantage of considering conjugate maps with vector variable consists in the fact that

the corresponding dual problems have a more simple form than ones in Section 3 and so they can be
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easily reduced to the duals in scalar optimization. Let us recall first the definitions of the conjugate

maps with vector variables (cf. Definition 2.3).

Definition 4.1 [11, Definition 7.2.3] (the type II Fenchel transform)

Let h : Rn ⇒ Rp be a set-valued map. For λ, x ∈ Rn we denote (λT x)p = (λT x, . . . , λT x)T ∈ Rp.

(i) The set-valued map h∗p : Rn ⇒ Rp defined by h∗p(λ) = max
Rp

+\{0}

⋃
x∈Rn

[
(λT x)p − h(x)

]
, λ ∈ Rn is

called the (type II) conjugate map of h;

(ii) The conjugate map of h∗p, h∗∗p (x) = max
Rp

+\{0}

⋃
λ∈Rn

[
(λT x)p− h∗p(λ)

]
, x ∈ Rn is called the biconju-

gate map of h;

(iii) λ ∈ Rn is said to be a subgradient of the set-valued map h at (x̄; ȳ), if ȳ ∈ h(x̄) and ȳ−(λT x̄)p ∈

min
Rp

+\{0}

⋃
x∈Rn

[h(x)− (λT x)p].

Like in Section 3, let f : Rn → Rp, g : Rn → Rm be vector-valued functions and X ⊆ Rn. Based on

the perturbation functions introduced in Section 3, let us suggest some dual problems having now

vector variables. For convenience, in this section we denote the perturbation functions by ϕi instead

of Φi, for i = 1, 2, 3. Let us notice that throughout this section instead of ϕ∗
ip we write ϕ∗

i , i = 1, 2, 3.

Lagrange duality. By using the dual objective map having a vector variable with respect to

ϕ1, the Lagrange dual problem to (V O) was introduced in [20]. Let us now explain how one can

obtain this dual.

Lemma 4.1 Let λ ∈ Rm. Then min
Rp

+\{0}
{(λT x)p| x ∈ Rm

+} = {0}, if λ ≥
Rm

+

0 and is equal ∅, otherwise.

Proof: Let z ∈ min
Rp

+\{0}
{(λT x)p| x ∈ Rm

+}. Then ∃x̄ ∈ Rm
+ such that z = (λT x̄)p and it holds

(λT x̄)p �
Rp

+\{0}
(λT x)p, ∀x ∈ Rm

+ or, equivalently, λT x̄ ≤ λT x, ∀x ∈ Rm
+ . In other words, it holds

λT x̄ = min
x∈Rn

λT x. Since inf
x∈Rm

+

λT x = 0, if λ ≥
Rm

+

0, and is equal −∞, otherwise, we obtain the conclu-

sion. �

Proposition 4.1 Let λ ∈ Rm. Then ϕ∗
1(0, λ) = max

Rp
+\{0}

{
(λT g(x))p − f(x)| x ∈ X

}
, if λ ≤

Rm
+

0 and is

equal ∅, otherwise.
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Proof: Let λ ∈ Rm. Then by definition ϕ∗
1(0, λ) = max

Rp
+\{0}

{
(λT u)p − ϕ1(x, u)| x ∈ Rn, u ∈ Rm

}
=

max
Rp

+\{0}

{
(λT u)p − f(x)| x ∈ X, g(x) ≤

Rm
+

u
}

. Setting ū := u− g(x), we have

ϕ∗
1(0, λ) = max

Rp
+\{0}

{
(λT g(x))p + (λT ū)p − f(x)| x ∈ X, ū ∈ Rm

+

}
= max

Rp
+\{0}

{
{(λT g(x))p − f(x)| x ∈ X}+ {(λT ū)p| ū ∈ Rm

+}
}

.

In view of Lemma 2.1(i) and of Lemma 4.1, one has

ϕ∗
1(0, λ) ⊆ max

Rp
+\{0}

{(λT g(x))p − f(x)| x ∈ X}+ max
Rp

+\{0}
{(λT u)p| u ∈ Rm

+}

= max
Rp

+\{0}
{(λT g(x))p − f(x)| x ∈ X} − min

Rp
+\{0}

{(−λT u)p| u ∈ Rm
+}

being equal max
Rp

+\{0}
{(λT g(x))p−f(x)| x ∈ X}, if λ ≤

Rm
+

0 and equal ∅, otherwise. For λ ≤
Rm

+

0 it remains

to show that max
Rp

+\{0}
{(λT g(x))p− f(x)| x ∈ X} ⊆ ϕ∗

1(0, λ). Let ȳ ∈ max
Rp

+\{0}
{(λT g(x))p− f(x)| x ∈ X}.

This means ȳ ∈ {(λT g(x))p − f(x)| x ∈ X} and ȳ �
Rp

+\{0}
(λT g(x))p − f(x), ∀x ∈ X. Choosing ū = 0,

we have

ȳ = ȳ + (λT ū)p ∈
{
{(λT g(x))p − f(x)| x ∈ X}+ {(λT u)p| u ∈ Rm

+}
}

.

On the other hand, since (λT u)p ≤
Rp

+

0, ∀u ∈ Rm
+ , one has ȳ ≥

Rp
+

ȳ + (λT u)p and it holds

ȳ + (λT u)p �
Rp

+\{0}
(λT g(x))p − f(x) + (λT u)p, ∀x ∈ X, ∀u ∈ Rm

+ .

Consequently, we obtain that ȳ �
Rp

+\{0}
(λT g(x))p− f(x) + (λT u)p, ∀x ∈ X, ∀u ∈ Rm

+ . In other words

ȳ ∈ ϕ∗
1(0, λ). �

Thus a dual problem to (V O) can be formulated as

(D̂V O
L ) max

Rp
+\{0}

⋃
λ∈Rm

[
− ϕ∗

1(0, λ)
]

= max
Rp

+\{0}

⋃
λ ≤

Rm
+

0

min
Rp

+\{0}
{f(x)− (λT g(x))p| x ∈ X}

= max
Rp

+\{0}

⋃
λ ≥

Rm
+

0

min
Rp

+\{0}
{f(x) + (λT g(x))p| x ∈ X}.

Proposition 4.2 [18, Theorem 6.1.4]

(i) The problem (V O) is stable with respect to ϕ1 if and only if for each solution x̄ to (V O), there

exists a solution λ̄ ∈ Rm with λ̄ ≥
Rm

+

0 to the dual problem (D̂V O
L ) such that f(x̄) ∈ min

Rp
+\{0}

{f(x)+

(λ̄T g(x))p| x ∈ X}. In this case λ̄T g(x̄) = 0.
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(ii) Conversely, if x̄ ∈ G and λ̄ ∈ Rm with λ̄ ≥
Rm

+

0 satisfy the relations above, then x̄ and λ̄ are

solutions to (V O) and (D̂V O
L ), respectively.

Remark 4.1 Let p = 1 and the assumptions of Theorem 2.8 in [5] (see also [23]) be fulfilled. Then

Proposition 4.2 coincides with the optimality conditions (cf. Theorem 2.9 in [5]) for the Lagrange

dual problem in scalar optimization.

Example 4.1 Consider the vector optimization problem

(V O1) min
R2

+\{0}
{(x1, x2)| 0 ≤ xi ≤ 1, xi ∈ R, i = 1, 2}.

Let us construct the Lagrange dual problem to (V O1). Before doing this, in view of (D̂V O
L ), for

λ ≥
Rm

+

0, one has to calculate min
Rp

+\{0}
{f(x)+ (λT g(x))p| x ∈ X}. Let λ = (λ1, λ2, λ3, λ4)T ∈ R4 and the

function g : R2 → R4 be defined by g(x) = (−x1, x1 − 1,−x2, x2 − 1)T . In other words, we have

min
R2

+\{0}


 (λ2 − λ1 + 1)x1 + (λ4 − λ3)x2

(λ2 − λ1)x1 + (λ4 − λ3 + 1)x2

 ∣∣∣ (x1, x2)T ∈ R2

−

 λ2 + λ4

λ2 + λ4

 .

Let B1 =

 λ2 − λ1 + 1 λ4 − λ3

λ2 − λ1 λ4 − λ3 + 1

. Taking into account Theorem 11.20 in [12], if ∃µ ∈ int R2
+

such that µT B1 = 0, then min
R2

+\{0}
{B1x| x ∈ R2} = {B1x| x ∈ R2} (cf. Lemma 5.1). In the other case,

one has min
R2

+\{0}
{B1x| x ∈ R2} = ∅. As µT B1 = 0 is nothing else than (λ2−λ1+1)µ1+(λ2−λ1)µ2 = 0

and (λ4 − λ3)µ1 + (λ4 − λ3 + 1)µ2 = 0, it must hold λ1 = λ2 + µ1

µ1+µ2
and λ3 = λ4 + µ2

µ1+µ2
. Now let

us define

L1 :=
{

λ ∈ R4| ∃µ ∈ int R2
+ such that λ1 = λ2 +

µ1

µ1 + µ2
, λ3 = λ4 +

µ2

µ1 + µ2

}
.

In conclusion, we obtain for the Lagrange dual problem (D̂V O1
L ) the following formulation

max
R2

+\{0}

⋃
λ ≥

R4
+

0

λ∈L1


 (λ2 − λ1 + 1)x1 + (λ4 − λ3)x2

(λ2 − λ1)x1 + (λ4 − λ3 + 1)x2

−

 λ2 + λ4

λ2 + λ4

 ∣∣∣ (x1, x2)T ∈ R2

 .

Let x̄ = (0, 0)T ∈ R2 and λ̄ = (λ̄1, λ̄2, λ̄3, λ̄4)T ∈ L1 be such that λ̄ ≥
R4

+

0 and λ̄T g(x̄) = 0. Then from

λ̄T g(x̄) = 0 follows λ̄2 + λ̄4 = 0. As λ̄2, λ̄4 ≥ 0, this implies that λ̄2 = λ̄4 = 0. Moreover, as λ̄ ∈ L1,
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it holds λ̄1 = µ1

µ1+µ2
and λ̄3 = µ2

µ1+µ2
. In other words, λ̄1 = α := µ1

µ1+µ2
, λ̄3 = 1 − α, for 0 < α < 1.

On the other hand, it is clear that

f(x̄) = (0, 0)T ∈ min
R2

+\{0}
{f(x) + (λ̄T g(x))2| x ∈ R2}

=


 µ2

µ1+µ2
(x1 − x2)

µ1

µ1+µ2
(x2 − x1)

 ∣∣∣ (x1, x2)T ∈ R2

 =


 (α− 1)y

αy

 ∣∣∣ y ∈ R

 , 0 < α < 1.

According to Proposition 4.2(ii), x̄ = (0, 0)T and λ̄ = (α, 0, 1 − α, 0)T , 0 < α < 1 are solutions to

(V O1) and (D̂V O1
L ), respectively.

Fenchel duality. Before considering the next dual problem, we prove the following assertions.

Lemma 4.2 Let t ∈ Rn and Y ⊆ Rn. If the set max
Rp

+\{0}
{(tT x)p| x ∈ Y } is not empty, then we have

max
Rp

+\{0}
{(tT x)p|x ∈ Y } = {(max

x∈Y
tT x)p}.

Proof: Let t ∈ Rn. By assumption, there exists x̄ ∈ Y such that (tT x̄)p �
Rp

+\{0}
(tT x)p, ∀x ∈ Y or,

equivalently, tT x̄ ≥ tT x, ∀x ∈ Y . Therefore tT x̄ = max
x∈Y

tT x. �

Proposition 4.3 Let t ∈ Rn. Then ϕ∗
2(0, t) = f∗p (t) − (min

x∈G
tT x)p, if max

Rp
+\{0}

{(−tT x)p| x ∈ G} 6= ∅

and is equal ∅, otherwise.

Proof: Let t ∈ Rn. By definition ϕ∗
2(0, t) = max

Rp
+\{0}

{
(tT v)p − ϕ2(x, v)| x ∈ Rn, v ∈ Rn

}
=

max
Rp

+\{0}

{
(tT v)p−f(x+v)| x ∈ G, v ∈ Rn

}
. Substituting v̄ := x+v, we get ϕ∗

2(0, t) = max
Rp

+\{0}

{
(tT v̄)p−

(tT x)p − f(v̄)| x ∈ G, v̄ ∈ Rn
}

= max
Rp

+\{0}

{
{(tT v̄)p − f(v̄)| v̄ ∈ Rn}+ {(−tT x)p| x ∈ G}

}
. According

to Lemma 2.1(i), it follows that

ϕ∗
2(0, t) ⊆ max

Rp
+\{0}

{(tT v)p − f(v)| v ∈ Rn}+ max
Rp

+\{0}
{(−tT x)p| x ∈ G}.

It is clear that unless max
Rp

+\{0}
{(−tT x)p| x ∈ G} 6= ∅, ϕ∗

2(0, t) = ∅. Since max
Rp

+\{0}
{(−tT x)p| x ∈ G} 6= ∅,

by Lemma 4.2 it holds max
Rp

+\{0}
{(−tT x)p| x ∈ G} = {(−min

x∈G
tT x)p}. In other words ϕ∗

2(0, t) ⊆

max
Rp

+\{0}
{(tT v)p − f(v)| v ∈ Rn} − (min

x∈G
tT x)p = f∗p (t)− (min

x∈G
tT x)p.

Let now ȳ ∈ f∗p (t)− (min
x∈G

tT x)p. Then ȳ ∈ max
Rp

+\{0}

{
{(tT v)p − f(v)| v ∈ Rn} − (min

x∈G
tT x)p

}
. This

means that ȳ �
Rp

+\{0}
(tT v)p − f(v)− (min

x∈G
tT x)p, ∀v ∈ Rn. Moreover, from

(tT v)p − f(v)− (min
x∈G

tT x)p ≥
Rp

+

(tT v)p − f(v)− (tT x)p, ∀x ∈ G, ∀v ∈ Rn
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follows (tT v)p − f(v)− (tT x)p �
Rp

+\{0}
ȳ, ∀x ∈ G, ∀v ∈ Rn. Whence ȳ ∈ ϕ∗

2(0, t). �

The Fenchel dual problem can be stated now as being

(D̂V O
F ) max

Rp
+\{0}

⋃
t∈Rn

[
− ϕ∗

2(0, t)
]

= max
Rp

+\{0}

⋃
t∈Rn

[
− f∗p (t) + (min

x∈G
tT x)p

]
.

By using Theorem 2.2 and Proposition 4.3 one can formulate the following result.

Proposition 4.4

(i) The problem (V O) is stable with respect to ϕ2 if and only if for each solution x̄ to (V O), there

exists a solution t̄ ∈ Rn to the dual problem (D̂V O
F ) such that f(x̄) ∈ −f∗p (t̄) + (min

x∈G
t̄T x)p. In

this case t̄T x̄ = min
x∈G

t̄T x.

(ii) Conversely, if x̄ ∈ G and t̄ ∈ Rn satisfy the relations above, then x̄ and t̄ are solutions to (V O)

and (D̂V O
F ), respectively.

Remark 4.2 Let p = 1 and the assumptions of Theorem 2.8 in [5] be fulfilled. Then Proposition

4.4 is nothing else than the result which provides the optimality conditions (cf. Theorem 2.10 in [5])

for the Fenchel dual problem in scalar optimization.

Fenchel-Lagrange duality. The last dual problem in this section deals with the perturbation

function ϕ3.

Proposition 4.5 Let t ∈ Rn and λ ∈ Rm. Assume that max
Rp

+\{0}
{(λT g(x)− tT x)p| x ∈ X} 6= ∅. Then

ϕ∗
3(0, t, λ) = f∗p (t) + (max

x∈X
[λT g(x)− tT x])p, if λ ≤

Rm
+

0 and is equal ∅, otherwise.

Proof: Let t ∈ Rn and λ ∈ Rm. By definition

ϕ∗
3(0, t, λ) = max

Rp
+\{0}

{
(tT v)p + (λT u)p − ϕ3(x, v, u)| x ∈ Rn, v ∈ Rn, u ∈ Rm

}
= max

Rp
+\{0}

{
(tT v)p + (λT u)p − f(x + v)| x ∈ X, v ∈ Rn, g(x) ≤

Rm
+

u
}

= max
Rp

+\{0}

⋃
x∈X

⋃
v∈Rn

{
(tT v)p + (λT u)p − f(x + v)| g(x) ≤

Rm
+

u
}

.

Taking ū := u− g(x), one has

ϕ∗
3(0, t, λ) = max

Rp
+\{0}

⋃
x∈X

⋃
v∈Rn

{
(tT v)p + (λT g(x))p + (λT ū)p − f(x + v)| ū ∈ Rm

+

}
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= max
Rp

+\{0}

⋃
x∈X

⋃
v∈Rn

{
(tT v)p + (λT g(x))p − f(x + v) + {(λT ū)p| ū ∈ Rm

+}
}

= max
Rp

+\{0}

⋃
x∈X

{
(λT g(x))p + {(λT ū)p| ū ∈ Rm

+}+ {(tT v)p − f(x + v)| v ∈ Rn}
}

.

Setting now v̄ := x + v, it follows that

ϕ∗
3(0, t, λ) = max

Rp
+\{0}

⋃
x∈X

{
(λT g(x))p + {(λT ū)p| ū ∈ Rm

+}

+{(tT v̄)p − (tT x)p − f(v̄)| v̄ ∈ Rn}
}

= max
Rp

+\{0}

⋃
x∈X

{
(λT g(x))p − (tT x)p+

{(λT ū)p| ū ∈ Rm
+}+ {(tT v̄)p − f(v̄)| v̄ ∈ Rn}

}
= max

Rp
+\{0}

{
{(λT u)p| u ∈ Rm

+}+

{(tT v)p − f(v)| v ∈ Rn}+ {(λT g(x))p − (tT x)p| x ∈ X}
}

.

Consequently one has ϕ∗
3(0, t, λ) ⊆ max

Rp
+\{0}

{(λT u)p| u ∈ Rm
+} + max

Rp
+\{0}

{(tT v)p − f(v̄)| v ∈ Rn}+

max
Rp

+\{0}
{(λT g(x))p − (tT x)p| x ∈ X}. Moreover, we can easy verify that

max
Rp

+\{0}
{(λT g(x)− tT x)p| x ∈ X} = {(max

x∈X
[λT g(x)− tT x])p}.

By Lemma 4.1 we conclude that ϕ∗
3(0, t, λ) ⊆ f∗p (t)+ (max

x∈X
[λT g(x)− tT x])p, if λ ≤

Rm
+

0, being equal ∅,

otherwise.

Let us show now the converse inclusion. Let t ∈ Rn, λ ≤
Rm

+

0 and ȳ ∈ f∗p (t)+(max
x∈Rn

[λT g(x)−tT x])p.

Then it holds ȳ ∈ max
Rp

+\{0}

{
{(tT v)p − f(v)| v ∈ Rn} + (max

x∈X
[λT g(x) − tT x])p

}
. In other words

ȳ �
Rp

+\{0}
(tT v)p − f(v) + (max

x∈X
[λT g(x)− tT x])p, ∀v ∈ Rn. Since

(tT v)p − f(v) + (λT g(x)− tT x)p ≤
Rp

+

(tT v)p − f(v) + (max
x∈X

[λT g(x)− tT x])p, ∀x ∈ X,

we conclude that ȳ �
Rp

+\{0}
(tT v)p − f(v) + (λT g(x)− tT x)p, ∀x ∈ X, ∀v ∈ Rn or, equivalently,

ȳ + (λT u)p �
Rp

+\{0}
(tT v)p − f(v) + (λT g(x)− tT x)p + (λT u)p, ∀x ∈ X, ∀v ∈ Rn, ∀u ∈ Rm

+ .

On the other hand, because of (λT u)p ≤
Rp

+

0, ∀u ∈ Rm
+ it holds ȳ ≥

Rp
+

ȳ + (λT u)p, u ∈ Rm
+ . Whence, we

obtain that ȳ �
Rp

+\{0}
(tT v)p−f(v)+(λT g(x)−tT x)p +(λT u)p, ∀x ∈ X, ∀v ∈ Rn, ∀u ∈ Rm

+ . Therefore

ȳ ∈ ϕ∗
3(0, t, λ). �

Now we can define the following Fenchel-Lagrange-type dual problem to (V O)

(D̂V O
FL ) max

Rp
+\{0}

⋃
(t,λ)∈Rn×Rm

[
− ϕ∗

3(0, t, λ)
]

= max
Rp

+\{0}

⋃
t∈Rn

λ ≤
Rm
+

0

[
− f∗p (t) + (min

x∈X
[tT x− λT g(x)])p

]
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= max
Rp

+\{0}

⋃
t∈Rn

λ ≥
Rm
+

0

[
− f∗p (t) + (min

x∈X
[tT x + λT g(x)])p

]
.

According to Theorem 2.2 and Proposition 4.5 one can state the following result.

Proposition 4.6

(i) The problem (V O) is stable with respect to ϕ3 if and only if for each solution x̄ to (V O),

there exists a solution t̄ ∈ Rn, λ̄ ∈ Rm with λ̄ ≥
Rm

+

0 to the dual problem (D̂V O
FL ) such that

f(x̄) ∈ −f∗p (t̄) + (min
x∈X

[t̄T x + λ̄T g(x)])p. In this case t̄T x̄ + λ̄T g(x̄) = min
x∈X

[t̄T x + λ̄T g(x)] and

λ̄T g(x̄) = 0.

(ii) Conversely, if x̄ ∈ G and t̄ ∈ Rn, λ̄ ∈ Rm with λ̄ ≥
Rm

+

0 satisfy the relations above, then x̄ and

(t̄, λ̄) are solutions to (V O) and (D̂V O
FL ), respectively.

Remark 4.3 In the scalar case Proposition 4.6 is nothing else than the assertion dealing with the

optimality conditions for the Fenchel-Lagrange duality (cf. Theorem 2.11 in [5]).

Further we show some relations between the dual objective maps investigated in this section.

Proposition 4.7 Let t ∈ Rn and λ ∈ Rm with λ ≤
Rm

+

0. If max
Rp

+\{0}
{(−tT x)p| x ∈ G} 6= ∅ and

max
Rp

+\{0}
{(λT g(x)− tT x)p| x ∈ X} 6= ∅, then ϕ∗

2(0, t) ⊆ ϕ∗
3(0, t, λ)− Rp

+.

Proof: Let t ∈ Rn and λ ≤
Rm

+

0. Assume that z ∈ ϕ∗
2(0, t) = f∗p (t) − (min

x∈G
tT x)p. Since g(x) ≤

Rm
+

0,

for x ∈ G one has −λT g(x) ≤ 0, ∀x ∈ G. After adding tT x in both sides we have min
x∈X

[tT x −

λT g(x)] ≤ min
x∈G

[tT x− λT g(x)] ≤ min
x∈G

tT x and so −(min
x∈G

tT x)p ≤
Rp

+

−(min
x∈X

[tT x− λT g(x)])p. This means

that −(min
x∈G

tT x)p ∈ −(min
x∈X

[tT x− λT g(x)])p−Rp
+. Therefore z ∈ f∗p (t)− (min

x∈X
[tT x− λT g(x)])p−Rp

+.

In other words z ∈ ϕ∗
3(0, t, λ)− Rp

+. �

Proposition 4.8 Let t ∈ Rn and λ ∈ Rm with λ ≤
Rm

+

0. If the set f∗p (t) is external stable and

max
Rp

+\{0}
{(λT g(x)− tT x)p| x ∈ X} 6= ∅, then ϕ∗

1(0, λ) ⊆ ϕ∗
3(0, t, λ)− Rp

+.

Proof: Let t ∈ Rn and λ ≤
Rm

+

0 be fixed. Then one has ϕ∗
1(0, λ) = max

Rp
+\{0}

{(λT g(x))p − f(x)| x ∈

X} ⊆ {(λT g(x))p − f(x)| x ∈ X} ⊆ {(tT x)p − f(x)| x ∈ Rn} + {−(tT x − λT g(x))p| x ∈ X}. On
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the other hand, in view of the relation −{(pT x− λT g(x))p| x ∈ X} ⊆ −min
x∈X

(pT x− λT g(x))p − Rp
+

and by the external stability of f∗p (t), we have ϕ∗
1(0, λ) ⊆ f∗p (t)−Rp

+ −min
x∈X

(pT x− λT g(x))p −Rp
+ =

f∗p (t)−min
x∈X

(pT x− λT g(x))p − Rp
+ = ϕ∗

3(0, t, λ)− Rp
+. �

5 Applications to vector variational inequalities

5.1 Gap functions for vector variational inequalities

Let F : Rn → Rn×p be a matrix-valued function and K ⊆ Rn. The vector variational inequality

problem consists in finding x ∈ K such that

(V V I) F (x)T (y − x) �
Rp

+\{0}
0, ∀y ∈ K.

Definition 5.1 (cf. [6] and [11]) A set-valued map γ : K ⇒ Rp is said to be a gap function for

(V V I) if it satisfies the following conditions:

(i) 0 ∈ γ(x) if and only if x ∈ K solves the problem (V V I);

(ii) 0 �
Rp

+\{0}
γ(y), ∀y ∈ K.

For (V V I) the following gap function has been introduced in the past (see [6])

γV V I
A (x) = max

Rp
+\{0}

{
F (x)T (x− y)| y ∈ K

}
.

Let us notice that γV V I
A is a generalization of Auslender’s gap function for the scalar variational

inequality problem (cf. [4]). On the other hand, the duality results investigated in Section 3 allow

us to introduce some new gap functions for (V V I). Let us mention that such a similar approach

has been used for scalar variational inequalities in [3]. We remark that x ∈ K is a solution to the

problem (V V I) if and only if 0 is a minimal point of the set
{

F (x)T (y − x)| y ∈ K
}

. This means

that x is a solution of the following vector optimization problem

(P V V I ;x) min
Rp

+\{0}

{
F (x)T (y − x)| y ∈ K

}
.
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Let x ∈ K be fixed. Setting f̃x(y) := F (x)T (y− x) instead of f in (DV O
F ), the Fenchel dual problem

to (P V V I ;x) turns out to be

(DV V I
F ;x) max

Rp
+\{0}

⋃
T∈Rp×n

min
Rp

+\{0}

{ ⋃
y∈Rn

{(F (x)T − T )y} − F (x)T x +
⋃

y∈K

{Ty}
}

.

We define the following map for any x ∈ K γV V I
F (x) :=

⋃
T∈Rp×n

Φ̃∗
2(0, T ;x), where Φ̃∗

2(0, T ;x) is

defined by Φ̃∗
2(0, T ;x) = max

Rp
+\{0}

{ ⋃
y∈Rn

{(T − F (x)T )y}+ F (x)T x +
⋃

y∈K

{−Ty}
}

.

Theorem 5.1 Let for any x ∈ K the problem (P V V I ;x) be stable with respect to Φ̃2(0, ·;x). Then

γV V I
F is a gap function for (V V I).

Proof:

(i) Let x ∈ K be a solution to the problem (V V I). As the problem (P V V I ;x) is stable, by

Proposition 3.10(i), there exists a solution Tx ∈ Rp×n to (DV V I
F ;x) such that f̃x(x) = 0 ∈

−Φ̃∗
2(0, Tx;x). In other words, 0 ∈ Φ̃∗

2(0, Tx;x) and this implies that 0 ∈
⋃

T∈Rp×n

Φ̃∗
2(0, T ;x) =

γV V I
F (x). Conversely, let x ∈ K and 0 ∈ γV V I

F (x). Hence, there exists Tx ∈ Rp×n such that

0 ∈ Φ̃∗
2(0, Tx;x) or, equivalently, 0 = F (x)T (x− x) ∈ −Φ̃∗

2(0, Tx;x). According to Proposition

3.10(ii), x is a solution to (P V V I ;x) and also to the problem (V V I).

(ii) Let y ∈ K be fixed. Then, in view of Proposition 3.9, for any T ∈ Rp×n, one has fy(z) +

ξ �
Rp

+\{0}
0, ∀z ∈ K, ∀ξ ∈ Φ̃∗

2(0, T ; y) or, equivalently, F (y)T (z − y) + ξ �
Rp

+\{0}
0, ∀z ∈ K, ∀ξ ∈⋃

T∈Rp×n

Φ̃∗
2(0, T ; y) = γV V I

F (y). Setting z = y, we get ξ �
Rp

+\{0}
0, ∀ξ ∈ γV V I

F (y). �

According to Proposition 3.2, we can give the following result relative to the stability with respect

to Φ̃2(0, ·;x) when x ∈ K.

Proposition 5.1 Let for any x ∈ K the set min
Rp

+\{0}
{F (x)T y| y ∈ K} be externally stable. Then the

problem (P V V I ;x) is stable with respect to Φ̃2(0, ·;x).

In connection with the Fenchel dual problem we call γV V I
F the Fenchel gap function for the prob-

lem (V V I). Let now the ground set K be given by K =
{

x ∈ Rn| g(x) ≤
Rm

+

0
}

, where g(x) =

(g1(x), ..., gm(x))T , gi : Rn → R. Before introducing two other gap functions, let us formulate the
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Lagrange and Fenchel-Lagrange dual problems for (P V V I ;x). Taking f̃x instead of f in Φ∗
1(0,Λ) and

Φ∗
3(0, T, Λ), respectively, we have

(DV V I
L ;x) max

Rp
+\{0}

⋃
Λ∈Rp×m

min
Rp

+\{0}

{ ⋃
q∈Rm

+

{−Λq} − F (x)T x +
⋃

y∈Rn

{F (x)T y − Λg(y)}
}

and

(DV V I
FL ;x) max

Rp
+\{0}

⋃
(T,Λ)∈Rp×n×Rp×m

min
Rp

+\{0}

{ ⋃
q∈Rm

+

{−Λq} − F (x)T x

+
⋃

y∈Rn

{(F (x)T − T )y}+
⋃

y∈Rn

{Ty − Λg(y)}
}

.

For x ∈ K, we define the gap functions as follows γV V I
L (x) :=

⋃
Λ∈Rp×m

Φ̃∗
1(0,Λ; x), where Φ̃∗

1(0,Λ; x) =

max
Rp

+\{0}

{ ⋃
q∈Rm

+

{Λq}+F (x)T x+
⋃

y∈Rn

{Λg(y)−F (x)T y}
}

and γV V I
FL (x) :=

⋃
(T,Λ)∈Rp×n×Rp×m

Φ̃∗
3(0, T, Λ; x),

where Φ̃∗
3(0, T, Λ; x) = max

Rp
+\{0}

{ ⋃
q∈Rm

+

{Λq} + F (x)T x +
⋃

y∈Rn

{(T − F (x)T )y} +
⋃

y∈Rn

{Λg(y) − Ty}
}

,

respectively. In analogy to the proof of Theorem 5.1, by applying the duality assertions in Section

3 for (DV O
L ) and (DV O

FL ), respectively, the following theorem can be verified.

Theorem 5.2 Let for any x ∈ K the problem (P V V I ;x) be stable with respect to Φ̃1(0, ·;x) and

Φ̃3(0, ·;x), respectively. Then γV V I
L and γV V I

FL are gap functions for (V V I).

The origin of these new gap functions for (V V I) justifies to call them the Lagrange gap function

γV V I
L and the Fenchel-Lagrange gap function γV V I

FL , respectively.

5.2 Gap functions via Fenchel duality

According to the results in Section 4, we can suggest a further class of gap functions to (V V I). In

this subsection, we restrict the construction of a gap function to the case of Fenchel duality. As

mentioned before, for a fixed x ∈ K we consider the following vector optimization problem relative

to (V V I)

(P V V I ;x) min
Rp

+\{0}

{
F (x)T (y − x)| y ∈ K

}
.

For a fixed x ∈ K, taking F (x)T (y − x) as the objective function, (D̂V O
F ) becomes

(D̂V V I
F ;x) max

Rp
+\{0}

⋃
t∈Rn

{
min

Rp
+\{0}

[(F (x)T (y − x)− (tT y)p| y ∈ Rn] + (min
y∈K

tT y)p

}
.

We need first the following auxiliary result.
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Lemma 5.1 Let M ∈ Rp×n. Then min
Rp

+\{0}
{My| y ∈ Rn} = {My| y ∈ Rn}, if exists µ ∈ int Rp

+ such

that µT M = 0 and is equal ∅, otherwise.

Proof: Let M ∈ Rp×n be fixed and ȳ ∈ Rn. According to Theorem 11.20 in [12], Mȳ ∈ min
Rp

+\{0}
{My| y

∈ Rn} if and only if ∃µ ∈ int Rp
+ such that µT Mȳ ≤ µT My, ∀y ∈ Rn. As inf

y∈Rn
µT My = 0, if

µT M = 0 and is equal −∞, otherwise, the conclusion follows. �

Let C := [t, ..., t] ∈ Rn×p and for a fixed x ∈ K let N(x) be the set defined by

N(x) := {t ∈ Rn| ∃µ ∈ int Rp
+ such that (F (x)− C)µ = 0}.

In view of Lemma 5.1, the dual becomes

(D̂V V I
F ;x) max

Rp
+\{0}

⋃
t∈N(x)

{
− F (x)T x + {(F (x)− C)T y| y ∈ Rn}+ (min

y∈K
tT y)p

}
.

We introduce for x ∈ K the following map

γ̃V V I
F (x) := F (x)T x +

⋃
t∈N(x)

[
{(C − F (x))T y| y ∈ Rn} − (min

y∈K
tT y)p

]
.

Theorem 5.3 Let for any x ∈ K the set min
Rp

+\{0}
{F (x)T y| y ∈ K} be externally stable. Then γ̃V V I

F

is a gap function for (V V I).

Proof:

(i) Let x ∈ K be fixed. As the set min
Rp

+\{0}
{F (x)T y| y ∈ K} is externally stable, by Proposition 5.1,

the problem (P V V I ;x) is stable. Taking F (x)T (y − x) instead of f(y) in the formula of f∗p (t),

by Lemma 5.1, this becomes max
Rp

+\{0}
{(tT y)p−F (x)T (y−x)| y ∈ Rn} = F (x)T x− min

Rp
+\{0}

{(F (x)−

C)T y| y ∈ Rn} = F (x)T x−{(F (x)−C)T y| y ∈ Rn}, where C = [t, ..., t] ∈ Rn×p and t ∈ N(x).

Let x̄ ∈ K be a solution to (V V I). By Proposition 4.4(i) it follows that

0 ∈ −F (x)T x + {(F (x)− C)T y| y ∈ Rn}+ (min
y∈K

tT y)p

and so 0 ∈ γ̃V V I
F (x̄). Conversely, let x̄ ∈ K and 0 ∈ γ̃V V I

F (x̄). Then ∃t̄ ∈ N(x̄) such that

0 ∈ F (x̄)T x̄ + {(C̄ − F (x̄))T y| y ∈ Rn} − (min
y∈K

t̄T y)p, where C̄ = [t̄, ..., t̄] ∈ Rn×p. Taking into

account Proposition 4.4(ii), x̄ is a solution to (P V V I ; x̄). Consequently, x̄ solves the problem

(V V I).
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(ii) Let y ∈ K. Choosing T := [t, ..., t]T ∈ Rp×n, by Proposition 3.9 and Proposition 4.3, it

holds F (y)T (z − y) + ξ �
Rp

+\{0}
0, ∀z ∈ K, ∀ξ ∈ f∗p (t) − (min

y∈K
tT y)p,∀t ∈ N(y) or, equivalently,

F (y)T (z − y) + ξ �
Rp

+\{0}
0, ∀z ∈ K, ∀ξ ∈ γ̃V V I

F (y). Setting z = y, one has ξ �
Rp

+\{0}
0, ∀ξ ∈

γ̃V V I
F (y). �

Remark 5.1 In the case p = 1, the problem (V V I) reduces to the scalar variational inequality

problem of finding x ∈ K such that

(V I) F (x)T (x− y) ≥ 0, y ∈ K,

where F : Rn → Rn is a vector-valued function. Let x ∈ K be fixed. If t ∈ N(x), there exists

µ > 0 such that (F (x) − t)µ = 0. Therefore it holds F (x) = t. Consequently, the gap function for

the variational inequality (V I) becomes γV I
F (x) = F (x)T x + max

y∈K
(−F (x)T y) = max

y∈K
F (x)T (x − y),

which coincides with Auslender’s gap function (see [3] and [4]).

Example 5.1 Let F =

 1 0

0 1

 be a constant matrix and K = {(x1, x2)T ∈ R2| 0 ≤ xi ≤

1, xi ∈ R, i = 1, 2}. We consider the vector variational inequality problem of finding x ∈ K such

that

(V V I1)

 1 0

0 1

 (y − x) �
R2

+\{0}
0, ∀y ∈ K.

We calculate γ̃V V I
F for (V V I1). Let x = (x1, x2)T ∈ R2 be fixed. First we consider the set-valued

map W : R2 ⇒ R2 given by (see (D̂V V I
F ;x)) W (x1, x2) = min

R2
+\{0}

{F (x)T (y − x) − (tT y)2| y ∈ R2}.

Then

W (x1, x2) = min
R2

+\{0}


 (1− t1)y1 − t2y2

−t1y1 + (1− t2)y2

 ∣∣∣ (y1, y2)T ∈ R2

−

 x1

x2

 .

If ∃µ = (µ1, µ2)T ∈ int R2
+ such that (1−t1)µ1−t1µ2 = 0 and −t2µ1+(1−t2)µ2 = 0 or, equivalently,

t1 + t2 = 1 and t2µ1 = t1µ2, then, by Lemma 5.1, it holds

W (x1, x2) =


 (1− t1)y1 − t2y2

−t1y1 + (1− t2)y2

 ∣∣∣ (y1, y2)T ∈ R2

−

 x1

x2

 .
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Whence

γ̃V V I1
F (x) =

 x1

x2

 +
⋃

t∈N1




 t(y2 − y1)

(1− t)(y1 − y2)

 ∣∣∣ (y1, y2)T ∈ R2


−

 min
0≤y1≤1

(1− t)y1 + min
0≤y2≤1

ty2

min
0≤y1≤1

(1− t)y1 + min
0≤y2≤1

ty2


 ,

where the set N1 is defined by N1 := {t ∈ R| ∃µ ∈ int R2
+ such that (1− t)µ1 = tµ2}. Further, as

N1 = (0, 1), we obtain that

γ̃V V I1
F (x) =

 x1

x2

 +
⋃

t∈(0,1)

{ ty

(t− 1)y

 ∣∣∣ y ∈ R
}

.

Remark 5.2 A very interesting problem arises when one wants to obtain error bounds for the

solutions of the vector variational inequality (V V I) by using the gap functions introduced in this

section like Noor did in [17] for the general variational inequality. As the gap functions are set-

valued functions, the real challenge is to find some scalar gap functions attached to them which

characterize the solutions of (V V I) in a similar way. Then one could try to obtain the error bounds

for the solutions of (V V I) by means of these intermediate scalar functions.
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