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1 Introduction

Multiobjective (vector, multicriteria) optimization is a modern and fruitful re-
search field with many practical applications, concerning especially engineering,
economy and finance but also location and transports, even medicine. From the
large amount of relevant publications in vector optimization we mention just
three books, namely [18, 21, 28], where most of the theoretical issues concerning
multiobjective optimization are comprehensively treated. Moreover, almost all of
the works cited in our article deal with multiobjective optimization and many of
the references therein too. The rich literature on vector optimization mentions
several types of solutions that can be attached to a multiobjective optimization
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problem. Let us enumerate here a few: efficient, properly efficient, strongly effi-
cient, weakly efficient, strictly efficient, approximately efficient, critical efficient,
ideal efficient, superefficient and epsilon-efficient solutions. In our paper we use
efficient as well as properly and weakly efficient solutions.

Duality is an important tool in vector optimization. Dealing with a convex
vector minimization problem via duality is realized mostly by attaching a scalar
optimization problem to the initial one. Using the scalarized problem and its
dual, it is tried to construct a multiobjective dual problem to the primal vector
problem and some duality assertions are usually verified. Different scalarization
methods were proposed in the literature, using linear functions, norms and other
constructions, see for instance [3–9, 11–15, 17–25, 27, 29–36, 38–42]. The scalar-
ization we consider within this paper has already been mentioned or used in
the literature in various ways by Gerstewitz (cf. [11]), Gerstewitz and Iwanow
(cf. [12]), Göpfert and Gerth (cf. [14]), Jahn (cf. [17, 18]) and Miglierina and
Molho (cf. [24]), among others, and consists in attaching to the initial multi-
objective optimization problem a scalar optimization problem whose objective
function is the postcomposition of the objective vector function of the vector
optimization problem with a K-strongly increasing function, called scalarization
function. To this scalar optimization problem we attach a conjugate dual prob-
lem (cf. [1]), which is then used to formulate the multiobjective dual problem.
The conjugate dual problem we use is a combination of the classical Fenchel and
Lagrange dual problems, being introduced by Boţ and Wanka (see [1,2] for more)
under the name Fenchel-Lagrange dual problem.

The underlying notion of solutions of the primal and dual multiobjective prob-
lem is the one of properly efficient solutions for the primal problem and efficient
solutions for the dual problem. If the convex cone defining the partial ordering in
the image space of the vectorial objective function has a non-empty interior we
consider also strictly increasing scalarization functions. In this way we can con-
sider subsets of weakly efficient solutions for the primal and dual multiobjective
problems and state corresponding weak and strong duality assertions.

Some of the cited authors used also this kind of scalarization in order to intro-
duce Lagrange-type multiobjective dual problems (see [11, 12, 14]), but without
resorting to conjugate functions. As many of the other scalarizations used in
the literature use strongly increasing functions, too, they can be rediscovered
as special cases in the framework we describe here. This happens for the lin-
ear scalarization, maximum(-linear) scalarization, set scalarization, (semi)norm
scalarization, quadratic scalarization and other scalarizations involving special
K-strongly increasing functions which were introduced in the literature usually
for computational reasons.

This paper is organized as follows. The second section contains some defini-
tions of the notions needed later and the duality statements regarding the scalar
convex composed optimization problem. Then we present the new approach for
constructing a dual to a multiobjective convex optimization problem, giving also
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weak and strong duality assertions, as well as optimality conditions. The fourth
part contains some special cases of our duality framework, namely the situations
when the scalarization function has certain additional imposed properties. A
short conclusive section closes the paper.

2 Preliminaries and duality for the scalar con-

vex composed problem

2.1 Preliminaries

Let us state from the very beginning that all around this paper we work in finite
dimensional real spaces. As usual, R

n denotes the n-dimensional real space for
any positive integer n and throughout all the vectors are considered as column
vectors. An upper index T transposes a column vector to a row one and viceversa.
The inner product of two vectors x = (x1, . . . , xn)T and y = (y1, . . . , yn)T in the
n-dimensional real space is denoted by xT y =

∑n

i=1 xiyi. Given a set X ⊆ R
n we

use the well-known indicator function δX : R
n → R defined by

δX(x) =

{

0, if x ∈ X,
+∞, if x /∈ X.

Another important function attached to the set X is the support function σX :
R

n → R, σX(β) = supx∈X βT x. The interior of X is denoted by int(X), the
relative interior by ri(X) and the closure by cl(X). The border of X is written
bd(X) and aff(X) is the affine hull of X. Denote by ”5” the partial ordering
introduced on R

k by the corresponding non-negative orthant. Having a non-
empty cone K ⊆ R

k, we denote by K∗ = {β ∈ R
k : βT k ≥ 0 ∀k ∈ K} its dual

cone.
For X ⊆ R

n and a function f : X → R we recall the definition of the conjugate
function regarding the set X

f ∗
X : R

n → R, f ∗
X(p) = sup

x∈X

{

pT x − f(x)
}

.

When X = R
n the conjugate function regarding the set X is actually the

classical (Legendre-Fenchel) conjugate function of f , denoted by f ∗. It is easy to
prove that (δX)∗ = σX . Concerning the conjugate functions we have the following
inequality known as the Fenchel-Young inequality

f ∗
X(p) + f(x) ≥ pT x ∀x ∈ X ∀p ∈ R

n.

Given a convex cone K ⊆ R
k that contains the element 0, we define some

properties involving this cone that play an important role throughout this paper.
When int(K) 6= ∅ denote K̂ = int(K) ∪ {0}. Take X ⊆ R

n and D ⊆ R
k, both
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non-empty.

Definition 1. (see [17, 18]) A function f : D → R is called K-increasing if
for x, y ∈ D such that x− y ∈ K, follows f(x) ≥ f(y). If, additionally, whenever
x 6= y there is f(x) > f(y), the function f is called K-strongly increasing. If
int(K) 6= ∅ and for x, y ∈ D such that x − y ∈ int(K), follows f(x) > f(y) the
function f is called K-strictly increasing.

Remark 1. Clearly, when int(K) 6= ∅ the K-strictly increasing functions co-
incide with the K̂-strongly increasing functions. In the literature there are some
other notions of increasing monotonicity for functions, some of them used in vec-
tor optimization, too. See for instance [21] where properly increasing functions
are used or other works where pseudomonotone or polarly monotone functions
are employed on vector optimization. We have to mention that in some works
(see [14]) the strongly increasing functions are called strictly increasing. We have
opted for the terminology in [17,18].

Definition 2. A function F : X → R
k, where X is a convex set, is called

K-convex if for any x and y ∈ X and λ ∈ [0, 1] one has

λF (x) + (1 − λ)F (y) − F
(

λx + (1 − λ)y
)

∈ K.

Further definitions will be introduced in the sections dealing with multiob-
jective optimization problems. Due to the length of the paper we skipped some
definitions and explanations borrowed from the literature, referring the reader to
the sources we have used.

2.2 Duality for the scalar convex composed problem

Let K and C be convex cones in R
k and R

m, respectively, each of them containing
the zero element in the corresponding space. All around this paper the cones K
and C will satisfy these properties. Take also D a non-empty convex subset
of R

k and X a non-empty convex subset of R
n. Consider moreover the K-

increasing convex function f : D → R, the K-convex function F : X → R
k

with F = (F1, . . . , Fk)
T and g : X → R

m which is a C-convex function with
g = (g1, . . . , gm)T . We impose also the feasibility condition F (X) ⊆ D.

The convex composed optimization problem we consider within this section,
which is used later to attach a scalar problem to a vector minimization problem, is

(Pc) inf
x∈X,

g(x)∈−C

f(F (x)).

There are several ways to attach a dual problem to (Pc), but the composition
of functions f ◦F remains in the objective function of the dual directly or through
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its conjugate. Wanting to have these functions separated within a new dual prob-
lem, we formulate the following optimization problem which is equivalent to (Pc)
in the sense that their optimal objective values coincide,

(P ′
c) inf

x∈X,y∈D,
g(x)∈−C,

F (x)−y∈−K

f(y).

Proposition 1. Denoting the optimal objective values of the problems (Pc)
and (P ′

c) by v(Pc) and, respectively, v(P ′
c), there is v(Pc) = v(P ′

c).

Proof. Let x be feasible to (Pc). Take y = F (x). As F (X) ⊆ D, y belongs
to D, too, while F (x) − y = 0 ∈ −K. Thus (x, y) is feasible to (P ′

c) and
f(F (x)) = f(y) ≥ v(P ′

c). Since this is valid for any x feasible to (Pc) it is
straightforward that v(Pc) ≥ v(P ′

c).
On the other hand, for (x, y) feasible to (P ′

c) we have x ∈ X and g(x) ∈ −C,
so x is feasible to (Pc). Since f is K-increasing we get v(Pc) ≤ f(F (x)) ≤ f(y).
Taking the infimum on the right-hand side over (x, y) feasible to (P ′

c) we get
v(Pc) ≤ v(P ′

c). Therefore v(Pc) = v(P ′
c). �

The Fenchel-Lagrange dual problem to (P ′
c) is (cf. [1, 2])

(Dc) sup
α∈C∗,β∈K∗,

u∈R
n

{

− f ∗
D(β) −

(

βT F
)∗

X
(u) −

(

αT g
)∗

X
(−u)

}

,

where αT g and βT F are real-valued functions defined on X defined by αT g(x) =
∑m

j=1 αjgj(x) and, respectively, βT F (x) =
∑k

t=1 βtFt(x) for all x ∈ X, with

α = (α1, . . . , αm)T ∈ C∗ and β = (β1, . . . , βk)
T ∈ K∗. Thanks to Proposition 1

(Dc) is the Fenchel-Lagrange dual problem to (Pc), too. By v(Dc) we denote the
optimal objective value of the problem (Dc). Weak duality between (Pc) and (Dc),
namely v(Pc) ≥ v(Dc), is always valid (see [1]). In order to achieve strong duality
between (P ′

c) and (Dc) we introduce the following constraint qualification (cf. [1])

(CQc) ∃x′ ∈ ri(X) :

{

g(x′) ∈ − ri(C),
F (x′) ∈ ri(D) − ri(K).

Before giving the strong duality statement, we need the following result (cf. [1]).

Proposition 2. Take a non-empty convex set X ⊆ R
n, a convex cone

C ⊆ R
m that contains the zero element and a C-convex function g : X → R

m .
Then 0 ∈ ri

(

g(X) + C
)

if and only if 0 ∈ g
(

ri(X)
)

+ ri(C).

Now we are ready to formulate the strong duality statement for (Pc) and (Dc),
followed by the necessary and sufficient optimality conditions.

5



Theorem 1. (strong duality) If the constraint qualification (CQc) is fulfilled
and v(Pc) > −∞ there is strong duality between the problem (Pc) and its dual
(Dc), i.e. v(Pc) = v(Dc) and the latter has an optimal solution.

Proof. We show actually that there is strong duality between (P ′
c) and (Dc)

and by Proposition 1 we obtain that the same property is valid for (Pc) and (Dc).
First consider the Lagrange dual problem to (P ′

c)

(DL
c ) sup

α∈C∗,
β∈K∗

inf
x∈X,
y∈D

[

f(y) + αT g(x) + βT (F (x) − y)
]

.

According to [10] (see also [1]), the constraint qualification that assures strong
duality between (P ′

c) and (DL
c ) is 0 ∈ ri

(

G(X×D)+C×K
)

, where G : X×D →

R
m×R

k is defined by G(x, y) =
(

g1(x), . . . , gm(x), F1(x)−y1, . . . , Fk(x)−yk

)T
for

all x ∈ X, y = (y1, . . . , yk)
T ∈ D. By Proposition 2 this condition is equivalent

to
0 ∈ G(ri(X × D)) + ri(C × K). (1)

This means that there must exist some pair (x′, y′) ∈ ri(X × D) such that
G(x′, y′) ∈ − ri(C × K). It is known that ri(X × D) = ri(X) × ri(D) and
ri(C ×K) = ri(C)× ri(K). Using also the definition of G, condition (1) becomes

∃(x′, y′) ∈ ri(X) × ri(D) :

{

g(x′) ∈ − ri(C),
F (x′) − y′ ∈ − ri(K).

(2)

It is easy to notice that (2) is equivalent to (CQc), which is assumed to be true
in the hypothesis. Hence v(P ′

c) = v(DL
c ) and the latter has an optimal solution,

say (ᾱ, β̄) ∈ C∗ × K∗, since v(P ′
c) = v(Pc) > −∞.

Now take the inner infimum in (DL
c ) for α = ᾱ and β = β̄. It can be separated

into a sum of two infima,

inf
x∈X,
y∈D

[

f(y)+ ᾱT g(x)+ β̄T (F (x)−y)
]

= inf
x∈X

[

ᾱT g(x)+ β̄T F (x)
]

+ inf
y∈D

[

f(y)− β̄T y
]

.

Turning the infima into suprema and using the definition of the conjugate, the
right-hand side of the equality above becomes −

(

β̄T F + ᾱT g
)∗

X
(0) − f ∗

D(β̄). As

β̄T F and ᾱT g are real-valued convex functions defined on X, we also have (see
[26])

(

β̄T F + ᾱT g
)∗

X
(0) = inf

u∈Rn

[

(

β̄T F
)∗

X
(u) +

(

ᾱT g
)T

X
(−u)

]

,

the latter infimum being attained at some ū ∈ R
n. Whence

v(Pc) = v(P ′
c) = v(DL

c ) = −f ∗
D(β̄) −

(

β̄T F
)∗

X
(ū) −

(

ᾱT g
)∗

X
(−ū) = v(Dc)

and (Dc) has the optimal solution (ᾱ, β̄, ū). �
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Theorem 2. (optimality conditions) (a) If the constraint qualification (CQc)
is fulfilled and the primal problem (Pc) has an optimal solution x̄, then the dual
problem (Dc) has an optimal solution (ᾱ, β̄, ū) and the following optimality con-
ditions are satisfied

(i) f ∗
D(β̄) + f(F (x̄)) = β̄T F (x̄),

(ii)
(

β̄T F
)∗

X
(ū) + β̄T F (x̄) = ūT x̄,

(iii)
(

ᾱT g
)∗

X
(−ū) + ᾱT g(x̄) = −ūT x̄,

(iv) ᾱT g(x̄) = 0.

(b) If x̄ is a feasible point to the primal problem (Pc) and (ᾱ, β̄, ū) is feasible
to the dual problem (Dc) fulfilling the optimality conditions (i)-(iv), then there is
strong duality between (Pc) and (Dc) and the mentioned feasible points turn out
to be optimal solutions of the corresponding problems.

Proof. The previous theorem yields the existence of an optimal solution
(ᾱ, β̄, ū) to the dual problem and that v(Pc) = v(Dc), which means

f(F (x̄)) + f ∗
D(β̄) +

(

β̄T F
)∗

X
(ū) +

(

ᾱT g
)∗

X
(−ū) = 0. (3)

The Fenchel-Young inequality asserts for the functions involved in (3)

f(F (x̄)) + f ∗
D(β̄) ≥ β̄T F (x̄), (4)

β̄T F (x̄) +
(

β̄T F
)∗

X
(ū) ≥ ūT x̄ (5)

and
ᾱT g(x̄) +

(

ᾱT g
)∗

X
(−ū) ≥ −ūT x̄. (6)

The last four relations lead to

0 ≥ β̄T F (x̄) + ūT x̄ − β̄T F (x̄) − ūT x̄ − ᾱT g(x̄) = −ᾱT g(x̄) ≥ 0,

as ᾱ ∈ C∗ and g(x̄) ∈ −C. Therefore the inequalities above must be fulfilled
as equalities. The last one implies the optimality condition (iv), while (i) arises
from (4), (ii) from (5) and (iii) from (6).

The reverse assertion in (b) follows immediately, even without the fulfilment of
(CQc) and of any convexity assumption we made concerning the involved func-
tions and sets, because summing the equalities in (i) − (iv) yields (3), that is
equivalent to v(Pc) = v(Dc), x̄ solves (Pc) and (ᾱ, β̄, ū) solves (Dc). �

We close this section with a result which simplifies the constraint qualification
(CQc) in case D or K has a non-empty interior.
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Proposition 3. For any convex sets A,B ⊆ R
k such that int(B) 6= ∅ one

has ri(A) + int(B) = A + int(B).

Proof. As A + int(B) is a non-empty open set one has

A + int(B) = int(A + int(B)) = ri(A + int(B)).

Since A and int(B) are convex sets, we get

ri(A + int(B)) = ri(A) + ri(int(B)) = ri(A) + int(B),

thus the conclusion follows. �

3 Duality for the multiobjective problem

Consider the convex multiobjective optimization problem

(Pv) v-min
x∈X,

g(x)∈−C

F (x),

where K 6= {0}, with K ∩ (−K) = {0}, and C are convex cones in R
k and

R
m, respectively, that contain the zero element in the corresponding spaces, F =

(F1, . . . , Fk)
T : X → R

k is a K-convex function and g = (g1, . . . , gm)T : X → R
m

is a C-convex function. For simplicity let A = {x ∈ X : g(x) ∈ −C} be the
feasible set of the convex vector minimization problem (Pv). By a solution to
(Pv) one can understand different notions, we rely in this part of the paper to
the following ones.

Definition 3. (see also [18, 28]) An element x̄ ∈ A is called a (Pareto) ef-
ficient solution to (Pv) if from F (x)−F (x̄) ∈ −K for x ∈ A follows F (x) = F (x̄).

Let the convex set D ⊆ R
k be such that F (X) ⊆ D. Take an arbitrary set of

K-strongly increasing convex functions s : D → R denoted by S.

Definition 4. (see also [11, 12, 14]) An element x̄ ∈ A is said to be an S-
properly efficient solution to (Pv) if there is some s ∈ S fulfilling s(F (x̄)) ≤
s(F (x)) ∀x ∈ A.

Remark 2. It is easy to see that any S-properly efficient solution to (Pv) is
also an efficient one.

If int(K) 6= ∅ one can find in the literature also the so-called weakly efficient
solutions to (Pv).
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Definition 5. (see also [17, 18]) An element x̄ ∈ A is said to be a weakly
efficient solution to (Pv) if there is no x ∈ A such that F (x)− F (x̄) ∈ − int(K).

One can easily notice that x̄ ∈ A is a weakly efficient solution to (Pv) if from
F (x)−F (x̄) ∈ −K̂, where K̂ = int(K)∪{0}, for x ∈ A follows F (x) = F (x̄), i.e.
x̄ ∈ A is weakly efficient to (Pv) if and only if it is efficient when working with the
cone K̂. Something similar happens for the properly efficient solutions, too. By
Remark 1 we know that when int(K) 6= ∅ the K-strictly increasing functions are
actually K̂-strongly increasing and vice versa. Extending S to a set of K-strictly
increasing convex functions (note that the class of K-strictly increasing functions
contains the class of K-strongly increasing ones) denoted by T , the relation in
Definition 4 characterizes a new class of points as follows.

Definition 6. An element x̄ ∈ A is a said to be a T -weakly properly efficient
solution to (Pv) if there is some s ∈ T fulfilling s(F (x̄)) ≤ s(F (x)) ∀x ∈ A.

Clearly, any T -weakly properly efficient solution to (Pv) is also a weakly ef-
ficient solution to (Pv). Let us stress that when int(K) 6= ∅ and K = K̂ the
S-properly efficient solutions to (Pv) coincide with the S-weakly properly effi-
cient ones (see Remark 1) and, obviously, the efficient solutions with the weakly
efficient ones.

In order to deal with (Pv) via duality we introduce, basing on Definitions 4
and 6, the following family of scalarized problems

(Ps) inf
x∈A

s(F (x)), for s ∈ S.

Any function s ∈ S is called scalarization function. This type of scalarized prob-
lems has been used in the literature, but without having in mind conjugate duality
for the primal multiobjective optimization problem. Gerstewitz (cf. [11]), Gerste-
witz and Iwanow (cf. [12]) and Göpfert and Gerth (cf. [14]) gave Lagrange-type
duality for non-convex vector maximization problems, where the scalarization
functions are taken moreover continuous, while Jahn (cf. [17, 18]) and Miglie-
rina and Molho (cf. [24]) mentioned this kind of scalarization in the context of
characterizing solutions of vector minimization problems but without resorting
to duality.

For any s ∈ S, from the previous section (see (Dc)) we know that the Fenchel-
Lagrange dual problem to (Ps) is

(D′
s) sup

α∈C∗,β∈K∗,
u∈R

n

{

− s∗D(β) − (βT F )∗X(u) − (αT g)∗X(−u)
}

.

Using this, we introduce the following multiobjective dual problem to (Pv)
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inspired by some dual problems given in [3, 4],

(Dv) v-max
(z,s,α,β,u)∈B

z,

where

B =
{

(z, s, α, β, u) ∈ D × S × C∗ × K∗ × R
n :

s(z) ≤ −s∗D(β) −
(

βT F
)∗

X
(u) −

(

αT g
)∗

X
(−u)

}

.

For vector maximization problems there are also several types of solutions in
the literature. We use the following notion, similar to the one given earlier for
vector minimization problems.

Definition 7. An element (z̄, s̄, ᾱ, β̄, ū) ∈ B is said to be an efficient solution
to (Dv) if from z − z̄ ∈ K for (z, s, α, β, u) ∈ B follows z = z̄.

The weak and strong duality statements concerning (Pv) and (Dv) follow.

Theorem 3. (weak duality) There is no x ∈ A and no (z, s, α, β, u) ∈ B
such that z − F (x) ∈ K and F (x) 6= z.

Proof. Assume that there are some x ∈ A and (z, s, α, β, u) ∈ B contradict-
ing the assumption. As s is K-strongly increasing it follows

s(F (x)) < s(z).

On the other hand,

s(z) ≤ −s∗D(β) − (βT F )∗X(u) − (αT g)∗X(−u).

So we get
s(F (x)) < −s∗D(β) − (βT F )∗X(u) − (αT g)∗X(−u).

This last relation contradicts the weak duality that exists between (Ps) and (D′
s),

therefore the supposition we made is false and weak duality holds. �

Theorem 4. (strong duality) Assume (CQc) fulfilled and let x̄ ∈ A be an
S-properly efficient solution to (Pv). Then the dual problem (Dv) has an efficient
solution (z̄, s̄, ᾱ, β̄, ū) such that F (x̄) = z̄.

Proof. According to Definition 4 there is an s̄ ∈ S such that s̄(F (x̄)) ≤
s̄(F (x)) ∀x ∈ A. It is obvious that x̄ is also an optimal solution to the scalarized
problem (Ps̄), therefore v(Ps̄) > −∞. As (CQc) is assumed to be valid there is
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strong duality between (Ps̄) and (Ds̄) because of Theorem 1. Therefore (Ds̄) has
an optimal solution, say (ᾱ, β̄, ū) ∈ C∗ × K∗ × R

n and

s̄(F (x̄)) = −s̄∗D(β̄) − (β̄T F )∗X(ū) −
(

ᾱT g
)∗

X
(−ū).

Denote z̄ = F (x̄). It is obvious that (z̄, s̄, ᾱ, β̄, ū) ∈ B and so we have found a
feasible point to the dual problem. It remains to prove that (z̄, s̄, ᾱ, β̄, ū) is an
efficient solution to (Dv). Supposing that there is some (z′, s′, α′, β′, u′) ∈ B such
that z′ − z̄ ∈ K and z̄ 6= z′, it follows that z′ − F (x̄) ∈ K and F (x̄) 6= z′, which
contradicts Theorem 3. �

The necessary and sufficient optimality conditions regarding (Pv) and (Dv)
follow immediately from the ones concerning the problems (Ps) and (D′

s).

Theorem 5. (optimality conditions) (a) If the constraint qualification (CQc)
is fulfilled and the primal problem (Pv) has an S-properly efficient solution x̄,
then the dual problem (Dv) has an efficient solution (z̄, s̄, ᾱ, β̄, ū) such that the
following optimality conditions are satisfied

(i) F (x̄) = z̄,

(ii) s̄∗D(β̄) + s̄(F (x̄)) = β̄T F (x̄),

(iii)
(

β̄T F
)∗

X
(ū) + β̄T F (x̄) = ūT x̄,

(iv)
(

ᾱT g
)∗

X
(−ū) + ᾱT g(x̄) = −ūT x̄,

(v) ᾱT g(x̄) = 0.

(b) If x̄ is a feasible point to the primal problem (Pv) and (z̄, s̄, ᾱ, β̄, ū) is fea-
sible to the dual problem (Dv) fulfilling the optimality conditions (i) − (v), then
x̄ is an S-properly efficient solution to (Pv) and (z̄, s̄, ᾱ, β̄, ū) is efficient to the
dual problem (Dv).

Remark 3. Let (α, β, u) ∈ C∗ × K∗ × R
n. If K = R

k
+ we have (see Theorem

16.4 in [26])

(βT F )∗X(u) = min

{

k
∑

t=1

(βtFt)
∗
X(pt) :

k
∑

t=1

pt = u

}

,

while when C = R
m
+ one gets

(αT g)∗X(−u) = min

{

m
∑

j=1

(αjgj)
∗
X(qj) :

m
∑

j=1

qj = −u

}

.
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In both these special cases the dual problem as well as the optimality conditions
can be modified correspondingly.

Remark 4. As one can notice further, the scalarizations used in the literature
usually ask the cone K to have a non-empty interior. This additional assumption
is not necessary when using our approach.

Remark 5. If int(K) 6= ∅ every K-strictly increasing real-valued function de-
fined on D is actually K̂-strongly increasing. Taking K̂ instead of K and S a set
of K-strictly increasing functions s : D → R, the aforementioned duality results
turn into the following ones.

Theorem 6. (weak duality) There is no x ∈ A and no (z, s, α, β, u) ∈ B
such that z − F (x) ∈ int(K).

Theorem 7. (strong duality) Assume (CQc) fulfilled and let x̄ ∈ A be an
S-weakly properly efficient solution to (Pv). Then the dual problem (Dv) has a
weakly efficient solution (z̄, s̄, ᾱ, β̄, ū) such that F (x̄) = z̄.

Theorem 8. (optimality conditions) (a) If the constraint qualification (CQc)
is fulfilled and the primal problem (Pv) has an S-weakly properly efficient solution
x̄, then the dual problem (Dv) has a weakly efficient solution (z̄, s̄, ᾱ, β̄, ū) such
that the following optimality conditions are satisfied

(i) F (x̄) = z̄,

(ii) s̄∗D(β̄) + s̄(F (x̄)) = β̄T F (x̄),

(iii)
(

β̄T F
)∗

X
(ū) + β̄T F (x̄) = ūT x̄,

(iv)
(

ᾱT g
)∗

X
(−ū) + ᾱT g(x̄) = −ūT x̄,

(v) ᾱT g(x̄) = 0.

(b) If x̄ is a feasible point to the primal problem (Pv) and (z̄, s̄, ᾱ, β̄, ū) is fea-
sible to the dual problem (Dv) fulfilling the optimality conditions (i) − (v), then
x̄ is an S-weakly properly efficient solution to (Pv) and (z̄, s̄, ᾱ, β̄, ū) is weakly
efficient to the dual problem (Dv).

Remark 6. Let us mention that (b) in Theorems 5 and 8 is valid without
supposing (CQc) fulfilled as well as any convexity assumptions as stated before.
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4 Special cases: duals induced by some scalar-

izations in the literature

Next we show how the duality statements given in the previous section can be
applied when the scalarization functions are taken in order to fulfill some ad-
ditionally given conditions. Some scalarizations used in the literature on mul-
tiobjective optimization use different particular strongly increasing scalarization
functions and they are actually special cases of the scalarization considered by
us. In each situation we adapt the definition of the properly efficient elements to
the particular formulation of the scalarization functions. When int(K) 6= ∅ we
work with weakly efficient and S-weakly properly efficient solutions. In order to
avoid possible confusions let us mention that some of these notions are known in
the literature under different names, which we have not reminded here, pointing
out just the works where we found the scalarizations that lead to them.

It is worth mentioning that in many papers on vector optimization the au-
thors consider the functions involved also lower-semicontinuous, even continuous.
In some cases these additional assumptions are necessary, but for our duality
statements they would be redundant. That is why we have omitted them.

We have chosen five classes of scalarizations found in the literature to be in-
cluded here, namely the linear scalarization, the maximum(-linear) scalarization,
the set-scalarization, the (semi)norm scalarization and the quadratic scalariza-
tion. Some of these classes include more than one type of scalarization. Although
in some papers the cone K is taken to be R

k
+ or int(Rk

+) ∪ {0}, we give our re-
sults in the most general case possible, keeping in mind the computational aspect,
though. When the interior of the cone K is non-empty and the scalarization func-
tions found in the literature are only K-strictly increasing instead of K-strongly
increasing one could believe that our duality statements are not applicable. For-
tunately this is not the case and in this situation we use Theorems 6-8, i.e. we
deal with weakly efficient, respectively weakly properly efficient, solutions instead
of efficient, respectively properly efficient, ones. Let us also mention that because
of the length of the paper we do not give the necessary and sufficient optimality
conditions regarding the duality statements in each special case, as they arise
immediately from Theorem 5 or Theorem 8. Depending on the choice of S and
K the optimality conditions (ii) and (iii) in Theorem 5 (8) turn into more spe-
cific formulations in each special case, while (i), (iv) and (v) remain unchanged.
There are other types of scalarizations in the literature which do not belong to
the classes we treat. We mention here those in [7, 9, 22,33,40,42].

4.1 Linear scalarization

The most famous and used scalarization in vector optimization is the one with
strongly increasing linear functionals, called linear (weighted) scalarization. From
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the large amount of papers dealing with this kind of scalarization we mention
here [3, 4, 34–36], as Fenchel-Lagrange duality is involved there, too.

The cones K and C are taken like in the previous section. Denote the quasi-
interior of the dual cone K∗ by K∗o = {λ ∈ K∗ : λT y > 0 ∀y ∈ K\{0}}. For
any fixed λ = (λ1, . . . , λk)

T ∈ K∗o, the scalarized primal problem is

(Pλ) inf
x∈A

[

k
∑

j=1

λjFj(x)

]

.

The linear scalarization is a special case of the general framework we presented
as the objective function in (Pλ) can be written as sλ(F (x)), for sλ(y) = λT y and
it is clear that sλ is K-strongly increasing and convex for any λ ∈ K∗o. In this
case let S = Sl, the latter being defined as follows

Sl =
{

sλ : D → R : sλ(y) = λT y, λ ∈ K∗o
}

.

Thus an element x̄ ∈ A is called Sl-properly efficient with respect to (Pv)
when there is some λ ∈ K∗o fulfilling

∑k

j=1 λjFj(x̄) ≤
∑k

j=1 λjF (x) ∀x ∈ A.
Let us write now the dual problem to (Pv) that arises by using the scalariza-

tion function s ∈ Sl. One can easily notice that the dual variable sλ ∈ Sl that
fulfills sλ(y) = λT y ∀y ∈ D, where λ ∈ K∗o, can be represented and replaced by
the variable λ ∈ K∗o. Moreover, (sλ)

∗
D(β) = σD(β −λ) ∀β ∈ R

k. Knowing these,
the dual problem to (Pv) obtained via the linear scalarization is

(Dl) v-max
(z,λ,α,β,u)∈Bl

z,

where

Bl =

{

(z, λ, α, β, u) ∈ D × K∗o × C∗ × K∗ × R
n : z = (z1, . . . , zk)

T ,

λ = (λ1, . . . , λk)
T ,

k
∑

j=1

λjzj ≤ −σD(β − λ) − (βT F )∗X(u) − (αT g)∗X(−u)

}

.

Theorem 9. (weak duality) There is no x ∈ A and no (z, λ, α, β, u) ∈ Bl

such that z − F (x) ∈ K and F (x) 6= z.

Theorem 10. (strong duality) Assume (CQc) fulfilled and let x̄ ∈ A be an
Sl-properly efficient solution to (Pv). Then the dual problem (Dl) has an efficient
solution (z̄, λ̄, ᾱ, β̄, ū) such that F (x̄) = z̄.

If D = R
k we get σD(β − λ) = 0 if β = λ and σD(β − λ) = +∞ otherwise,

thus the variable β ∈ K∗ from (Dl) is no longer necessary since the inequality in
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the feasible set of the dual problem is not fulfilled unless β = λ. Therefore the
dual problem obtained in this case to (Pv) is

(D′
l) v-max

(z,λ,α,u)∈B′

l

z,

where

B′
l =

{

(z, λ, α, u) ∈ R
k × K∗o × C∗ × R

n : z = (z1, . . . , zk)
T ,

λ = (λ1, . . . , λk)
T ,

k
∑

j=1

λjzj ≤ −(λT F )∗X(u) − (αT g)∗X(−u)

}

.

When K = R
k
+ it is clear that K∗o = int(Rk

+) and by Theorem 16.4 in [26] (see
also Remark 3) we have for λ and u taken like in B′

l

(λT F )∗X(u) = min

{

k
∑

j=1

(λjFj)
∗
X(pj) : pj ∈ R

n, j = 1, . . . , k,

k
∑

j=1

pj = u

}

and, as λj > 0, j = 1, . . . , k, this turns into

(λT F )∗X(u) = min

{

k
∑

j=1

λjFj
∗
X

( 1

λj

pj

)

: pj ∈ R
n, j = 1, . . . , k,

k
∑

j=1

pj = u

}

.

Denoting yj = (1/λj)pj for j = 1, . . . , k, and y = (y1, . . . , yk), the latter dual
problem turns into

(D′′
l ) v-max

(z,λ,α,y)∈B′

l

z,

with

B′′
l =

{

(z, λ, α, y) ∈ R
k × int(Rk

+) × C∗ × (Rn × . . . Rn) : y = (y1, . . . , yk),

z = (z1, . . . , zk)
T ,

k
∑

j=1

λjzj ≤ −
k
∑

j=1

λjFj
∗
X

(yj) − (αT g)∗X

(

−
k
∑

j=1

λjyj

)}

,

which is exactly the dual problem obtained by Boţ and Wanka in [3, 4].

Let us notice that the constraint qualification needed in this particular case
for strong duality becomes, as ri(D) = R

k,

15



(CQv) ∃x′ ∈ ri(X) : g(x′) ∈ − ri(C),

and it is weaker than the one considered in [3,4] for strong duality between (Pv)
and (D′′

l ).

Theorem 11. (weak duality) There is no x ∈ A and no (z, λ, α, y) ∈ B ′′
l

such that F (x) 5 z and F (x) 6= z.

Theorem 12. (strong duality) Assume (CQv) fulfilled and let x̄ ∈ A be an
Sl-properly efficient solution to (Pv). Then the dual problem (D′′

l ) has an efficient
solution (z̄, λ̄, ᾱ, ȳ) such that F (x̄) = z̄.

Getting back to the general case of the linear scalarization, an interesting
situation occurs when int(K) 6= ∅. Consider the set

Slw =
{

sλ : D → R : sλ(y) = λT y, λ ∈ K∗\{0}
}

.

It is known (see [18], for instance) that Slw is a set of K-strictly increasing func-
tions, i.e. it contains only K̂-strongly increasing functions. One could define
x̄ ∈ A to be Slw-weakly properly efficient with respect to (Pv) if there exists some
λ ∈ K∗\{0} such that

∑k

j=1 λjFj(x̄) ≤
∑k

j=1 λjF (x) ∀x ∈ A. Using Theorem 5.4
in [18] it is not difficult to show that any weakly efficient element with respect
to (Pv) is actually a Slw-weakly properly efficient solution to (Pv). On the other
hand the Slw-weakly properly efficient solutions to (Pv) are also weakly efficient
with respect to (Pv), thus in this special case the two notions coincide. Now we
can give a dual problem (Dlw) to (Pv) in an analogous manner as done with (Dl),
by replacing K∗o with K∗\{0} within the definition of Bl, which becomes Blw.
Weak and strong duality, as well as necessary and sufficient optimality conditions
follow by Theorems 6, 7 and 8 for weakly efficient solutions to (Pv) and weakly
efficient solutions to (Dlw). Like everywhere within this section we give here only
the duality statements.

Theorem 13. (weak duality) There is no x ∈ A and no (z, λ, α, β, u) ∈ Blw

such that z − F (x) ∈ int(K).

Theorem 14. (strong duality) Assume (CQc) fulfilled and let x̄ ∈ A be a
weakly efficient solution to (Pv). Then the dual problem (Dlw) has a weakly effi-
cient solution (z̄, λ̄, ᾱ, β̄, ū) such that F (x̄) = z̄.

These duality statements can be further specialized for the special cases
D = R

k and K = R
k
+ as done above, by replacing K∗o with K∗\{0} in B′

l

and, respectively int(Rk
+) with R

k
+\{0} in B′′

l .
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4.2 Maximum(-linear) scalarization

Another scalarization met especially in the applications of vector optimization
is the so-called Tchebyshev scalarization or maximum scalarization, where the
objective function of the scalarized problem consists in the maximal entry of the
vector function at each point. Among the papers dealing with this kind of scalar-
ization we cite here Mbunga’s [23], mentioning also [9]. The weighted Tchebyshev
scalarization (see [18, 33]) is slightly more general than it and we found an even
more general scalarization based on the weighted maximum function combined
with a linear function, namely the one in [25]. There this scalarization is applied
in diet planning. Take K = R

k
+, D = R

k and η ≥ 0. Clearly, K∗ = R
k
+. The

family of scalarized primal problems is

(Pw,a) inf
x∈A

[

max
j=1,...,k

{

wj(Fj(x) − aj)
}

+ η
k
∑

j=1

wjFj(x)

]

,

where w = (w1, . . . , wk)
T ∈ int(Rk

+) and a = (a1, . . . , ak)
T ∈ R

k. The scalariza-

tion functions are sw,a : R
k → R, sw,a(y) = max

j=1,...,k

{

wj(yj − aj)
}

+ η
∑k

j=1 wjyj

∀y = (y1, . . . , yk)
T ∈ R

k and it is easy to notice that they are convex and R
k
+-

strictly increasing for all w = (w1, . . . , wk)
T ∈ int(Rk

+) and a = (a1, . . . , ak)
T ∈

R
k. Since the scalarization functions are R

k
+-strictly increasing we can apply the

theory given in the general case by characterizing the weakly efficient solutions
of the dual instead of the efficient ones, as done in the final part of the previous
section. Take S = Sml, where

Sml =

{

sw,a : R
k → R : sw,a(y) = max

j=1,...,k

{

wj(yj − aj)
}

+ η

k
∑

j=1

wjyj ∀y ∈ R
k,

y = (y1, . . . , yk)
T , w = (w1, . . . , wk)

T ∈ int(Rk
+), a = (a1, . . . , ak)

T ∈ R
k

}

.

We call an element x̄ ∈ A Sml-weakly properly efficient with respect to (Pv)
when there are some w ∈ int(Rk) and a ∈ R

k such that max
j=1,...,k

{

wj (Fj(x̄) −aj)
}

+

η
∑k

j=1 wjFj(x̄) ≤ max
j=1,...,k

{

wj(Fj(x) − aj)
}

+ η
∑k

j=1 wjFj(x) ∀x ∈ A.

Let w = (w1, . . . , wk)
T ∈ int(Rk

+) and a = (a1, . . . , ak)
T ∈ R

k. Regarding the
conjugate of the function sw,a ∈ Sml, we have, for β = (β1, . . . , βk)

T ∈ R
k,

s∗w,a(β) = sup
y∈Rk

{

βT y − max
j=1,...,k

{

wj(yj − aj)
}

− η

k
∑

j=1

wjyj

}

= sup
y∈Rk

{

(β − ηw)T y − max
j=1,...,k

{

wj(yj − aj)
}

}

.

17



Denoting u = y − a and using the formula of the conjugate of the weighted
maximum, the conjugate above becomes

s∗w,a(β) = sup
u∈Rk

{

(β − ηw)T (u + a) − max
j=1,...,k

{

wjuj

}

}

= (β − ηw)T a +







0, if ηw 5 β and
k
∑

j=1

βj

wj
= kη + 1,

+∞, otherwise.

Let us write now the dual problem to (Pv) when the scalarization function
s belongs to Sml. The variable s ∈ Sml can be identified with a pair w =
(w1, . . . , wk)

T ∈ int(Rk
+) and a = (a1, . . . , ak)

T ∈ R
k. The dual problem obtained

in this case to (Pv) is

(Dml) v-max
(z,w,a,α,β,u)∈Bml

z,

where

Bml =

{

(z, w, a, α, β, u) ∈ R
k × int(Rk

+) × R
k × C∗ × R

k
+ × R

n : ηw 5 β,

z = (z1, . . . , zk)
T ,

k
∑

j=1

βj

wj

= kη + 1, max
j=1,...,k

{

wj(zj − aj)
}

+η
k
∑

j=1

wjzj ≤ (β − ηw)T a − (βT F )∗X(u) − (αT g)∗X(−u)

}

.

Theorem 15. (weak duality) There is no x ∈ A and no (z, w, a, α, β, u) ∈
Bml such that z − F (x) ∈ int(Rk

+).

Theorem 16. (strong duality) Assume (CQv) fulfilled and let x̄ ∈ A be an
Sml-weakly properly efficient to (Pv). Then the dual problem (Dml) has a weakly
efficient solution (z̄, w̄, ā, ᾱ, β̄, ū) such that F (x̄) = z̄.

4.2.1 Maximum scalarization

When η = 0 the maximum-linear scalarization becomes the weighted Tchebyshev
scalarization. If the scalarization function is actually the maximum function, i.e.
aj = 0 and wj = 1 for all j = 1, . . . , k, the scalarized problem attached to (Pv) is

(Pmax) inf
x∈A

max
j=1,...,k

Fj(x).

18



One can easily notice that (Pmax) is actually a min-max convex optimization
problem. The maximum scalarization is a special case of the general framework
we presented as the objective function in (Pmax) is R

k
+-strictly increasing and

convex. The set S is in this case

Sm =
{

s : R
k → R, s(y) = max

j=1,...,k
yj, y = (y1, . . . , yk)

T ∈ R
k
}

.

We call an element x̄ ∈ A Sm-weakly properly efficient with respect to (Pv)
when max

j=1,...,k
Fj(x̄) ≤ max

j=1,...,k
Fj(x) ∀x ∈ A.

Let us write now the dual problem to (Pv) generated by the scalarization func-
tion s ∈ Sm. It comes directly from (Dml) for η = 0, by removing the variables a
and w which are constant, namely aj = 0 and wj = 1 for all j = 1, . . . , k, being

(Dm) v-max
(z,α,β,u)∈Bm

z,

where

Bm =

{

(z, α, β, u) ∈ R
k × C∗ × R

k
+ × R

n : z = (z1, . . . , zk)
T ,

k
∑

j=1

βj = 1, max
j=1,...,k

{zj} ≤ −(βT F )∗X(u) − (αT g)∗X(−u)

}

.

Theorem 17. (weak duality) There is no x ∈ A and no (z, α, β, u) ∈ Bm

such that z − F (x) ∈ int(Rk
+).

Theorem 18. (strong duality) Assume (CQc) fulfilled and let x̄ ∈ A be an
Sm-weakly properly efficient solution to (Pv). Then the dual problem (Dm) has a
weakly efficient solution (z̄, ᾱ, β̄, ū) such that F (x̄) = z̄.

4.3 Set scalarization

Some quite recent scalarization methods are based on already given or constructed
sets which have to satisfy some conditions. We gather here some of them under
the name of set scalarization since the scalarization functions are defined with the
help of some sets and they are K-strictly increasing when these sets fulfill some
inclusions. The most general among the scalarizations we treat in this subsection
is connected to the one due to Gerth and Weidner (cf. [13]), used also by Tammer
and Göpfert (cf. [31]), Tammer and Winkler (cf. [32]) and Weidner (cf. [38]), for
instance.

Take the convex cone K such that int(K) 6= ∅. Let the non-empty convex
set E ⊆ R

k fulfilling cl(E) + int(K) ⊆ int(E). Let moreover D = R
k. The

scalarization functions are

sµ : R
k → R, sµ(y) = inf

{

t ∈ R : y ∈ tµ − cl(E)
}

, µ ∈ int(K)
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and we have in this case S = Ss = {sµ : µ ∈ int(K)}. According to [13, 31]
the functions sµ are convex and K-strictly increasing. Because of this fact we
work within this subsection with Ss-weakly properly efficient and, respectively,
weakly efficient solutions, obtaining the duality statements from Theorems 6-8.
The family of scalarized primal problems is

(Pµ) inf
x∈A

inf
{

t ∈ R : F (x) ∈ tµ − cl(E)
}

, µ ∈ int(K).

An element x̄ ∈ A is called Ss-weakly properly efficient with respect to (Pv)
when there is some µ ∈ int(K) such that sµ(F (x̄)) ≤ sµ(F (x)) ∀x ∈ A.

In order to formulate the multiobjective dual problem to (Pv) that arises in
this case we need the conjugate function of sµ, when a µ ∈ int(K) is fixed. It is
s∗µ : R

k → R,

s∗µ(β) = sup
y∈Rk







βT y − inf
t∈R,

y∈tµ−cl(E)

t







= sup
y∈Rk











βT y + sup
t∈R,

y∈tµ−cl(E)

−t











= sup
y∈tµ−cl(E),

t∈R

{

βT y − t
}

= sup
t∈R

{

− t + sup
u=y−tµ∈− cl(E)

βT (u + tµ)

}

= sup
t∈R

{

tβT µ − t + sup
u∈− cl(E)

βT u

}

= sup
t∈R

{

t(βT µ − 1) + σ− cl(E)(β)
}

=

{

σ− cl(E)(β), if βT µ = 1,
+∞, otherwise.

Now we are able to formulate the multiobjective dual problem attached to (Pv)
via the set scalarization. It is

(Ds) v-max
(z,µ,α,β,u)∈Bs

z,

where

Bs =
{

(z, µ, α, β, u) ∈ R
k × int(K) × C∗ × K∗ × R

n : βT µ = 1,

sµ(z) ≤ −σ− cl(E)(β) −
(

βT F
)∗

X
(u) −

(

αT g
)∗

X
(−u)

}

.

Theorem 19. (weak duality) There is no x ∈ A and no (z, µ, α, β, u) ∈ Bs

such that z − F (x) ∈ int(K).

Theorem 20. (strong duality) Assume (CQv) fulfilled and let x̄ ∈ A be an
Ss-weakly properly efficient solution to (Pv). Then the dual problem (Ds) has a
weakly efficient solution (z̄, µ̄, ᾱ, β̄, ū) such that F (x̄) = z̄.
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In the remaining part of this subsection we treat some special cases of this
scalarization which arise for particular choices of the set E. In this framework
could be brought the scalarization in [39] which involves polyhedral sets, too. The
reader is referred to [38] for a deeper analysis of the way some older scalarization
functions are embedded into the set scalarization.

4.3.1 Set scalarization with conical sets

Keeping the notations above, take E = K. The condition cl(E)+int(K) ⊆ int(E)
is automatically satisfied since K is a convex cone. For each ν ∈ int(K) the
scalarization function is in this case

sν : R
k → R, sν(y) = inf

{

t ∈ R : y ∈ tν − cl(K)
}

.

We have in this case S = Ssc = {sν : ν ∈ int(K)}. Among the authors who have
used this kind of scalarization function in the literature we cite here Kaliszewski
(cf. [19]), Rubinov and Gasimov (cf. [27]) and Tammer (cf. [30]), where it is
mentioned that it is convex and K-strictly increasing. For each ν ∈ int(K), the
scalarized primal problem is

(Pν) inf
x∈A

inf
{

t ∈ R : F (x) ∈ tν − cl(K)
}

.

Using this scalarization an element x̄ ∈ A is called Ssc-weakly properly efficient
with respect to (Pv) when there is a ν ∈ int(K) such that sν(F (x̄)) ≤ sν(F (x))
∀x ∈ A.

Taking ν ∈ int(K), from the earlier calculations we known that

s∗ν(β) =

{

σ− cl(K)(β), if βT ν = 1,
+∞, otherwise.

From [16] we know that σ− cl(K) = δK∗ , so the multiobjective dual problem at-
tached to (Pv) via the scalarization using conical sets is

(Dsc) v-max
(z,ν,α,β,u)∈Bsc

z,

where

Bsc =
{

(z, ν, α, β, u) ∈ R
k × int(K) × C∗ × K∗ × R

n : βT ν = 1,

sν(z) ≤ −
(

βT F
)∗

X
(u) −

(

αT g
)∗

X
(−u)

}

.

Theorem 21. (weak duality) There is no x ∈ A and no (z, ν, α, β, u) ∈ Bsc

such that z − F (x) ∈ int(K).
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Theorem 22. (strong duality) Assume (CQv) fulfilled and let x̄ ∈ A be an
Ssc-weakly properly efficient solution to (Pv). Then the dual problem (Dsc) has a
weakly efficient solution (z̄, ν̄, ᾱ, β̄, ū) such that F (x̄) = z̄.

4.3.2 Set scalarization with sets generated by norms

The scalarization we deal with in the following is by construction a special case
of the general set scalarization treated earlier, but on the other hand it is more
general since the family of scalarization functions depends on three variables, not
on a single one like there. In the following we attach to (Pv) a scalarized problem
obtained with the scalarization function used by Tammer and Winkler in [32]
and by the latter also in [41]. In order to proceed we need to introduce some
special classes of norms, about which more is available in [29] and some references
therein. Take the cone K with non-empty interior.

Definition 8. A subset A ⊆ R
k is called polyhedral if it can be expressed as

the intersection of a finite collection of closed half-spaces.

Definition 9. A norm γ : R
k → R is called block norm if its unit ball Bγ is

polyhedral.

Definition 10. A norm γ : R
k → R is called absolute if ∀ȳ ∈ R

k one has
γ(y) = γ(ȳ) for all y ∈

{

z = (z1, . . . , zk)
T ∈ R

k : |zj| = |ȳj| ∀j = 1, . . . , k
}

.

Definition 11. A block norm γ : R
k → R is called oblique if it is absolute

and satisfies
(

y − R
k
+

)

∩ R
k
+ ∩ bd(Bγ) = {y} for all y ∈ R

k
+ ∩ bd(Bγ).

Example 1. The Euclidean norm ‖ · ‖2 in R
k is absolute, but not block, thus

not oblique. We refer to [29,32] for more on such norms.

According to [29] and [32] (see Definition 9), for a block norm γ there are
some r ∈ N, ai ∈ R

k and ηi ∈ R, i = 1, . . . , r, such that the unit ball generated
by γ is

Bγ =
{

y ∈ R
k : aT

i y ≤ ηi, i = 1, . . . , r
}

.

We need also the following sets

Iγ =
{

i ∈ {1, . . . , r} :
{

y ∈ R
k : aT

i y = ηi

}

∩ Bγ ∩ int(Rk
+) 6= ∅

}

and
Eγ =

{

y ∈ R
k : aT

i y ≤ ηi ∀i ∈ Iγ

}

.

Theorem 23. (cf. [32]) The function ζγ,l,v : R
k → R, defined by

ζγ,l,v(y) = inf
{

t ∈ R : y ∈ tl + Eγ + v
}

,
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where γ is an absolute norm on R
k, l ∈ int(Rk

+) and v ∈ R
k, is convex and

K-strictly increasing when bd(Eγ) − (K\{0}) ⊆ int(Eγ).

Remark 7. If γ is an absolute norm on R
k, l ∈ int(Rk

+), v ∈ R
k and

bd(Eγ) − (K\{0}) ⊆ int(Eγ), the function ζγ,l,v defined above is K̂-strongly
increasing.

Corollary 1. (cf. [32]) When γ is an absolute block norm, ζγ,l,v is R
k
+-strictly

increasing for any l ∈ int(Rk
+) and v ∈ R

k.

Corollary 2. (cf. [32]) When γ is an oblique norm, ζγ,l,v is R
k
+-strongly in-

creasing for any l ∈ int(Rk
+) and v ∈ R

k.

Denote by O the set of the absolute norms γ : R
k → R for which bd(Eγ) −

int(K) ⊆ int(Eγ) and consider the following set

Ssn =
{

ζγ,l,v : R
k → R : γ ∈ O, l ∈ int(Rk

+), v ∈ R
k,

ζγ,l,v(y) = inf
{

t ∈ R : y ∈ tl + Eγ + v
}

∀y ∈ R
k
}

.

The family of scalarized problems attached to (Pv) in this case is

(Pγ,l,v) inf
x∈A

ζγ,l,v(F (x)),

where (γ, l, v) ∈ O × int(Rk
+) × R

k. According to the definitions above and The-
orem 23 this fits into our framework, too, by taking S = Ssn. In this case an
element x̄ ∈ A is called Ssn-weakly properly efficient with respect to (Pv) when
there is an absolute norm γ ∈ O, some l ∈ int(Rk

+) and a v ∈ R
k such that

ζγ,l,v(F (x̄)) ≤ ζγ,l,v(F (x)) ∀x ∈ A.

Remark 8. Restricting moreover the set Ssn to contain only the functions that
satisfy the hypotheses in the corollaries above we get other scalarizations which
could be treated separately, too.

To obtain the dual problem to (Pv) that arises by using the scalarization just
presented, let us calculate the conjugate of the scalarization functions ζγ,l,v, for
some fixed (γ, l, v) ∈ O × int(Rk

+) × R
k. We have

ζ∗
γ,l,v(β) = sup

y∈Rk

{

βT y − inf
[

t ∈ R : y ∈ tl + Eγ + v
]

}

= sup
y∈Rk

{

βT y + sup
{

− t ∈ R : y ∈ tl + Eγ + v
}

}

.
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Denoting w = y − tl − v, one gets

ζ∗
γ,l,v(β) = sup

t∈R

{

− t + sup
w∈Eγ

{

βT (w + tl + v)
}

}

= sup
t∈R

{

− t + tβT l + sup
w∈Eγ

βT w

}

+ βT v

= sup
t∈R

{

t
(

βT l − 1
)}

+ σEγ
(β) + βT v

=

{

σEγ
(β) + βT v, if βT l = 1,

+∞, otherwise.

The dual problem to (Pv) obtained in this case is

(Dsn) v-max
(z,γ,l,v,α,β,u)∈Bsn

z,

where

Bsn =
{

(z, γ, l, v, α, β, u) ∈ R
k ×O × int(Rk

+) × R
k × C∗ × K∗ × R

n :

βT l = 1, ζγ,l,v(z) ≤ −σEγ
(β) − βT v − (βT F )∗X(u) − (αT g)∗X(−u)

}

.

Theorem 24. (weak duality) There is no x ∈ A and no (z, γ, l, v, α, β, u) ∈
Bsn such that z − F (x) ∈ int(K).

Theorem 25. (strong duality) Assume (CQv) fulfilled and let x̄ ∈ A be an
Ssn-weakly properly efficient solution to (Pv). Then the dual problem (Dsn) has
a weakly efficient solution (z̄, γ, l̄, v̄, ᾱ, β̄, ū) such that F (x̄) = z̄.

The case when γ is an oblique norm, not treated here separately because of the
limited space, could bring some interesting results since, according to Corollary
2, the functions ζγ,l,v, (γ, l, v) ∈ O × int(Rk

+) × R
k, are R

k
+-strongly increasing.

Given these, when γ is an oblique norm one can give the strong duality statement
not for Ssn-weakly properly efficient and weakly efficient solutions as done within
this subsection, but for properly efficient and efficient ones like in Section 3.

4.4 (Semi)Norm scalarization

Now K is again a convex cone such that K∩(−K) = {0}. In some circumstances
the (semi)norms turn out to be K-strongly increasing functions and this fact could
not remain unnoticed by many authors working in the vast field of multiobjective
programming. We cite here only a few of them, namely Jahn (cf. [18]), Khánh
(cf. [20]), Schandl, Klamroth and Wiecek (cf. [29]) and Wierzbicki (cf. [40]). Some
of the references mentioned in the works cited above contain also other types of
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scalarizations involving norms and seminorms (see moreover [6, 17, 24]). In the
following we use scalarization functions based on K-strongly increasing gauges,
which are seminorms. Such scalarizations are successfully used in location prob-
lems (see [37]) and goal programming (cf. [6]). Then we consider the case when
the scalarization functions are based on a norm, where we mention also two spe-
cial cases. First we have to introduce two notions.

Definition 12. (cf. [16]) Let E ⊆ R
k a closed convex set containing the

origin. The function

γE : R
k → R, γE(y) = inf{t > 0 : y ∈ tE}

is called the gauge (Minkowski functional) of E. When there is no t > 0 such
that y ∈ tE one sets γE(y) = +∞. The set E is the unit ball associated to γE.

Let us assume that there exists some b ∈ R
k such that F (X) ⊆ b + K. Take

D = b + K, thus the feasibility condition is fulfilled, and consider the closed con-
vex set E ⊆ R

k such that 0 ∈ int(E) and its gauge γE is K-strongly increasing
on K. One can notice then that γE(y) ∈ R for all y ∈ R

k.

Remark 9. Assuming that E ⊆ R
k is the Euclidean unit ball, the assumption

on γE is fulfilled if and only if K ⊆ K∗ (see [18]). This is the case if, for instance,
K is the non-negative orthant in R

k.

The scalarization functions we use here are

sa : (b + K) → R, sa(y) = γE(y − a) = inf{t > 0 : y ∈ a + tE}, a ∈ b − K.

Let us remark that whenever a ∈ b−K one gets F (X) ⊆ a+K. It is straightfor-
ward to see that sa is K-strongly increasing on D = b + K for every a ∈ b − K.
We have in this case S = Sg = {sa : a ∈ b − K} and the family of scalarized
primal problems is

(Pa) inf
x∈A

inf
{

t > 0 : F (x) ∈ a + tE
}

, a ∈ b − K,

i.e.

(Pa) inf
x∈A

γE(F (x) − a), a ∈ b − K.

For this scalarizations x̄ ∈ A is called Sg-properly efficient with respect to
(Pv) when there is some a ∈ b − K such that sa(F (x̄)) ≤ sa(F (x)) ∀x ∈ A.

In order to formulate the multiobjective dual problem to (Pv) that arises in
this case we need the conjugate functions regarding b + K of sa, a ∈ b − K. Let
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a ∈ b − K and β ∈ R
k. We have (sa)

∗
b+K : R

k → R,

(sa)
∗
b+K(β) = (γE(· − a) + δb+K)∗(β) = min

ς∈Rk

[

(γE(· − a))∗(β − ς) + (δb+K)∗(ς)
]

,

where we have applied Theorem 16.4 in [26]. Further,

(γE(· − a))∗(β − ς) = sup
y∈Rk

{

(β − ς)T y − γE(y − a)
}

.

Denoting u = y − a we get

(γE(· − a))∗(β − ς) = sup
u∈Rk

{

(β − ς)T (u + a)− γE(u)
}

= (β − ς)T a + (γE)∗(β − ς).

For the conjugate of the gauge one gets at some τ ∈ R
k

(γE)∗(τ) = sup
y∈Rk

{

τT y − inf{t > 0 : y ∈ tE}
}

= sup
y∈Rk







τT y + sup
t>0,
y∈tE

−t







= sup
t>0

{

− t + sup
y∈tE

τT y

}

= sup
t>0











−t + sup
w= 1

t
y,

w∈E

τT (tw)











= sup
t>0

{

t

(

sup
w∈E

τT w − 1

)}

=

{

0, if σE(τ) ≤ 1,
+∞, otherwise.

It is also known that (δb+K)∗(ς) = ςT b+(δK)∗(ς) ∀ς ∈ R
k, consequently (δb+K)∗(ς)

= ςT b if ς ∈ −K∗ and (δb+K)∗(ς) = +∞ otherwise. From all these partial results
we get that the conjugates of our scalarization functions are

(sa)
∗
b+K(β) = min

ς∈−K∗,
σE(β−ς)≤1

[

(β − ς)T a + ςT b
]

= βT a + min
ς∈−K∗,

σE(β−ς)≤1

ςT (b − a), a ∈ b − K.

Now we are able to formulate the multiobjective dual problem attached to (Pv)
via the gauge scalarization. It is

(Dg) v-max
(z,a,α,β,ς,u)∈Bg

z,

where

Bg =
{

(z, a, α, β, ς, u) ∈ (b+K)×(b−K)×C∗×K∗×(−K∗)×R
n : σE(β−ς) ≤ 1,

γE(z − a) ≤ ςT (a − b) − βT a −
(

βT F
)∗

X
(u) −

(

αT g
)∗

X
(−u)

}

.

Remark 10. We emphasize that σE defines the so-called dual gauge to the
gauge γE and if γE is a norm it turns out to be indeed the dual norm.
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Theorem 26. (weak duality) There is no x ∈ A and no (z, a, α, β, ς, u) ∈ Bg

such that z − F (x) ∈ K and F (x) 6= z.

Theorem 27. (strong duality) Assume (CQc) fulfilled and let x̄ ∈ A be a
Sg-properly efficient solution to (Pv). Then the dual problem (Dg) has an efficient
solution (z̄, ā, ᾱ, β̄, ς̄ , ū) such that F (x̄) = z̄.

4.4.1 Norm scalarization

When the scalarization function is based on a norm we can use the previous
results since it is known that a gauge γE satisfying γE(y) = γE(−y) ∀y ∈ R

k is
a norm with the unit ball E. When E is polyhedral γE is a block norm. We
cite [17, 18, 29, 32] and the references therein for more on the way norms are
described as gauges of their unit balls and applications of the norm scalarization
in various fields. For instance, the scalarization with the l1 norm is used in goal
programming (cf. [18]). A family of scalarization functions similar to the one
used in [40] (see also [19]) is

sa : D → R, sa(y) = ‖y − a‖,

where the non-empty convex set D ⊆ R
k and a ∈ R

k are conveniently chosen, K
is a convex cone fulfilling K∩(−K) = {0} and ‖·‖ is a norm which is K-strongly
increasing on D. Let us notice that conditions under which a norm is K-strongly
increasing on D are given in [18,40].

Remark 10. Along the Euclidean norm which is R
k
+-strongly increasing on

R
k
+, the oblique norms are R

k
+-strongly increasing on the non-negative orthant,

too. One can provide duality statements similar to the ones given in the general
case by using some scalarization functions based on such norms.

4.5 Quadratic scalarization

Some authors have noticed that in some circumstances also the quadratic func-
tions are strongly increasing on certain sets. More precisely let Q be a symmetric
positive semidefinite k × k matrix, K a non-empty closed convex cone in R

k and
D ⊆ R

k a relatively open set, i.e. D = ri(D). Denote by L the subspace parallel
to aff(D). If int(K∗ + L⊥) 6= ∅ and QD ⊆ K∗ + L⊥, where L⊥ is the orthogonal
subspace to L, then (cf. [8]) the function

sq : D → R, sq(y) = yT Qy

is K-strongly increasing on D. We have S = Sq = {sq}. The scalarized primal
problem is
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(Pquad) inf
x∈A

[

F (x)T QF (x)
]

.

An element x̄ ∈ A is called Sq-properly efficient with respect to (Pv) when
F (x̄)T QF (x̄) ≤ F (x)T QF (x) ∀x ∈ A.

In order to formulate the multiobjective dual problem to (Pv) that arises in
this case we need the conjugate function of sq regarding D. As in the literature
this conjugate is computed when D is a subspace, we assume further this, too.
According to [16] the conjugate of the scalarization function is (sq)

∗
D : R

k → R,

(sq)
∗
D(β) =

{

1
4
βT (PD ◦ Q ◦ PD)†β, if β ∈ Im(Q) + D⊥,

+∞, otherwise,

where Im(Q) is the image of Q seen as a symmetric positive semidefinite operator
on R

k, PD is the operator of orthogonal projection onto D and Q† is the Moore-
Penrose pseudo inverse of Q (cf. [16]).

Now we are able to formulate the multiobjective dual problem attached to
(Pv) via the quadratic scalarization. As Sq contains only an element, namely sq,
the multiobjective dual problem has four variables. It is

(Dq) v-max
(z,α,β,u)∈Bq

z,

where

Bq =

{

(z, α, β, u) ∈ R
k
+ × C∗ × K∗ × R

n : β ∈ Im(Q) + D⊥,

zT Qz ≤ −
1

4
βT (PD ◦ Q ◦ PD)†β −

(

βT F
)∗

X
(u) −

(

αT g
)∗

X
(−u)

}

.

Theorem 28. (weak duality) There is no x ∈ A and no (z, α, β, u) ∈ Bq

such that z − F (x) ∈ K and F (x) 6= z.

Theorem 29. (strong duality) Assume (CQc) fulfilled and let x̄ ∈ A be a
Sq-properly efficient solution to (Pv). Then the dual problem (Dq) has an efficient
solution (z̄, ᾱ, β̄, ū) such that F (x̄) = z̄.

5 Conclusions

We introduce a general duality framework for convex multiobjective optimiza-
tion problems based on conjugate duality. The multiobjective dual problem to
a given convex vector minimization problem is constructed by using the scalar-
ization with K-strongly increasing functions and the Fenchel-Lagrange duality
for composed convex cone-constrained optimization problems (cf. [1]). When
int(K) 6= ∅ the duality statements are given also for the scalarization with K-
strictly increasing functions. After presenting the general framework we show
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that some other scalarizations used in the literature on multiobjective optimiza-
tion arise as particular cases and the general duality is specialized for each of
them. This happens for the linear scalarization, maximum(-linear) scalarization,
set scalarization, (semi)norm scalarization and quadratic scalarization.

Acknowledgements. The authors are grateful to two anonymous referees for
their valuable comments and suggestions.
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[4] R. I. Boţ, G. Wanka, An analysis of some dual problems in multiobjective
optimization II, Optimization 53 (3), 301–324, 2004.
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