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1 Introduction

Let K ⊆ R
n and F : R

n → R
n be a vector-valued mapping. The variational

inequality problem is to find a point x ∈ K such that

(V I) F (x)T (y − x) ≥ 0, ∀y ∈ K,

where T as usual denotes the transposition of a vector in R
n. For a compre-

hensive survey of the problem (V I) we refer to [10] and [12]. In the literature
even though mostly is supposed that K is a closed, convex set and F is a
continuous mapping, in this paper we will make such assumptions only if
they are required. One of the approaches for solving the problem (V I) is to
reformulate it into an equivalent optimization problem. It is well known that
the problem (V I) can be transformed into an optimization problem

inf
x∈K

φ(x),
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in case F is the gradient of a differentiable function φ : R
n → R, F is

also differentiable and its Jacobian ∇F (y) is symmetric for all y ∈ R
n. For

asymmetric variational inequalities, several approaches which are based on
so-called gap or merit functions have been investigated. For details we refer
to [1], [2], [4], [8], [16], [20] and to the survey papers [9], [13]. A function γ :
R

n → R = R ∪ {±∞} is said to be a gap function for the problem (V I) if it
satisfies the following properties

(i) γ(y) ≥ 0, ∀y ∈ K;

(ii) γ(x) = 0 if and only if x solves the problem (V I).

Recently, the study of gap functions for the problem (V I) and for some of
its special formulations, where the ground set K is defined by means of con-
vex inequality constraints, has been associated to the Lagrange duality (cf.
[5], [6], [21] ). Moreover, the connections between properties of gap functions
and duality have been interpreted in the context of convex optimization and
variational inequalities (see [4], [11]).
This paper aims to relate gap functions for variational inequalities to the
conjugate duality for an optimization problem. By using conjugate dual
problems which have been investigated in [19], we propose some new gap
functions for variational inequalities. Under certain assumptions, we discuss
a further class of gap functions for the problem (V I), the so-called dual gap
functions.

2 Conjugate duality

Let X ⊆ R
n be a nonempty set and f : R

n → R, g = (g1, ..., gm)T : R
n → R

m

be given functions. We consider the optimization problem

(P ) inf
x∈X∩G

f(x), G = {x ∈ R
n| g(x) 5 0}.

For x, y ∈ R
m, by “ 5,, we denote the following ordering relation

x 5 y ⇔ y − x ∈ R
m
+ = {z = (z1, ..., zm)T ∈ R

m| zi ≥ 0, i = 1,m}.

By using a general perturbation approach and the theory of the conjugate
duality the following dual problems for (P ) have been introduced (see [3], [19])

(DL) sup
q=0

inf
x∈X

[f(x) + qT g(x)],

(DF ) sup
p∈Rn

{

− f ∗(p) + inf
x∈X∩G

pT x
}
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and

(DFL) sup
p∈R

n

q=0

{

− f ∗(p) + inf
x∈X

[pT x + qT g(x)]
}

,

or, equivalently,

(DFL) sup
p∈R

n

q=0

{

− f ∗(p) − (qT g)∗X(−p)
}

.

Here h∗

X : R
n → R we denote the conjugate function of the function h rel-

ative to the set X defined by h∗(ξ) = sup
x∈X

[ξT x − h(x)]. If X = R
n, then h∗

X

becomes the classical (Fenchel-Moreau) conjugate which will be denoted by

h∗. Let us also denote by dom h =
{

x ∈ R
n| h(x) < +∞

}

the effective

domain of h and for a subset C ⊆ R
n, by ri(C) its relative interior. The

problems (DL) and (DF ) are the classical Lagrange and Fenchel dual prob-
lems, respectively. The dual problem (DFL) is called the Fenchel-Lagrange
dual and it is a ”combination” of the Fenchel and Lagrange dual problems.
By construction weak duality always holds, i.e., the optimal objective values
of the mentioned dual problems are less than or equal to the optimal objec-
tive value of (P ). Denoting by v(P ) the optimal objective value of (P ) and
by v(DL), v(DF ), v(DFL) the optimal objective values of (DL), (DF ) and
(DFL), respectively, the following result has been proved.

Proposition 2.1 Let X be a convex set and f, gi, i = 1,m be convex

functions. Then the following assertions are true:

(i) If ri(X ∩G)∩ ri(dom f) 6= ∅, then v(DF ) = v(P ). Moreover, if v(P )is
finite then the problem (DF ) has an optimal solution.

(ii) If ri(X) ∩ ri(dom f) 6= ∅, then v(DL) = v(DFL).

In order to formulate the strong duality theorem for the primal and the three
dual problems, we need the following constraint qualification

(CQ) ∃x′ ∈ ri(X) ∩ ri(dom f) :

[

gi(x
′) ≤ 0, i ∈ L,

gi(x
′) < 0, i ∈ N.

Here
L = {i ∈ {1, ...,m} | gi is an affine function}

and
N = {i ∈ {1, ...,m} | gi is not an affine function}.
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Proposition 2.2 (Strong duality)
Let X be a convex set and f, gi, i = 1,m be convex functions.Assume that the

constraint qualification (CQ) is fulfilled. If v(P ) is finite then (DL), (DF ),
(DFL) have optimal solutions and it holds

v(P ) = v(DL) = v(DF ) = v(DFL).

3 Gap functions for variational inequalities

By using the conjugate duality theory presented in the previous section, we
discuss the construction of gap functions for variational inequalities. Before
to do this, we recall some well-known gap functions for the problem (V I).

Definition 3.1 (Auslender’s gap function, [2])

γV I
A (x) := max

y∈K
F (x)T (x − y).

Let us now assume that the ground set K is defined by

K = {x ∈ R
n| gi(x) ≤ 0, i = 1, 2, ..,m}, (3.1)

where gi : R
n → R are convex functions and g(x) = (g1(x), ..., gm(x))T . Gi-

annessi proposed the following gap function which explicitly incorporates the
constraints that define the ground set K.

Definition 3.2 (Giannessi’s gap function, [5])

γV I
G (x) := inf

λ=0
sup
y∈Rn

{

F (x)T (x − y) − λT g(y)
}

.

Note that the formulation of Giannessi’s gap function is inspired by the
Lagrange duality for the optimization problem

(P V I ; x) inf
y∈K

F (x)T (y − x),

where K is given by (3.1) and x ∈ R
n is fixed. It is easy to see that

γV I
G (x) = −v(DV I

L ; x),

where v(DV I
L ; x) denotes the optimal objective value of the Lagrange dual

problem for (P V I ; x). Now let us state the Fenchel dual problem for (P V I ; x)
and define a function in the similar way, i.e.,

γV I
F (x) := −v(DV I

F ; x).
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Since the conjugate of the objective function for (P V I ; x) is

sup
y∈Rn

[pT y − F (x)T (y − x)] =

{

F (x)T x, if p = F (x),
+∞, otherwise,

(3.2)

the Fenchel dual problem for (P V I ; x) turns out to be

(DV I
F , x) sup

p=F (x)

{

− F (x)T x + inf
y∈K

pT y
}

= inf
y∈K

F (x)T (y − x).

Whence we get

γV I
F (x) := −v(DV I

F ; x) = − inf
y∈K

F (x)T (y − x) = sup
y∈K

F (x)T (x − y).

γV I
F is nothing else than Auslender’s gap function. Let us notice that, by using

the Fenchel duality, we can define a gap function for an arbitrary ground set
K. Assuming again that the ground set K is given by (3.1), in view of (3.2),
the Fenchel-Lagrange dual problem for (P V I ; x) becomes

(DV I
FL; x) sup

p=F (x)
q=0

{

− F (x)T x + inf
y∈Rn

[pT y + qT g(y)]
}

= sup
q=0

inf
y∈Rn

[F (x)T (y − x) + qT g(y)]
}

.

The function γV I
FL(x) := −v(DV I

FL; x) also reduces to the Giannessi’s gap func-
tion. The result can be summarized as follows.

Proposition 3.1

(i) For the problem (V I), it holds γV I
F (y) = γV I

A (y), ∀y ∈ R
n.

(ii) If the ground set is given by (3.1), then it holds

γV I
FL(y) = γV I

L (y) = γV I
G (y), ∀y ∈ R

n.

The problem (V I) can be generalized to the following variational inequality
problem, find a point x ∈ K such that

(GV I) F (x)T (y − x) + f(y) − f(x) ≥ 0, ∀y ∈ K,

where f : R
n → R is a proper, convex function (see, for instance [8], [23]).

As said before, to the problem (GV I) one can associate the following primal
problem

(PGV I ; x) inf
y∈K

ϕ(y),
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where ϕ : R
n → R, ϕ(y) := F (x)T (y − x) + f(y)− f(x) and x ∈ R

n is fixed.
One can derive the conjugate of ϕ by

ϕ∗(p) = sup
y∈Rn

[pT y − ϕ(y)] = sup
y∈Rn

[pT y − F (x)T (y − x) − f(y) + f(x))]

= f ∗(p − F (x)) + F (x)T x + f(x). (3.3)

Therefore the Fenchel dual problem for (P GV I ; x) is

(DGV I
F ; x) sup

p∈Rn

{

− f ∗(p − F (x)) − F (x)T x − f(x) + inf
y∈K

pT y
}

.

Likewise the problem (V I), we can introduce the following function

γGV I
F (x) := −v(DGV I

F ; x) = inf
p∈Rn

{

f ∗(p− F (x)) + F (x)T x + f(x) + δ∗K(−p)
}

,

where δK denotes the indicator function of the set K.

Theorem 3.1 Let ri(K) ∩ ri(dom f) 6= ∅ and K be a convex set. Then

γGV I
F is a gap function for the problem (GV I).

Proof:

(i) Let x ∈ K be fixed. By weak duality it holds

v(DGV I
F ; x) ≤ v(P GV I ; x) ≤ 0.

Whence γGV I
F (x) = −v(DGV I

F ; x) ≥ 0.

(ii) If γGV I
F (x) = 0, then 0 = v(DGV I

F ; x) ≤ v(P GV I ; x) ≤ 0 and so
v(PGV I ; x) = 0. This means that x solves the problem (GV I). On
the other hand, if x ∈ K is a solution to the problem (GV I), then
v(PGV I ; x) = 0. By Proposition 2.1(i) implies that

γGV I
F (x) = −v(DGV I

F ; x) = −v(P GV I ; x) = 0.

�

Similarly, by using the formulations of the duals (DL) and (DFL), we can
introduce for x ∈ R

n the following functions

γGV I
L (x) : = −v(DGV I

L ; x)

= − sup
q=0

inf
y∈Rn

{

F (x)T (y − x) + f(y) − f(x) + qT g(y)
}
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= inf
q=0

sup
y∈Rn

{

F (x)T (x − y) − f(y) + f(x) − qT g(y)
}

= inf
q=0

{

F (x)T x + f(x) + sup
y∈Rn

[−F (x)T y − f(y) − qT g(y)]
}

= inf
q=0

{

F (x)T x + f(x) + (f + qT g)∗(−F (x))
}

and, in view of (3.3),

γGV I
FL (x) : = −v(DGV I

FL ; x)

= − sup
p∈R

n

q=0

{

− f ∗(p − F (x)) − F (x)T x − f(x) − (qT g)∗(−p)
}

= inf
p∈R

n

q=0

{

f ∗(p − F (x)) + F (x)T x + f(x) + (qT g)∗(−p)
}

,

respectively, if K is given by (3.1).

Theorem 3.2 Assume that the constraint qualification (CQ) is fulfilled.

Then γGV I
L and γGV I

FL are gap functions for the problem (GV I).

Proof:

(i) It is easily verified by weak duality (see the proof of the Theorem 3.1(i)).

(ii) By γGV I
L (x) = γGV I

FL (x) = 0, x is a solution of the problem (GV I).
Conversely, let the problem (GV I) be solved by x and the constraint
qualification (CQ) be fulfilled. Then by Proposition 2.2, it holds strong
duality. This implies that

γGV I
L (x) = γGV I

FL (x) = −v(DGV I
L ; x) = −v(DGV I

FL ; x) = −v(P GV I ; x) = 0

�

Remark 3.1 Because of v(P GV I ; x) = 0, where x is fixed, by the strong
duality result in Section 2, the dual problems for (P GV I ; x) have optimal so-
lutions. Consequently, under the assumptions of Theorem 3.1 and Theorem
3.2, one can use “ min,, instead of “ inf,, for the proposed gap functions.

Remark 3.2 If one takes K = R
n in the formulation of the problem (GV I),

then it reduces to the extended variational inequality problem. By using
γGV I

F , we obtain the same gap function for the extended variational inequal-
ity as in [4]. This shows that our approach generalizes some previous results.
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Indeed, because of

δ∗
Rn(−p) = sup

x∈Rn

[−pT x] =

{

0, if p = 0,
+∞, otherwise,

we have

γEV I
F (x) = inf

p∈Rn

{

f ∗(p − F (x)) + F (x)T x + f(x) + δ∗
Rn(−p)

}

= f ∗(−F (x)) + F (x)T x + f(x).

Next let us study the relations between the gap functions for (GV I) intro-
duced above.

Proposition 3.2 Let the ground set K be given by (3.1). Then it holds

γGV I
L (x)

γGV I
F (x)

≤ γGV I
FL (x), ∀x ∈ R

n.

Proof: Let x ∈ R
n be fixed. According to Propositions 2.1 and 2.2 in [3]

(see also [19]) implies that

v(DGV I
FL ; x) ≤

v(DGV I
L ; x)

v(DGV I
F ; x)

,

or, equivalently,
−v(DGV I

L ; x)

−v(DGV I
F ; x)

≤ −v(DGV I
FL ; x).

which leads to the desired conclusion. �

One of the desirable properties for gap functions is the convexity. Under
certain assumptions this property will be fulfilled. Further we need the fol-
lowing definition.

Definition 3.3 A mapping F : R
n → R

n is said to be

(i) monotone if [F (x) − F (y)]T (x − y) ≥ 0, ∀x, y ∈ R
n;

(ii) pseudo-monotone if F (y)T (x − y) ≥ 0 implies

F (x)T (x − y) ≥ 0, ∀x, y ∈ R
n.
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Proposition 3.3 (Convexity of γGV I
F )

Assume that K is a convex set and F : R
n → R

n is an affine and monotone

mapping. Then γGV I
F is convex.

Proof: Let us verify first that the the function

(x, p) 7→ f ∗(p − F (x)) + F (x)T x + f(x) + δ∗K(−p) (3.4)

is convex with respect to (x, p). If F is affine and monotone then F (x)T x is
convex. Moreover the conjugate functions f ∗ and δ∗K are also convex. By
the assumptions f is also convex. If F is affine then p − F (x) is affine. The
composition of a convex function with an affine function f ∗(p−F (x)) is also
convex. So, the function given by (3.4) is convex. Therefore, by Theorem 1
in [18], γGV I

F is convex. �

Proposition 3.4 (Convexity of γGV I
L and γGV I

FL )
Assume that F : R

n → R
n is an affine and monotone mapping. Then γGV I

L

and γGV I
FL are convex.

Proof: Because of the functions

(f + qT g)∗(−F (x)) = sup
y∈Rn

[−F (x)T y − f(y) − qT g(y)]

and (qT g)∗X(−p) = sup
y∈X

[−pT y−qT g(y)] are convex as the pointwise supremum

of affine functions with respect to (x, q) and (p, q), respectively, the convexity
of γGV I

L and γGV I
FL follows from Theorem 1 in [18]. �

4 Dual gap functions for the problem (V I)

In this section we introduce another class of gap functions for the problem
(V I), the so-called dual gap functions. Under assumptions that K is a closed,
convex set and F is a pseudo-monotone (monotone) and continuous mapping
(see, for instance [10], [12]), the problem (V I) is equivalent to the problem
of finding x ∈ K such that

(V I ′) F (y)T (y − x) ≥ 0, ∀y ∈ K.

The function γV I′

A : R
n → R defined by

γV I′

A (x) := sup
y∈K

F (y)T (x − y)
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is called the dual gap function for the problem (V I). Remark that γV I′

A is the
gap function in the sense of Auslender for the problem (V I ′) and has been
studied, for instance, in [14] and [22]. On the other hand, by using the duals
(DV I′

F ; x), (DV I′

L ; x) and (DV I′

FL ; x) of the optimization problem

(P V I′ ; x) inf
y∈K

F (y)T (y − x),

where x ∈ R
n is fixed, we formulate the corresponding functions as follows

γV I′

F (x) : = −v(DV I′

F ; x) = inf
p∈Rn

{

sup
y∈Rn

[pT y + F (y)T (x − y)] + δ∗K(−p)
}

,

γV I′

L (x) : = −v(DV I′

L ; x) = inf
q=0

sup
y∈K

{

F (y)T (x − y) − qT g(y)
}

.

γV I′

FL (x) : = −v(DV I′

FL ; x) = inf
p∈R

n

q=0

{

sup
y∈Rn

[pT y + F (y)T (x − y)] + (qT g)∗(−p)
}

.

In case of the functions γV I′

L and γV I′

FL , K is given by (3.1). Before we show
that the proposed functions are gap functions for the problem (V I), let us
prove some relations between them.

Proposition 4.1 It holds

γV I′

A (x) ≤ γV I′

F (x), ∀x ∈ R
n.

Proof: Let x ∈ R
n be fixed. For any p ∈ R

n it holds

sup
z∈Rn

[pT z − F (z)T (z − x)] ≥ pT y − F (y)T (y − x), ∀y ∈ R
n,

or, equivalently,

sup
z∈Rn

[pT z − F (z)T (z − x)] − pT y ≥ F (y)T (x − y), ∀y ∈ R
n.

Taking the supremum in both sides over all y ∈ K

sup
z∈Rn

[pT z − F (z)T (z − x)] + δ∗K(−p) ≥ sup
y∈K

F (y)T (x − y).

After taking the infimum in both sides over all p ∈ R
n we conclude that

γV I′

F (x) ≥ γV I′

A (x), ∀x ∈ R
n. �

Proposition 4.2 Let the ground set be given by (3.1). Then it holds

γV I′

A (x) ≤
γV I′

L (x)

γV I′

F (x)
≤ γV I′

FL (x), ∀x ∈ R
n.
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Proof: Like in Proposition 3.2, by Propositions 2.1 and 2.2 in [3] (see also
[19]), one can conclude that

γV I′

L (x)

γV I′

F (x)
≤ γV I′

FL (x), ∀x ∈ R
n.

On the other hand by Proposition 4.1, one has γV I′

A (x) ≤ γV I′

F (x), ∀x ∈ R
n.

Let x ∈ R
n and q = 0 be fixed. Because of −qT g(y) ≥ 0,∀y ∈ K, adding

F (y)T (x − y) in both sides, we have

F (y)T (x − y) − qT g(y) ≥ F (y)T (x − y).

Taking the supremum over all y ∈ K and that the infimum over all q = 0
implies that γV I′

L (x) ≥ γV I′

A (x), ∀x ∈ R
n. Thus the proof is completed. �

At next we show that under monotonicity assumptions the functions in-
troduced above can be related also to the Auslender’s and Giannessi’s gap
functions.

Proposition 4.3 Let F : R
n → R

n be a monotone mapping. Then it holds

γV I′

A (x) ≤ γV I′

F (x) ≤ γV I
A (x), ∀x ∈ R

n.

Proof: By Proposition 4.1 there is γV I′

A (x) ≤ γV I′

F (x), ∀x ∈ R
n. Taking into

account the monotonicity of F, it holds

[F (y) − F (x)]T (y − x) ≥ 0, ∀x, y ∈ R
n,

or
F (y)T (y − x) ≥ F (x)T (y − x), ∀x, y ∈ R

n.

Let x ∈ R
n and p ∈ R

n be fixed. Adding −pT y and taking the infimum in
both sides over all y ∈ R

n, we get

inf
y∈Rn

[−pT y + F (y)T (y − x)] ≥ inf
y∈Rn

[−pT y + F (x)T (y − x)],

or, equivalently,

sup
y∈Rn

[pT y − F (y)T (y − x)] ≤ sup
y∈Rn

[pT y − F (x)T (y − x)], (4.1)
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Then, after adding δ∗K(−p) and taking the infimum in both sides over all
p ∈ R

n

inf
p∈Rn

{

sup
y∈Rn

[pT y − F (y)T (y − x)] + δ∗K(−p)
}

= γV I′

F (x)

≤ inf
p∈Rn

{

sup
y∈Rn

[pT y − F (x)T (y − x)] + δ∗K(−p)
}

= γV I
F (x).

In view of Proposition 3.1(i) implies that γV I′

F (x) ≤ γV I
A (x), ∀x ∈ R

n. �

Proposition 4.4 Let F : R
n → R

n be a monotone mapping and the ground

set K be given by (3.1). Then it holds

γV I′

L (x) ≤ γV I′

FL (x) ≤ γV I
G (x), ∀x ∈ R

n.

Proof: By Proposition 4.2 one has

γV I′

L (x) ≤ γV I′

FL (x), ∀x ∈ R
n.

Let x, p ∈ R
n and q = 0 be fixed. Since F is a monotone mapping, in the

same way we can obtain the relation (4.1). Whence, adding (qT g)∗(−p) and
taking the infimum in both sides over all p ∈ R

n and q = 0 implies that

inf
p∈R

n

q=0

{

sup
y∈Rn

[pT y − F (y)T (y − x)] + (qT g)∗(−p)
}

= γV I′

FL (x)

≤ inf
p∈R

n

q=0

{

sup
y∈Rn

[pT y − F (x)T (y − x)] + (qT g)∗(−p)
}

= γV I
FL(x).

Taking into account Proposition 3.1(ii) we conclude that

γV I′

FL (x) ≤ γV I
G (x), ∀x ∈ R

n. �

Theorem 4.1 Let K be a nonempty, closed, convex set and F : R
n → R

n

be a monotone and continuous mapping. Then γV I′

F is a gap function for the

problem (V I).

Proof:

(i) Let x ∈ K be fixed. By weak duality it holds

γV I′

F (x) = −v(DV I′

F ; x) ≥ −v(P V I′ ; x) ≥ 0.
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(ii) If γV I′

F (x) = 0, then

0 = v(DV I′

F ; x) ≤ v(P V I′ ; x) ≤ 0.

Thus v(P V I′ ; x) = 0 and this means that also v(P V I ; x) = 0 and so x is
a solution of (V I). Conversely, let x ∈ K be a solution of the problem
(V I). Then it holds γV I

A (x) = 0. By Proposition 4.3 and according to
(i) we conclude that γV I′

F (x) = 0. �

Theorem 4.2 Let F : R
n → R

n be a monotone and continuous mapping.

Assume that for the problem (V I) the constraint qualification (CQ) is ful-

filled. Then γV I′

L and γV I′

FL are gap functions for the problem (V I).

Proof:

(i) Let x ∈ K be fixed. By weak duality and in view of Proposition 4.2 it
holds

γV I′

FL (x) ≥ γV I′

L (x) = −v(DV I′

L ; x) ≥ −v(P V I′ ; x) ≥ 0.

(ii)

Since γV I′

FL (x) = γV I′

L (x) = 0 implies that

0 = v(DV I′

FL ; x) = v(DV I′

L ; x) ≤ v(P V I′ ; x) ≤ 0.

Consequently v(P V I′ ; x) = v(P V I ; x) = 0. So x is a solution of (V I). Let
x ∈ K be a solution of the problem (V I) and the constraint qualification
(CQ) be fulfilled. Then it holds γV I

G (x) = 0. By Proposition 4.4 and in view
of (i), implies that γV I′

FL (x) = γV I′

L (x) = 0. �

Remark 4.1 Since the functions

sup
y∈Rn

{

pT y + F (y)T (x − y)
}

and sup
y∈K

{

F (y)T (x − y) − qT g(y)
}

are convex as the pointwise supremum of affine functions with respect to
(p, x) and (q, x), respectively, by Theorem 1 in [18] one can easily verify the
convexity of the functions γV I′

F , γV I′

L and γV I′

FL .
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