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Abstract. We present an extension of Fenchel’s duality theorem by weakening

the convexity assumptions to near convexity. These weak hypotheses are automat-

ically fulfilled in the convex case. Moreover we show by a counterexample that a

further extension to closely convex function is not possible under these hypotheses.
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1 Introduction and Preliminaries

Fenchel’s duality theorem (cf. Ref. 1) asserts that for f : Rn → R a proper con-

vex function and for g : Rn → R a proper concave function fulfilling ri(dom(f)) ∩

ri(dom(g)) 6= ∅ there is strong duality between the primal problem infx∈Rn

[

f(x) −

g(x)
]

and its Fenchel dual supu∈Rn

{

g∗(u) − f ∗(u)
}

. There were attempts to extend

it, for instance see Ref. 2.

In this note we give another extension of Fenchel’s duality theorem, for a primal

problem having as objective the difference between a nearly convex function and a

nearly concave one. The nearly convex functions were introduced by Aleman (Ref.

3) as p-convex (see also Ref. 4), while the nearly convex sets are due to Green and

Gustin (Ref. 5). As the name “nearly convex” has been used in the literature also

for other concepts, we followed the terminology used in some relevant optimization

papers (Refs. 6-8). Nearly convex functions generalize the older midconvex functions

(cf. Ref. 9) (obtained for p = 1/2).

When X ⊆ Rn we use the classical notations cl(X), aff(X), ri(X) and δX for

its closure, affine hull, relative interior and indicator function, respectively. For a
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convex function f : Rn → R we consider the following definitions: effective domain

dom(f) =
{

x ∈ Rn : f(x) < +∞
}

, epigraph epi(f) =
{

(x, r) ∈ Rn × R : f(x) ≤ r
}

,

f is proper if dom(f) 6= ∅ and f(x) > −∞ ∀x ∈ Rn, lower semicontinuous envelope

f : Rn → R such that epi(f) = cl(epi(f)) and conjugate function f ∗ : Rn → R,

f ∗(p) = supx∈Rn

{

pT x − f(x)
}

.

Similar notions are defined for a concave function g : Rn → R: dom(g) =
{

x ∈

Rn : g(x) > −∞
}

, hyp(g) =
{

(x, r) ∈ Rn × R : g(x) ≥ r
}

, g is proper if dom(g) 6= ∅

and g(x) < +∞ ∀x ∈ Rn, its upper semicontinuous envelope g and g∗ : Rn → R,

g∗(p) = infx∈Rn

[

pT x − g(x)
]

. We denote these notions in the same way for both

convex and concave functions as the meaning arises from the context. For nearly

convex functions these notions are considered in the convex sense, while for nearly

concave ones they are taken like for concave functions. For f : Rn → R and its

convex conjugate, respectively for g : Rn → R and its concave conjugate, there is the

Young-Fenchel inequality f ∗(u) + f(x) ≥ uT x ≥ g∗(u) + g(x) ∀u, x ∈ Rn.

The following result coming from the convex analysis will be used later.

Lemma 1.1. (see Ref. 6) For a convex set C ⊆ Rn and any set S ⊆ Rn satisfying
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S ⊆ C we have ri(C) ⊆ S if and only if ri(C) = ri(S).

A set S ⊆ Rn is called nearly convex if there is an α ∈ (0, 1) such that for each

x, y ∈ S it follows that αx + (1 − α)y ∈ S. Every convex set is nearly convex,

while Q is nearly convex (with α = 1/2), but not convex. We give now some results

concerning nearly convex sets.

Lemma 1.2. (see Ref. 3) For every nearly convex set S ⊆ Rn one has

(i) ri(S) is convex (may be empty),

(ii) cl(S) is convex,

(iii) for every x ∈ cl(S) and y ∈ ri(S) we have tx+(1−t)y ∈ ri(S) for each 0 ≤ t < 1.

Lemma 1.3. (see Ref. 6) Let ∅ 6= S ⊆ Rn be a nearly convex. Then ri(S) 6= ∅ if

and only if ri(cl(S)) ⊆ S, in this case ri(S) = ri(cl(S)).

Closely related to the notion of a nearly convex set we consider similar notions

for functions. A function f : Rn → R is nearly convex if there is an α ∈ (0, 1) such

that for all x, y ∈ dom(f) = {x ∈ Rn : f(x) < +∞} we have

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y).
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A function g : Rn → R is said to be nearly concave when −f is nearly convex.

Nearly convex/concave functions have nearly convex domains and any convex

function is also nearly convex, but there are nearly convex functions that are not

convex as shown below.

Example 1.1. Let F : R → R be any discontinuous solution of Cauchy’s functional

equation F (x + y) = F (x) + F (y) ∀x, y ∈ R. For each of these functions, whose

existence is guaranteed in Ref. 10, one has F ((x+y)/2) = (F (x)+F (y))/2 ∀x, y ∈ R,

i.e. these functions are nearly convex. None of them is convex because of the absence

of continuity.

The following lemma extends to the nearly convex setting a well-known result

from the convex analysis.

Lemma 1.4. Let the functions f, g : Rn → R. Then f is nearly convex if and

only if epi(f) is nearly convex and g is nearly concave if and only if hyp(g) is nearly

convex.

Remark 1.1. Since epi(f) = cl(epi(f)), by Lemma 1.2 (ii) and Lemma 1.4 one has

that the lower semicontinuous envelope f of a nearly convex function f is convex.
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Theorem 1.1. Let f : Rn → R be a proper nearly convex function fulfilling

ri(epi(f)) 6= ∅. Then

(a) ri(epi(f)) = ri(epi(f)) and ri(dom(f)) = ri(dom(f));

(b) f(x) = f(x), ∀x ∈ ri(dom(f)),

(c) f is proper.

Proof. Since ri(epi(f)) 6= ∅, by Lemma 1.3 it follows ri(epi(f)) = ri(cl(epi(f)) =

ri(epi(f)). Denoting by Pr : Rn × R → Rn the projection operator defined by

Pr(x, r) = x, we have by Theorem 6.6 in Ref. 1 that

ri(dom(f))=ri(Pr(epi(f))=Pr(ri(epi(f))=Pr(ri(epi(f)))⊆Pr(epi(f))=dom(f).

On the other hand, as dom(f) ⊆ dom(f) and the latter is a convex set, by Lemma

1.1 follows ri(dom(f)) = ri(dom(f)).

Take an x from ri(dom(f̄)). By Lemma 7.3 in Ref. 1, we have that for all ε > 0,

(x, f̄(x) + ε) ∈ ri(epi(f̄)) ⊆ epi(f), so f(x) ≤ f̄(x) + ε. Letting ε tend to 0 it follows

f(x) ≤ f̄(x). Since the opposite inequality is always true, (ii) follows.

As f is not identical +∞ it follows that f̄ is also not identical +∞. Assuming
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there exists an x′ ∈ Rn such that f̄(x′) = −∞, we would have (cf. Corollary 7.2.1

in Ref. 1) that f̄(x) = −∞ ∀x ∈ dom(f̄). As f̄(x) = f(x) ∀x ∈ ri(dom(f)) this

contradicts the properness of f . Thus f̄ is a proper function. �

Remark 1.2. For F a discontinuous solutions of Cauchy’s functional equation

(cf. Example 1.1) we have that ri(dom(F )) = R, but ri(epi(F )) = ∅. Assuming

ri(epi(F )) 6= ∅, this would imply F̄ (x) = F (x) ∀x ∈ ri(dom(F̄ )). As the latter set

coincides with R, one gets F = F̄ and so F is convex, which is not the case.

2 Extension of the Fenchel Duality Theorem

For a proper convex function f : Rn → R and a proper concave one g : Rn → R

Fenchel duality’s theorem states that if ri(dom(f)) ∩ ri(dom(g)) 6= ∅, then

inf
x∈Rn

[

f(x) − g(x)
]

= max
u∈Rn

{

g∗(u) − f ∗(u)
}

.

We weaken the conditions imposed in Ref. 1 without altering the conclusion by

considering f nearly convex and g nearly concave.
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Theorem 2.1. Let f : Rn → R be a proper nearly convex function and let

g : Rn → R be a proper nearly concave function. If the following conditions are

simultaneously satisfied

(i) ri(dom(f)) ∩ ri(dom(g)) 6= ∅,

(ii) ri(epi(f)) 6= ∅,

(iii) ri(hyp(g)) 6= ∅,

then one has

inf
x∈Rn

[

f(x) − g(x)
]

= max
u∈Rn

{

g∗(u) − f ∗(u)
}

.

Proof. One can notice that the relations (a)-(c) in Theorem 1.1 are fulfilled.

Similarly it follows that ḡ is a proper concave and upper semicontinuous function

such that ḡ(x) = g(x) ∀x ∈ ri(dom(ḡ)) and ri(dom(ḡ)) = ri(dom(g)).

Denote by v := inf
[

f(x) − g(x) : x ∈ Rn
]

≥ inf
[

f̄(x) − ḡ(x) : x ∈ Rn
]

. Since

f̄ − ḡ is convex, by Corollary 7.3.1 in Ref. 1 we have

inf
[

f̄(x) − ḡ(x) : x ∈ Rn
]

= inf
[

f̄(x) − ḡ(x) : x ∈ ri(dom(f̄ − ḡ))]

= inf
[

f̄(x) − ḡ(x) : x ∈ ri(dom(f̄) ∩ dom(ḡ))].
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The sets dom(f̄) and dom(ḡ)) are convex and the intersection of their relative interior

is not empty, since ri(dom(f))∩ ri(dom(g)) = ri(dom(f̄))∩ ri(dom(ḡ)). By Theorem

6.5 in Ref. 1, the latter set is equal to ri(dom(f̄) ∩ dom(ḡ)). Thus

inf
[

f̄(x) − ḡ(x) : x ∈ Rn
]

= inf
[

f̄(x) − ḡ(x) : x ∈ ri(dom(f̄)) ∩ ri(dom(ḡ))]

= inf
[

f(x) − g(x) : x ∈ ri(dom(f)) ∩ ri(dom(g))] ≥ v.

In conclusion,

v = inf
[

f(x) − g(x) : x ∈ Rn
]

= inf
[

f̄(x) − ḡ(x) : x ∈ Rn
]

.

Fenchel’s duality theorem (Theorem 31.1 in Ref. 1) yields for f̄ and ḡ that

inf
x∈Rn

[

f̄(x) − ḡ(x)
]

= max
u∈Rn

{

(ḡ)∗(u) − (f̄)∗(u)
}

.

As f ∗ = (f̄)∗ and g∗ = (ḡ)∗ (cf. Ref. 1) one has

inf
x∈Rn

[

f(x) − g(x)
]

= inf
x∈Rn

[

f̄(x) − ḡ(x)
]

= max
u∈Rn

{

g∗(u) − f ∗(u)
}

. �

Remark 2.1. The assumptions of near convexity for f and of near concavity for g

do not require the same near convexity constant for both of these functions.

Remark 2.2. If f and g are proper, f̄ convex, ḡ concave and (i) holds, one has

inf
x∈Rn

[

f̄(x) − ḡ(x)
]

= max
u∈Rn

{

g∗(u) − f ∗(u)
}

. (1)
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The question whether

inf
x∈Rn

[

f(x) − g(x)
]

= inf
x∈Rn

[

f̄(x) − ḡ(x)
]

(2)

is true or not under weaker hypotheses than in Theorem 2.1, like relaxing the near

convexity assumptions to close convexity, arises naturally. A function with the closure

of the epigraph convex is called closely convex (cf. Ref. 7) and analogously one defines

closely concave functions. The next example shows that (2) may fail when f is closely

convex, g is closely concave and the assumptions (i)-(iii) in Theorem 2.1 hold.

Example 2.1. Consider the sets

X = {(x, y)T ∈ R2 : x ≥ 0, y ≥ 0, x ∈ Q, y ∈ Q, x + y < 1}

∪ {(x, y)T ∈ R2 : x ≥ 0, y ≥ 0, 1 ≤ x + y ≤ 2}

and Y = {(x, y)T ∈ R2 : x ≥ 0, y ≥ 0, x ∈ R\Q, y ∈ R\Q, x + y < 1}

∪ {(x, y)T ∈ R2 : x ≥ 0, y ≥ 0, 1 ≤ x + y ≤ 2},

and f, g : R2 → R,

f(x, y) =































x, if (x, y) ∈ X,

+∞, otherwise,

and g(x, y) =































−y, if (x, y) ∈ Y,

−∞, otherwise.

11



Obviously f and g are proper and (3/4, 3/4) ∈ ri(dom(f))∩ ri(dom(g)), (3/4, 3/4, 1)

∈ ri(epi(f)) and (3/4, 3/4,−1) ∈ ri(hyp(g)), whence hypotheses (i)-(iii) in Theorem

2.1 are valid. X and Y are not nearly convex, thus, as dom(f) = X and dom(g) = Y ,

f is not nearly convex and g is not nearly concave. On the other hand we have

cl(epi(f)) = {(x, y, r)T ∈ R3 : x ≥ 0, y ≥ 0, x + y ≤ 2, x ≤ r}

and cl(hyp(g)) = {(x, y, r)T ∈ R3 : x ≥ 0, y ≥ 0, x + y ≤ 2, y ≤ −r}

and these sets are convex. Hence f is closely convex and g is closely concave. There-

fore, with (i) in Theorem 2.1 fulfilled, (1) is valid. One has

f̄(x, y) =































x, if (x, y) ∈ Z,

+∞, otherwise,

and ḡ(x, y) =































−y, if (x, y) ∈ Z,

−∞, otherwise,

where Z = {(x, y)T ∈ R2 : x ≥ 0, y ≥ 0, x + y ≤ 2}, thus

inf
(x,y)∈R2

[f̄(x, y) − ḡ(x, y)] = inf{x + y : x ≥ 0, y ≥ 0, x + y ≤ 2} = 0.

Thus by Fenchel’s duality theorem,

inf
(x,y)∈R2

[

f̄(x, y) − ḡ(x, y)
]

= max
(u,v)∈R2

{

g∗(u, v) − f ∗(u, v)
}

= 0.
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Simple calculations lead to

inf
(x,y)∈R2

[f(x, y) − g(x, y)] = inf{x + y : x ≥ 0, y ≥ 0, 1 ≤ x + y ≤ 2} = 1.

Therefore (2) is obviously violated, thus Fenchel’s duality theorem does not hold when

its hypotheses are further weakened by taking the functions involved only closely

convex, respectively closely concave.

Remark 2.3. If f is proper convex and g is proper concave, (ii) and (iii) are

automatically fulfilled and Theorem 2.1 becomes Fenchel’s duality theorem.

Giving Theorem 2.1 for F,G : Rn×Rm →R, F (x, y) = f(x)+δ{x∈Rn:Ax=y}(x) and

G(x, y)=g(y), we extend to near convexity Fenchel’s duality result for the composition

with a linear mapping A :Rn→Rm, generalizing Corollary 31.2.1 in Ref. 1.

Theorem 2.2. Let f be proper nearly convex on Rn, let g be proper nearly

concave on Rm, and let A be a linear mapping from Rn to Rm. If one has

(i) ∃x′ ∈ ri(dom(f)) such that Ax′ ∈ ri(dom(g)),

(ii) ri(epi(f)) 6= ∅,

(iii) ri(hyp(g)) 6= ∅,
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it follows

inf
x∈Rn

[

f(x) − g(Ax)
]

= max
v∈Rm

{

g∗(v) − f ∗(A∗v)
}

.

Remark 2.4. By Remark 2.3, the assertion of Corollary 31.2.1 in Ref. 1 is valid

under the condition ∃x′ ∈ ri(dom(f)) such that Ax′ ∈ ri(dom(g)), without any

closedness assumption concerning f or g as taken in the mentioned book.
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