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1 Introduction

Because a lot of classical optimization problems can be reformulated as
composed optimization problems, the last ones represent some of the main
topics in the theory of optimization and arise in many areas of science
and engineering applications. For instance, when finding a feasible point
of the system of inequalities F;(z) < 0, ¢ = 1,...,m, by minimizing the
norm ||F(x)|, where F = (Fy,...,F,)T : R® — R™ is a vector function,
or when solving the Weber problem with infimal distances by minimizing

> wid(z, A;), where d(z, A;) = igg vi(r —a;), A = {A1,..,An} is a
i=1 a; i

family of convex sets, «; are the gauges of the sets A; and w; are positive
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weights, i = 1,...,m. All these examples can be seen as particular cases of a
composed optimization problem. Among the large number of papers dealing
with composed optimization problems, let us mention here [2], [3], [4], [6],
[7], [8], [9] and [14]. Most of these have considered additionally assumptions
for the objective function and for the constraint functions, respectively, in
order to give necessary and sufficient optimality conditions and to study
the duality (see [6], [7] and [9]). The problem treated by us leads to more
general models, namely where the differentiability of the functions involved
does not have to be assumed.

The aim of this paper is to construct some dual problems to an opti-
mization problem, of which objective function and constraint functions are
composed functions. In order to do this we apply the Fenchel-Rockafellar
duality concept based on conjugacy and perturbations (cf. [5]). Using spe-
cial perturbation functions we construct three different dual problems in
analogy to the well-known Lagrange and Fenchel dual problems (denoted
by (D) and (Dp) respectively), and a ”combination” of the above two
that we call the Fenchel-Lagrange dual problem (denoted by (Dgr)). Then
we study the relations between the optimal objective values of the duals
and give some sufficient conditions in order to achieve equality between
these values and strong duality between the primal and the dual problems,
respectively. Finally, some special cases of this problem are presented.

The paper is organized as follows. In section 2 we introduce some def-
initions and preliminary results that will be used throughout this paper.
Section 3 is devoted to the construction of the three dual problems. In sec-
tion 4 we examine the relations between the optimal objective values of
the duals. In the first part of this section we study these relations in the
general case and then under different convexity assumptions and regularity
conditions. In the last part we provide some sufficient conditions in order
to have strong duality. Finally, in section 5 we give some applications of the
preceding results. It will turn out that the dual problems obtained by the
authors in [2], [12] and [13] can be obtained from the duals introduced in
this paper as special cases.

2 Preliminaries

In this section we introduce some definitions we use throughout this paper
and prove some elementary results. Let X be a nonempty subset of R™.
We denote by ri(X) the relative interior of the set X, by 27y = > 2,
i=1

the inner product of the vectors z,y € R™ and by R’ the non-negative
orthant of R™. For the function f: R™ — R = RU {40}, the set defined
by dom(f) = {x € R™ : f(z) < 400} denotes the effective domain of f. We
say that f is proper if dom(f) # 0 and f(z) # —oo for all z € R™.
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Definition 1 When X is a nonempty subset of R™ and f : X — R, let be
the so-called conjugate relative to the set X defined by
i i R" =R, fi(@) = swp {o o~ f2) }.
zeX

Considering the extension of f: X — R to the whole space,
FiR™ SR, f(a:) _ {f(a:),lfxEX,

400, otherwise,
one can see that the conjugate of f relative to the set X is identical to the
classical conjugate of f (the Fenchel-Moreau conjugate)

FRT SR, P = swp {00 - f(@)).
rER™

Definition 2 The function f : R™ — R is called componentwise increasing,
if for x = (21, ., vm)T, ¥y = (Y1, Ym)T € R™ such that x; > y;, i =
1,...,m, follows that f(z) > f(y).

Throughout this paper we consider a nonempty set X C R"™ and the
functions F' = (Fy,....F,)" : X — R™, G = (Gy,....G))T : X — R,
f:R™ - Randg=(g1,.., glC)T : Ij&l — R’“ Additionally, we extend F' and
Gto F = (F1,...Fn)T and G = (G, ..., G))T, respectively, with

~ F,L(J,‘),lf.’EEX,

F,:R" - R, Fi(z) = {+oo, otherwise, i=1,..,m,

t

and

éjZRn—)R, éj(‘f):{Gj(x),lfxeX, ]:1,,l

400, otherwise,

As a consequence we have now to make for the functions f and g;, i =
1, ..., k, the following conventions

fly) = +oo, if y= (Y1, ym)" with y; € RU {+00}, (1)
i=1,...,m, and 3 j € {1,...,m} such that y; = +oo0,

and, fori =1,..., k,

gi(z) = +oo, if 2z = (21,...,z)T with z; € RU {+00}, @)
t=1,..,0, and 3 j € {1,...,1} such that z; = +o0.

Proposition 1 If f : R™ — R is a componentwise increasing function, then
1*(q) = +oo for all g € R™ \ RT.

Proof Let be ¢ € R™\RY". Then there exists at least one i € {1,...,m} such
that ¢; < 0. But

f(g) = sup {¢"d~ f(d)} = sup  {qidi — f(0, . diy ., 0) }

deR™ d=(0,...,d;,...,00T,
d;€R
= sup {qldz - f(ov ey dia ey 0)} > sup {%d1 - f(oa ey dia 0)}
d;eR d;<0

vV

sup {qidi} — f(0,...,0) = +o0.
d; <0

Therefore f*(q) = 400, Vg € R™ \ RT". O
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Proposition 2 Assume that X is a nonempty conver subset of R", F; :
X =R, i=1,...,m, are convex functions and f : R™ — R is a conver and
componentwise increasing function. Then fo F :R™ — R is convez.

Proof We have to prove that for all x,y € R™ and for all A with 0 < X <1,

(foF)(a+ =2y <A(foF) @+0 -2 (foF) ). ()
If , y € X we have that
(FoF) (x+(1=Ny) = F(F(a+ (1= Ny)) < F(F(@) + (1= \F(y))
SAfoF)(@)+ (1 =N (foF)y)
:/\(foﬁ‘) (z) + (1 - \) (foF) (1).

If 2 ¢ X or y ¢ X, or both, we have (foﬁ’) (x) = 400 or (foﬁ) (y) =
+00, or both, respectively. So, the inequality (3) holds again. O

Proposition 3 Assume that X is a nonempty convexr subset of R", G; :
X =R, j=1,..,1, are convex functions and g; : R' = R, i =1,....k, are
convex and componentwise increasing functions. Then g; oG :R" — R, i=
1,...,k, are conver.

Proof The proof is analogous to the proof of Proposition 2 . O

In the last part of this section we present some results which will play
an important role in the sequel.

Theorem 1 (cf. Theorem 16.4 in [11]) Let f1,..., fn : R™ — R be proper
convex functions. If the sets ri(dom(f;)), i = 1,...,n, have a point in com-
mon, then

<Z f¢> (p) = inf {Z i)Y pi= p} ;
i=1 i=1 i=1
where for each p € R™ the infimum is attained.

Theorem 2 (cf. [10]) Let F = (Fy, ..., F,,)T with F; : R" — RU{+c}, i =
1,...,m, be convexr functions and f : R™ — R U {4+oc0} be a convex and

m

componentwise increasing function. If the set F | dom(FZ-)> contains an
i=1

interior point of dom(f), then it holds

(foF)(p) = )\ielgm {f*(/\) + (Z /\iFi> (p)},

where for each p € R™ the infimum is attained.
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3 The composed optimization problem and its duals

In this section we introduce the primal composed optimization problem and
construct different dual problems to it.
Let this primal problem be

(P)  inf f(F(z)),

zeA

where

A=<Cze X:g(Gx) =0

k
+

=

As usual, g(G(z)) < 0 means that g;(G(z)) <0 for all i = 1,...,k. In the
=

following we suppose that the feasible set A4 is nonempty. The optimal ob-
jective value of (P) is denoted by v(P).

The aim of this section is to construct different dual problems to (P).
To do this, we use an approach based on the theory of conjugate functions
(see [5]). In order to reproduce it, let us consider first a general optimization
problem without constraints

(PG) inf k(z),

zER™

with k a mapping from R™ into R. We embed this problem in a family of
perturbed problems

P inf &

( GP) IIEHR" (J%p),

where & : R” x R®* — R is the so-called perturbation function and has the
property that

&(z,0) = k(z), Yo € R™. (4)

Here, R? is the space of the perturbation variables. The conjugate function
of the perturbation function @ is

P*(z%,p*) = sup {w*Tﬂc +pip— 45(96,17)} ~
zeR™ peRS®

Then the problem
(DG)  sup {—27(0,p")}
p* cRs
defines a dual problem of (PG) and its optimal objective value is denoted by
v(DQ@). This approach has the important property that between the primal
and the dual problem weak duality holds. The next proposition states this
fact.
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Proposition 4 (c¢f. Proposition 1.1 in [5]) The relation
—o00 < v(DG) < v(PG) < +0
always holds.

In order to apply the approach described above to the composed opti-
mization problem we introduce the function k : R™ — R,

F(F(x)), if g(G(z)) £ 0,
k(z) = RE

k
400, otherwise,
and thus (P) can be written as an optimization problem without constraints
P inf k(z).
(P) inf k()

In the following we construct three different perturbation functions and
the corresponding dual problems to (P).

3.1 The Lagrange dual problem

At first let us consider the perturbation function @, : R” x R¥ — R defined
by
f(F()), if g(G(2)) = g,
@L (1’, q) = Ri
~+o00, otherwise,

with the perturbation variable ¢ € R¥. Tt is obvious that relation (4) is
fulfilled. For the conjugate of @ we have

@5 (z*,¢*) =  sup {w*Tw +q*Tq— P (a, q)}
zER™, gERF

= sup {I*T:r +q7Tqg— f(F(I))}
zél}%”,qeﬂ%’“,
9(G(z) < q

k
Ry

= sup {:v*Tac + q*Tq — f(F(x))} .
z€X, qeR”,
9(G(z)) = ¢

k
Ry

In order to calculate this expression we introduce the variable a instead of
q, by a:=q— g(G(z)) € RX. This implies

o0 = sw {o et Tg(G) +aTa - f(F()}

zEX,aE]Rﬁ_

_ «T T o _f(F «T
sup {4 T (Cw) ~ S (I”}ZSSR% {o"a}

s {7 e+ g Tg(G@) - FF@) it g7 € —RE,

= zeX

00, otherwise.
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The dual of (P) obtained by the perturbation function @y, is

(Dr)  sup {—97(0,¢")}.

q*eRk
Because of
sup { = sup {¢""g(G(2) ~ F(F())} } =
q*e—IRl“F zeX
: *T
swp inf {~¢""g(G(@)) + (F(x)) }
q*GflR’_j_ reX
and denoting t := —¢* € Rf‘[_, the dual becomes

(Dr)  sup inf {f(F(2))+t"9(G(x))}.

Kk TE
teRY

The problem (Dy) is actually the well-known Lagrange dual problem.
Its optimal objective value is denoted by v(Dpr) and Proposition 4 implies
v(Dr) < v(P).

3.2 The Fenchel dual problem

Let us consider the perturbation function @ : R® x R” x R™ — R given
by

f(F(z+p)+q), if g(G(x)) <0,

k
+

Es

¢F ($7p7 q) =
400, otherwise,

with the perturbation variables p € R™ and g € R™. The relation (4) is also
fulfilled and it holds

Dy (x*,p*,q*) = sup {x*Tx +p*Tp+q*Tq—¢F(x,p, q)}
x, peR™, geR™
= sup {x*Tx +p " p+q T q— f(F(z+p) +Q)}~
z, peR™, geR™,
g(G(z)) £ 0

k
BY

Introducing the new variables r := z+p € R™ and a := F(JJ +p)+qeR™,
we obtain

Py (2", p",q") = sup {x*Tx +pr—p e+ qTa— g F(r)-
ze€X, reR™, acR™,
9(G(2) £ 0

k
RY

fl@)} =suwp {g"a— f(@) }+sup {pTr - ¢ TE() f+

acR™ rcR»
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Sup{(w* *p*)Tx} = f*(q") + (i Q?E>* (p*) + sup {(I* *p*)T“T} '

zeA zeA

Because of (Z qu) (p*) :<Z quZ) (p*) and, denoting p := p*, q := ¢*,
i=1 i=1 X
the dual problem of (P)

(Dr) sup  {=Pp(0,p", ¢")}
p*ER™, g*ER™

can be written as

(Dr) sup {f*(Q)<ZQiFi> (p)+wig£\pT:v}-
i=1 X

pER™, gER™

Let us call (Dg) the Fenchel dual problem and denote its optimal objec-
tive value by v(Dp). Proposition 4 implies that v(Dg) < v(P).

3.3 The Fenchel-Lagrange dual problem

A further dual problem can be obtained by considering a perturbation func-
tion which is a combination of the functions g ., and @ . Let this be defined
by @rr : R®" x R* x R™ x R" x R! x RF — R,

F(F(x+p)+q),if g(Gle+p)+d) =t

k
+

=

gZSFL(xapa Q7pl7 qu t) =
400, otherwise,

with the perturbation variables p, p’ € R", ¢ € R™, ¢’ € R! and t € R,
&y, satisfies relation (4) and thus a dual problem to (P) can be defined by

(Dpr) sup {=Bpp(0,p7,¢", P 4" 1)}
P ’Zq)/*g]}{:z ’tqeﬂgkR ’

For the conjugate of @y we have

Gy (z*,p", 0", P ¢ 1) = sup {w*Tx+p*Tp+q*Tq+p’*Tp’+
z,p,p'€R", g€R™,
q'€R!, teRF
g + Tt — Dpp(e,p,q, 7, ¢, t)} = sup {x*Tx +p T p+

z,p,p’€R™, g€R™ , ¢’ €R’,
teR*, g(G(z+p')+q') St
%
* «T «T * I
g+ + ¢ ¢+t~ f(F(z+p) +q)}.
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Introducing the new variables r := z+p € R", 7" := 2+p’ € R",a:= F(z+
p)+q ER™ b:=Gx+p)+q¢ €Randc:=t—g(Glxz+p)+q) € Rﬁ,
we have

Phop (@, 0", ¢, 0", ¢ ) = sup {x*Tin*T?“—p*Terq*Ta—
z,r, v €ER™, acR™,
bER', ceRY.

q*Tﬁ(r) +p/*T’I“/ —p/*TZ‘ + q/*Tb _ q/*Té(T/) +¢+T¢ + t*Tg(b) o f(a) } _

sup {qa— fa)} +sup { ¢ To+ 4T g0)} + sup { 97— T E() |
a€R™ bER! reRn”

+ sup {p/*TT, - q’*Té(r')} + sup {(x* —p* fp/*)Tx} + sup {t*Tc}.
r’eRm xER™ cER’jr

Because of

sup {—(p* +p™) "z} =

rER®

0, ifp*+p™ =0,
400, otherwise,

and
sup {t*Tc} _ O, if t* € —Ri,
R 400, otherwise,
k

follows that

@}L(O,p*,q*,p,*,ql*,t*) =
k * m A\ * l \F
f*(q*)+(—21 t;‘gi) <q’*>+(zl q;*F,) <p*>+(zl qg*Gi) W),

if p* +p* =0 and t* € —R¥

00, otherwise.

m S\ m *
Taking into consideration that (Z ql*Fz> (p*) = <Z q;"Fl) (p*),
i=1 i=1 X
l S\ l *
(Z qZ*GZ) (™) = (Z qé*Gi> () and denoting p := p* = —p’*, ¢ :=
i=1 i=1 X
q*, ¢ :=¢* and t := —t*, the dual becomes

(Drr)
k * m * l *
sup {f*(q) - (Z tigi) (a) — <Z til) (p) — <Z qéGz-) (p)} :
pER™, g€R™, i=1 i=1 X i=1 X
q' R, teRY.

Let us call (Dpy) the Fenchel-Lagrange dual problem. By Proposition 4,
the weak duality v(Dpr) < v(P) is also true, where v(Dpy,) is the optimal
objective value of (Dpy,).
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4 The relations between the optimal objective values of the dual
problems

In the previous section we have seen that the optimal objective values
v(Dp), v(Dr) and v(Dgy) of the dual problems (Dy), (D) and (Dgp),
respectively, are less than or equal to the optimal objective value v(P) of
the primal problem (P). Henceforth we are going to investigate the relations
between the optimal objective values of the three dual problems.

4.1 The general case

For the beginning we remain in the most general case, namely, without any
special assumptions concerning the set X or the functions f, F, g and G.

Proposition 5 The inequality v(Dpr) < v(Dpr) holds.

Proof Let p € R", ¢ € R™, ¢’ € R and t € R% be fixed. By the definition
of the conjugate function we have

~f'(@) = mf {f() "y} < inf {f(F@))=q"F@)},

yeR™

k *
- <Ztigi> (d) —;gﬂ&{(thgz) —q Z}
i=1
< inf, {(Zm) ) —d"G(x )}

<qu l) = mf {q F(x pTw}

and .
(qu > —p) = mf {d"G(z) +p"a}.
X

Adding the inequalities from above we obtain that

k * m * l *
- <Z tiQi) (q") - (Z qZ-FZ-) (p) — (Z qé@) (-p) <
i=1 i=1 X i=1 X

k
Iof {f(F(x)) + <Z;tigi> (G(x) } = inf {f(F )) +t79(G(2))} -

By taking now the supremum over p € R, ¢ € R™, ¢ € Rl and t € Ri,
we obtain

& * * *
e {—f “(g) - (Z tiQi) (Z i z) (Z 4G ) }

q' R, teRk
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< sup inf {f(F(z))+t"g(G(z))}.

terk T€X

This implies that v(Dpr) < v(Dyr). O
Proposition 6 The inequality v(Dpr) < v(Dp) holds.

Proof Let p € R", ¢ € R™ and ¢’ € R be fixed. For each t € R’j_ we have

*

() (o) eonfe- (5]
- (Gen)o) e[S -

+;g§({<2ql ) z)+p x} < mf {t"9(G(z)) +p"x}

f {t Ta} < inf {pTz}. 5
< inf {t7g(G(x)) +p"w} < inf {p"z} (5)
The last two inequalities in (5 ) hold because A C X and tTg(G(x)) < 0
for all z € A. By adding first — <E qi Z) (p) to both sides of

(5) and by taking then the supremum over p € R", ¢ € R™, ¢’ € R! and
t € R% . we obtain

et A0~ (§) o= (o) - (00) -n)

q'€R, teRE
< sup { (Z ) )+ 1nf £ p x}
pER™, gER™ =1
which is nothing else than v(Dpy) < v(Dp). O

Remark 1 Considering similar counterexamples like Wanka and Bot in [12],
it can be shown that the inequalities in Proposition 5 and Proposition 6 can
also be strict. Moreover, in general, an ordering between v(Dy,) and v(Dp)
cannot be established.

4.2 The equivalence of the dual problems (Dr) and (Dpr)

In this subsection we assume that X is a convex subset, F; : X — R, i =
1,..,m, G;: X =R, j=1,..,1, are convex functions and f : R™ — R, g; :
R! - R, i = 1,...,k, are convex and componentwise increasing functions.
Under these hypotheses we prove that the optimal objective values of the
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Lagrange and the Fenchel-Lagrange dual problems are equal. According to
Proposition 1, the dual (Dpr) becomes

(Drr)
k * m * l *
up {—f*(q) (o) -(Lar) - (L ac) <—p>} .
pER™, g€RY", =1 =1 X i=1 X
q' R, teRE

Theorem 3 Assume that X C R" is a nonempty convexr subset, F; : X —
R,i=1,..,m, G;: X =R, j=1,...,1, are convex functions and f : R"™ —
R, ¢; : Rl = R, i = 1,....,k, are convex and componentwise increasing
functions. Then it holds

U(DL) = ’U(DFL).

Proof Let bet € Rﬁ. By using the extended functions introduced in section
2, the Lagrange dual can be written as

inf {f —|—tT }— inf {(foF)(z)—l—tT(goé)(gg)}:

reX reRn”

k k *
CEiemen{(foj:") (x) + <Zti9iOé> (:L‘)} = — (foﬁ‘—l—Ztigioé) (0).

=1

Because of i (dom ( )) i <d0m <Xk: tigi o G>> = 1i(X) # () and
i=1

.k -
foF, > tig; oG are convex functions (cf. Proposition 2 and Proposition
i=1
3), Theorem 1 implies that

- (foF+ Zk:tigi ° é) (0) = _piEann{<f OF)*(p) + <zk:ti9i 0é> (—p>}~

i=1 i=1 )
Since we have that F (ﬂ dom< )) N int(dom(f)) = F(X) NR™ #
() and é(ﬂ dom( )) int (dom (éhm)) = G(X)NR £ 0, by

j=1
Theorem 2 follows

(7oF) @) f{ (Z a“ ) } @
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reX
m N\ K k * k \F
i {f*<q>+(zqi D+ () @0+ (S 0 <p>} =
pER™,q€RY, i=1 i=1 i=1
q/ERZr
k * m _\* k N\ F
s 5@ () @) - (£ af) ) - (£ a6 ) (f =
pER™ ,qER™, i=1 i=1 i=1
q’e]RfF
k * m * k *
sup —f*(@—(Z tig; (q’)—(Z ti¢> (M—(Z QQGi> (=p)¢
pER™ g€R™", i=1 i=1 X i=1 X
q’E]RfF
which implies that v(Dr) = v(Dppr). O

4.3 The equivalence of the dual problems (Dp) and (Dpr)

The aim of this section is to investigate some necessary conditions in order
to ensure the equality between the optimal objective values of the duals
(DF) and (DFL)

To this end we consider a generalized Slater-type constraint qualification.
First, let us divide the index set {1, ..., k} into two subsets,

affine function g/i;—é :R” =R

L:= {2 e{1,..,k}

g; 0 G : X — R is the restriction to X of an}

and N :={1,...,k} \ L. The constraint qualification follows

p . J9i(G(2") <0,ie L,
(CR) 3Tz e ri(X): {gl(G(JC')) Z0ieN,

where 7i(X) denotes the relative interior of the set X.

Assume that the constraint qualification (C'Q) is fulfilled and, moreover,
that X is a convex set, G; : X — R, j =1,...,1, are convex functions and
that g; : RY — R, i = 1,...,k, are convex and componentwise increasing
functions. This will imply the equality of the optimal objective values of
(Dr) and (Dpr). Let us mention that under these hypotheses (Dpy) be-
comes (cf. Proposition 1)

(DrrL)
PGRE,quéRm,{_f*(q) N (Xk:l tigi) *(q’) - <§)1 ti¢) ;(p) - <Zl?1 qéGi) ;(—p)} :

q' R teRE



14 Gert Wanka et al.

Theorem 4 Assume that X C R"™ is a nonempty convex subset, G; : X —
R, j =1,...,1, are convex functions, g; : R' = R, i = 1,..., k, are convex and
componentwise increasing functions and the constraint qualification (CQ) is
fulfilled. Then it holds
U(DF) = ’U(DFL).
Proof Let be p € R™ and ¢ € R™ fixed. If ianApTgc = —o0, then by Propo-
re
sition 6, v(Df) = v(Dpp) = —oc.
Further let inf pTx be finite. By Theorem 28.2 in [11] one has
zeA

mfp x = sup inf {p z+t7 9(G(z))}.
teRrk T€X

Applying again Theorem 1 it follows that

k k
ot {p% + (Z tigi o G) <x>} = Jof, {p% + (Z tigi o G) <x>} =

k * k *
- <pT(') + Z; tigi o é) (0) = uienﬂgn{(PT('))*(u) + (2; tigi o é) (U)} :

On the other hand, Theorem 2 yields

k * * ! *
<Z t;g; o é) (_u = lnﬂgl { (Z t,g7> q/ (Z q;@) (_u)} )
i=1 € i=1

therefore
2 * ! :
B TN (o . no_ el _
;g&p T = ERfullo l { (p" ()" (u) (thh) () (Zqul> ( U)}
u g’ €RL i=1 =1
ter
Since £
Ty )0, ifu=p,
(" ()" (u) = {+00, otherwise,
we have

inf p T = sup <E ttgl) q) <Z q;G > (—=p)
zeA q eRﬁrﬂteRi =1
k * *
= sup <Z zgz> q') (Z 4G ) (=p) ¢
q'€R!_, teR¥ i=1 X

By adding —f*(q) — (Z qi z) (p) to both sides of relation (9) and, by
X

taking the supremum over p € R™ and ¢ € R™, one obtains

sup . F; ) + mfp T, =
pER",qERm { <Z > }

(9)
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k * m * l *
sup {—f*(q) - (Z tiQi) (¢) - (Z QiFi> (p) — (Z in¢> (—p)} :
PER", g€R™, i=1 i=1 X i=1 X

q'€R,  ter®

which is nothing else than v(Dp) = v(Dpp). O

4.4 Strong duality for (Dr), (D) and (Dpp)

In the previous subsections we have presented some conditions which ensure
the equality between the optimal objective values of the Lagrange and the
Fenchel-Lagrange and of the Fenchel and the Fenchel-Lagrange dual prob-
lems, respectively. Combining the hypotheses of the theorems 3 and 4 it
follows the equality of the optimal objective values of these three duals. Un-
der the same conditions it can be proved that the optimal objective values
of the duals are also equal to v(P). In case v(P) is finite this result leads to
the strong duality.

Theorem 5 Assume that X C R™ is a nonempty convexr subset, F; : X —
R, i=1,...m, Gj : X =R, j=1,...,1, are convex functions, f : R™ —
R, g; : R - R, i = 1,....k, are convexr and componentwise mnereasing
functions and the constraint qualification (CQ) is fulfilled. Then it holds

U(P) = ’U(DL) = U(DF) = ’U(DFL).

Provided that v(P) > —oo, the strong duality holds, i.e. the optimal objec-
tive value of the primal and the dual problems coincide and the duals have
optimal solutions.

Proof By Theorem 3 and Theorem 4 we obtain
v(Dyp) =v(Dp) =v(Drr). (10)

Because A = {.Z‘ € X :g(G(x)) £ 0} # ), it holds v(P) € [—o0,+00). If
=t
v(P) = —o0, then the weak duality together with (10) lead to

v(Dr) =v(Dp) =v(Dpr) = —o00 = v(P).

Suppose now that —oo < v(P) < 400. Because the constraint qualification
(CQ) is fulfilled, Theorem 28.2 in [11] states the existence of a £ € R% such
that the Lagrange duality holds, namely

v(P) = max inf {f(F(2)) +1"9(G(z))}

— inf {f(F(2)) + 7 g(G(x))} = v(Dy). (11)
There is
U(P) = ’U(DL) = U(DF) = Q)(DFL), (12)
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and t € Ri is an optimal solution to the Lagrange dual (Dy,).
As in the proof of Theorem 3 we obtain, using that the infima in the relations
(6), (7) and (8) are attained, p € R", ¢ € RT and ¢’ € R!, such that

o(P) = inf {f(F(@))+g(G(2))} =
sup {— f*(q) — (é t_igi) *(q’) — (i til) *(p) — (;Z ngZ) *(_p)} =

pER™, geRT, X b'e
’ l
q €R+

ra-(x tigi)*@") ~(Lan)

*

0 - (S 06:) 9 =o(Dr),

X

*

X

Therefore (p, , ¢/, t) is an optimal solution to (Dpr).
It remains to show that (p, ¢) is actually an optimal solution to the Fenchel
dual (Dp). The relations (5) and (12) imply that

*

(®) — <§ q’iGi> (—p)

X

*

v(Drr) = —f(q) — (Zk:l tz‘gi)*(fJ') - (g:l t?z‘Fi>

<—r@-(Lar) o+

X

=1
< sup {f*<q> - (z qF> (») + inf pTx} — v(Dr) < o(P),
pER™, i1 x z€A
q€eR

and so, because of v(P) = v(Dpr) = v(Dp) there is

E o m * ko *
(P =-r@-(sie) @-(£an) w-(See) o
i=1 N i=1 X i=1 X
——r@- (L ar) o)+ o= ()
i=1 b'e zeA
which states that (p, ¢) is an optimal solution to (Dp). O

5 Special cases

In the last section of this paper we investigate some special cases of the
original problem (P) and show that the duality concepts introduced in this
paper generalize some results obtained in the past.

5.1 The ordinary optimization problem with inequality constraints and its
duals

Let X C R" be a nonempty set, ' : X — R, G = (Gy,...,Gp)T, G; :
X — R, i=1,...,k, and the following optimization problem with inequality
constraints

(P)  inf F(a),
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where
Az{xeX:G(m‘) §O}
RE
One may observe that (P’) is a particular case of the original problem (P) by
consideringm =1, F; = F, f :R - Rand g = (g1,...,gx)” : R¥ — R¥ such
that f(x) = o for all » € R and g;(y) = y; for all y € R¥ and i = 1,..., k.
Let us notice that f and g;, ¢ = 1,...,k, are convex and componentwise
increasing functions. In what follows we derive from the duals introduced
for (P) corresponding dual problems for (P).
Because of
@) = suplla.a) - F@) =suplla - ) = { $ NEDL

k * k k
(Z ti.‘]i) (¢') = sup {q’Ty - th-gi(y)} = sup {Q’Ty - thy}

yERF i—1 yERF ie1

{O, if ¢ =t,

o I n\T —
= sup {(¢' — )"y} = +00, otherwise,

yERF
and

l * k *

<Z q§G¢> (—p) = (Z tiGi> (—p) = sup {—p"z —t"G(x)}
i=1 x i=1 x zeX
. T T
=— inf {p"2+1"G()},
the three dual problems turn out to be

(D7)  sup in)f( {F(z) +t"G(2)},

Kk TE
teRY

(DR)  sup {—Fff(p) +_ggf4pTw},

peR™
and
(D) sup {—Fj}(p) + inf {pTx+tTG(x)}},
peR™, teRk zeX
respectively.
Let us notice that the constraint qualification (C'Q) becomes in this case

. Gi(z')<0,ieL
/ / . 7 >~ U, 5
(cQy 34 € M(X)'{Gi(x')<0,i€N,
where
G; : X — R is the restriction to X of an
L:=41 1,...,k ~
{Z € AL b} affine function G; : R" — R }

and N :={1,....k} \ L.

In this special case we get from the theorems obtained in section 4 the
following results.
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Theorem 6 Assume that X C R" is a nonempty convex subset and F :
X =R, G;: X =R, j=1,....k, are convez functions. Then it holds

v(Dy) = v(Dpp)-

Theorem 7 Assume that X C R™ is a nonempty convex subset, G; : X —
R, j =1,...,k, are convex functions and the constraint qualification (CQ")
is fulfilled. Then it holds

v(Dy) = v(Dgr).

Theorem 8 Assume that X C R"™ is a nonempty convex subset, F': X —
R, G; : X — R, j = 1,...,k, are convex functions and the constraint

qualification (CQ') is fulfilled. Then it holds
v(P') = v(Dp) = v(Df) = v(Dfy).

Provided that v(P') > —o0, the strong duality holds, i.e. the optimal objec-
tive value of the primal and the dual problems coincide and the duals have
optimal solutions.

Remark 2 The three duals derived for (P’) as well as the theorems enun-
ciated above have been obtained by Wanka and Bot in [12]. Therefore the
results presented in this paper generalize some of the previous work of the
authors.

5.2 The composed optimization problem without inequality constraints

Consider X a nonempty subset of R, F = (Fy,..., F,,)T, F;: X =R, i=
1,...,m, and the optimization problem without inequality constraints

(P")  inf f(F(z)).

zeX

One may see that (P”) can be obtained from the original problem, namely,
by taking in (P) the functions g; : R® — R, i = 1,....k, such that g;(y) =
0, i=1,..k, forall y € RL.

Because of
Z’“ ’ 0, ifgd=0
- N — * N — T 1 — ) — Y
(i_l tzgz> (¢) = ()" (d) ysgﬂlgz {y ¢ } {—I—oo, otherwise,
and 0% (—p) = — inﬁ( pTx, the Fenchel-Lagrange dual problem becomes
x€
DH su —f* — iFi + inf Tx .
(DFr) . { [ (;_1 q )X (p) + inf p

The strong duality theorem follows.
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Theorem 9 Assume that X C R™ is a nonempty convexr subset, F =
(Fi,... Fp)T, F; : X — R, i = 1,...,m, are convex functions and f :
R™ — R is a conver and componentwise increasing function. Then it holds

v(P") = v(Dgp).

Provided that v(P") > —o0, the strong duality holds, i.e. the optimal objec-
tive value of the primal and the dual problems coincide and the duals have
optimal solutions.

Remark 8 The dual (D7) and Theorem 9 generalize the results obtained
by Bot and Wanka in [2] in the special case when X = R".

Further we particularize problem (P”) by taking instead of f the func-
tion 77, : R™ — R, where v/ (t) := vo(tT), with tT = (¢, ...,t5)T and
tF =max{0,t;}, i = 1,...,m, and 7¢ : R™ — R is a monotonic gauge of
a closed convex set C' containing the origin defined by v (x) := inf {a >
0 : & € aC}. Recall that v¢ is a monotonic gauge on R™ (cf. [1]), if
vo(u) < y¢(v) for every u and v in R™ satisfying |u;| < |v;| for each
i = 1,...,m. Therefore 'yér is a convex and componentwise increasing func-
tion.

The optimization problem

(P7) i y¢(F(x)

has as Fenchel-Lagrange dual the following problem

(D¥7) sup < —(v) (@) = [ D_aF | (p)+ inf pTzy.

pER™, geR™ =1 X z€X
On the other hand, by Proposition 4.2 in [13], the conjugate function (v/)* :
R™ — R U {400} of 7/, verifies

0, if ¢g€RP and yeo(g) <1
+\* _ ’ —+ )
(ve)"(a) = {+oo, otherwise,
where 7o is the gauge of the polar set CY. Then the Fenchel-Lagrange dual
problem looks like

m *
(D¥7) sup { (ZqF> (p)+mig§(pTx},
peR™, geR’, i—1 x
Yoo (9)<1

which is nothing else than the dual problem obtained by the authors in [13]
as a theoretical framework for some location problems.
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