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Abstract

The present paper is a continuation of [2] where we deal with the
duality for a multiobjective fractional optimization problem. The basic
idea in [2] consists in attaching an intermediate multiobjective convex
optimization problem to the primal fractional problem, using an ap-
proach due to Dinkelbach ([6]), for which we construct then a dual
problem expressed in terms of the conjugates of the functions involved.
The weak, strong and converse duality statements for the intermediate
problems allow us to give dual characterizations for the efficient solu-
tions of the initial fractional problem.

The aim of this paper is to compare the intermediate dual problem
with other similar dual problems known from the literature. We com-
pletely establish the inclusion relations between the image sets of the
duals as well as between the sets of maximal elements of the image sets.

1 Introduction

In this paper we continue the study in [2] on duality assertions for multiob-
jective fractional optimization problems. In the mentioned paper, considering
a primal optimization problem having as objective function a vector function
with components that are quotients of a convex and a concave function, we at-
tach to it an intermediate multiobjective convex optimization problem by using
an approach due to Dinkelbach ([6]), which we denote by (Pµ) for µ ∈ Rm. To
this last problem we construct a multiobjective dual (Dµ) expressed in terms
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of the conjugates of the functions involved. For the intermediate primal and
dual problems we prove weak, strong and converse duality assertions which we
use then to give dual characterizations for the efficient solutions of the initial
fractional problem.

The aim we follow in this paper is to make a comparison of the dual (Dµ)
with different dual problems to the parameterized multiobjective optimization
problem (Pµ) given in the past in literature. On the one hand we consider
two multiobjective problems constructed by using the approach described in
[3] and on the other hand the multiobjective dual due to Ohlendorf and Tam-
mer ([11]). The approach described by Boţ and Wanka in [3] for constructing
multiobjective dual problems by using different scalar dual problems extends
the results of Jahn ([8]) for Lagrange duality. Here we consider the multiob-
jective duals based on some conjugate duality concepts like Fenchel duality
and Fenchel - Lagrange duality (for more on this see [14]). For the four dual
problems we completely establish inclusion relations between the image sets of
their feasible sets through their objective functions. Moreover, we prove that
the sets of maximal elements of these image sets are equal for all µ ∈ Rm

+ .
Similar investigations on the existence of inclusion relations between the

image sets and, respectively, between the sets of maximal elements of the image
sets of different multiobjective duals have been done by two of the authors in
[3] and [4]. A general scheme containing the relations between the multiobjec-
tive duals of Jahn ([8]), Nakayama ([10]), Wolfe ([15]), Mond-Weir ([16]) and
a conjugate dual introduced by Wanka and Boţ in [13] is presented. Further-
more, conditions under which the dual problems are equivalent are given. In
the current paper we extend these investigations to fractional multiobjective
optimization problems.

A duality concept for multiobjective fractional optimization problems which
is not considered here, but is worth mentioning has been introduced by Chan-
dra, Craven and Mond in [5] and is also based on Dinkelbach’s parametrization
approach. The formulation of the dual problem in the paper mentioned above
is close to the ones in this paper. The feasible set of the multiobjective dual is
defined by means of the Lagrange duality while we consider here the Fenchel
and Fenchel-Lagrange duality concepts. An extension of the considerations we
make in this paper to the dual problem introduced in [5] could be done in the
lines of the theory presented in [3] and [4], where for a convex vector optimiza-
tion problem different dual problems defined by means of the Lagrange, Fenchel
and Fenchel-Lagrange duality concepts are introduced and investigated.

The paper is structured as follows.
In Section 2 we introduce some preliminary notions and we formulate the

multiobjective fractional primal problem and the intermediate convex problem
(Pµ), µ ∈ Rm, which is equivalent to the original in some sense. Furthermore,
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we introduce the dual (Dµ) for (Pµ) and recall the weak, strong and converse
duality theorems given in [2].

In Section 3 we introduce the other multiobjective duals to (Pµ) and then
we give the relations of inclusion between the image sets of these problems.
The existence of strict inclusion relations is shown by some examples. Finally,
we prove that the sets of maximal elements of the image sets are equal for all
µ ∈ Rm

+ .

2 Preliminaries

In this section we give some notations and preliminary results used later in the
paper. The first definition introduces the ordering relation induced on Rk by
the ordering cone Rk

+.

Definition 2.1. For y, z ∈ Rk we denote y 5 z if z − y ∈ Rk
+ = {u =

(u1, . . . , uk)
T ∈ Rk : ui ≥ 0, i = 1, . . . , k}.

The notions we introduce now come from convex analysis.

Definition 2.2. Let be A ⊆ Rn. The indicator function of the set A, χA :
Rn → R, is defined by

χA =

{
0, if x ∈ A,
+∞, otherwise.

Definition 2.3. Let f : Rn → R be a given function. Then the conjugate
function of f , f ∗ : Rn → R, is defined by f ∗(p) = sup

x∈Rn
{pTx− f(x)}. Having a

given subset A ⊆ Rn we define the conjugate function of f with respect to A,
f ∗A : Rn → R, as being

f ∗A(p) = (f + χA)∗(p) = sup
x∈A
{pTx− f(x)}.

The primal multiobjective fractional optimization problem considered here
is

(P )
v- min

x∈A
Φ(x)

A =
{
x ∈ Rn : g(x) =

[
g1(x), · · · , gk(x)

]T
5 0
}
,

where A is assumed to be non-empty, ∀x ∈ Rn, Φ(x) =
[
Φ1(x), · · · ,Φm(x)

]T
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=
[
f1(x)
h1(x)

, · · · , fm(x)
hm(x)

]T
, fi : Rn → R = R ∪ {±∞} are convex and proper

functions, (−hi) : Rn → R are convex functions fulfilling hi(x) > 0, ∀x ∈ A,
i = 1, . . . ,m, gj : Rn → R are real-valued convex functions, j = 1, . . . , k, and
m⋂
i=1

ri(dom fi) 6= ∅.

Note that A is convex, but nevertheless (P ) is in general a non-convex
problem.

In order to point out the optimal solutions of the problem (P ), let us
introduce the following definitions of efficiency and proper efficiency.

Definition 2.4 (Efficiency for problem (P )). An element x̄ ∈ A is said to be
efficient (or minimal) for (P ) if

{Φ(x̄)− Rm
+} ∩ Φ(A) = {Φ(x̄)},

or, equivalently, if there is no x ∈ A such that

Φ(x) 5 Φ(x̄)

and
Φ(x) 6= Φ(x̄).

Definition 2.5 (Proper efficiency for problem (P )). A point x̄ ∈ A is said to
be properly efficient for (P ) if there exists λ = (λ1, . . . , λm)T ∈ int(Rm

+ ) such
that

m∑
i=1

λiΦi(x̄) ≤
m∑
i=1

λiΦi(x), ∀x ∈ A.

Let us notice that any properly efficient solution turns out to be an efficient
one, too.

In order to investigate the duality for (P ) we considered in [2] the following
parameterized optimization problem by using an idea due to Dinkelbach ([6])

(Pµ) v- min
x∈A

Φ(µ)(x),

where

Φ(µ)(x) =

Φ
(µ)
1 (x)

...

Φ
(µ)
m (x)

 =

f1(x)
...

fm(x)

−
 µ1 · h1(x)

...
µm · hm(x)


and µ = (µ1, ..., µm)T ∈ Rm. Note that Φ

(µ)
i are proper and convex if µi ≥

0, i = 1, . . . ,m.
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Efficiency and proper efficiency for (Pµ) are defined in an analogous manner
as done above for (P ).

Kaul and Lyall ([9]) and Bector, Chandra and Singh ([1]) stated the con-
nections between the efficient elements of (P ) and (Pµ).

Theorem 2.1 ([1], [9]). A point x̄ ∈ A is efficient for problem (P ) if and only

if x̄ is efficient for problem (Pµ̄), where µ̄ = (µ̄1, . . . , µ̄m) and µ̄i := fi(x̄)
hi(x̄)

, i =
1, . . . ,m.

Another efficiency notion used in [2] is the so-called properly efficiency in
the sense of Geoffrion.

Definition 2.6 (Proper efficiency in the sense of Geoffrion [7]). A point x̄ ∈ A
is said to be properly efficient in the sense of Geoffrion for (P ) if it is efficient
and if there is some real number M > 0 such that for each i = 1, . . . ,m and
each x ∈ A satisfying Φi(x) < Φi(x̄) there exists at least one j ∈ {1, . . . ,m}
such that Φj(x̄) < Φj(x) and

Φi(x̄)− Φi(x)

Φj(x)− Φj(x̄)
≤M.

Proper efficiency in the sense of Geoffrion for problem (Pµ) is defined in an
analogous way, with Φ(µ) instead of Φ.

Theorem 2.2 ([2]). Let be x̄ ∈ A and assume that µ̄i := fi(x̄)
hi(x̄)

≥ 0, i =
1, . . . ,m. The point x̄ is properly efficient in the sense of Geoffrion for problem
(P ) if and only if x̄ is properly efficient (in the sense of Definition 2.5) for
problem (Pµ̄), where µ̄ = (µ̄1, . . . , µ̄m)T .

The multiobjective dual problem to (Pµ), µ ∈ Rm, introduced in [2], based
on the duality concept developed by two of the authors in [13], is the following
one

(Dµ) v- max
(u,v,q,λ,t)∈Bµ

Ψ(µ)(u, v, q, λ, t),

where

Ψ(µ)(u, v, q, λ, t) =
[
Ψ

(µ)
1 (u, v, q, λ, t), · · · ,Ψ(µ)

m (u, v, q, λ, t)
]T
,

Ψ
(µ)
i (u, v, q, λ, t) =− f ∗i (ui)− (−µihi)∗(vi)

− (qTi g)∗

(
− 1

mλi

m∑
j=1

λj(uj + vj)

)
+ ti, i = 1, . . . ,m,
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the set of constraints is defined by

Bµ =

{
(u, v, q, λ, t) : λ ∈ int Rm

+ ,
m∑
i=1

λiqi = 0,
m∑
i=1

λiti = 0

}

and the dual variables are u = (u1, . . . , um), ui ∈ Rn, v = (v1, . . . , vm), vi
∈ Rn, q = (q1, . . . , qm), qi ∈ Rk, i = 1, . . . ,m, λ = (λ1, . . . , λm)T ∈ int Rm

+ , t
= (t1, . . . , tm)T ∈ Rm.

The efficient elements of (Dµ) are defined in an analogous manner as for
(P ).

Definition 2.7 (Efficiency for problem (Dµ)). An element (ū, v̄, q̄, λ̄, t̄) ∈ Bµ
is said to be efficient (or maximal) for (Dµ) if

{Ψ(µ)(ū, v̄, q̄, λ̄, t̄) + Rm
+} ∩Ψ(µ)(Bµ) = {Ψ(µ)(ū, v̄, q̄, λ̄, t̄)}.

We were able to prove the following weak duality result.

Theorem 2.3 (Weak duality [2]). Let be µ ∈ Rm. There is no (u, v, q, λ, t) ∈
Bµ and x ∈ A such that

Ψ(µ)(u, v, q, λ, t) = Φ(µ)(x),

and
Ψ(µ)(u, v, q, λ, t) 6= Φ(µ)(x).

For the strong duality theorem and the optimality conditions we need
a constraint qualification. In order to formulate it let us consider the sets
L = {j ∈ {1, ..., k} : gj is affine} and N = {1, ..., k} \ L.

Constraint qualification (CQ)

There exists an element x′ ∈
m⋂
i=1

ri(dom fi) such that gj(x
′) < 0, j ∈ N , and

gj(x
′) ≤ 0, j ∈ L.

Theorem 2.4 (Strong duality [2]). Let µ ∈ Rm
+ and (CQ) be fulfilled. If x̄

is a properly efficient element of (Pµ), then there exists an efficient solution
(ū, v̄, q̄, λ̄, t̄) ∈ Bµ of (Dµ) and strong duality holds, i.e.

Φ(µ)(x̄) = Ψ(µ)(ū, v̄, q̄, λ̄, t̄).

Let us introduce now the following condition which will be helpful for the
converse duality theorem.
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Definition 2.8. Let be µ ∈ Rm
+ and λ ∈ int(Rm

+ ). The condition (Cµ,λ) is
fulfilled when from

inf
x∈A

m∑
i=1

λiΦ
(µ)
i (x) > −∞

it follows that there exists xλ ∈ A such that

inf
x∈A

m∑
i=1

λiΦ
(µ)
i (x) =

m∑
i=1

λiΦ
(µ)
i (xλ).

Now the converse duality theorem for (Pµ) can be formulated.

Theorem 2.5 ([2]). Let be µ ∈ Rm
+ given, (CQ) be fulfilled and assume that

(Cµ,λ) holds for all λ ∈ int(Rm
+ ).

(1) Let (ū, v̄, q̄, λ̄, t̄) be an efficient solution of (Dµ). Then

(a) Ψ(µ)(ū, v̄, q̄, λ̄, t̄) ∈ cl(Φ(µ)(A) + Rm
+ );

(b) there exists a properly efficient solution x̄λ̄ ∈ A of (Pµ) such that
m∑
i=1

λ̄i[Φ
(µ)
i (x̄λ̄)−Ψ

(µ)
i (ū, v̄, q̄, λ̄, t̄)] = 0.

(2) If, additionally, Φ(µ)(A) is Rm
+ -closed (Φ(µ)(A)+Rm

+ is closed), then there
exists a properly efficient solution x̄ ∈ A of (Pµ) such that

m∑
i=1

λ̄iΦ
(µ)
i (x̄λ̄) =

m∑
i=1

λ̄iΦ
(µ)
i (x̄),

and
Φ(µ)(x̄) = Ψ(µ)(ū, v̄, q̄, λ̄, t̄).

By using the previous results, one can give dual characterizations for the
solutions of the fractional multiobjective optimization problem (P ).

Theorem 2.6 ([2]). Let (CQ) be fulfilled and x̄ ∈ A be properly efficient in

the sense of Geoffrion for problem (P ) with µ̄i := fi(x̄)
hi(x̄)

≥ 0, i = 1, . . . ,m.

Let be µ̄ := (µ̄1, . . . , µ̄m)T . Then x̄ is properly efficient for (Pµ̄), there exists
(ū, v̄, q̄, λ̄, t̄) ∈ Bµ̄ that is efficient for (Dµ̄) and strong duality between (Pµ̄) and
(Dµ̄) holds.

Theorem 2.7 ([2]). Let (CQ) be fulfilled and µ̄ ∈ Rm
+ such that the set Φµ̄(A)

is Rm
+ -closed. Moreover, assume that (Cµ̄,λ) holds for all λ ∈ int(Rm

+ ). Let
(ū, v̄, q̄, λ̄, t̄) be an efficient solution for (Dµ̄). Then there exists x̄ ∈ A, a
properly efficient solution for (Pµ̄), and strong duality between (Pµ̄) and (Dµ̄)
holds. If Φ(x̄) = µ̄ then x̄ is properly efficient in the sense of Geoffrion for
(P ).
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3 Comparison with other dual problems

In this section we make a comparison between different dual problems to the
parameterized multiobjective optimization problem (Pµ) when µ ∈ Rm

+ . Along
the problem (Dµ) introduced in the previous section we consider other two
multiobjective problems constructed by using the approach described in [3] as
well as the multiobjective dual due to Ohlendorf and Tammer ([11]).

3.1 Formulation of the dual problems

Boţ and Wanka developed in [3] an approach for constructing multiobjective
dual problems by using different scalar dual problems. They extended the re-
sults of Jahn ([8]) for Lagrange duality to different conjugate duality concepts
like Fenchel duality and the so-called Fenchel - Lagrange duality (for more
on this see [14]). We also take these two duals into consideration in order to
formulate two further multiobjective dual problems to (Pµ)

(Dµ
F ) v- max

(u,v,λ,y)∈BFµ
Ψ(F )(u, v, λ, y),

where

Ψ(F )(u, v, λ, y) =

Ψ
(F )
1 (u, v, λ, y1)

...

Ψ
(F )
m (u, v, λ, ym)

 =

y1
...
ym

 ,
BFµ =

{
(u, v, λ, y) : λ ∈ int Rm

+ ,
m∑
i=1

λiyi

≤ −
m∑
i=1

λi [f
∗
i (ui) + (−µihi)∗(vi)]− χ∗A

(
−

m∑
i=1

λi(ui + vi)

)}

and

(Dµ
FL) v- max

(u,v,q,λ,y)∈BFLµ
Ψ(FL)(u, v, q, λ, y),
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where

Ψ(FL)(u, v, q, λ, y) =

Ψ
(FL)
1 (u, v, q, λ, y1)

...

Ψ
(FL)
m (u, v, q, λ, ym)

 =

y1
...
ym

 ,
BFLµ =

{
(u, v, q, λ, y) : λ ∈ int Rm

+ , q ∈ Rk
+,

m∑
i=1

λiyi ≤ −
m∑
i=1

λi [f
∗
i (ui) + (−µihi)∗(vi)]

− (qTg)∗

(
−

m∑
i=1

λi(ui + vi)

)}
.

The fourth multiobjective dual problem considered here is the so - called
Fenchel - type dual according to Ohlendorf and Tammer [11]

(Dµ
O) v- max

(p,λ,y)∈BOµ
Ψ(O)(p, λ, y),

where

Ψ(O)(p, λ, y) =

Ψ
(O)
1 (p, λ, y1)

...

Ψ
(O)
m (p, λ, ym)

 =

y1
...
ym

 ,
BOµ =

{
(p, λ, y) : λ ∈ int Rm

+ , p ∈ Rn,

m∑
i=1

λiyi = −

(
−

m∑
i=1

λiµihi

)∗
A

(−p)−

(
m∑
i=1

λifi

)∗
A

(p)

}
.

The weak and strong duality assertions for the presented problems have been
proved by Boţ and Wanka in [3] and Ohlendorf and Tammer in [11], respec-
tively.

3.2 Inclusions between the image sets

For µ = (µ1, ..., µm)T ∈ Rm
+ we denote the image sets of the feasible sets of the

four multiobjective duals through their objective functions by Dµ := Ψ(µ)(Bµ),

D(µ)
FL := Ψ(FL)(BFLµ ), D(µ)

F := Ψ(F )(BFµ ) and D(µ)
O := Ψ(O)(BOµ ). Next we study

the inclusion relations which exist between them.
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We omit proving the theorem below as this result can be derived from
Proposition 5.2 in [3] and Proposition 2.1 in [4].

Theorem 3.1. It holds Dµ ∩ Rm ⊆ D(µ)
FL ⊆ D

(µ)
F , ∀µ ∈ Rm

+ .

Example 5.2 in [3] and Example 2.1 in [4] show that the relations of inclu-
sion in Theorem 3.1 can be also strict.

Assuming the constraint qualification (CQ) is fulfilled, Proposition 3.1 in
[4] offers a refinement of the relation above.

Theorem 3.2 (Proposition 3.1, [4]). Let (CQ) be fulfilled. Then it holds

D(µ)
FL = D(µ)

F , ∀µ ∈ Rm
+ .

This means that if (CQ) is fulfilled, then we have for all µ ∈ Rm
+

Dµ ∩ Rm ⊆ D(µ)
FL = D(µ)

F .

In the next example we show that the first inclusion in the relation above
can be strict.

Example 3.1. Let n = 1,m = 2, k = 1, f1(x) = x, f2(x) = 0, x ∈ R,
g(x) = −x, x ∈ R, h1(x) = h2(x) = 1, x ∈ R, and µ = (1, 1)T . Thus the
feasible set A looks like A = {x ∈ R : x ≥ 0} and it is obvious that the
constraint qualification (CQ) is fulfilled.

The conjugate functions turn out to be

f ∗1 (u1) =

{
0, if u1 = 1,

+∞, otherwise,

f ∗2 (u2) =

{
0, if u2 = 0,

+∞, otherwise,

and, respectively, for i = 1, 2,

(−hi)∗(vi) =

{
1, if vi = 0,

+∞, otherwise.

For u = (1, 0), v = (0, 0), λ = (1, 1)T and d = (−2,−2)T we have that
λ1d1 + λ2d2 = −4 and, on the other hand,

−λ1[f ∗1 (u1) + (−h1)∗(v1)]− λ2[f ∗2 (u2) + (−h2)∗(v2)]
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−χ∗A

(
−

2∑
i=1

λi(ui + vi)

)
= −2 + inf

x≥0
x = −2.

This means that (u, v, λ, d) ∈ BFµ , which is nothing else than d ∈ D(µ)
F .

Let us show now that d /∈ Dµ. If this were not true, then there would exist
an element (ū, v̄, q̄, λ̄, t̄) ∈ Bµ such that

 −2

−2

 =


−f ∗1 (ū1)− (−h1)∗(v̄1)− (q̄1g)∗

(
− 1

2λ̄1

2∑
j=1

λ̄j(ūj + v̄j)

)
+ t̄1

−f ∗2 (ū2)− (−h2)∗(v̄2)− (q̄2g)∗

(
− 1

2λ̄2

2∑
j=1

λ̄j(ūj + v̄j)

)
+ t̄2

 .

In order to happen this we must have ū1 = 1, ū2 = 0, v̄1 = 0, v̄2 = 0 and so −2

−2

 =


−1 + inf

x∈R

[(
1
2
− q̄1

)
x
]

+ t̄1

−1 + inf
x∈R

[(
λ̄1

2λ̄2
− q̄2

)
x
]

+ t̄2

 .

This relation can be true just if q̄1 = 1
2
, q̄2 = λ̄1

2λ̄2
and t̄1 = t̄2 = −1. As

λ̄1t̄1 + λ̄2t̄2 < 0, this leads to a contradiction to (ū, v̄, q̄, λ̄, t̄) ∈ Bµ.

Next we study the existence of an inclusion between D(µ)
O and D(µ)

F , assum-
ing that the constraint qualification (CQ) is fulfilled. To this end we formulate
and study the Fenchel dual to the following scalarized primal

(Pµ,λ) inf
x∈A

Φ(µ,λ)(x),

where

Φ(µ,λ)(x) =
m∑
i=1

λi · Φ(µ)
i (x) =

m∑
i=1

λi · (fi(x)− µi · hi(x)) , x ∈ Rn

and λi > 0, i = 1, . . . ,m.
The Fenchel dual to (Pµ,λ) is (see, for example, [12])

(D
(F )
µ,λ ) sup

p∈Rn

{
−(Φ(µ,λ))∗(p)− χ∗A(−p)

}
.

As we will see in the proof of the next lemma, the Fenchel dual to (Pµ,λ) turns
out to be

(D
(F )
µ,λ ) sup

ui,vi∈Rn,
i=1...m

{
−

m∑
i=1

λi[f
∗
i (ui) + (−µihi)∗(vi)]− χ∗A

(
−

m∑
i=1

λi(ui + vi)

)}
.
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Lemma 3.1. Assume that (CQ) is fulfilled and inf(Pµ,λ) is finite. Then there
is

inf(Pµ,λ) = max(D
(F )
µ,λ ),

and the dual problem (D
(F )
µ,λ ) has an optimal solution.

Proof. The constraint qualification (CQ) being fulfilled, according to Theorem

31.1 in [12], it follows that between (Pµ,λ) and (D
(F )
µ,λ ) strong duality holds,

namely
inf(Pµ,λ) = max(D

(F )
µ,λ ),

and (D
(F )
µ,λ ) has an optimal solution. Thus there exists p̄ ∈ Rn such that

inf(Pµ,λ) = −(Φ(µ,λ))∗(p̄)− χ∗A(−p̄).

On the other hand, as
m⋂
i=1

(ri (dom fi)) 6= ∅, the conjugate function of Φ(µ,λ)

turns out to be ∀p ∈ Rn (cf. Theorem 16.4 in [12])

(Φ(µ,λ))∗(p) = min

{
m∑
i=1

(λifi)
∗(ri) +

m∑
i=1

(−λiµihi)∗(si) :
m∑
i=1

(ri + si) = p

}

= min

{
m∑
i=1

λif
∗
i (ui) +

m∑
i=1

λi(−µihi)∗(vi) :
m∑
i=1

λi(ui + vi) = p

}
.

One can see that indeed

(D
(F )
µ,λ ) sup

ui,vi∈Rn,
i=1...m

{
−

m∑
i=1

λi[f
∗
i (ui) + (−µihi)∗(vi)]− χ∗A

(
−

m∑
i=1

λi(ui + vi)

)}

is the Fenchel dual of (Pµ,λ) and that strong duality holds.

Theorem 3.3. Let (CQ) be fulfilled. Then it holds D(µ)
O ⊆ D

(µ)
F .

Proof. Let be d̄ ∈ D(µ)
O with corresponding (λ̄, p̄) ∈ int Rm

+ × Rn. Then we get

12



the following relations

m∑
i=1

λ̄id̄i = −

(
−

m∑
i=1

λ̄iµihi

)∗
A

(−p̄)−

(
m∑
i=1

λ̄ifi

)∗
A

(p̄)

= inf
x∈A

{
p̄Tx−

m∑
i=1

λ̄iµihi(x)

}
+ inf

x∈A

{
−p̄Tx+

m∑
i=1

λ̄ifi(x)

}

≤ inf
x∈A

{
p̄Tx−

m∑
i=1

λ̄iµihi(x)− p̄Tx+
m∑
i=1

λ̄ifi(x)

}

= inf
x∈A

{
m∑
i=1

λ̄i(fi(x)− µihi(x))

}
.

The right-hand side is nothing else but the scalarization of the parameterized
primal problem (Pµ). According to Lemma 3.1 there exists an optimal solution

to (D
(F )

µ,λ̄
), say (ū, v̄) = (ū1, . . . , ūm, v̄1, . . . , v̄m), ūi, v̄i ∈ Rn, i = 1, . . . ,m, such

that strong duality holds.Thus,

m∑
i=1

λ̄id̄i ≤ max(D
(F )

µ,λ̄
)

= −
m∑
i=1

λ̄if
∗
i (ūi)−

m∑
i=1

λ̄i(−µihi)∗(v̄i)− χ∗A

(
−

m∑
i=1

λ̄i(ūi + v̄i)

)
.

This means that (ū, v̄, λ̄, d̄) ∈ BFµ and so d̄ ∈ ΨF (BFµ ) = D(µ)
F .

Assuming the constraint qualification (CQ) is fulfilled, by Theorem 3.2 and
Theorem 3.3, we have for all µ ∈ Rm

+

D(µ)
O ⊆ D

(µ)
FL = D(µ)

F .

Below we introduce a further example which shows that, in general, one
can find an element µ ∈ Rm

+ such that the inclusion Dµ∩Rm ⊆ D(µ)
O fails. This

implies that the inclusion in the relation above can indeed be strict.

Example 3.2. Let n = 1,m = 2, k = 1, f1(x) = x + 2, f2(x) = −x + 2,
h1(x) = h2(x) = 1, x ∈ R and µ = (1, 1)T . For

g(x) =

{
(x− 1)2 − 1, if x ≤ 1,

−1, otherwise,

13



the feasible set is defined as A = {x ∈ R : g(x) ≤ 0} = [0,+∞). The constraint
qualification (CQ) is again fulfilled. The conjugate functions become

f ∗1 (u1) =

{
−2, if u1 = 1,

+∞, otherwise,

f ∗2 (u2) =

{
−2, if u2 = −1,

+∞, otherwise,

and for i = 1, 2

(−hi)∗(vi) =

{
1, if vi = 0,

∞, otherwise.

Choosing u = (1,−1), v = (0, 0), q = (1, 1), λ = (1, 1)T , t = (0, 0)T , we get that

(u, v, q, λ, t) ∈ Bµ because λ ∈ int R2
+,

2∑
i=1

λiqi = 1 + 1 = 2 ≥ 0 and
2∑
i=1

λiti = 0.

Furthermore

Ψ
(µ)
i (u, v, q, λ, t) = 2− 1− (1 · g)∗

(
−1

2

2∑
i=1

(ui + vi)

)
+ 0

= 1 + inf
x∈R

g(x) = 0, i = 1, 2.

This means that the element d = (0, 0)T ∈ Dµ ∩ R2.

But d /∈ D(µ)
O , because in the opposite situation there would exist λ̄ =

(λ̄1, λ̄2)T ∈ int R2
+ and p̄ ∈ R such that

λ̄1d1 + λ̄2d2 = 0 = −

(
−

2∑
i=1

λ̄ihi

)∗
A

(−p̄)−

(
2∑
i=1

λ̄ifi

)∗
A

(p̄)

= inf
x∈A

[p̄x] + λ̄1 + λ̄2 + inf
x∈A

[(−p̄+ λ̄1 − λ̄2)x].

This can be the case just if p̄ ≥ 0, −p̄+ λ̄1 − λ̄2 ≥ 0 and λ̄1 + λ̄2 = 0. As this
can never be the case, the assertion is proved.

The last example of this section shows that, in general, one can find an
element µ ∈ Rm

+ such that the inclusion D(µ)
O ⊆ Dµ∩Rm also fails. This means

that, even if the constraint qualification (CQ) is fulfilled, between the image

sets D(µ)
O and Dµ ∩Rm there exists no relation of inclusion which holds for all

µ ∈ Rm
+ .
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Example 3.3. Let n = 2,m = 2, k = 1, f1(x1, x2) = x2, f2(x1, x2) =
0, (x1, x2)T ∈ R2, h1(x1, x2) = h2(x1, x2) = 1, (x1, x2)T ∈ R2, and µ = (1, 1)T .
For g(x1, x2) = x2

1−x2, (x1, x2)T ∈ R2, the feasible set looks like A = {(x1, x2)T

∈ R2 : x2
1 ≤ x2} and it obvious that the constraint qualification (CQ) is fulfilled.

The conjugate functions turn out to be

f ∗1 (u1) =

{
0, if u1 = (0, 1)T ,

+∞, otherwise,

f ∗2 (u2) =

{
0, if u2 = (0, 0)T ,

+∞, otherwise,

and, respectively, for i = 1, 2,

(−hi)∗(vi) =

{
1, if vi = (0, 0)T

+∞, otherwise.

For p =
(
−1, 1

2

)
, λ = (1, 1)T and d = (−2,−1)T we have that λ1d1 +λ2d2 =

−3 and, on the other hand,

−(−λ1h1 − λ2h2)∗A(−p)− (λ1f1 + λ2f2)∗A(p) =

inf
x2
1≤x2

[
−x1 +

1

2
x2 − 2

]
+ inf

x2
1≤x2

[
x1 +

1

2
x2

]
= −1

2
− 2− 1

2
= −3.

This means that (p, λ, d) ∈ BOµ , which is nothing else than d ∈ D(µ)
O .

Let us show now that d /∈ Dµ. If this were not true, then there would exist
an element (ū, v̄, q̄, λ̄, t̄) ∈ Bµ, ū = (ū1, ū2) ∈ R2 × R2, v̄ = (v̄1, v̄2) ∈ R2 × R2,
q̄ = (q̄1, q̄2) ∈ R2

+, λ̄ = (λ̄1, λ̄2)T ∈ int R2
+, t̄ = (t̄1, t̄2)T ∈ R2, such that

 −2

−1

 =


−f ∗1 (ū1)− (−h1)∗(v̄1)− (q̄1g)∗

(
− 1

2λ̄1

2∑
j=1

λ̄j(ū
j + v̄j)

)
+ t̄1

−f ∗2 (ū2)− (−h2)∗(v̄2)− (q̄2g)∗

(
− 1

2λ̄2

2∑
j=1

λ̄j(ū
j + v̄j)

)
+ t̄2

 .

In order to happen this we must have ū1 = (0, 1), ū2 = (0, 0), v̄1 = (0, 0), v̄2

= (0, 0) and, so,

 −2

−1

 =


−1 + inf

(x1,x2)T∈R2

[
q̄1x

2
1 +

(
1
2
− q̄1

)
x2

]
+ t̄1

−1 + inf
(x1,x2)T∈R2

[
q̄2x

2
1 +

(
λ̄1

2λ̄2
− q̄2

)
x2

]
+ t̄2

 .
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This relation can be true just if q̄1 = 1
2
, q̄2 = λ̄1

2λ̄2
, t̄1 = −1 and t̄2 = 0. As

λ̄1t̄1 + λ̄2t̄2 < 0, this leads to a contradiction.

What we succeeded to prove is that, assuming that (CQ) holds, for all
µ ∈ Rm

+ ,

Dµ ∩ Rm ⊆ D(µ)
FL = D(µ)

F

and

D(µ)
O ⊆ D

(µ)
FL = D(µ)

F .

In general, both inclusions in the relations above can be strict. Moreover,
between the image sets D(µ)

O and Dµ ∩Rm there exists no relation of inclusion
which holds for all µ ∈ Rm

+ .

3.3 Inclusion between the efficiency sets

In this section we extend our study to the comparison of the sets of maximal
elements of the image sets we dealt with in the previous subsection. Having a
given subset D ⊆ Rm, an element d ∈ D is said to be maximal if there exists
no d̄ ∈ D such that d̄− d ∈ Rm

+ and d̄ 6= d. The set of maximal elements of D
will be denoted by vmax(D).

In the following we assume that the constraint qualification (CQ) is ful-
filled. Under this assumption we can derive the first theorem from Theorem
3.2 and, respectively, Theorem 5.4 in [3].

Theorem 3.4. It holds

vmax(Dµ) = vmax(D(µ)
F ) = vmax(D(µ)

FL), ∀µ ∈ Rm
+ .

The sets of maximal elements are nothing else than the image sets of the
efficiency sets of the corresponding dual problems.

Now it remains to investigate if there are some connections between the
set of maximal elements of vmax(D(µ)

O ) and the sets in the relation above. We
prove first the following theorem.

Theorem 3.5. It holds

vmax(D(µ)
O ) ⊆ vmax(D(µ)

F ), ∀µ ∈ Rm
+ .

Proof. Let be µ ∈ Rm
+ fixed and d ∈ vmax(D(µ)

O ). This implies that d ∈ D(µ)
O

and, according to Theorem 3.3, we have d ∈ D(µ)
F .
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Now assume that d /∈ vmax(D(µ)
F ). This means that there exists (ū, v̄, λ̄, d̄)

∈ BFµ such that d ∈ d̄− {Rm
+\{0}}. Furthermore it holds

m∑
i=1

λ̄idi <
m∑
i=1

λ̄id̄i

≤−
m∑
i=1

λ̄i [f
∗
i (ūi) + (−µihi)∗(v̄i)]− χ∗A

(
−

m∑
i=1

λ̄i(ūi + v̄i)

)

=−
m∑
i=1

λ̄i sup
x∈Rn
{ūTi x− fi(x)} −

m∑
i=1

λ̄i sup
x∈Rn
{v̄Ti x− (−µihi)(x)}

− sup
x∈Rn


(
−

m∑
i=1

λ̄i(ūi + v̄i)

)T

x− χA(x)

 .

The supremum of a function over the whole space is always greater than or
equal to the supremum over a subset of this space. Thus it follows

m∑
i=1

λ̄idi <−
m∑
i=1

λ̄i sup
x∈A
{ūTi x− fi(x)} −

m∑
i=1

λ̄i sup
x∈A
{v̄Ti x+ µihi(x)}

− sup
x∈A


(
−

m∑
i=1

λ̄i(ūi + v̄i)

)T

x

 ,

and from here there is

m∑
i=1

λ̄idi <− sup
x∈A

{
m∑
i=1

λ̄i[ū
T
i x− fi(x)]

}
− sup

x∈A

{
m∑
i=1

λ̄i[v̄
T
i x+ µihi(x)]

}

− sup
x∈A


(
−

m∑
i=1

λ̄i(ūi + v̄i)

)T

x


≤− sup

x∈A

{
−

m∑
i=1

λ̄i[ū
T
i x− µihi(x)]

}
− sup

x∈A

{
m∑
i=1

λ̄i[ū
T
i x− fi(x)]

}
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= inf
x∈A


(

m∑
i=1

λ̄iūi

)T

x−
m∑
i=1

λ̄iµihi(x)


− sup

x∈A


(

m∑
i=1

λ̄iūi

)T

x−
m∑
i=1

λ̄ifi(x)


=−

(
−

m∑
i=1

λ̄iµihi

)∗
A

(
−

m∑
i=1

λ̄iūi

)
−

(
m∑
i=1

λ̄ifi

)∗
A

(
m∑
i=1

λ̄iūi

)
.

Choose now d̃ ∈ d̄+ Rm
+ such that

m∑
i=1

λ̄id̃i = −

(
−

m∑
i=1

λ̄iµihi

)∗
A

(
−

m∑
i=1

λ̄iūi

)
−

(
m∑
i=1

λ̄ifi

)∗
A

(
m∑
i=1

λ̄iūi

)
.

As for p̄ :=
m∑
i=1

λ̄iūi, (p̄, λ, d̃) ∈ BOµ , it follows d̃ ∈ D(µ)
O . But d̃ ∈ d +

{Rm
+\{0}} and this contradicts the maximality of d in D(µ)

O .

The next theorem shows that the reverse inclusion also holds.

Theorem 3.6. It holds

vmax(D(µ)
F ) ⊆ vmax(D(µ)

O ), ∀µ ∈ Rm
+ .

Proof. Let be µ ∈ Rm
+ fixed and d ∈ vmax(D(µ)

F ). As d ∈ D(µ)
F , there exists

ū = (ū1, ..., ūm), v̄ = (v̄1, ..., v̄m), ūi, v̄i ∈ Rn, i = 1, ...,m, and λ̄ ∈ int Rm
+ , such

that (ū, v̄, λ̄, d) ∈ BFµ . Thus

m∑
i=1

λ̄idi ≤ −
m∑
i=1

λ̄i [f
∗
i (ūi) + (−µihi)∗(v̄i)]− χ∗A

(
−

m∑
i=1

λ̄i(ūi + v̄i)

)

≤ sup
ui,vi∈Rn,
i=1,...,m

{
−

m∑
i=1

λ̄i [f
∗
i (ui) + (−µihi)∗(vi)]− χ∗A

(
−

m∑
i=1

λ̄i(ui + vi)

)}

= inf
x∈A

m∑
i=1

λ̄i(fi(x)− µihi(x)) < +∞,

because of Lemma 3.1. The supremum in the relation above must be finite
and, from the maximality of d in D(µ)

F , one has the following equality

m∑
i=1

λ̄idi =sup
ui,vi∈Rn,
i=1,...,m

{
−

m∑
i=1

λ̄i [f
∗
i (ui) + (−µihi)∗(vi)]− χ∗A

(
−

m∑
i=1

λ̄i(ui + vi)

)}
.
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This means that
m∑
i=1

λ̄idi = inf
x∈A

m∑
i=1

λ̄i(fi(x)− µihi(x)).

On the other hand, the infimum above can be written, equivalently, in the
following way

inf
x∈A

m∑
i=1

λ̄i(fi(x)− µihi(x)) = inf
x∈Rn

(
m∑
i=1

λ̄i(fi(x)− µihi(x)) + χA(x)

)

= −

([
m∑
i=1

λ̄ifi + χA

]
+

[
m∑
i=1

λ̄i(−µi)hi + χA

])∗
(0).

Using again the constraint qualification (CQ), it follows by Theorem 16.4 in
[12] that there exists p̄ ∈ Rn such that([

m∑
i=1

λ̄ifi + χA

]
+

[
m∑
i=1

λ̄i(−µi)hi + χA

])∗
(0) =

(
m∑
i=1

λ̄ifi + χA

)∗
(p̄) +

(
m∑
i=1

λ̄i(−µi)hi + χA

)∗
(−p̄).

This means that
m∑
i=1

λ̄idi = −

(
−

m∑
i=1

λ̄iµihi

)∗
A

(−p̄)−

(
m∑
i=1

λ̄ifi

)∗
A

(p̄),

which is nothing else than (p̄, λ̄, d) ∈ BOµ . Therefore d ∈ D(µ)
O .

Assuming that d /∈ vmax(D(µ)
O ), there must exists d̄ ∈ D(µ)

O such that

d ∈ d̄ − {Rm
+\{0}}. According to Theorem 3.3 we have that d̄ ∈ D(µ)

O ⊆ D(µ)
F

and this contradicts the maximality of d in D(µ)
F . In conclusion d must belong

to vmax(D(µ)
O ).

We conclude the paper by giving the relation which exists under the stated
assumptions between the sets of maximal elements of the image sets of the
multiobjective dual problems treated, namely

vmax(Dµ) = vmax(D(µ)
O ) = vmax(D(µ)

F ) = vmax(D(µ)
FL), ∀µ ∈ Rm

+ .

In other words, the image sets of the efficiency sets of all multiobjective
dual problems (Dµ), (Dµ

F ), (Dµ
FL) and (Dµ

O) to the primal problem (Pµ) coin-
cide for all µ ∈ Rm

+ .

Acknowledgements. We are thankful to an anonymous reviewer for helping
us improve the quality of the paper.

19



References

[1] C.R. Bector, S. Chandra, C. Singh. Duality on multiobjective fractional
programming. In Lecture Notes in Economics and Mathematical Systems,
Volume 345, Pages 232-241, Springer Verlag, Berlin, 1990.
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