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Abstract. We present some Farkas-type results for inequality systems in-

volving finitely many DC functions. To this end we use the so-called Fenchel-

Lagrange duality approach applied to an optimization problem with DC
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the methods of linear or convex programming arised. Many of these prob-

lems are DC optimization problems, i.e. problems whose objective and/or

constraint functions are functions which can be written as differences of con-

vex functions. Although the largest number of the papers on this field present

techniques of solving DC programming problems (see [7], [14], [17], [18]), the

study of dual conditions characterizing global optimality has not been ne-

glected (see [2], [5], [6], [9], [10], [11], [12], [13], [16]).

The problem we treat in this paper consists in minimizing an extended

real-valued DC function defined over the space R
n with respect to finitely

many extended real-valued DC constraint functions. To this problem we

determine its Fenchel-Lagrange-type dual problem, whose construction is

described here in detail. The Fenchel-Lagrange dual problem is a ”com-

bination” of the well-known Fenchel and Lagrange duals and was recently

introduced by Boţ and Wanka for convex optimization problems by means

of the perturbation approach from the theory of conjugate duality ([1], [2],

[3], [4], [21]). By using the same technique like Mart́ınez-Legaz and Volle in

[13], we reduce the study of the duality for DC problems to the study of the

duality for convex optimization problems and in this way we define a dual

problem for the primal DC one. A constraint qualification which guarantees

the existence of strong duality is also given. Regarding other duality con-

cepts for DC optimization problems we invite the reader to consult [11], [12],

[19], [20].

Recently in [3] and [4] some Farkas-type results for inequality systems
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involving finitely many convex constraints have been presented, by using an

approach based on the theory of conjugate duality for convex optimization

problems. The aim of this paper is to extend these results to inequality

systems involving DC functions by using the duality theory developed for

DC optimization problems. We shown that some results which can be found

in the existing literature (see [3], [8], [9]) arise as special cases of the problem

we treat. More than that, we derive some equivalent formulations which

rediscover some results given in the past in a general framework ([10], [16]).

The paper is organized as follows. In section 2 we present some definitions

and results that are used later in the paper. In section 3 we give a dual

problem for the optimization problem with DC objective function and DC

inequality constraints. Section 4 contains the main result of the paper; using

the duality acquired in section 3 we give a Farkas-type theorem for inequality

systems involving DC function. In the last section we give deal with some

particular instances, rediscovering in this way some existing results in the

literature.

2 Notations and preliminaries

In this section we introduce some notations and preliminary results which

shall be used in the paper. All vectors are considered to be column vectors.

Any column vector can be transposed to a row vector by an upper index

T . By xT y =
∑n

i=1 xiyi we denote the usual inner product of two vectors
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x = (x1, ..., xn)T and y = (y1, ..., yn)T in the real space R
n.

By ri(X), co(X) and cl(X) we will denote the relative interior, the convex

hull and the closure of the set X ⊆ R
n, respectively. Furthermore, the cone

and the convex cone generated by the set X are denoted by cone(X) =
⋃

λ≥0 λX and, respectively, coneco(X) =
⋃

λ≥0 λ co(X). For an optimization

problem (P ) we denote by v(P ) its optimal objective value.

For a set X ⊆ R
n we consider the indicator function of X

δX : R
n → R = R ∪ {±∞}, δX(x) =





0, x ∈ X,

+∞, otherwise,

and the support function of X, σX : R
n → R, σX(u) = sup

x∈X

uT x, respectively.

For a given function f : R
n → R, we denote by dom(f) =

{
x ∈ R

n :

f(x) < +∞
}

its effective domain and by epi(f) =
{
(x, r) : x ∈ R

n, r ∈

R, f(x) ≤ r
}

its epigraph, respectively. We say that f is proper if its effective

domain is a nonempty set and f(x) > −∞ for all x ∈ R
n.

When X is a nonempty subset of R
n we define for the function f : R

n → R

its conjugate relative to the set X by f ∗
X : R

n → R, f ∗
X(p) = sup

x∈X

{
pT x−f(x)

}
.

For X = R
n the conjugate relative to the set X is actually the (Fenchel-

Moreau) conjugate function of f , f ∗ : R
n → R, f ∗(p) = sup

x∈Rn

{
pT x − f(x)

}
.

For an arbitrary x ∈ R
n with f(x) ∈ R the subdifferential of the function

f at x is the set

∂f(x) =
{
x∗ ∈ R

n : f(y) − f(x) ≥ (y − x)T x∗,∀y ∈ R
n
}
.
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The function f is said to be subdifferentiable at x ∈ R
n(f(x) ∈ R) if

∂f(x) 6= ∅. For all x and x∗ in R
n we have f(x) + f ∗(x∗) ≥ x∗T x (the

Young-Fenchel inequality) and it can be shown that if f(x) ∈ R

f(x) + f ∗(x∗) = x∗T x ⇔ x∗ ∈ ∂f(x). (1)

Alongside the natural operations with +∞ and −∞ we adopt the follow-

ing conventions (cf. [2], [13])

(+∞) − (+∞) = (−∞) − (−∞) = (+∞) + (−∞) = (−∞) + (+∞) = +∞,

0(+∞) = +∞ and 0(−∞) = 0.

It is easy to see that for f : R
n → R the last two conventions imply

0f = δdom(f).

Definition 2.1 Let the functions f1, ..., fm : R
n → R be given. The

infimal convolution function of f1, ..., fm is the function f1�...�fm : R
n → R

defined by

(f1�...�fm)(x) = inf

{ m∑

i=1

fi(xi) : x =
m∑

i=1

xi

}
.

Theorem 2.1 (cf. [15]) Let f1, ..., fm : R
n → R be proper convex func-

5



tions. If the set
⋂m

i=1 ri(dom(fi)) is nonempty, then

( m∑

i=1

fi

)∗

(p) = (f ∗
1 �...�f ∗

m)(p) = inf

{ m∑

i=1

f ∗
i (pi) : p =

m∑

i=1

pi

}
,

and for each p ∈ R
n the infimum is attained.

A simple consequence of the Theorem 2.1 which closes this preliminary

section follows.

Corollary 2.2 Let f1, ..., fm : R
n → R be proper convex functions. If

the set
⋂m

i=1 ri(dom(fi)) is nonempty, then

epi

(( m∑

i=1

fi

)∗)
=

m∑

i=1

epi(f ∗
i ).

3 Duality for the DC programming problem

Let us consider the following optimization problem

(P ) inf
x∈X,

gi(x)−hi(x)≤0,
i=1,...,m

(
g(x) − h(x)

)
,

where X is a nonempty convex subset of R
n, g, h : R

n → R are two proper

convex functions and gi, hi : R
n → R, i = 1, ...,m, are proper convex func-

tions such that

m⋂

i=1

ri
(
dom(gi)

) ⋂
ri

(
dom(g)

)⋂
ri(X) 6= ∅. (2)
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We denote by F(P ) =
{
x ∈ X : gi(x) − hi(x) ≤ 0, i = 1, ...,m

}
the feasible

set of (P ) and we assume that F(P ) 6= ∅. Moreover, we assume that h is

lower semicontinuous on F(P ) and that hi, i = 1, ...,m, are subdifferentiable

on F(P ).

Lemma 3.1 It holds

F(P ) =
⋃

y∗i ∈dom(h∗i ),
i=1,...,m

{
x ∈ X : gi(x) − xT y∗

i + h∗
i (y

∗
i ) ≤ 0, i = 1, ...,m

}
.

Proof. ”⊆” Let x ∈ F(P ). By the assumptions we made, it follows

x ∈ ∩m
i=1 dom(hi) and the existence of y∗

i ∈ ∂hi(x) for all i = 1, ...,m. By

(1), we have gi(x) − y∗
i
T x + h∗

i (y
∗
i ) = gi(x) − hi(x) ≤ 0 for all i = 1, ...,m.

”⊇” For the opposite inclusion, let y∗ = (y∗
1, ..., y

∗
m) ∈

m∏
i=1

dom
(
h∗

i

)
and

x ∈ X such that gi(x) − y∗
i
T x + h∗

i (y
∗
i ) ≤ 0 for all i = 1, ...,m. Thus

for i = 1, ...,m, gi(x) < +∞. Since (cf. the Young-Fenchel inequality)

gi(x)−hi(x) ≤ gi(x)− y∗
i
T x+h∗

i (y
∗
i ) ≤ 0, i = 1, ...,m, the conclusion follows.

�

Throughout the paper we shall use the notation y∗ ∈
m∏

i=1

dom(h∗
i ) for

y∗
i ∈ dom(h∗

i ), i = 1, ...,m, where y∗ is the m-tuple (y∗
1, ..., y

∗
m). By Lemma

3.1 we get an equivalent formulation for the optimal objective value of the

problem (P ).
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Theorem 3.2 Under the hypotheses considered in this section it holds

v(P ) = inf
x∗∈dom(h∗),

y∗∈
mQ

i=1

dom(h∗i )

inf
x∈X,

gi(x)−y∗i
T x+h∗i (y∗i )≤0,

i=1,...,m

{
g(x) − x∗T x + h∗(x∗)

}
. (3)

Proof. Since h is proper, convex and lower semicontinuous on F(P ) it

holds

h(x) = h∗∗(x) = sup
x∗∈dom(h∗)

{
x∗T x − h∗(x∗)

}
.

Thus

v(P ) = inf
x∈F(P )

(
g(x) − h(x)

)
= inf

x∗∈dom(h∗)
inf

x∈F(P )

{
g(x) − x∗T x + h∗(x∗)

}
.

Using the decomposition of the set F(P ) given by Lemma 3.1, the conclusion

is straightforward. �

Taking a careful look at relation (3), one may notice that the inner infi-

mum can be seen as an optimization problem with a convex objective function

and convex inequality constraints. Thus it is quite natural to consider it as

a separate optimization problem in order to deal with it by means of duality

(Px∗,y∗) inf
x∈X,

gi(x)−y∗i
T x+h∗i (y∗i )≤0,

i=1,...,m

(
g(x) − x∗T x + h∗(x∗)

)
,

for some x∗ ∈ dom(h∗) and y∗ ∈
m∏

i=1

dom(h∗
i ).
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Let x∗ ∈ dom(h∗) and y∗ ∈
m∏

i=1

dom(h∗
i ) be fixed. We construct a dual

problem for (Px∗,y∗) and give sufficient conditions such that strong duality

holds, i.e. the optimal objective value of the primal coincides with the optimal

objective value of the dual and the dual has an optimal solution. Considering

the functions g̃ : R
n → R, g̃(x) = g(x) − x∗T x + h∗(x∗) and g̃i : R

n → R,

g̃i(x) = gi(x) − y∗
i
T x + h∗

i (y
∗
i ), i = 1, ...,m, the problem (Px∗,y∗) can be

equivalently written as

(Px∗,y∗) inf
x∈X,

egi(x)≤0,
i=1,...,m

g̃(x).

One can notice that since g and gi are proper and convex, the function

g̃ and g̃i are proper and convex, too, for i = 1, ...,m. Next we consider

the Lagrange dual problem to (Px∗,y∗) with q = (q1, ..., qm)T ∈ R
m
+ as dual

variable

(Dx∗,y∗) sup
q=0

inf
x∈X

{
g̃(x) +

m∑

i=1

qig̃i(x)

}
.

The inner infimum can be equivalently written as

inf
x∈X

{
g̃(x) +

m∑

i=1

qig̃i(x)

}
= −

(
g̃ +

m∑

i=1

qig̃i

)∗

X

(0).

Taking into consideration the convexity and the properness of the func-

tions g̃ and g̃i, i = 1, ...,m, and that (2) is fulfilled, it follows by Theorem
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2.1 that (
g̃ +

m∑

i=1

qig̃i

)∗

X

(0) =

(
g̃ +

m∑

i=1

g̃i + δX

)∗

(0) =

inf
z∈Rn

{
g̃∗(z) +

( m∑

i=1

qig̃i + δX

)∗

(−z)

}
= inf

z∈Rn

{
g̃∗(z) +

( m∑

i=1

qig̃i

)∗

X

(−z)

}
,

and the infimum is attained for some z ∈ R
n.

This leads to the following formulation for the dual (Dx∗,y∗)

(Dx∗,y∗) sup
z∈R

n,
q=0

{
− g̃∗(z) −

( m∑

i=1

qig̃i

)∗

X

(−z)

}
.

Since g̃∗(z) = g∗(x∗ + z) − h∗(x∗) and

( m∑

i=1

qig̃i

)∗

X

(−z) =

( m∑

i=1

qigi

)∗

X

( m∑

i=1

qiy
∗
i − z

)
−

m∑

i=1

qih
∗
i (y

∗
i ),

it follows immediately that the dual (Dx∗,y∗) has the form (we take p := x∗+z)

(Dx∗,y∗) sup
p∈R

n,
q=0

{
h∗(x∗) +

m∑

i=1

qih
∗
i (y

∗
i ) − g∗(p)

−

( m∑

i=1

qigi

)∗

X

(
x∗ +

m∑

i=1

qiy
∗
i − p

)}
.

Theorem 3.3 Between the primal problem (Px∗,y∗) and the dual (Dx∗,y∗)

weak duality is always satisfied, i.e. v(Px∗,y∗) ≥ v(Dx∗,y∗).

Since in the general case strong duality can fail, in order to avoid such

a situation we introduce the following generalized interior point constraint
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qualification (cf. [15])

(CQy∗)

∣∣∣∣∣∣∣∣∣∣∣

∃x′ ∈
m⋂

i=1

ri
(
dom(gi)

) ⋂
ri

(
dom(g)

) ⋂
ri(X) such that





gi(x
′) − x′T y∗

i + h∗
i (y

∗
i ) ≤ 0, i ∈ L,

gi(x
′) − x′T y∗

i + h∗
i (y

∗
i ) < 0, i ∈ N,

where L :=
{
i ∈ {1, ...,m} : gi is an affine function

}
and N := {1, ...,m}\L.

Regarding strong duality between (Px∗,y∗) and (Dx∗,y∗) we have the fol-

lowing assertion.

Theorem 3.4 Assume that v(Px∗,y∗) is finite. If (CQy∗) is fulfilled, then

between (Px∗,y∗) and (Dx∗,y∗) strong duality holds, i.e. v(Px∗,y∗) = v(Dx∗,y∗)

and the dual problem has an optimal solution.

Proof. To the problem

(Px∗,y∗) inf
x∈X,

egi(x)≤0,
i=1,...,m

g̃(x)

we associate its Lagrange dual problem

sup
q=0

inf
x∈X

{
g̃(x) +

m∑

i=1

qig̃i(x)

}
.

Since the condition (CQy∗) is fulfilled, by Theorem 28.2 in [15], the optimal

objective values of (Px∗,y∗) and its Lagrange dual are equal and, moreover,
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there exists an optimal solution q = (q1, ..., qm)T ∈ R
m
+ of the dual such that

v(Px∗,y∗) = sup
q=0

inf
x∈X

{
g̃(x) +

m∑

i=1

qig̃i(x)

}
= inf

x∈X

{
g̃(x) +

m∑

i=1

qig̃i(x)

}
.

Further we deal with the infimum in the last term of the equality from above.

As dom(g̃) = dom(g) and dom(
∑m

i=1 qig̃i) = ∩m
i=1 dom(g̃i) = ∩m

i=1 dom(gi), it

holds

ri
(
dom(g̃)

) m⋂

i=1

ri

(
dom

( m∑

i=1

qig̃i

)) ⋂
ri

(
X

)
6= ∅,

which implies that (cf. Theorem 2.1)

v(Px∗,y∗) = inf
x∈X

{
g̃(x) +

m∑

i=1

qig̃i(x)

}
= −

(
g̃ +

m∑

i=1

qig̃i

)∗

X

(
0
)

= sup
z∈Rn

{
− g̃∗(z) −

( m∑

i=1

qig̃i

)∗

X

(−z)

}

and that there exists z ∈ R
n such that the supremum is attained. Thus

v(Px∗,y∗) = sup
z∈Rn

{
− g̃∗(z) −

( m∑

i=1

qig̃i

)∗

X

(−z)

}
= −g̃∗(z) −

( m∑

i=1

qig̃i

)∗

X

(−z)

= −g∗(x∗ + z) + h∗(x∗) −

( m∑

i=1

qigi

)∗

X

( m∑

i=1

qiy
∗
i − z

)
+

m∑

i=1

qih
∗
i (y

∗
i ).

For p := x∗ + z, it follows

v(Px∗,y∗) = h∗(x∗) +
m∑

i=1

qih
∗
i (y

∗
i ) − g∗(p) −

( m∑

i=1

qigi

)∗

X

(
x∗ +

m∑

i=1

qiy
∗
i − p

)
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and so we get that v(Px∗,y∗) = v(Dx∗,y∗) and (p, q) is an optimal solution for

(Dx∗,y∗). �

Taking into consideration the results given by Theorem 3.2 and Theorem

3.4, it seems natural to introduce the following dual problem to (P )

(D) inf
x∗∈dom(h∗),

y∗∈
mQ

i=1

dom(h∗i )

sup
q=0,
p∈R

n

{
h∗(x∗) +

m∑

i=1

qih
∗
i (y

∗
i ) − g∗(p)

−

( m∑

i=1

qigi

)∗

X

(
x∗ +

m∑

i=1

qiy
∗
i − p

)}
.

By the construction of (D) there is a weak duality statement for (P ) and

(D) as follows.

Theorem 3.5 It holds v(P ) ≥ v(D).

Concerning the strong duality between (P ) and (D), based on the the

considerations done above we have the following theorem.

Theorem 3.6 Let (CQy∗) be fulfilled for all y∗ ∈
m∏

i=1

dom(h∗
i ). Then

v(P ) = v(D).

4 Farkas-type results for inequality systems

with DC functions

By using of the duality theory developed above, we can give now the following

Farkas-type result.
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Theorem 4.1 Suppose that (CQy∗) holds for all y∗ ∈
m∏

i=1

dom(h∗
i ). Then

the following assertions are equivalent:

(i) x ∈ X, gi(x) − hi(x) ≤ 0, i = 1, ...,m ⇒ g(x) − h(x) ≥ 0;

(ii) ∀x∗ ∈ dom(h∗) and ∀y∗ ∈
m∏

i=1

dom(h∗
i ), there exist p ∈ R

n and q = 0

such that

h∗(x∗)+
m∑

i=1

qih
∗
i (y

∗
i )−g∗(p)−

( m∑

i=1

qigi

)∗

X

(
x∗+

m∑

i=1

qiy
∗
i −p

)
≥ 0. (4)

Proof. ”(i) ⇒ (ii)” Let be x∗ ∈ dom(h∗) and y∗ ∈
m∏

i=1

dom(h∗
i ). The

statement (i) implies v(P ) ≥ 0 and using Theorem 3.2 we acquire v(Px∗,y∗) ≥

0. Since the assumptions of Theorem 3.4 are achieved, strong duality holds,

i.e. v(Dx∗,y∗) = v(Px∗,y∗) ≥ 0 and the dual (Dx∗,y∗) has an optimal solution.

Thus there exist p ∈ R
n and q = 0 such that relation (4) is true.

”(ii) ⇒ (i)” Consider x∗ ∈ dom(h∗) and y∗ ∈
m∏

i=1

dom(h∗
i ). Then there

exist p ∈ R
n and q = 0 such that (4) is true and so

sup
p∈R

n,
q=0

{
h∗(x∗)+

m∑

i=1

qih
∗
i (y

∗
i )− g∗(p)−

( m∑

i=1

qigi

)∗

X

(
x∗ +

m∑

i=1

qiy
∗
i − p

)}
≥ 0.

Since x∗ and y∗ were arbitrarily chosen we have v(D) ≥ 0. Weak duality

between (P ) and (D) always holds and thus we obtain v(P ) ≥ 0, i.e. (i) is

true. �

In the following we formulate Theorem 4.1 as a theorem of the alternative.
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Corollary 4.2 Assume the hypothesis of Theorem 4.1 fulfilled. Then

either the inequality system

(I) x ∈ X, gi(x) − hi(x) ≤ 0, i = 1, ...,m, g(x) − h(x) < 0

has a solution or each of the following systems

(IIx∗,y∗) h∗(x∗) +
m∑

i=1

qih
∗
i (y

∗
i ) − g∗(p) −

(
m∑

i=1

qigi

)∗

X

(
x∗+

m∑
i=1

qiy
∗
i −p

)
≥ 0,

p ∈ R
n, q = 0,

where x∗ ∈ dom(h∗) and y∗
i ∈ dom(h∗

i ), i = 1, ...,m, has a solution, but never

both.

Next we give an equivalent assertion to the statement (ii) in Theorem 4.1

using the epigraphs of the functions involved.

Theorem 4.3 The statement (ii) in Theorem 4.1 is equivalent to

epi(h∗) ⊆
⋂

y∗∈
mQ

i=1

dom(h∗
i
)

{
epi(g∗) + coneco

[ m⋃

i=1

(
epi(g∗

i ) −
(
y∗

i , h
∗
i (y

∗
i )

))]

+ epi(σX)

}
.

Proof. ”⇒” We prove that for an arbitrary y∗ = (y∗
1, ..., y

∗
m) in the set

m∏
i=1

dom(h∗
i ),

epi(h∗) ⊆ epi(g∗) + coneco

[ m⋃

i=1

(
epi(g∗

i ) −
(
y∗

i , h
∗
i (y

∗
i )

))]
+ epi(σX). (5)

To this end let (x∗, r) be a given element in epi(h∗). Thus x∗ ∈ dom(h∗)

and assertion (ii) implies the existence of p ∈ R
n and q = 0 such that
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the relation (4) is true. Consider first that q = 0. Relation (4) becomes

h∗(x∗) − g∗(p) − δ∗X(x∗ − p) ≥ 0. Since r ≥ h∗(x∗) we have r − g∗(p) ≥

δ∗X(x∗−p). Thus
(
x∗, r

)
=

(
p, g∗(p)

)
+

(
x∗−p, r−g∗(p)

)
∈ epi(g∗)+epi(σX) ⊆

epi(g∗) + coneco

[ ⋃m

i=1

(
epi(g∗

i ) −
(
y∗

i , h
∗
i (y

∗
i )

))]
+ epi(σX).

Now we assume that q 6= 0. The set Iq = {i : qi 6= 0} is obviously

nonempty and relation (4) looks like

h∗(x∗) +
∑

i∈Iq

qih
∗
i (y

∗
i ) − g∗(p) −

( ∑

i∈Iq

qigi

)∗

X

(
x∗ +

∑

i∈Iq

qiy
∗
i − p

)
≥ 0.

In the hypotheses given by (2) we have

( ∑

i∈Iq

qigi

)∗

X

(
x∗ +

∑

i∈Iq

qiy
∗
i − p

)
=

( ∑

i∈Iq

qigi + δX

)∗(
x∗ +

∑

i∈Iq

qiy
∗
i − p

)

= inf

{ ∑

i∈Iq

(qigi)
∗(vi) + σX(z) : x∗ +

∑

i∈Iq

qiy
∗
i − p =

∑

i∈Iq

vi + z

}
,

and this infimum is attained for some vectors z and vi, i ∈ Iq in R
n. It follows

that

h∗(x∗) +
∑

i∈Iq

qih
∗
i (y

∗
i ) ≥ g∗(p) +

∑

i∈Iq

(qigi)
∗(vi) + σX(z),

where x∗ +
∑

i∈Iq
qiy

∗
i − p =

∑
i∈Iq

vi + z. Since qi > 0, i ∈ Iq, we have

(qigi)
∗(vi) = qig

∗
i

(
1
qi

vi

)
. Considering the vectors v′

i ∈ R
n, v′

i := 1
qi

vi, i ∈ Iq,
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we get x∗ = p +
∑

i∈Iq
qi

(
v′

i − y∗
i

)
+ z and

r ≥ h∗(x∗) ≥ g∗(p) +
∑

i∈Iq

qi

(
g∗

i

(
v′

i

)
− h∗

i (y
∗
i )

)
+ σX(z).

On the other hand, because of

(
v′

i − y∗
i , g

∗
i

(
v′

i

)
− h∗

i

(
y∗

i

))
∈

m⋃

i=1

(
epi(g∗

i ) −
(
y∗

i , h
∗
i (y

∗
i )

))
, i ∈ Iq,

we have

( ∑

i∈Iq

qi

(
v′

i − y∗
i

)
,
∑

i∈Iq

qi

(
g∗

i

(
v′

i

)
− h∗

i (y
∗
i )

))
=

∑

i∈Iq

qi

(
v′

i − y∗
i , g

∗
i (v

′
i) − h∗

i (y
∗
i )

)

∈ coneco

[ m⋃

i=1

(
epi(g∗

i ) −
(
y∗

i , h
∗
i (y

∗
i )

))]
,

which implies that

(
x∗, r

)
∈ epi(g∗) + coneco

[ m⋃

i=1

(
epi(g∗

i ) −
(
y∗

i , h
∗
i (y

∗
i )

))]
+ epi(σX).

”⇐” Let us consider x∗ ∈ dom(h∗) and y∗ ∈
m∏

i=1

dom(h∗
i ). Since

(
x∗, h∗(x∗)

)
∈ epi(h∗) ⊆

epi(g∗) + coneco

[ m⋃

i=1

(
epi(g∗

i ) −
(
y∗

i , h
∗
i (y

∗
i )

))]
+ epi(σX),

17



there exist (p, r) ∈ epi(g∗), (v, s) ∈ coneco

[ ⋃m

i=1

(
epi(g∗

i ) −
(
y∗

i , h
∗
i (y

∗
i )

))]

and (z, t) ∈ epi(σX) such that

(
x∗, h∗(x∗)

)
= (p, r) + (v, s) + (z, t). (6)

Moreover, there exist λ ≥ 0, µi ≥ 0 and (vi, si) ∈ epi(g∗
i ) −

(
y∗

i , h
∗
i (y

∗
i )

)
,

i = 1, ...,m, such that
∑m

i=1 µi = 1 and

(v, s) = λ

m∑

i=1

µi(vi, si). (7)

For all i ∈ {1, ...,m} we have
(
vi +y∗

i , si +h∗
i (y

∗
i )

)
∈ epi(g∗

i ) and it follows

immediately that

g∗
i (vi + y∗

i ) − h∗
i (y

∗
i ) ≤ si. (8)

Assume first that λ = 0. Then (v, s) = (0, 0) and relation (6) becomes
(
x∗, h∗(x∗)

)
= (p, r) + (z, t). Since r ≥ g∗(p) and t ≥ σX(z) = δ∗X(z), this

implies x∗ = p + z and h∗(x∗) ≥ g∗(p) + δ∗X(z). Considering q := (0, ..., 0)T ∈

R
m it holds

h∗(x∗) ≥ g∗(p) +

( m∑

i=1

qigi + δX

)∗(
x∗ +

m∑

i=1

qivi − p

)
,

and the conclusion is straightforward.

In case λ > 0, let us consider the vector q := (λµ1, ..., λµm)T ∈ R
m. Since

it holds
∑m

i=1 µi = 1, the set Iq is obviously nonempty and relation (7) be-
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comes (v, s) =
∑

i∈Iq
qi(vi, si). Taking into consideration relation (8) we ob-

tain v =
∑

i∈Iq
qivi and s =

∑
i∈Iq

qisi ≥
∑

i∈Iq
qi

(
g∗

i (vi +y∗
i )−h∗

i (y
∗
i )

)
. Com-

bining these two results with relation (6) and with the inequalities g∗(p) ≤ r

and δ∗X(z) = σX(z) ≤ t we obtain x∗ = p +
∑

i∈Iq
qivi + z and

h∗(x∗) ≥ g∗(p) +
∑

i∈Iq

qi

(
g∗

i (vi + y∗
i ) − h∗

i (y
∗
i )

)
+ δ∗X(z).

By the properties of the conjugate of the sum of a family of functions we

obtain

∑

i∈Iq

qig
∗
i (vi + y∗

i ) + δ∗X(z) =
∑

i∈Iq

(
qigi

)∗(
qivi + qiy

∗
i

)
+ δ∗X(z)

≥

( ∑

i∈Iq

qigi + δX

)∗( ∑

i∈Iq

qiy
∗
i +

∑

i∈Iq

qivi + z

)
=

( ∑

i∈Iq

qigi

)∗

X

( ∑

i∈Iq

qiy
∗
i + x∗ − p

)
=

( m∑

i=1

qigi

)∗

X

(
x∗ +

m∑

i=1

qiy
∗
i − p

)
.

The desired conclusion arises easily. �

Remark 4.1 Dual geometrical characterizations for the solvability of in-

equality systems expressed by means of inclusion relations involving the

epigraphs of the conjugates of the functions involved have been given in

the past in [16], [10] (even in very general settings), [8] and [3]. The last

theorem shows that the geometrical characterization for the solvability of

inequality systems from [10] can be expressed by using the objective func-
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tion of the Fenchel-Lagrange-type dual of the DC primal problem. On the

other hand, one can see that in the finite dimensional setting the regularity

conditions given in [10] can be replaced by generalized Slater-type constraint

qualifications.

5 Special cases

In this section we give Farkas-type results for some problems which turn out

to be special cases of the problem (P ).

5.1 The case h = 0

The problem (P ) becomes in this case an optimization problem with a convex

objective function and finitely many DC constraint functions.

Since in this case dom(h∗) = {0} and epi(h∗) = {0} × [0, +∞), the

following theorems can be easily obtained from Theorem 4.1 and Theorem

4.3, respectively.

Theorem 5.1 Suppose that (CQy∗) holds for all y∗ ∈
m∏

i=1

dom(h∗
i ). Then

the following assertions are equivalent:

(i) x ∈ X, gi(x) − hi(x) ≤ 0, i = 1, ...,m ⇒ g(x) ≥ 0;

(ii) ∀y∗ ∈
m∏

i=1

dom(h∗
i ), there exist p ∈ R

n and q = 0 such that

m∑

i=1

qih
∗
i (y

∗
i ) − g∗(p) −

( m∑

i=1

qigi

)∗

X

( m∑

i=1

qiy
∗
i − p

)
≥ 0.
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Theorem 5.2 The statement (ii) in Theorem 5.1 is equivalent to

0 ∈
⋂

y∗∈
mQ

i=1

dom(h∗
i
)

{
epi(g∗) + coneco

[ m⋃

i=1

(
epi(g∗

i ) −
(
y∗

i , h
∗
i (y

∗
i )

))]

+ epi(σX)

}
. (9)

Proof. Theorem 4.3 ensures the equivalence between the statement (ii)

in Theorem 5.1 and the relation

{0} × [0, +∞) ⊆
⋂

y∗∈
mQ

i=1

dom(h∗
i
)

{
epi(g∗) + coneco

[
m⋃

i=1

(
epi(g∗

i ) −
(
y∗

i , h
∗
i (y

∗
i )

))]

+ epi(σX)

}
,

by using the definition of the epigraph of a function one can see that this

is nothing else than (9). �

Remark 5.1 In this section we rediscover the Farkas-type results given in

[3].

5.2 The case hi = 0, i = 1, ..., m

The problem (P ) is now an optimization problem with a DC objective

function and finitely many convex constraint functions.
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It is obvious that for all i = 1, ...,m we have

h∗
i (y

∗
i ) =





+∞, y∗
i 6= 0,

0, y∗
i = 0.

Thus we have
m∏

i=1

dom(h∗
i ) = {(0, ..., 0)} and the constraint qualification

(CQy∗) for y∗ ∈
m∏

i=1

dom(h∗
i ) turns out to be

(CQ0) ∃x′ ∈ ri(X)
⋂

ri(dom(g))
m⋂

i=1

ri
(
dom(gi)

)
:





gi(x
′) ≤ 0, i ∈ L,

gi(x
′) < 0, i ∈ N.

Theorem 5.3 Suppose that (CQ0) holds. Then the following assertions

are equivalent:

(i) x ∈ X, gi(x) ≤ 0, i = 1, ...,m ⇒ g(x) − h(x) ≥ 0;

(ii) ∀x∗ ∈ dom(h∗), there exist p ∈ R
n and q = 0 such that

h∗(x∗) − g∗(p) −

( m∑

i=1

qigi

)∗

X

(
x∗ − p

)
≥ 0.

Theorem 5.4 The statement (ii) in Theorem 5.2 is equivalent to

epi(h∗) ⊆ epi(g∗) + coneco

[ m⋃

i=1

epi(g∗
i )

]
+ epi(σX).

Both Theorem 5.3 and 5.4 are again direct consequences of Theorem

4.1 and Theorem 4.3, respectively. They express, as particular cases of our
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general result in section 4, the outcomes obtained by Boţ and Wanka in [3]

and by Jeyakumar and Glover in [9].

Remark 5.2 A very helpful characterization for the existent of a ε-optimal

solutions for the optimization problem with DC objective function and convex

inequality constraints has been given in [10] by means of the ε-subdifferentials

of the functions involved.

5.3 The case h = 0 and hi = 0, i = 1, ..., m

In this case our initial problem turns out to be a standard convex opti-

mization problem with a convex objective function and finitely many convex

constraint functions. The constraint qualification becomes also (CQ0).

This special case has been treated in [3], [8] in finite dimensional spaces,

but also in [16] and [10] in finite dimensional spaces. Let us mention that our

results are identical to the ones in [3], where alongside convex inequalities

the inequality systems contain also some geometrical constraints.

Theorem 5.5 Suppose that (CQ0) holds. Then the following assertions

are equivalent:

(i) x ∈ X, gi(x) ≤ 0, i = 1, ...,m ⇒ g(x) ≥ 0;

(ii) there exist p ∈ R
n and q = 0 such that

g∗(p) +

( m∑

i=1

qigi

)∗

X

(
− p

)
≤ 0.
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Theorem 5.6 The statement (ii) in Theorem 5.5 is equivalent to

0 ∈ epi(g∗) + coneco

[ m⋃

i=1

epi(g∗
i )

]
+ epi(σX).

6 Conclusions

In this paper we present Farkas-type result for inequality systems with finitely

many DC functions. The approach we use is based on the conjugate duality

for an optimization problem with DC objective function and DC inequality

constraints. We generalize and rediscover some results given in the past in

the literature. Also the connection which exist between the Farkas-type re-

sults and the theory of the alternative and, respectively, the theory of duality

is put in a new light and underlined once more.

Acknowledgements. The authors are grateful to both reviewers for helpful

suggestions and remarks which improved the quality of the paper.
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