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Abstract. In this paper a necessary and sufficient sequential optimality
condition without a constraint qualification for a general convex optimization
problem is given in terms of the ε-subdifferential. Further, a sequential char-
acterization of optimal solutions involving the convex subdifferential is derived
using a version of the Brøndsted-Rockafellar Theorem. We prove that some re-
sults from the literature concerning sequential generalizations of the Pshenichnyi-
Rockafellar Lemma are obtained as particular cases of our results. Moreover, by
this general approach we succeed to improve some sequential Lagrange multiplier
conditions given in the past.
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1 Introduction

Consider the convex optimization problem

(P0) inf
x∈C

f(x),

where f : X → R = R ∪ {±∞} is a proper, convex and lower semicontinuous
function, X is a locally convex vector space and C is a convex subset of X. The
Pshenichnyi-Rockafellar Lemma ([14], [15], [19]) gives a necessary and sufficient
optimality condition for the problem (P0), whenever a constraint qualification is
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fulfilled: in case dom(f)∩int(C) 6= ∅ (or f is continuous at some x0 ∈ C∩dom(f)),
an element a ∈ dom(f) ∩ C is an optimal solution of (P0) if and only if 0 ∈
∂f(a) + NC(a), where ∂f(a) is the convex subdifferential of f at a and NC(a) is
the normal cone of C at a. This is a very important result in convex optimization
with many applications. Nevertheless, it has some disadvantages. First of all, a
can be a minimizer of f on C even if 0 6∈ ∂f(a)+NC(a) (because for instance the
set ∂f(a) could be empty; see [10] for such an example). Moreover, the constraint
qualification does not always hold even in the finite dimensional case.

Consider now the convex optimization problem

(PK) inf
x∈C

g(x)∈−K

f(x),

where C is a convex subset of a locally convex vector space X, K is a closed
convex cone of another locally convex vector space Y , f : X → R is a proper
and convex function and g : X → Y is a continuous K-convex function. If f is
continuous at some x0 ∈ C ∩ g−1(−K)∩ dom(f) and a constraint qualification is
satisfied, then a ∈ C ∩ g−1(−K) ∩ dom(f) solves the problem (PK) if and only
if ∃λ ∈ K∗,∃u ∈ ∂f(a),∃v ∈ ∂(λg)(a),∃ω ∈ NC(a) such that u + v + ω = 0 and
(λg)(a) = 0, where K∗ is the dual cone of K. The same disadvantages arise with
this result as for the one mentioned above for (P0).

Trying to eliminate these drawbacks, many mathematicians have given opti-
mality conditions that do not require any constraint qualification. Concerning
the problem (P0), a nice generalization of the Pshenichnyi-Rockafellar Lemma,
stated in terms of a sequence of ε-subdifferentials and ε-normal cones was recently
given in [10], providing a necessary and sufficient optimality condition without
constraint qualifications.

For the problem (PK), various modified Lagrange multiplier conditions with-
out constraint qualifications have been given in the literature ([1], [2], [3], [4], [6],
[8], [12]). In [17] Thibault gave a sequential form of the Lagrange multiplier con-
dition for (PK), in the case where K is a closed convex normal cone. Also, in [9]
and [11], the authors introduced some sequential optimality conditions regarding
(PK).

The purpose of this paper is to give sequential optimality conditions without
any constraint qualification for the general convex optimization problem

(Pφ) inf
x∈X

φ(x, 0),

where φ : X × Y → R, the so-called perturbation function, is proper, convex
and lower semicontinuous (see [7] or [19] for more details on the perturbation
theory). More precisely, we show that if X is reflexive Banach space and Y is
a Banach space, then an element a ∈ dom(φ(·, 0)) is a minimizer of φ(·, 0) on
X if and only if there exist sequences {εn} ↓ 0 and (x∗

n, y
∗
n) ∈ ∂εn

φ(a, 0) such
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that x∗
n → 0 (n → +∞), where ∂εn

φ(a, 0) is the εn-subdifferential of φ at (a, 0).
This sequential characterization is obtained using the formula for the epigraph
of a conjugate function written in terms of the ε-subdifferential. Combining
the above condition with a version of the Brøndsted-Rockafellar Theorem, we
obtain another qualification free sequential characterization of optimal solutions
involving only subdifferentials.

The perturbation function φ plays a determinant role in the duality theory
as it can be used for constructing a dual problem to a given primal optimization
problem. For a particular choice of the perturbation function the dual problem
will be defined by using the conjugate of φ.

We extend the general approach to the problems (P0) and (PK) which are
particular cases of the more general problem (Pφ). For a particular choice of
the function φ, we derive sequential optimality conditions for the optimization
problem with the objective function being the sum of a proper convex and lower
semicontinuous function with the composition of another proper convex and lower
semicontinuous function with a continuous linear operator. The sequential gen-
eralizations of the Pshenichnyi-Rockafellar Lemma given by Jeyakumar and Wu
for (P0) (see Theorem 3.3 and Corollary 3.5 in [10]) follow as particular cases.

For an appropriate choice of the function φ, we also get the sequential La-
grange multiplier condition regarding the optimization problem (PK) given by
Thibault (see Theorem 4.1 in [17]). Moreover, this sequential necessary and suf-
ficient optimality condition is established under weaker hypothesis than in [17],
since we do not ask the cone K to be normal.

The paper is organized as follows. In the next section we introduce the neces-
sary tools from convex analysis which will be used later in the paper. In section
3 we give the announced qualification free sequential necessary and sufficient op-
timality conditions for the convex optimization problem (Pφ). In section 4 we
treat some particular cases of the main results, obtaining amongst others se-
quential optimality conditions for both convex optimization problems (P0) and
(PK). Finally, in section 5 a proposal for how to give some refined sequential
characterizations is made.

2 Preliminaries

Consider X a real locally convex vector space and X∗ its continuous dual space
endowed with an arbitrary locally convex topology τ giving X as dual. The
most prominent examples of such a topology are the weak∗ topology ω(X∗, X)
or the strong topology when X is a reflexive Banach space. We denote by 〈x∗, x〉
the value of the linear continuous functional x∗ ∈ X∗ at x ∈ X. Consider the
identity function on X, idX : X → X, idX(x) = x,∀x ∈ X. For C ⊆ X we denote
by cl(C) its closure. The indicator function of C, denoted by δC , is defined as
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δC : X → R,

δC(x) =

{

0, if x ∈ C,
+∞, otherwise,

where R = R ∪ {±∞}. For a function f : X → R we denote by dom(f) = {x ∈
X : f(x) < +∞} its domain and by epi(f) = {(x, r) ∈ X × R : f(x) ≤ r} its
epigraph. We call f proper if dom(f) 6= ∅ and f(x) > −∞,∀x ∈ X. By cl(f) we
denote the lower semicontinuous hull of f , namely the function of which epigraph
is the closure of epi(f) in X × R, that is epi(cl(f)) = cl(epi(f)). For x ∈ X such
that f(x) ∈ R we define the ε-sudifferential of f at x, where ε ≥ 0, by

∂εf(x) = {x∗ ∈ X∗ : f(y) − f(x) ≥ 〈x∗, y − x〉 − ε,∀y ∈ X}.

The set ∂f(x) := ∂0f(x) is then the classical subdifferential of f at x. If f is
proper then for a ∈ dom(f) we have the following relation

inf
x∈X

f(x) = f(a) ⇔ 0 ∈ ∂f(a).

The normal cone of a closed set C at x ∈ X is defined by NC(x) := ∂(δC)(x) =
{x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0,∀y ∈ C} when x ∈ C, and NC(x) := ∅ when x 6∈ C.
For ε ≥ 0, the ε-normal cone of C at x ∈ X is defined as N ε

C(x) := ∂ε(δC)(x) =
{x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ ε,∀y ∈ C} if x ∈ C, and N ε

C(x) := ∅ if x 6∈ C.
The Fenchel-Moreau conjugate of f is the function f ∗ : X∗ → R defined by

f ∗(x∗) = sup
x∈X

{〈x∗, x〉 − f(x)},∀x∗ ∈ X∗.

We have the so called Young-Fenchel inequality

f ∗(x∗) + f(x) ≥ 〈x∗, x〉,∀x ∈ X,∀x∗ ∈ X∗.

We mention here some important properties of conjugate functions. If f is proper,
then f is convex and lower semicontinuous if and only if f ∗∗ = f (see [7], [19]).
Also, if f is convex, dom(f) 6= ∅ and cl(f) is proper, then f ∗∗ = cl(f) (Theorem
2.3.4 in [19]).

The following characterizations of the subdifferential and ε-sudifferential of a
proper function f , by means of conjugate functions will be useful in the paper
(see [7], [19]):

x∗ ∈ ∂f(x) ⇔ f(x) + f ∗(x∗) = 〈x∗, x〉
and

x∗ ∈ ∂εf(x) ⇔ f(x) + f ∗(x∗) ≤ 〈x∗, x〉 + ε.

In case f : X → R is a proper function and a ∈ dom(f) the epigraph of f ∗

can be represented as follows

epi(f ∗) =
⋃

ε≥0

{

(x∗, 〈x∗, a〉 + ε − f(a)) : x∗ ∈ ∂εf(a)
}

. (1)
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This formula, which is an easy consequence of the definitions above, describes the
epigraph of a conjugate function in terms of the ε-subdifferential of the function
and will play an important role in the proof of the main results. It was stated in
[8], where the function f was considered convex and lower semicontinuous, but
the formula is valid even without these hypotheses.

The following version of the Brøndsted-Rockafellar Theorem ([5]) was proved
in [17] and will be used for providing sequential optimality conditions written in
terms of the subdifferentials of the functions involved.

Theorem 2.1 (Brøndsted-Rockafellar Theorem [5], [17]). Let X be a
Banach space, f : X → R be a proper convex and lower semicontinuous function
and a ∈ dom(f). Then for every ε > 0 and for every x∗ ∈ ∂εf(a) there exist
xε ∈ X and x∗

ε ∈ ∂f(xε) such that

‖xε − a‖ ≤ √
ε, ‖x∗

ε − x∗‖∗ ≤
√

ε and |f(xε) − 〈x∗
ε, xε − a〉 − f(a)| ≤ 2ε.

3 Sequential optimality conditions

Consider (X, ‖ ·‖) a reflexive Banach space, (Y, ‖ ·‖) a Banach spaces and (X∗, ‖ ·
‖∗), (Y ∗, ‖ · ‖∗) their continuous dual spaces. Although the spaces X,Y and
X∗, Y ∗, respectively, are endowed with different norms, we use the same notations
for them as there will be no danger of confusion. Let {x∗

n : n ∈ N} be a sequence

in X∗. We write x∗
n

ω∗

−→ 0 (x∗
n

‖·‖∗−→ 0) for the case when x∗
n converges to 0 in

the weak∗ (strong) topology. We make the following convention: if in a certain
property we write x∗

n → 0 (n → +∞), we understand that the property holds
no matter which of the two topologies (weak∗ or strong) is used. The following
property will be frequently used in the paper:

if x∗
n → 0 and xn → a (n → +∞), then 〈x∗

n, xn〉 → 0 (n → +∞),

where {xn} ⊆ X, ∀n ∈ N, a ∈ X and xn → a (n → +∞) means ‖xn − a‖ → 0
(n → +∞), that is the convergence in the topology induced by the norm on
X. On X × Y we use the norm ‖(x, y)‖ =

√

‖x‖2 + ‖y‖2, for (x, y) ∈ X × Y .
Similarly we define the norm on X∗ × Y ∗.

Let φ : X × Y → R be a given function. In this section we give sequential
optimality conditions for the general optimization problem

(Pφ) inf
x∈X

φ(x, 0).

To this end we consider the infimal value function η : X∗ → R of the conju-
gate φ∗ defined by η(x∗) = infy∗∈Y ∗ φ∗(x∗, y∗), for x∗ ∈ X∗. Let us notice that,
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since φ∗ is a convex function on X∗ × Y ∗, η is a convex function on X∗.

Lemma 3.1 Let φ : X×Y → R be a proper convex and lower semicontinuous
function such that infx∈X φ(x, 0) < +∞. Then a ∈ dom(φ(·, 0)) is a minimizer
of φ(·, 0) on X if and only if (0,−η∗(a)) ∈ cl(epi(η)) (the closure is taken in
(X∗, ω(X∗, X)) × R).

Proof. One can see that dom(η) 6= ∅ and η∗(x) = (φ∗)∗(x, 0) = φ(x, 0),
∀x ∈ X. We get that η∗ is proper, hence cl(η) is also proper and η∗∗ = cl(η).
Then a is a minimizer of φ(·, 0) on X ⇔ a is a minimizer of η∗ on X ⇔ 0 ∈
∂(η∗)(a) ⇔ η∗∗(0) + η∗(a) = 0 ⇔ η∗∗(0) + η∗(a) ≤ 0 (since the opposite in-
equality is always true). This is the same with cl(η)(0) = η∗∗(0) ≤ −η∗(a) ⇔
(0,−η∗(a)) ∈ epi(cl(η)) = cl(epi(η)). �

Using Lemma 3.1 and formula (1), we can give now a general optimality con-
dition involving ε-subdifferentials.

Theorem 3.2 Let φ : X × Y → R be a proper convex and lower semicon-
tinuous function such that infx∈X φ(x, 0) < +∞. The following statements are
equivalent:

(a) a ∈ dom(φ(·, 0)) is a minimizer of φ(·, 0) on X;

(b) there exist sequences {εn} ↓ 0 and (x∗
n, y

∗
n) ∈ ∂εn

φ(a, 0) such that x∗
n

‖·‖∗−→ 0
(n → +∞);

(c) there exist sequences {εn} ↓ 0 and (x∗
n, y

∗
n) ∈ ∂εn

φ(a, 0) such that x∗
n

ω∗

−→ 0
(n → +∞).

Proof. (a) ⇒ (b) Suppose that a ∈ dom(φ(·, 0)) is a minimizer of φ(·, 0) on
X. Applying the previous lemma, we have (0,−η∗(a)) ∈ cl(epi(η)). Since η is a
convex function and X is a reflexive Banach space, the closure in (X∗, ω(X∗, X))×
R and the closure in (X∗, ‖ · ‖∗)×R of the set epi(η) coincide. Hence ∃(x∗

n, rn) ∈
X∗ × R such that η(x∗

n) ≤ rn, x∗
n

‖·‖∗−→ 0 and rn → −η∗(a) (n → +∞). The
inequality η(x∗

n) ≤ rn yields infy∗∈Y ∗ φ∗(x∗
n, y

∗) < rn + 1/n, ∀n ∈ N, so there
exists a sequence {y∗

n} ⊆ Y ∗ such that φ∗(x∗
n, y

∗
n) < rn + 1/n, ∀n ∈ N, thus

(x∗
n, y

∗
n, rn + 1/n) ∈ epi(φ∗), ∀n ∈ N. As (a, 0) ∈ dom(φ), we get by (1)

epi(φ∗) =
⋃

ε≥0

{(x∗, y∗, 〈x∗, a〉 + ε − φ(a, 0)) : (x∗, y∗) ∈ ∂εφ(a, 0)}.

Since (x∗
n, y∗

n, rn + 1/n) ∈ epi(φ∗), ∀n ∈ N, there exists a sequence {εn} ⊆ R+

such that rn + 1/n = 〈x∗
n, a〉 + εn − φ(a, 0), (x∗

n, y
∗
n) ∈ ∂εn

φ(a, 0), x∗
n

‖·‖∗−→ 0 and
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rn → −η∗(a) (n → +∞). From the last equality we conclude that εn → 0
(n → +∞).

The implication (b) ⇒ (c) follows since x∗
n

‖·‖∗−→ 0 (n → +∞) implies x∗
n

ω∗

−→ 0
(n → +∞).

(c) ⇒ (a) If there exist sequences {εn} ↓ 0 and (x∗
n, y

∗
n) ∈ ∂εn

φ(a, 0) such

that x∗
n

ω∗

−→ 0 (n → +∞), then using the definition of the ε-subdifferential of a
function we get

φ(x, y) − φ(a, 0) ≥ 〈x∗
n, x − a〉 + 〈y∗

n, y〉 − εn,∀(x, y) ∈ X × Y,∀n ∈ N.

We obtain

φ(x, 0) − φ(a, 0) ≥ 〈x∗
n, x − a〉 − εn,∀x ∈ X,∀n ∈ N.

Passing to the limit as n → +∞, we get φ(x, 0) − φ(a, 0) ≥ 0, ∀x ∈ X, so a is a
minimizer of φ(·, 0) on X. �

Combining this result with the Brøndsted-Rockafellar Theorem (Theorem 2.1)
we get a necessary and sufficient optimality condition by means of the classical
convex subdifferential.

Theorem 3.3 Let φ : X × Y → R be a proper convex and lower semicon-
tinuous function such that infx∈X φ(x, 0) < +∞. The following statements are
equivalent:

(a) a ∈ dom(φ(·, 0)) is a minimizer of φ(·, 0) on X;

(b) there exist sequences (xn, yn) ∈ dom(φ), (x∗
n, y∗

n) ∈ ∂φ(xn, yn) such that

x∗
n

‖·‖∗−→ 0, xn → a, yn → 0 (n → +∞) and

φ(xn, yn) − 〈y∗
n, yn〉 − φ(a, 0) → 0 (n → +∞);

(c) there exist sequences (xn, yn) ∈ dom(φ), (x∗
n, y∗

n) ∈ ∂φ(xn, yn) such that

x∗
n

ω∗

−→ 0, xn → a, yn → 0 (n → +∞) and

φ(xn, yn) − 〈y∗
n, yn〉 − φ(a, 0) → 0 (n → +∞).

Proof. As (b) ⇒ (c) is always true, we prove just the implications (a) ⇒ (b)
and (c) ⇒ (a).

(a) ⇒ (b) Suppose that a ∈ dom(φ(·, 0)) is a minimizer of φ(·, 0) on X. By

Theorem 3.2 there exist {εn} ↓ 0 and (x∗
n, y

∗
n) ∈ ∂εn

φ(a, 0) such that x∗
n

‖·‖∗−→ 0
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(n → +∞). Applying Theorem 2.1 we get that ∀n ∈ N there exist (xn, yn) ∈
X × Y and (x∗

n, y
∗
n) ∈ ∂φ(xn, yn) such that

‖(xn, yn) − (a, 0)‖ ≤ √
εn, ‖(x∗

n, y∗
n) − (x∗

n, y
∗
n)‖∗ ≤

√
εn

and
|φ(xn, yn) − 〈(x∗

n, y
∗
n), (xn, yn) − (a, 0)〉 − φ(a, 0)| ≤ 2εn,

from which we obtain x∗
n

‖·‖∗−→ 0, xn → a, yn → 0 (n → +∞) and φ(xn, yn) −
〈x∗

n, xn−a〉−〈y∗
n, yn〉−φ(a, 0) → 0 (n → +∞). Since 〈x∗

n, xn−a〉 → 0 (n → +∞),
the desired result follows.

(c) ⇒ (a) Assume that there exist sequences (xn, yn) ∈ dom(φ), (x∗
n, y

∗
n) ∈

∂φ(xn, yn) such that x∗
n

ω∗

−→ 0, xn → a, yn → 0 (n → +∞) and φ(xn, yn) −
〈y∗

n, yn〉 − φ(a, 0) → 0 (n → +∞). Since (x∗
n, y

∗
n) ∈ ∂φ(xn, yn), we have φ(x, y) ≥

φ(xn, yn) + 〈(x∗
n, y

∗
n), (x − xn, y − yn)〉,∀(x, y) ∈ X × Y,∀n ∈ N. Then, for every

x ∈ X the following inequality is true

φ(x, 0) − φ(a, 0) ≥ φ(xn, yn) − 〈y∗
n, yn〉 − φ(a, 0) + 〈x∗

n, x − xn〉,∀n ∈ N.

Passing to the limit as n → +∞, we get φ(x, 0) − φ(a, 0) ≥ 0, ∀x ∈ X, so a is a
minimizer of φ(·, 0) on X. �

Remark 3.4 Using the convention mentioned in the beginning of the section,
the above results can be reformulated as follows.

The following assertions are equivalent:

(a) a ∈ dom(φ(·, 0)) is a minimizer of φ(·, 0) on X;

(b) there exist sequences {εn} ↓ 0 and (x∗
n, y

∗
n) ∈ ∂εn

φ(a, 0) such that x∗
n → 0

(n → +∞);

(c) there exist sequences (xn, yn) ∈ dom(φ), (x∗
n, y

∗
n) ∈ ∂φ(xn, yn) such that

x∗
n → 0, xn → a, yn → 0 (n → +∞) and

φ(xn, yn) − 〈y∗
n, yn〉 − φ(a, 0) → 0 (n → +∞).

4 Particular cases

In this section we show that some results from the literature concerning sequen-
tial optimality conditions are obtained as particular cases of the main results
presented in the previous section. In the first part we give sequential optimality
conditions for the optimization problem with the objective function being the
sum of a proper convex and lower semicontinuous function with the composition
of another proper convex and lower semicontinuous function with a continuous
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linear operator, obtaining as particular cases the results given by Jeyakumar and
Wu in [10] for the problem (P0). Further, taking a different perturbation func-
tion, we improve a sequential Lagrange multiplier condition given by Thibault in
[17] for the problem (PK).

4.1 Sequential generalizations of the Pshenichnyi-
Rockafellar Lemma

Let us consider A : X → Y a linear continuous mapping and A∗ : Y ∗ → X∗

its adjoint operator, defined in the usual way 〈A∗y∗, x〉 = 〈y∗, Ax〉,∀(y∗, x) ∈
Y ∗ × X. Let f : X → R, g : Y → R be proper, convex and lower semicontinuous
functions such that A(dom(f))∩dom(g) 6= ∅. In the following we give sequential
characterizations of optimal solutions regarding the convex optimization problem

(PA) inf
x∈X

{f(x) + (g ◦ A)(x)}.

To this end we define the function φ : X ×Y → R by φ(x, y) = f(x)+ g(Ax+ y),
for (x, y) ∈ X×Y . A simple computation shows that φ∗(x∗, y∗) = f ∗(x∗−A∗y∗)+
g∗(y∗), for (x∗, y∗) ∈ X∗ × Y ∗. Let us prove first the following lemma.

Lemma 4.1 Let (x∗, y∗) ∈ X∗ × Y ∗, a ∈ dom(f) ∩ A−1(dom(g)) and ε ≥ 0
be fixed. The following statements are true

(a) if (x∗, y∗) ∈ ∂εφ(a, 0), then x∗ − A∗y∗ ∈ ∂εf(a) and y∗ ∈ ∂εg(Aa);

(b) if x∗ − A∗y∗ ∈ ∂εf(a) and y∗ ∈ ∂εg(Aa), then (x∗, y∗) ∈ ∂2εφ(a, 0).

Proof. The pair (x∗, y∗) belongs to ∂εφ(a, 0) if and only if φ(a, 0)+φ∗(x∗, y∗)
≤ 〈x∗, a〉 + ε ⇔ f(a) + g(Aa) + f ∗(x∗ − A∗y∗) + g∗(y∗) ≤ 〈x∗, a〉 + ε.

(a) If (x∗, y∗) ∈ ∂εφ(a, 0), then f(a)+g(Aa)+f ∗(x∗−A∗y∗)+g∗(y∗) ≤ 〈x∗, a〉+
ε. Let us suppose that x∗ − A∗y∗ 6∈ ∂εf(a). Then f(a) + f ∗(x∗ − A∗y∗) > 〈x∗ −
A∗y∗, a〉+ε. By the Young-Fenchel inequality we have g(Aa)+g∗(y∗) ≥ 〈y∗, Aa〉.
Adding the last two inequalities we obtain f(a)+g(Aa)+f ∗(x∗−A∗y∗)+g∗(y∗) >
〈x∗, a〉 + ε, which is a contradiction. Hence x∗ − A∗y∗ ∈ ∂εf(a) and similarly we
get y∗ ∈ ∂εg(Aa).

(b) As x∗−A∗y∗ ∈ ∂εf(a) and y∗ ∈ ∂εg(Aa), we obtain f(a)+f ∗(x∗−A∗y∗) ≤
〈x∗ − A∗y∗, a〉 + ε and g(Aa) + g∗(y∗) ≤ 〈y∗, Aa〉 + ε. The conclusion follows by
adding the last two inequalities. �

Theorem 4.2 Let A : X → Y be a linear continuous mapping, f : X → R,
g : Y → R be proper, convex and lower semicontinuous functions such that
A(dom(f)) ∩ dom(g) 6= ∅. Then a ∈ dom(f) ∩ A−1(dom(g)) is a minimizer of
f + g ◦ A on X if and only if

∃{εn} ↓ 0,∃x∗
n ∈ ∂εn

f(a),∃y∗
n ∈ ∂εn

g(Aa) such that x∗
n + A∗y∗

n → 0 (n → +∞).
(2)
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Proof. The element a ∈ dom(f) ∩ A−1(dom(g)) is a minimizer of f + g ◦ A
on X if and only if a is a minimizer of φ(·, 0) on X, which is equivalent to (see
Theorem 3.2)

∃{εn} ↓ 0,∃(x∗
n, y∗

n) ∈ ∂εn
φ(a, 0) such that x∗

n → 0 (n → +∞). (3)

We prove that the conditions (2) and (3) are equivalent.
”(3)⇒(2)” There exist {εn} ↓ 0 and (x∗

n, y
∗
n) ∈ ∂εn

φ(a, 0) such that x∗
n → 0

(n → +∞). According to Lemma 4.1(a), x∗
n−A∗y∗

n ∈ ∂εn
f(a) and y∗

n ∈ ∂εn
g(Aa).

If we take εn := εn, x∗
n := x∗

n − A∗y∗
n and y∗

n := y∗
n, then (2) is fulfilled.

”(2) ⇒(3)” There exist {εn} ↓ 0, x∗
n ∈ ∂εn

f(a) and y∗
n ∈ ∂εn

g(Aa) such that
x∗

n + A∗y∗
n → 0 (n → +∞). Take εn := 2εn, x∗

n := x∗
n + A∗y∗

n and y∗
n := y∗

n. Then
x∗

n − A∗y∗
n = x∗

n ∈ ∂εn
f(a) and y∗

n = y∗
n ∈ ∂εn

g(Aa), hence by Lemma 4.1(b) we
have (x∗

n, y
∗
n) ∈ ∂εn

φ(a, 0). Moreover, x∗
n = x∗

n + A∗y∗
n → 0 (n → +∞), so (3) is

fulfilled. �

Remark 4.3 One can notice that the characterization of a minimizer of
f + g ◦ A on X given in Theorem 4.2 can be also obtained as a consequence
of the Hiriart-Urruty and Phelps formula (see Proposition 1 in [18]).

We derive from Theorem 3.3 a sequential optimality condition for (PA) in-
volving only the convex subdifferentials of the functions f and g.

Theorem 4.4 Let A : X → Y be a linear continuous mapping, f : X → R,
g : Y → R be proper, convex and lower semicontinuous functions such that
A(dom(f)) ∩ dom(g) 6= ∅. Then a ∈ dom(f) ∩ A−1(dom(g)) is a minimizer of
f + g ◦ A on X if and only if















∃(xn, yn) ∈ dom(f) × dom(g),∃x∗
n ∈ ∂f(xn),∃y∗

n ∈ ∂g(yn) such that
x∗

n + A∗y∗
n → 0, xn → a, yn → Aa (n → +∞),

f(xn) − 〈x∗
n, xn − a〉 − f(a) → 0, (n → +∞) and

g(yn) − 〈y∗
n, yn − Aa〉 − g(Aa) → 0 (n → +∞).

(4)

Proof. Applying Theorem 3.3, we get that a is a minimizer of f +g ◦A on X
if and only if ∃(xn, yn) ∈ X × Y , xn ∈ dom(f), Axn + yn ∈ dom(g), ∃(x∗

n, y
∗
n) ∈

∂φ(xn, yn) such that x∗
n → 0, xn → a, yn → 0 and φ(xn, yn)−〈y∗

n, yn〉−φ(a, 0) → 0
(n → +∞). The last condition is equivalent to

f(xn) + g(Axn + yn) − 〈y∗
n, yn〉 − f(a) − g(Aa) → 0 (n → +∞).

We have (x∗
n, y

∗
n) ∈ ∂φ(xn, yn) if and only if φ(xn, yn) + φ∗(x∗

n, y∗
n) = 〈x∗

n, xn〉 +
〈y∗

n, yn〉 ⇔ f(xn) + g(Axn + yn) + f ∗(x∗
n − A∗y∗

n) + g∗(y∗
n) = 〈x∗

n, xn〉 + 〈y∗
n, yn〉.

Using the Young-Fenchel inequality we obtain

f(xn) + f ∗(x∗
n −A∗y∗

n) + g(Axn + yn) + g∗(y∗
n) ≥ 〈x∗

n −A∗y∗
n, xn〉+ 〈y∗

n, Axn + yn〉
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= 〈x∗
n, xn〉 + 〈y∗

n, yn〉,
hence (x∗

n, y
∗
n) ∈ ∂φ(xn, yn) if and only if f(xn)+f ∗(x∗

n−A∗y∗
n) = 〈x∗

n−A∗y∗
n, xn〉

and g(Axn + yn) + g∗(y∗
n) = 〈y∗

n, Axn + yn〉 ⇔ x∗
n − A∗y∗

n ∈ ∂f(xn) and y∗
n ∈

∂g(Axn + yn). We proved that a ∈ dom(f) ∩ A−1(dom(g)) is a minimizer of
f + g ◦ A on X if and only if















∃(xn, yn) ∈ X × Y, xn ∈ dom(f), Axn + yn ∈ dom(g),
∃(x∗

n, y
∗
n) ∈ X∗ × Y ∗, x∗

n − A∗y∗
n ∈ ∂f(xn), y∗

n ∈ ∂g(Axn + yn) such that
x∗

n → 0, xn → a, yn → 0 (n → +∞) and
f(xn) + g(Axn + yn) − 〈y∗

n, yn〉 − f(a) − g(Aa) → 0 (n → +∞).
(5)

Next we show that the conditions (4) and (5) are equivalent.
”(5)⇒(4)” Suppose that















∃(xn, yn) ∈ X × Y, xn ∈ dom(f), Axn + yn ∈ dom(g),
∃(x∗

n, y
∗
n) ∈ X∗ × Y ∗, x∗

n − A∗y∗
n ∈ ∂f(xn), y∗

n ∈ ∂g(Axn + yn) such that
x∗

n → 0, xn → a, yn → 0 (n → +∞) and
f(xn) + g(Axn + yn) − 〈y∗

n, yn〉 − f(a) − g(Aa) → 0 (n → +∞).

Take xn := xn, yn := Axn + yn, x∗
n := x∗

n − A∗y∗
n and y∗

n := y∗
n. Then xn ∈

dom(f), yn ∈ dom(g), x∗
n ∈ ∂f(xn), y∗

n ∈ ∂g(yn), x∗
n + A∗y∗

n → 0, xn → a and
yn → Aa (n → +∞). Moreover,

f(xn) − 〈x∗
n, xn − a〉 − f(a) = f(xn) − 〈x∗

n − A∗y∗
n, xn − a〉 − f(a) =

f(xn) + g(Axn + yn) − 〈x∗
n, xn − a〉 − 〈y∗

n, yn〉 − f(a) − g(Aa) − g(Axn + yn)

+〈A∗y∗
n, xn −a〉+ 〈y∗

n, yn〉+ g(Aa) = f(xn)+ g(Axn + yn)−〈x∗
n, xn −a〉− 〈y∗

n, yn〉
−f(a) − g(Aa) − g(yn) + g(Aa) + 〈y∗

n, yn − Aa〉.
With the notations an := f(xn) − 〈x∗

n, xn − a〉 − f(a) and bn := g(Aa) − g(yn) −
〈y∗

n, Aa− yn〉, we have an − bn = f(xn) + g(Axn + yn)−〈y∗
n, yn〉− f(a)− g(Aa)−

〈x∗
n, xn − a〉 → 0 (n → +∞). Since x∗

n ∈ ∂f(xn) we have f(x) − f(xn) ≥
〈x∗

n, x − xn〉, ∀x ∈ X. For x := a in the previous inequality we get an = f(xn) −
〈x∗

n, xn−a〉−f(a) ≤ 0. Similarly, from y∗
n ∈ ∂g(yn) we have bn = g(Aa)−g(yn)−

〈y∗
n, Aa − yn〉 ≥ 0. Thus an ≤ 0 ≤ bn and an − bn → 0 (n → +∞). As in this

case one must have that an → 0 and bn → 0 (n → ∞), (4) is fulfilled.
”(4)⇒(5)” Assume now that (4) holds, namely















∃(xn, yn) ∈ dom(f) × dom(g),∃x∗
n ∈ ∂f(xn),∃y∗

n ∈ ∂g(yn) such that
x∗

n + A∗y∗
n → 0, xn → a, yn → Aa (n → +∞),

f(xn) − 〈x∗
n, xn − a〉 − f(a) → 0 (n → +∞) and

g(yn) − 〈y∗
n, yn − Aa〉 − g(Aa) → 0 (n → +∞).
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Take xn := xn, yn := yn − Axn, y
∗
n := y∗

n and x∗
n := x∗

n + A∗y∗
n. Then xn ∈

dom(f), Axn + yn ∈ dom(g), x∗
n − A∗y∗

n ∈ ∂f(xn), y∗
n ∈ ∂g(Axn + yn), x∗

n →
0, xn → a and yn → 0 (n → +∞). Moreover,

f(xn) + g(Axn + yn) − 〈y∗
n, yn〉 − f(a) − g(Aa) = f(xn) + g(yn) − 〈y∗

n, yn − Axn〉

−f(a) − g(Aa) = f(xn) − 〈x∗
n, xn − a〉 − f(a) + g(yn) − 〈y∗

n, yn − Aa〉 − g(Aa)

+〈x∗
n, xn − a〉 + 〈y∗

n,−Aa + Axn〉 = f(xn) − 〈x∗
n, xn − a〉 − f(a)

+g(yn) − 〈y∗
n, yn − Aa〉 − g(Aa) + 〈x∗

n + A∗y∗
n, xn − a〉 → 0 (n → +∞),

hence (5) is fulfilled. �

If we take Y = X (X is a reflexive Banach space) and A = idX in the above
theorems we obtain the following sequential optimality conditions concerning the
convex optimization problem

(P ) inf
x∈X

{f(x) + g(x)}.

They are presented in the following as two corollaries.

Corollary 4.5 Let f, g : X → R be proper, convex and lower semicontinuous
functions such that dom(f) ∩ dom(g) 6= ∅. Then a ∈ dom(f) ∩ dom(g) is a
minimizer of f + g on X if and only if

∃{εn} ↓ 0,∃x∗
n ∈ ∂εn

f(a),∃y∗
n ∈ ∂εn

g(a) such that x∗
n + y∗

n → 0 (n → +∞).

Corollary 4.6 Let f, g : X → R be proper, convex and lower semicontinuous
functions such that dom(f) ∩ dom(g) 6= ∅. Then a ∈ dom(f) ∩ dom(g) is a
minimizer of f + g on X if and only if















∃(xn, yn) ∈ dom(f) × dom(g),∃x∗
n ∈ ∂f(xn),∃y∗

n ∈ ∂g(yn) such that
x∗

n + y∗
n → 0, xn → a, yn → a (n → +∞),

f(xn) − 〈x∗
n, xn − a〉 − f(a) → 0 (n → +∞) and

g(yn) − 〈y∗
n, yn − a〉 − g(a) → 0 (n → +∞).

Taking g := δC in the previous corollaries, where C ⊆ X is a closed convex
set, we obtain the following sequential optimality conditions regarding the convex
optimization problem

(P0) inf
x∈C

f(x).

Corollary 4.7 Let f : X → R be a proper, convex and lower semicontinuous
function and C ⊆ X a closed convex set such that C ∩ dom(f) 6= ∅. Then
a ∈ C ∩ dom(f) is a minimizer of f on C if and only if

∃{εn} ↓ 0,∃x∗
n ∈ ∂εn

f(a),∃y∗
n ∈ N εn

C (a) such that x∗
n + y∗

n → 0 (n → +∞).
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Corollary 4.8 Let f : X → R be a proper, convex and lower semicontinuous
function and C ⊆ X a closed convex set such that C ∩ dom(f) 6= ∅. Then
a ∈ C ∩ dom(f) is a minimizer of f on C if and only if















∃(xn, yn) ∈ dom(f) × C,∃x∗
n ∈ ∂f(xn),∃y∗

n ∈ NC(yn) such that
x∗

n + y∗
n → 0, xn → a, yn → a (n → +∞),

f(xn) − 〈x∗
n, xn − a〉 − f(a) → 0 (n → +∞) and

〈y∗
n, yn − a〉 → 0 (n → +∞).

Remark 4.9 Corollary 4.7 and Corollary 4.8 give the sequential generaliza-
tions of the well-known Pshenichnyi-Rockafellar Lemma, improving the results of
Jeyakumar and Wu (see Theorem 3.3 and Corollary 3.5 in [10]). One can notice
that in our case the convergence in X∗ can be considered both in the weak∗ and
strong topology, since in [10] just the weak∗ topology is considered. More than
that, as shown in this section, the results given in [10] are obtained as particular
cases of the main results of our paper, Theorem 3.2 and Theorem 3.3.

4.2 Sequential Lagrange multiplier conditions

In the following we consider the convex optimization problem with cone inequality
constraints

(PK) inf
x∈C

g(x)∈−K

f(x),

where C∩g−1(−K)∩dom(f) 6= ∅, C is a closed convex subset of a reflexive Banach
space X, K is a closed convex cone of a Banach space Y , f : X → R is a proper,
convex and lower semicontinuous function and g : X → Y is continuous and K-
convex, that is g((1−t)x+tx′)−(1−t)g(x)−tg(x′) ∈ −K, ∀t ∈ [0, 1],∀x, x′ ∈ X.
Consider also K∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0,∀y ∈ K} the dual cone of K. We
derive a sequential form of the Lagrange multiplier condition for (PK) by applying
Theorem 3.3 to the following perturbation function

φ : X × X × Y → R, φ(x, p, q) =

{

f(x), if x + p ∈ C and g(x) − q ∈ −K,
+∞, otherwise.

The conjugate of φ is φ∗ : X∗ × X∗ × Y ∗ → R,

φ∗(x∗, p∗, q∗) = sup
(x,p,q)∈X×X×Y

x+p∈C
g(x)−q∈−K

{〈x∗, x〉 + 〈p∗, p〉 + 〈q∗, q〉 − f(x)}.

In order to compute φ∗ we introduce new variables z and s by z := x + p and
q − g(x) := s. It follows

φ∗(x∗, p∗, q∗) = sup
(x,z,s)∈X×C×K

{〈x∗, x〉 + 〈p∗, z − x〉 + 〈q∗, s + g(x)〉 − f(x)},
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and, as the three variables are separated, we get φ∗(x∗, p∗, q∗) = sup
z∈C

〈p∗, z〉 +

sup
x∈X

{〈x∗−p∗, x〉+ 〈q∗, g(x)〉−f(x)}+sup
s∈K

〈q∗, s〉. We obtain the following formula

φ∗(x∗, p∗, q∗) =

{

δ∗C(p∗) + sup
x∈X

{〈x∗ − p∗, x〉 + 〈q∗, g(x)〉 − f(x)}, if q∗ ∈ −K∗,

+∞, otherwise.

For q∗ ∈ Y ∗ we define the function q∗g : X → R by (q∗g)(x) = 〈q∗, g(x)〉,∀x ∈
X. We obtain the following result.

Theorem 4.10 The element a ∈ C∩g−1(−K)∩dom(f) is an optimal solution
of the problem (PK) if and only if















∃(xn, ωn, tn) ∈ dom(f) × C × (−K),∃(u∗
n, v

∗
n, ω∗

n, q∗n) ∈ X∗ × X∗ × X∗ × K∗,
u∗

n ∈ ∂f(xn), v∗
n ∈ ∂(q∗ng)(xn), ω∗

n ∈ NC(ωn), 〈q∗n, tn〉 = 0,∀n ∈ N,
u∗

n + v∗
n + ω∗

n → 0, ωn → a, xn → a, tn → g(a) (n → +∞) and
f(xn) − f(a) + 〈q∗n, g(xn〉) − 〈ω∗

n, ωn − xn〉 → 0 (n → +∞).
(6)

Proof. According to Theorem 3.3, the element a ∈ C ∩ g−1(−K) ∩ dom(f)
solves the problem (PK) if and only if there exist sequences (xn, pn, qn) ∈ dom(φ),
(x∗

n, p
∗
n, q∗n) ∈ ∂φ(xn, pn, qn) such that

x∗
n → 0, xn → a, (pn, qn) → (0, 0) (n → +∞) and

φ(xn, pn, qn) − 〈(p∗n, q∗n), (pn, qn)〉 − φ(a, 0, 0) → 0 (n → +∞).

Since (xn, pn, qn) ∈ dom(φ) we get xn ∈ dom(f), xn+pn ∈ C and g(xn)−qn ∈ −K.
We have (x∗

n, p
∗
n, q∗n) ∈ ∂φ(xn, pn, qn) if and only if

φ(xn, pn, qn) + φ∗(x∗
n, p

∗
n, q∗n) = 〈x∗

n, xn〉 + 〈p∗n, pn〉 + 〈q∗n, qn〉

⇔ f(xn) + δ∗C(p∗n) + (f + q∗ng)∗(x∗
n − p∗n) = 〈x∗

n, xn〉 + 〈p∗n, pn〉 + 〈−q∗n, qn〉,
where q∗n ∈ −K∗ was replaced by −q∗n with q∗n ∈ K∗, ∀n ∈ N. The previous
relation holds if and only if

(f + q∗ng)∗(x∗
n − p∗n) + (f + q∗ng)(xn) − 〈x∗

n − p∗n, xn〉

+〈q∗n, qn − g(xn)〉 + δ∗C(p∗n) − 〈p∗n, xn + pn〉 = 0,∀n ∈ N.

As qn − g(xn) ∈ K and q∗n ∈ K∗, we have 〈q∗n, qn − g(xn)〉 ≥ 0,∀n ∈ N. Also the
Young-Fenchel inequality yields

(f + q∗ng)∗(x∗
n − p∗n) + (f + q∗ng)(xn) − 〈x∗

n − p∗n, xn〉 ≥ 0
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and
δ∗C(p∗n) − 〈p∗n, xn + pn〉 ≥ 0,

hence (x∗
n, p

∗
n, q∗n) ∈ ∂φ(xn, pn, qn) if and only if x∗

n − p∗n ∈ ∂(f + q∗ng)(xn), p∗n ∈
∂δC(xn + pn) = NC(xn + pn) and 〈q∗n, qn − g(xn)〉 = 0,∀n ∈ N. The relation
φ(xn, pn, qn) − 〈(p∗n,−q∗n), (pn, qn)〉 − φ(a, 0, 0) → 0 (n → +∞) (remember that
we replaced q∗n by −q∗n) is equivalent to f(xn) − 〈p∗n, pn〉 + 〈q∗n, qn〉 − f(a) → 0
(n → +∞). Hence the point a ∈ C ∩g−1(−K)∩dom(f) solves the problem (PK)
if and only if























∃(xn, pn, qn) ∈ dom(f) × X × Y, xn + pn ∈ C, g(xn) − qn ∈ −K,
∃(x∗

n, p
∗
n, q∗n) ∈ X∗ × X∗ × K∗ such that

x∗
n − p∗n ∈ ∂(f + q∗ng)(xn), p∗n ∈ NC(xn + pn), 〈q∗n, qn − g(xn)〉 = 0,∀n ∈ N,

x∗
n → 0, xn → a, pn → 0, qn → 0 (n → +∞) and

f(xn) − f(a) + 〈q∗n, qn〉 − 〈p∗n, pn〉 → 0 (n → +∞).
(7)

Introducing the new variables tn, ωn, u∗
n and ω∗

n instead of qn, pn, x∗
n and p∗n, by

tn := g(xn)− qn, ωn := pn + xn, u∗
n := x∗

n − p∗n and ω∗
n := p∗n ∀n ∈ N, respectively,

the condition (7) can be reformulated as follows















∃(xn, ωn, tn) ∈ dom(f) × C × (−K),∃(u∗
n, ω

∗
n, q∗n) ∈ X∗ × X∗ × K∗,

u∗
n ∈ ∂(f + q∗ng)(xn), ω∗

n ∈ NC(ωn), 〈q∗n, tn〉 = 0,∀n ∈ N,
u∗

n + ω∗
n → 0, ωn → a, xn → a, tn → g(a) (n → +∞) and

f(xn) − f(a) + 〈q∗n, g(xn〉) − 〈ω∗
n, ωn − xn〉 → 0 (n → +∞).

(8)

The function g being continuous, we obtain that the following subdifferential sum
formula holds

∂(f + q∗ng)(xn) = ∂f(xn) + ∂(q∗ng)(xn)

(see Theorem 2.8.7 in [19]). Thus u∗
n ∈ ∂(f + q∗ng)(xn) if and only if there exist

u∗
n ∈ ∂f(xn) and v∗

n ∈ ∂(q∗ng)(xn) such that u∗
n = u∗

n + v∗
n ∀n ∈ N, so the desired

conclusion follows. �

Let us introduce now the following real sequences: ln := f(xn) − f(a) +
〈q∗n, g(xn〉)−〈ω∗

n, ωn −xn〉 (see Theorem 4.10), l1n := 〈q∗n, tn − g(a)〉+ 〈ω∗
n, ωn − a〉

and l2n := f(xn)− f(a) + 〈q∗n, g(xn)− g(a)〉+ 〈ω∗
n, xn − a〉,∀n ∈ N. We prove that

if the condition






∃(xn, ωn, tn) ∈ dom(f) × C × (−K),∃(u∗
n, v

∗
n, ω∗

n, q∗n) ∈ X∗ × X∗ × X∗ × K∗,
u∗

n ∈ ∂f(xn), v∗
n ∈ ∂(q∗ng)(xn), ω∗

n ∈ NC(ωn), 〈q∗n, tn〉 = 0,∀n ∈ N and
u∗

n + v∗
n + ω∗

n → 0, xn → a (n → +∞),
(9)

is satisfied, then we have

ln → 0 (n → +∞) if and only if l1n → 0 and l2n → 0 (n → +∞). (10)
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Indeed, if (9) is fulfilled, then

ln = l2n − l1n , (11)

hence the sufficiency of relation (10) is trivial (in fact for this implication we need
only the fulfillment of 〈q∗n, tn〉 = 0,∀n ∈ N).

Assume now that ln → 0 (n → +∞). Since ω∗
n ∈ NC(ωn), we have 〈ω∗

n, a −
ωn〉 ≤ 0 and, as q∗n ∈ K∗, we get

l1n ≥ 0,∀n ∈ N. (12)

From v∗
n ∈ ∂(q∗ng)(xn) we obtain the inequality (q∗ng)(a)−(q∗ng)(xn) ≥ 〈v∗

n, a−xn〉,
that is 〈q∗n, g(xn)−g(a)〉 ≤ 〈v∗

n, xn−a〉. This inequality leads to l2n ≤ f(xn)−f(a)+
〈v∗

n +ω∗
n, xn−a〉,∀n ∈ N. Since u∗

n ∈ ∂f(xn) we have f(a)−f(xn) ≥ 〈u∗
n, a−xn〉,

∀n ∈ N. Combining the last two inequalities we obtain l2n ≤ 〈u∗
n+v∗

n+ω∗
n, xn−a〉,

∀n ∈ N. This implies, using relation (11) and inequality (12), that

0 ≤ l1n = l2n − ln ≤ 〈u∗
n + v∗

n + ω∗
n, xn − a〉 − ln ∀n ∈ N,

and so l1n → 0 (n → +∞). From (11) we obtain that l2n → 0 (n → +∞).
Thus we can state the following result.

Theorem 4.11 The point a ∈ C ∩ g−1(−K)∩ dom(f) is an optimal solution
of the problem (PK) if and only if























∃(xn, ωn, tn) ∈ dom(f) × C × (−K),∃(u∗
n, v

∗
n, ω∗

n, q∗n) ∈ X∗ × X∗ × X∗ × K∗,
u∗

n ∈ ∂f(xn), v∗
n ∈ ∂(q∗ng)(xn), ω∗

n ∈ NC(ωn), 〈q∗n, tn〉 = 0,∀n ∈ N,
u∗

n + v∗
n + ω∗

n → 0, ωn → a, xn → a, tn → g(a) (n → +∞),
〈q∗n, tn − g(a)〉 + 〈ω∗

n, ωn − a〉 → 0 (n → +∞) and
f(xn) − f(a) + 〈q∗n, g(xn) − g(a)〉 + 〈ω∗

n, xn − a〉 → 0 (n → +∞).
(13)

In case dom(f) = X and f is continuous we obtain the following corollary.

Corollary 4.12 The point a ∈ C ∩ g−1(−K)∩ dom(f) is an optimal solution
of the problem (PK) if and only if























∃(xn, ωn, tn) ∈ dom(f) × C × (−K),∃(u∗
n, v

∗
n, ω∗

n, q∗n) ∈ X∗ × X∗ × X∗ × K∗,
u∗

n ∈ ∂f(xn), v∗
n ∈ ∂(q∗ng)(xn), ω∗

n ∈ NC(ωn), 〈q∗n, tn〉 = 0,∀n ∈ N,
u∗

n + v∗
n + ω∗

n → 0, ωn → a, xn → a, tn → g(a) (n → +∞),
〈q∗n, tn − g(a)〉 + 〈ω∗

n, ωn − a〉 → 0 (n → +∞) and
〈q∗n, g(xn) − g(a)〉 + 〈ω∗

n, xn − a〉 → 0 (n → +∞).
(14)
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Remark 4.13 Corollary 4.12 above is exactly the result given by Thibault
(see Theorem 4.1 in [17]), in case X and Y are both reflexive Banach spaces.
Although in [17] it is not mentioned, the pair (ωn, tn), n ∈ N, must belong to
the set C × (−K) and if one looks carefully at the proof given by Thibault, one
can see that this must be assumed also in Theorem 4.1 in [17]. Moreover, we
have established this result under weaker assumptions than in [17], since for the
sequential Lagrange multiplier condition the cone K does not need to be normal.

5 A remark

An anonymous referee pointed out to us that a refined version of the sequential
characterizations expressed by means of the classical convex subdifferential can
be given. To this aim one has to use an idea due to Thibault ([16]) which we
present in the following. In the hypotheses of Theorem 2.1, applying this result
to the indicator function of epi(f), one obtains that for every ε > 0 and every
x∗ ∈ ∂εf(a), there exist (xε, rε) ∈ epi(f) and (x∗

ε,−sε) ∈ Nepi(f)(xε, rε) such that

‖(xε, rε) − (a, f(a))‖ ≤ √
ε, ‖(x∗

ε,−sε) − (x∗,−1)‖X∗×R ≤ √
ε

and
|〈x∗

ε, xε − a〉 − sε(rε − f(a))| ≤ 2ε.

This yields that

‖xε − a‖ ≤ √
ε, ‖x∗

ε − x∗‖∗ ≤
√

ε, f(xε) − f(a) ≤ √
ε,

|sε − 1| ≤ √
ε and |〈x∗

ε, xε − a〉| ≤ 3ε +
√

ε.

Considering a sequence {εn} ↓ 0 (for which we can assume without loss of gen-
erality that εn < 1,∀n ≥ 1) and x∗

εn

∈ ∂εn
f(a), by defining u∗

εn

:= 1
sεn

x∗
εn

, we

obtain a family (xεn
, u∗

εn

) fulfilling u∗
εn

∈ ∂f(xεn
),∀n ≥ 1. Using that f is lower

semicontinuous we further get

u∗
εn

‖·‖∗−→ x∗, xεn
→ a, f(xεn

) → f(a) and 〈u∗
εn

, xεn
− a〉 → 0 (n → +∞).

The conclusion above can be obtained also from Proposition 1.1 in [13].
Employing the facts already described one can refine the results in the conclu-

sion of Theorem 3.3. Remaining in the same hypotheses the following statements
are equivalent (one should take into account the convention made in the beginning
of section 3):

(a) a ∈ dom(φ(·, 0)) is a minimizer of φ(·, 0) on X;

(b) there exist sequences (xn, yn) ∈ dom(φ), (x∗
n, y

∗
n) ∈ ∂φ(xn, yn) such that

x∗
n → 0, xn → a, yn → 0, 〈y∗

n, yn〉 → 0 (n → +∞)

and φ(xn, yn) − φ(a, 0) → 0 (n → +∞).
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Taking this into consideration one can give now refined versions of the sequen-
tial characterizations expressed by means of the classical convex subdifferential
for the particular cases considered in section 4.
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