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1 Introduction

Motivated by [9] and [18], we have given in [2] qualification free necessary and

sufficient sequential optimality conditions for the general convex optimization

problem

(Pφ) inf
x∈X

φ(x, 0),

where φ : X × Y → R, the so-called perturbation function, is proper, convex

and lower semicontinuous (see [6] or [19] for more details on the perturbation

theory). More precisely, if X is a reflexive Banach space and Y is a Banach

space, we proved that an element a ∈ dom(φ(·, 0)) is an optimal solution of the

problem (Pφ) if and only if there exist sequences (xn, yn) ∈ dom(φ), (x∗n, y
∗
n) ∈

∂φ(xn, yn) such that x∗n → 0, xn → a, yn → 0 (n→ +∞) and φ(xn, yn)−〈y∗n, yn〉−

φ(a, 0) → 0 (n → +∞). This sequential characterization is obtained by using

the Brøndsted-Rockafellar Theorem ([4], [18]).

It is shown in [2] that the sequential generalizations of the Pshenichnyi-
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Rockafellar Lemma ([14], [15]) given by Jeyakumar and Wu (see Theorem 3.3

and Corollary 3.5 in [9]) and a sequential Lagrange multiplier condition given by

Thibault (see Theorem 4.1 in [18]), respectively, follow as particular cases of this

general approach. Moreover, one can improve these results. Other sequential

characterizations can be found in literature in [7], [8], [9], [10], [12], [17].

The aim of this paper is to prove that some other results given in the past on

this topic can also be derived from the general case mentioned above and that

they can be improved. We start by giving necessary and sufficient optimality con-

ditions for the convex optimization problem with geometric and cone constraints.

Using this result, we obtain as a special case sequential characterizations of an

optimal solution of the following composed convex optimization problem

(P ) inf
x∈X

[f(x) + g(h(x))],

where X is a reflexive Banach space, Y is a reflexive Banach space partially

ordered by a nonempty convex cone K, f : X → R is proper, convex and lower

semicontinuous, h : X → Y • = Y ∪{∞Y } is proper, K-convex and K-epi-closed,

g : Y • → R is proper, convex, lower semicontinuous, K-increasing on h(dom(h))+

K and g(∞Y ) = +∞. The sequential characterization of a subgradient of the

function g ◦ h at a ∈ dom(h) ∩ h−1(dom(g)) given by Thibault (see Theorem 3.1

in [18]) follows as a particular case.

If instead of the K-epi-closedness we suppose that h : X → Y is continuous

and g : Y → R is K-increasing on Y , while Y is not anymore assumed to
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be reflexive, then for an appropriate choice of the perturbation function φ we

obtain another sequential characterization of an arbitrary x∗ ∈ ∂(g ◦h)(a), where

a ∈ h−1(dom(g)). For this sequential characterization Thibault considered (see

Corollary 3.2 in [18]) that K is a closed convex normal cone and g is K-increasing

on h(X) +K. We show that if the function g is supposed to be K-increasing on

the whole space Y , then this sequential characterization holds even if the cone

K is not normal. Moreover, we show that, unlike in [18] in this result we can

renounce to the closedness of the cone K.

The paper is organized as follows. In the next section we give some definitions

and results from convex analysis that will be used in the paper. In section 3 we

deal first with sequential optimality conditions for convex optimization problems

with geometric and cone constraints. Further, we prove that some sequential

characterizations regarding composed convex optimization problems given in the

literature follow as particular cases of our general approach.

2 Preliminaries

Consider two separated locally convex vector spaces X and Y and their topo-

logical dual spaces X∗ and Y ∗, endowed with the weak∗ topologies ω(X∗, X)

and ω(Y ∗, Y ), respectively. Consider also a nonempty convex cone K ⊆ Y

and K∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 ∀y ∈ K} its positive dual cone, where

we denote by 〈y∗, y〉 the value of the linear continuous functional y∗ ∈ Y ∗ at
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y ∈ Y . On Y we consider the partial order induced by K, ”≤K”, defined by

y1 ≤K y2 ⇔ y2 − y1 ∈ K, y1, y2 ∈ Y . To Y we attach an abstract maximal ele-

ment with respect to ”≤K”, denoted by ∞Y and let Y • := Y ∪ {∞Y }. Then for

every y ∈ Y one has y ≤K ∞Y and we consider on Y • the following operations:

y +∞Y =∞Y + y =∞Y and t∞Y =∞Y for all y ∈ Y and all t ≥ 0.

The indicator function of C ⊆ X, denoted by δC , is defined as δC : X → R =

R ∪ {±∞},

δC(x) =


0, if x ∈ C,

+∞, otherwise.

For a function f : X → R we denote by dom(f) = {x ∈ X : f(x) < +∞} its

domain and by epi(f) = {(x, r) ∈ X × R : f(x) ≤ r} its epigraph. We call f

proper if dom(f) 6= ∅ and f(x) > −∞ ∀x ∈ X. For x ∈ X such that f(x) ∈ R

we consider the (classical) convex sudifferential of f at x defined by

∂f(x) = {x∗ ∈ X∗ : f(u)− f(x) ≥ 〈x∗, u− x〉 ∀u ∈ X}.

An arbitrary element x∗ ∈ ∂f(x) (if it exists) is called subgradient of the function

f at the point x ∈ X. If f is proper then for a ∈ dom(f) we have the following

relation:

inf
x∈X

f(x) = f(a)⇔ 0 ∈ ∂f(a).

The Fenchel-Moreau conjugate of f is the function f ∗ : X∗ → R defined by

f ∗(x∗) = sup
x∈X
{〈x∗, x〉 − f(x)} ∀x∗ ∈ X∗.
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We have the so-called Young-Fenchel inequality

f ∗(x∗) + f(x) ≥ 〈x∗, x〉 ∀x ∈ X ∀x∗ ∈ X∗.

We mention here an important property of conjugate functions: if f is proper,

then f is convex and lower semicontinuous if and only if f ∗∗ = f , where f ∗∗ is

the biconjugate of f , defined by f ∗∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − f ∗(x∗)} ∀x ∈ X (see

[6], [19]).

The following characterization of the subdifferential of a proper function f by

means of conjugate functions will be useful in the paper (see [6], [19]):

x∗ ∈ ∂f(x)⇔ f(x) + f ∗(x∗) = 〈x∗, x〉,

where x ∈ dom(f) and x∗ ∈ X∗.

A function g : Y • → R such that g(∞Y ) = +∞ is called K-increasing on a

subset S of Y if for every s1, s2 ∈ S such that s1 ≤K s2 one has g(s1) ≤ g(s2).

Some of the above notions given for functions with extended real values can

be formulated also for function having their ranges in infinite dimensional spaces.

For a function h : X → Y • we denote by dom(h) = {x ∈ X : h(x) ∈ Y } its

domain and by epiK(h) = {(x, y) ∈ X × Y : h(x) ≤K y} its K-epigraph. We say

that h is proper if its domain is a nonempty set. The function h is said to be

K-convex if h(tx1 + (1 − t)x2) ≤K th(x1) + (1− t)h(x2) ∀x1, x2 ∈ X ∀t ∈ [0, 1].

Further, for an arbitrary λ ∈ K∗ we define the function λh : X → R,

(λh)(x) =


〈λ, h(x)〉, if x ∈ dom(h),

+∞, otherwise.
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The function h is said to be K-epi-closed if epiK(h) is a closed subset of X × Y

([11]). Also, h is called star K-lower semicontinuous at x ∈ X if ∀λ ∈ K∗ the

function λh is lower semicontinuous at x. The function h is said to be star K-

lower semicontinuous if it is star K-lower semicontinuous at every x ∈ X.

Remark 2.1 (a) Besides the two generalizations of lower semicontinuity de-

fined above for functions taking values in infinite dimensional spaces, there exists

in the literature another notion of lower semicontinuity, called K-lower semi-

continuity, wich has been introduced in [13] and refined in [5]. One can show

that K-lower semicontinuity implies star K-lower semicontinuity, which yields

K-epi-closedness (see [11]), while the opposite assertions are not valid in general.

The following example of a K-convex function which is K-epi-closed, but not

star K-lower semicontinuous was given in [3]: h : R→ (R2)• = R2 ∪ {∞R2},

h(x) =


( 1
x
, x), if x > 0,

∞, otherwise,

and K := R2
+ = [0,+∞)× [0,+∞). One can see that for λ = (0, 1)T ∈ (R2

+)∗ =

R2
+ the function λh is not lower semicontinuous.

For more on lower semicontinuity on topological vector spaces we refer the

reader to [1], [5], [11], [13], [16].

(b) It is known that when Y = R and K = R+ = [0,+∞), all the lower

semicontinuity notions mentioned above coincide, becoming the classical lower

semicontinuity of functions with extended real values.
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3 Sequential optimality conditions

In this section we derive several necessary and sufficient sequential optimality

conditions for different classes of convex optimization problems.

3.1 The general case

For the rest of the paper, we consider (X, ‖ · ‖) a reflexive Banach space, (Y, ‖ · ‖)

a Banach spaces and (X∗, ‖ · ‖∗), (Y ∗, ‖ · ‖∗) their topological dual spaces. Let

{x∗n : n ∈ N} be a sequence in X∗ and x∗ ∈ X∗. We write x∗n
ω∗−→ x∗ (x∗n

‖·‖∗−→ x∗)

for the case when x∗n converges to x∗ in the weak∗ (strong) topology. We make

the following convention: if in a certain property we write x∗n → x∗ (n → +∞),

we understand that the property holds no matter which of the two topologies

(weak∗ or strong) is used. The following property will be frequently used in the

paper:

if x∗n → 0 and xn → a (n→ +∞), then 〈x∗n, xn〉 → 0 (n→ +∞),

where {xn : n ∈ N} ⊆ X, a ∈ X and xn → a (n → +∞) means ‖xn − a‖ → 0

(n → +∞), that is the convergence in the topology induced by the norm on

X. On X × Y we use the norm ‖(x, y)‖ =
√
‖x‖2 + ‖y‖2, for (x, y) ∈ X × Y .

Similarly we define the norm on X∗ × Y ∗.

We give the following sequential optimality condition concerning the general

optimization problem

(Pφ) inf
x∈X

φ(x, 0),
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where φ : X × Y → R is a so-called perturbation function (see [6], [19] for more

on the perturbation theory).

Theorem 3.1 ([2]) Let φ : X × Y → R be a proper convex and lower semi-

continuous function such that infx∈X φ(x, 0) < +∞. The following statements

are equivalent:

(a) a ∈ dom(φ(·, 0)) is an optimal solution of the problem (Pφ);

(b) there exist sequences (xn, yn) ∈ dom(φ), (x∗n, y
∗
n) ∈ ∂φ(xn, yn) such that

x∗n → 0, xn → a, yn → 0 (n→ +∞) and

φ(xn, yn)− 〈y∗n, yn〉 − φ(a, 0)→ 0 (n→ +∞).

Remark 3.2 Using an idea due to Thibault ([17]) one can derive the following

refined version of the above sequential optimality condition.

In the same hypotheses as in Theorem 3.1 the following assertions are equiv-

alent:

(a) a ∈ dom(φ(·, 0)) is an optimal solution of the problem (Pφ);

(b) there exist sequences (xn, yn) ∈ dom(φ), (x∗n, y
∗
n) ∈ ∂φ(xn, yn) such that

x∗n → 0, xn → a, yn → 0, 〈y∗n, yn〉 → 0 (n→ +∞) and

φ(xn, yn)− φ(a, 0)→ 0 (n→ +∞).
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This refinement can be obtained also from Proposition 1.1 in [12] (see [2] for

more details).

3.2 Sequential optimality conditions for convex optimiza-

tion problems with geometric and cone constraints

In this subsection we derive sequential optimality conditions for a convex opti-

mization problem with geometric and cone constraints

(PK) inf
x∈C

g(x)∈−K

f(x),

where C is a closed convex subset of X, K is a nonempty convex cone of Y ,

f : X → R is a proper, convex and lower semicontinuous function and g :

X → Y • is proper, K-convex and K-epi-closed. We suppose also that C ∩

g−1(−K) ∩ dom(f) 6= ∅. In the following we derive a sequential form of the

Lagrange multiplier condition for (PK) by applying Theorem 3.1 to the following

perturbation function

φ : X ×X × Y → R, φ(x, p, q) =


f(x+ p), if x ∈ C and g(x) ≤K q,

+∞, otherwise.

One can easily show that φ is proper, convex and lower semicontinuous such that

infx∈X φ(x, 0, 0) < +∞. The conjugate of φ is φ∗ : X∗ ×X∗ × Y ∗ → R,

φ∗(x∗, p∗, q∗) =


f ∗(p∗) + (−q∗g + δC)∗(x∗ − p∗), if q∗ ∈ −K∗,

+∞, otherwise,
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as a straightforward calculation shows.

Theorem 3.3 The element a ∈ C∩g−1(−K)∩dom(f) is an optimal solution

of the problem (PK) if and only if

∃(xn, pn, qn) ∈ C × dom(f)× Y, g(xn) ≤K qn,∃(u∗n, v∗n, q∗n) ∈ X∗ ×X∗ ×K∗,

u∗n ∈ ∂f(pn), v∗n ∈ ∂(q∗ng + δC)(xn), 〈q∗n, qn − g(xn)〉 = 0 ∀n ∈ N,

u∗n + v∗n → 0, xn → a, pn → a, qn → 0 (n→ +∞) and

f(pn)− 〈u∗n, pn − xn〉+ 〈q∗n, qn〉 − f(a)→ 0 (n→ +∞).

(1)

Proof. According to Theorem 3.1, the element a ∈ C ∩ g−1(−K) ∩ dom(f)

solves the problem (PK) if and only if there exist sequences (xn, pn, qn) ∈ dom(φ),

(x∗n, p
∗
n,−q∗n) ∈ ∂φ(xn, pn, qn) such that

x∗n → 0, xn → a, (pn, qn)→ (0, 0) (n→ +∞) and

φ(xn, pn, qn)− 〈(p∗n,−q∗n), (pn, qn)〉 − φ(a, 0, 0)→ 0 (n→ +∞).

Since (xn, pn, qn) ∈ dom(φ) we get xn ∈ C, xn + pn ∈ dom(f) and g(xn) ≤K qn

∀n ∈ N. We have (x∗n, p
∗
n,−q∗n) ∈ ∂φ(xn, pn, qn) if and only if

φ(xn, pn, qn) + φ∗(x∗n, p
∗
n,−q∗n) = 〈x∗n, xn〉+ 〈p∗n, pn〉+ 〈−q∗n, qn〉 ⇔

f(xn + pn) + f ∗(p∗n) + (q∗ng + δC)∗(x∗n − p∗n) = 〈x∗n, xn〉+ 〈p∗n, pn〉+ 〈−q∗n, qn〉,

where q∗n ∈ K∗ ∀n ∈ N. As qn−g(xn) ∈ K we obtain 〈q∗n, qn−g(xn)〉 ≥ 0 ∀n ∈ N.

Using this and the Young-Fenchel inequality we get f(xn + pn) + f ∗(p∗n) + (q∗ng+
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δC)∗(x∗n−p∗n) ≥ 〈p∗n, xn+pn〉+〈x∗n−p∗n, xn〉−(q∗ng+δC)(xn) = 〈x∗n, xn〉+〈p∗n, pn〉+

〈−q∗n, g(xn)〉 ≥ 〈x∗n, xn〉+〈p∗n, pn〉+〈−q∗n, qn〉. Hence (x∗n, p
∗
n,−q∗n) ∈ ∂φ(xn, pn, qn)

if and only if p∗n ∈ ∂f(xn + pn), x∗n − p∗n ∈ ∂(q∗ng + δC)(xn) and 〈q∗n, qn − g(xn)〉 =

0 ∀n ∈ N. As a consequence, we obtain that a ∈ C ∩ g−1(−K) ∩ dom(f) is an

optimal solution of the problem (PK) if and only if

∃(xn, pn, qn) ∈ C ×X × Y, xn + pn ∈ dom(f), g(xn) ≤K qn,

∃(x∗n, p∗n, q∗n) ∈ X∗ ×X∗ ×K∗, p∗n ∈ ∂f(xn + pn), x∗n − p∗n ∈ ∂(q∗ng + δC)(xn),

〈q∗n, qn − g(xn)〉 = 0 ∀n ∈ N, x∗n → 0, xn → a, pn → 0, qn → 0 (n→ +∞) and

f(xn + pn)− 〈p∗n, pn〉+ 〈q∗n, qn〉 − f(a)→ 0 (n→ +∞).

(2)

Introducing the new variables p′n, u
∗
n and v∗n instead of pn, p

∗
n and x∗n by p′n :=

xn + pn, u
∗
n := p∗n and v∗n := x∗n − p∗n for all n ∈ N, one can see that (2) is equiva-

lent to (1) (again denoting p′n by pn ∀n ∈ N), which completes the proof. �

Remark 3.4 Let us notice that for a different choice of the perturbation

function φ, we have given in [2] another sequential optimality condition for the

problem (PK) in case g : X → Y is continuous and K is a closed convex cone.

For the special case when C = X, we obtain the following sequential charac-

terization of an optimal solution of the optimization problem

(P ′K) inf
g(x)≤K0

f(x).

Corollary 3.5 The element a ∈ g−1(−K)∩ dom(f) is an optimal solution of
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the problem (P ′K) if and only if

∃(xn, pn, qn) ∈ X × dom(f)× Y, g(xn) ≤K qn,∃(u∗n, v∗n, q∗n) ∈ X∗ ×X∗ ×K∗,

u∗n ∈ ∂f(pn), v∗n ∈ ∂(q∗ng)(xn), 〈q∗n, qn − g(xn)〉 = 0 ∀n ∈ N,

u∗n + v∗n → 0, xn → a, pn → a, qn → 0 (n→ +∞) and

f(pn)− 〈u∗n, pn − xn〉+ 〈q∗n, qn〉 − f(a)→ 0 (n→ +∞).

(3)

3.3 Sequential optimality conditions for composed convex

optimization problems

The following optimization problem is considered in this subsection

(P ) inf
x∈X

[f(x) + g(h(x))],

where f : X → R is proper, convex and lower semicontinuous, Y is partially

ordered by a nonempty convex cone K, h : X → Y • is proper, K-convex, g :

Y • → R is proper, convex, lower semicontinuous and g(∞Y ) = +∞. We suppose

also that dom(f) ∩ dom(h) ∩ h−1(dom(g)) 6= ∅. This subsection is divided in

two parts. In subsection 3.3.1 we consider the case h is K-epi-closed and g is

K-increasing on h(dom(h)) + K, while in the second part we take h continuous

and g K-increasing on Y .
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3.3.1 The case h is K-epi-closed

Throughout this subsection we assume that Y is a reflexive Banach space, h

is K-epi-closed and g is K-increasing on h(dom(h)) + K. The problem (P ) is

a convex optimization problem and for characterizing its optimal solutions the

following sequential optimality condition can be derived from Corollary 3.5 (see

Remark 3.12(b) for a discussion on the several reasons why we apply this method).

Theorem 3.6 The element a ∈ dom(f)∩dom(h)∩h−1(dom(g)) is an optimal

solution of the problem (P ) if and only if

∃(xn, pn, qn, q′n) ∈ X × dom(f)× dom(g)× Y, h(xn) ≤K q′n,

∃(u∗n, e∗n, u∗n′, q∗n), q∗n ∈ K∗, u∗n ∈ ∂f(pn), q∗n + e∗n ∈ ∂g(qn),

u∗n
′ ∈ ∂(q∗nh)(xn), 〈q∗n, q′n − h(xn)〉 = 0 ∀n ∈ N,

u∗n + u∗n
′ → 0, e∗n → 0, xn → a, pn → a, qn → h(a), q′n → h(a) (n→ +∞),

f(pn)− 〈u∗n, pn − xn〉+ 〈q∗n, h(xn)− h(a)〉 − f(a)→ 0 (n→ +∞) and

g(qn)− 〈q∗n, qn − h(a)〉 − g(h(a))→ 0 (n→ +∞).

(4)

Proof. One can prove that a ∈ dom(f)∩dom(h)∩h−1(dom(g)) is an optimal

solution of the problem (P ) if and only if (a, h(a)) is an optimal solution of the

problem

(P ′K) inf
h(x)−y≤K0

(f(x) + g(y))⇔ inf
G(x,y)≤K0

F (x, y),
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where F : X × Y → R, F (x, y) = f(x) + g(y) and G : X × Y → Y •, G(x, y) =

h(x)−y ∀(x, y) ∈ X×Y . The hypotheses regarding the functions f, g and h imply

that F is proper, convex, lower semicontinuous and G is proper, K-convex and

K-epi-closed. Applying Corollary 3.5 to the problem (P ′K), which is a problem

with cone constraints in X×Y , we get that a ∈ dom(f)∩dom(h)∩h−1(dom(g))

is an optimal solution of the problem (P ) if and only if

∃(xn, yn, pn, qn, q′n) : (pn, qn) ∈ dom(F ), G(xn, yn) ≤K q′n,

∃(u∗n, v∗n, u∗n′, v∗n′, q∗n) : q∗n ∈ K∗, (u∗n, v∗n) ∈ ∂F (pn, qn),

(u∗n
′, v∗n

′) ∈ ∂(q∗nG)(xn, yn), 〈q∗n, q′n −G(xn, yn)〉 = 0 ∀n ∈ N,

(u∗n, v
∗
n) + (u∗n

′, v∗n
′)→ (0, 0), (xn, yn)→ (a, h(a)), (pn, qn)→ (a, h(a)),

q′n → 0 and F (pn, qn)− 〈(u∗n, v∗n), (pn, qn)− (xn, yn)〉+

〈q∗n, q′n〉 − F (a, h(a))→ 0 (n→ +∞).

(5)

We have dom(F ) = dom(f)× dom(g), F ∗(x∗, y∗) = f ∗(x∗) + g∗(y∗) and thus

(x∗, y∗) ∈ ∂F (x, y) ⇔ x∗ ∈ ∂f(x) and y∗ ∈ ∂g(y), for (x, y) ∈ X × Y and

(x∗, y∗) ∈ X∗ × Y ∗. Further, for λ ∈ K∗ we have

(λG)∗(x∗, y∗) =


(λh)∗(x∗), if y∗ + λ = 0,

+∞, otherwise,

and (x∗, y∗) ∈ ∂(λG)(x, y) if and only if y∗ + λ = 0 and x∗ ∈ ∂(λh)(x). Hence

a ∈ dom(f)∩ dom(h)∩ h−1(dom(g)) is an optimal solution of the problem (P ) if
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and only if

∃(xn, yn, pn, qn, q′n) ∈ X × Y × dom(f)× dom(g)× Y : h(xn) ≤K yn + q′n,

∃(u∗n, v∗n, u∗n′, q∗n) : q∗n ∈ K∗, u∗n ∈ ∂f(pn), v∗n ∈ ∂g(qn), u∗n
′ ∈ ∂(q∗nh)(xn),

〈q∗n, q′n + yn − h(xn)〉 = 0 ∀n ∈ N, u∗n + u∗n
′ → 0, v∗n − q∗n → 0, xn → a, pn → a,

yn → h(a), qn → h(a), q′n → 0 (n→ +∞) and f(pn) + g(qn)− 〈u∗n, pn − xn〉−

〈v∗n, qn − yn〉+ 〈q∗n, q′n〉 − f(a)− g(h(a))→ 0 (n→ +∞).

(6)

With the following notations: q′′n := yn + q′n and e∗n := v∗n − q∗n, ∀n ∈ N, we

obtain that (6) is equivalent to

∃(xn, yn, pn, qn, q′′n) ∈ X × Y × dom(f)× dom(g)× Y : h(xn) ≤K q′′n,

∃(u∗n, e∗n, u∗n′, q∗n) : q∗n ∈ K∗, u∗n ∈ ∂f(pn), q∗n + e∗n ∈ ∂g(qn), u∗n
′ ∈ ∂(q∗nh)(xn),

〈q∗n, q′′n − h(xn)〉 = 0 ∀n ∈ N, u∗n + u∗n
′ → 0, e∗n → 0, xn → a, pn → a,

yn → h(a), qn → h(a), q′′n → h(a) (n→ +∞) and f(pn) + g(qn)− 〈u∗n, pn − xn〉−

〈q∗n + e∗n, qn − yn〉+ 〈q∗n, q′′n − yn〉 − f(a)− g(h(a))→ 0 (n→ +∞).

(7)

Since 〈e∗n, qn − yn〉 → 0(n → +∞), we obtain that the element a ∈ dom(f) ∩

dom(h) ∩ h−1(dom(g)) is an optimal solution of the problem (P ) if and only if

∃(xn, yn, pn, qn, q′′n) ∈ X × Y × dom(f)× dom(g)× Y : h(xn) ≤K q′′n,

∃(u∗n, e∗n, u∗n′, q∗n) : q∗n ∈ K∗, u∗n ∈ ∂f(pn), q∗n + e∗n ∈ ∂g(qn), u∗n
′ ∈ ∂(q∗nh)(xn),

〈q∗n, q′′n − h(xn)〉 = 0 ∀n ∈ N, u∗n + u∗n
′ → 0, e∗n → 0, xn → a, pn → a,

yn → h(a), qn → h(a), q′′n → h(a) (n→ +∞) and

f(pn) + g(qn)− 〈u∗n, pn − xn〉 − 〈q∗n, qn − q′′n〉 − f(a)− g(h(a))→ 0 (n→ +∞).

(8)

16



Let us notice that in the above condition the sequence {yn : n ∈ N} is

superfluous, that is the conditions in (8) are equivalent to

∃(xn, pn, qn, q′′n) ∈ X × dom(f)× dom(g)× Y : h(xn) ≤K q′′n,

∃(u∗n, e∗n, u∗n′, q∗n) : q∗n ∈ K∗, u∗n ∈ ∂f(pn), q∗n + e∗n ∈ ∂g(qn), u∗n
′ ∈ ∂(q∗nh)(xn),

〈q∗n, q′′n − h(xn)〉 = 0 ∀n ∈ N, u∗n + u∗n
′ → 0, e∗n → 0, xn → a, pn → a,

qn → h(a), q′′n → h(a) (n→ +∞) and

f(pn) + g(qn)− 〈u∗n, pn − xn〉 − 〈q∗n, qn − q′′n〉 − f(a)− g(h(a))→ 0 (n→ +∞).

(9)

Indeed, the direct implication is obvious, while for the reverse one we take yn :=

h(a) ∀n ∈ N.

Let us introduce now the following real sequences: an := f(pn) + g(qn) −

〈u∗n, pn−xn〉−〈q∗n, qn−q′′n〉−f(a)−g(h(a)), bn := g(qn)−〈q∗n, qn−h(a)〉−g(h(a))

and cn := f(pn) − 〈u∗n, pn − xn〉 + 〈q∗n, h(xn) − h(a)〉 − f(a) ∀n ∈ N. We prove

that if the condition
(xn, pn, qn, q

′′
n) ∈ X × dom(f)× dom(g)× Y, u∗n ∈ ∂f(pn), q∗n + e∗n ∈ ∂g(qn),

u∗n
′ ∈ ∂(q∗nh)(xn), 〈q∗n, q′′n − h(xn)〉 = 0 ∀n ∈ N and

u∗n + u∗n
′ → 0, e∗n → 0, xn → a, qn → h(a) (n→ +∞)

(10)

is satisfied, then we have

an → 0 (n→ +∞) if and only if bn → 0 and cn → 0 (n→ +∞). (11)

Indeed, if (10) is fulfilled, then

an = bn + cn , (12)
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hence the sufficiency of relation (11) is trivial. We point out that for this impli-

cation we need only the fulfillment of 〈q∗n, q′′n − h(xn)〉 = 0 ∀n ∈ N.

Assume now that an → 0 (n → +∞). Since u∗n ∈ ∂f(pn) we have f(a) −

f(pn) ≥ 〈u∗n, a − pn〉 ∀n ∈ N. Moreover, u∗n
′ ∈ ∂(q∗nh)(xn), hence 〈q∗n, h(a)〉 −

〈q∗n, h(xn)〉 ≥ 〈u∗n′, a− xn〉 ∀n ∈ N. We obtain that cn ≤ 〈u∗n, pn − a〉+ 〈u∗n′, xn −

a〉 − 〈u∗n, pn − xn〉 = 〈u∗n + u∗n
′, xn − a〉. Also, from q∗n + e∗n ∈ ∂g(qn) we get

g(h(a))− g(qn) ≥ 〈q∗n + e∗n, h(a)− qn〉 and so

bn ≤ 〈q∗n + e∗n, qn − h(a)〉 − 〈q∗n, qn − h(a)〉 = 〈e∗n, qn − h(a)〉.

On the other hand,

bn = an − cn ≥ an − 〈u∗n + u∗n
′, xn − a〉.

Combining the last two inequalities we obtain bn → 0 (n→ +∞). From (12) we

also get cn → 0 (n→ +∞) and hence (11) is fulfilled.

Thus the condition (9) is equivalent to (4) and the proof is complete. �

In the following corollary we give a sequential characterization of the subgra-

dients of the function g ◦ h at a ∈ dom(h) ∩ h−1(dom(g)).

Corollary 3.7 For a ∈ dom(h) ∩ h−1(dom(g)) we have x∗ ∈ ∂(g ◦ h)(a) if
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and only if

∃(xn, qn, q′n) ∈ X × dom(g)× Y, h(xn) ≤K q′n,∃(e∗n, x∗n, q∗n), q∗n ∈ K∗,

q∗n + e∗n ∈ ∂g(qn), x∗n ∈ ∂(q∗nh)(xn), 〈q∗n, q′n − h(xn)〉 = 0 ∀n ∈ N,

xn → a, qn → h(a), q′n → h(a), x∗n → x∗, e∗n → 0 (n→ +∞),

g(qn)− 〈q∗n, qn − h(a)〉 − g(h(a))→ 0 (n→ +∞) and

〈q∗n, h(xn)− h(a)〉 → 0 (n→ +∞).

(13)

Proof. We have x∗ ∈ ∂(g ◦ h)(a) ⇔ 0 ∈ ∂(−x∗ + g ◦ h)(a) ⇔ a is an

optimal solution of the problem (P ) with f : X → R, f(x) = 〈−x∗, x〉,∀x ∈ X.

According to Theorem 3.6, we get that x∗ ∈ ∂(g ◦ h)(a) if and only if

∃(xn, pn, qn, q′n) ∈ X ×X × dom(g)× Y, h(xn) ≤K q′n,∃(e∗n, u∗n′, q∗n), q∗n ∈ K∗,

q∗n + e∗n ∈ ∂g(qn), u∗n
′ ∈ ∂(q∗nh)(xn), 〈q∗n, q′n − h(xn)〉 = 0 ∀n ∈ N,

xn → a, pn → a, qn → h(a), q′n → h(a), u∗n
′ → x∗, e∗n → 0 (n→ +∞),

g(qn)− 〈q∗n, qn − h(a)〉 − g(h(a))→ 0 (n→ +∞) and

〈q∗n, h(xn)− h(a)〉 → 0 (n→ +∞),

(14)

where we used the continuity of the function f and the fact that ∂f(x) =

{−x∗} ∀x ∈ X. The desired conclusion follows easily, since in the condition

(14) the sequence pn is superfluous (we made the notation x∗n := u∗n
′ ∀n ∈ N). �

Remark 3.8 Corollary 3.7 above is exactly the result given by Thibault in

Theorem 3.1 in [18].
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3.3.2 The case h is continuous

Consider again the problem

(P ) inf
x∈X

[f(x) + g(h(x))],

with the following hypotheses: f : X → R is proper, convex and lower semicon-

tinuous, Y is partially ordered by a nonempty convex cone K, h : X → Y is

K-convex and continuous, g : Y → R is proper, convex, lower semicontinuous

and K-increasing on Y . We want to mention that, unlike in the previous sub-

section, the results in this subsection hold even Y is not reflexive. Suppose that

dom(f)∩h−1(dom(g)) 6= ∅ and consider the perturbation function φ : X×Y → R,

φ(x, y) = f(x) + g(h(x) + y) ∀(x, y) ∈ X × Y, (15)

which is in this situation proper, convex and lower semicontinuous. The conjugate

function φ∗ : X∗ × Y ∗ → R has for all (x∗, y∗) ∈ X∗ × Y ∗ the following form

φ∗(x∗, y∗) =


(f + y∗h)∗(x∗) + g∗(y∗), if y∗ ∈ K∗,

+∞, otherwise,

where we took into consideration that g∗(y∗) = +∞ ∀y∗ ∈ Y ∗ \K∗. By means of

the general result Theorem 3.1 applied for this perturbation function we obtain

the following sequential optimality conditions for (P ).
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Theorem 3.9 The element a ∈ dom(f)∩h−1(dom(g)) is an optimal solution

of the problem (P ) if and only if

∃(xn, yn) ∈ dom(f)× dom(g),∃(u∗n, v∗n, y∗n) ∈ X∗ ×X∗ ×K∗,

u∗n ∈ ∂f(xn), v∗n ∈ ∂(y∗nh)(xn), y∗n ∈ ∂g(yn) ∀n ∈ N,

u∗n + v∗n → 0, xn → a, yn → h(a) (n→ +∞),

f(xn) + 〈y∗n, h(xn)− h(a)〉 − f(a)→ 0 (n→ +∞) and

g(yn)− 〈y∗n, yn − h(a)〉 − g(h(a))→ 0 (n→ +∞).

(16)

Proof. Applying Theorem 3.1 we obtain that a ∈ dom(f) ∩ h−1(dom(g)) is

an optimal solution of the problem (P ) if and only if
∃(xn, yn) ∈ X × Y, xn ∈ dom(f), h(xn) + yn ∈ dom(g),

∃(x∗n, y∗n) ∈ ∂φ(xn, yn) ∀n ∈ N, x∗n → 0, xn → a, yn → 0 (n→ +∞) and

φ(xn, yn)− 〈y∗n, yn〉 − φ(a, 0)→ 0 (n→ +∞).

(17)

The condition (x∗n, y
∗
n) ∈ ∂φ(xn, yn) is equivalent to y∗n ∈ K∗ and f(xn) +

g(h(xn) + yn) + (f + y∗nh)∗(x∗n) + g∗(y∗n) = 〈x∗n, xn〉+ 〈y∗n, yn〉 ∀n ∈ N. Using the

Young-Fenchel inequality one can see that for all n ∈ N:

f(xn) + (y∗nh)(xn) + (f + y∗nh)∗(x∗n)− 〈x∗n, xn〉 ≥ 0

and

g(h(xn) + yn) + g∗(y∗n)− 〈y∗n, h(xn) + yn〉 ≥ 0.

Since the sum of the terms in the left-hand side of the inequalities above is equal

to zero, both of them must be equal to zero. This is the case if and only if x∗n ∈
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∂(f+y∗nh)(xn) and y∗n ∈ ∂g(h(xn)+yn) ∀n ∈ N. Hence a ∈ dom(f)∩h−1(dom(g))

is an optimal solution of (P ) if and only if

∃(xn, yn) ∈ X × Y, xn ∈ dom(f), h(xn) + yn ∈ dom(g),

∃(x∗n, y∗n) ∈ X∗ ×K∗, x∗n ∈ ∂(f + y∗nh)(xn), y∗n ∈ ∂g(h(xn) + yn) ∀n ∈ N,

x∗n → 0, xn → a, yn → 0 (n→ +∞) and

f(xn) + g(h(xn) + yn)− 〈y∗n, yn〉 − f(a)− g(h(a))→ 0 (n→ +∞).

(18)

The function h being continuous, the following subdifferential sum formula holds:

∂(f + y∗nh)(xn) = ∂f(xn) + ∂(y∗nh)(xn) ∀n ∈ N (19)

(see Theorem 2.8.7 in [19]). Thus x∗n ∈ ∂(f + y∗nh)(xn) if and only if there exist

u∗n ∈ ∂f(xn) and v∗n ∈ ∂(y∗nh)(xn) such that x∗n = u∗n + v∗n ∀n ∈ N. Introducing a

new variable by y′n := h(xn)+yn ∀n ∈ N and employing once more the continuity

of the function h we get that (18) is equivalent to

∃(xn, y′n) ∈ dom(f)× dom(g),∃(u∗n, v∗n, y∗n) ∈ X∗ ×X∗ ×K∗,

u∗n ∈ ∂(f)(xn), v∗n ∈ ∂(y∗nh)(xn), y∗n ∈ ∂g(y′n) ∀n ∈ N,

u∗n + v∗n → 0, xn → a, y′n → h(a) (n→ +∞) and

f(xn) + g(y′n)− 〈y∗n, y′n − h(xn)〉 − f(a)− g(h(a))→ 0 (n→ +∞).

(20)

Let us consider now the following real sequences: αn := f(xn) + g(y′n) −

〈y∗n, y′n − h(xn)〉 − f(a) − g(h(a)), βn := f(xn) − f(a) + 〈y∗n, h(xn) − h(a)〉 and

γn := g(y′n) − g(h(a)) − 〈y∗n, y′n − h(a)〉 ∀n ∈ N. We have αn = βn + γn ∀n ∈ N
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and if the condition
(xn, y

′
n) ∈ dom(f)× dom(g), (u∗n, v

∗
n, y

∗
n) ∈ X∗ ×X∗ ×K∗,

u∗n ∈ ∂(f)(xn), v∗n ∈ ∂(y∗nh)(xn), y∗n ∈ ∂g(y′n) ∀n ∈ N,

u∗n + v∗n → 0, xn → a, (n→ +∞),

(21)

is satisfied, then

αn → 0 (n→ +∞) if and only if βn → 0 and γn → 0 (n→ +∞). (22)

We omit the proof of (22), since it can be done in the lines of the one given for the

relation (11) in the proof of Theorem 3.6. Hence the condition (20) is equivalent

to (16). �

Taking in the previous result f : X → R, f(x) = 〈−x∗, x〉 ∀x ∈ X, where

x∗ ∈ X∗ is fixed, we get the following corollary.

Corollary 3.10 For a ∈ h−1(dom(g)) we have x∗ ∈ ∂(g ◦ h)(a) if and only if

∃(xn, yn) ∈ X × dom(g),∃(v∗n, y∗n) ∈ X∗ ×K∗, v∗n ∈ ∂(y∗nh)(xn), y∗n ∈ ∂g(yn),

v∗n → x∗, xn → a, yn → h(a) (n→ +∞),

g(yn)− 〈y∗n, yn − h(a)〉 − g(h(a))→ 0 (n→ +∞) and

〈y∗n, h(xn)− h(a)〉 → 0 (n→ +∞).

(23)

Remark 3.11 The above sequential characterization of an arbitrary x∗ ∈

∂(g ◦ h)(a) was given by Thibault in case X and Y are both reflexive Banach
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spaces, K is a closed convex normal cone and g is K-increasing on h(X)+K (see

Corollary 3.2 in [18]). We proved that if the function g is K-increasing on Y , then

this result holds even if the cone K is not normal and Y is an arbitrary Banach

space. Moreover, the closedness condition regarding the cone K, requested by

Thibault in [18], is not needed anymore.

Remark 3.12 (a) One can prove that the perturbation function defined at the

beginning of the subsection 3.3.2 is lower semicontinuous even in the more general

case when h is star K-lower semicontinuous (this follows because of φ∗∗ = φ).

This means that it is possible to derive sequential optimality conditions even in

this case. Nevertheless, in order to obtain the result given by Thibault (Corollary

3.2 in [18]), we have to suppose that h is continuous, as this fact was used twice

in the proof of Theorem 3.9 above. Even if the subdifferential sum formula

(19) holds also in the case h is star K-lower semicontinuous and f is continuous

(because we take f = −x∗ in order to obtain the result of Thibault), we still need

the continuity of the function h in order to ensure that the sequence y′n has the

limit h(a) as n→ +∞ (see the equivalence between the conditions (18) and (20)

in the proof of Theorem 3.9).

(b) Under the hypotheses mentioned in the beginning of the subsection 3.3.1

one can not prove that the perturbation function φ defined in the relation (15)

is lower semicontinuous and hence in case h is K-epi-closed, Theorem 3.1 is

not applicable for this perturbation function. This is one of the reasons why
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the first sequential optimality condition for the composed convex optimization

problem (P ), namely Theorem 3.6, is derived via Corollary 3.5, a result which

is given for an optimization problem with cone constraints (of course, Corollary

3.5 is obtained from the general result Theorem 3.1). Another reason is that the

condition g is K-increasing on h(dom(h)) + K (which is the case in subsection

3.3.1) is not sufficient in order to guarantee the convexity of the above mentioned

perturbation function. In order to ensure the convexity of this function φ, g has

to be K-increasing on Y , which is actually the case in subsection 3.3.2.
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